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ABSTRACT OF THE DISSERTATION 
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and physical mechanisms on seasonal to decadal scales 
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University of California, Irvine, 2020 

Distinguish Professor Efi Foufoula-Georgiou, Chair 

 

The mechanistic understanding and reliable prediction of regional hydroclimatic 

variability across scales remains a challenge, with important socioeconomic and 

environmental implications for many regions around the world. Despite the significant 

advances in earth system modeling during the recent decades, deterministic models show 

limited predictive skill of regional hydroclimate, mainly due to imperfect physical 

conceptualizations and inaccurate initial conditions. Statistical schemes that are based on 

empirically established climate teleconnections are not reliable due to the non-stationary 

nature of the system under climate change. In this dissertation, to gain physical insight on 

precipitation variability across scales, we explore a) the physical teleconnections and 

predictability of winter precipitation totals over the southwestern US (SWUS), and b) the 

future shifts in the position of the tropical rainbelt/intertropical convergence zone (ITCZ) in 

response to climate change. The hydroclimatic variability in these two cases is based on 

fundamentally different phenomena (mid latitude dynamics versus tropical circulation) and 

operates at largely different temporal scales (seasonal versus multidecadal timescales), thus 

offering great potential for physical insight and broadening the impact of this work.    

We present evidence that new modes of sea surface temperature variability over the 

southwestern Pacific have been robustly connected to SWUS precipitation over the past four 

decades, providing improved prediction skill compared to traditionally used indices. We 

suggest that the revealed connection materializes through a western Pacific pathway 



 

xi 
 

whereby temperature anomalies in the proximity of New Zealand propagate from the 

southern to the northern hemisphere during boreal summer and early fall. The importance 

of the revealed teleconnection and the skill of other predictive models in predicting extreme 

precipitation totals in SWUS is assessed via a new probabilistic framework that is also 

introduced in this work.  

Regarding the future response of the tropical rainbelt to climate change, we propose a 

new multivariate approach to track its position as a function of longitude, and by using state-

of-the-art climate model outputs, we report a robust, zonally contrasting shift of the ITCZ 

with climate change. Specifically, we document that the ITCZ will shift northward over 

eastern Africa and the Indian Ocean, and southward in the eastern Pacific and Atlantic 

Oceans by 2100, for the SSP3-7.0 scenario. We find that the revealed ITCZ response is 

consistent with future changes in the divergent atmospheric energy transport over the 

tropics, and sector-mean shifts of the energy flux equator. The shifts in the energy flux 

equator appear to be the result of zonally contrasting imbalances in the interhemispheric 

atmospheric heating over the two sectors, consisting of increases in atmospheric heating 

over Eurasia and cooling over the Southern Ocean, which contrast with atmospheric cooling 

over the North Atlantic Ocean due to a model-projected weakening of the Atlantic meridional 

overturning circulation. 

The results of this dissertation highlight the need to understand the dynamic nature of 

the coupled ocean-atmosphere system and exploit climate information that goes beyond the 

traditionally used indices for improving future prediction skill of regional precipitation in a 

changing climate. Future research should focus on the development of new, data-driven 

methodologies that aim to integrate physics and machine learning, and predict seasonal 

precipitation variability in a setting where the predictors are not prescribed a priori, but 

rather emerge from the model fit to the data. For longer timescales (i.e. decadal and multi-

decadal), our results provide new insights about the mechanisms that will influence the 

future position of the tropical rainbelt, and may allow for more robust projections of climate 

change impacts. 
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INTRODUCTION 
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Understanding the factors that determine regional precipitation variability across 

scales (i.e., sub-daily to interannual variability, and long-term future trends with climate 

change) as well as increasing its predictive skill is one of the most pressing and crucial 

problems for engineers and earth system scientists, with important implications for the 

economy, security and environmental sustainability of many regions around the globe. To 

address this challenge advanced physics-based modeling and data analytic methodologies are 

needed for investigating observations and state-of-the-art model simulations to enhance 

process-level understanding, diagnose changing modes of climate variability, and detect and 

attribute regional manifestations of climate change for improved precipitation prediction.  

Despite the substantial progress that has been made in the recent decades in 

identifying and understanding physical drivers and climate teleconnections to regional 

hydroclimate, important challenges remain. At seasonal and interannual scales, climate 

models show no predictive skill, while commonly used climatic modes, like the El Niño-

Southern Oscillation (ENSO), can explain only a fraction of precipitation variability, and only 

over specific regions where the signal is statistically significant. Moreover, the changing 

climate alters the empirically established teleconnections, with new climatic modes emerging 

or becoming more important. At decadal and multi-decadal scales, the effect of climate change 

on regional precipitation can only be explored based on outputs from state-of-the-art climate 

models, which, despite the great advances in climate modeling, still exhibit important 

systematic biases. Also, due to the different physical approximations of each model and the 

different scenarios of future climate change that are considered in the literature, future 

precipitation changes remain uncertain.  

The above challenges limit our ability to understand and attribute past variability 

and/or improve prediction of future variability and change of regional hydroclimate across a 

range of timescales. In this dissertation, we investigate the mechanisms that determine 

winter precipitation variability over the southwestern US (in Chapter 1) and explore model 

consensus in the response of the intertropical convergence zone to climate change as a 

function of longitude (in Chapter 2). The hydroclimatic variability in these two cases is based 

on fundamentally different phenomena (mid latitude dynamics versus tropical circulation) 

and operates at largely different temporal scales (seasonal versus multidecadal timescales), 

thus, offering a great potential for gaining physical insights.    
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Despite the increasing attention that it has received over the years, early and accurate 

prediction of winter precipitation in SWUS remains a challenge, with significant implications 

for the region’s population and economy. Traditional climatic drivers of SWUS precipitation 

(e.g. the ENSO) explain just a small fraction of the interannual variability of precipitation 

totals, which in some cases are determined by a small number of winter storms. Moreover, it 

is known that the ENSO relationship with SWUS climate undergoes multidecadal fluctuations, 

with many recent studies pointing out that it has been losing strength in the recent decades, 

while the western Pacific climatic state is gaining in importance. The special difficulty of this 

problem also arises because the SWUS lies within a transition zone between the subtropics 

and the mid-latitudes (i.e. 30°- 40° N). In fact, the latter is among the reasons that the effect 

of climate change on future precipitation trends over the SWUS is highly uncertain, with mid-

latitude regions expected to become wetter and subtropical regions drier.  

In our analysis, we start by highlighting a new emerging connection between 

southwestern Pacific sea surface temperature (SST) and SWUS precipitation, by also offering 

a possible mechanistic explanation of the revealed link. We then propose a probabilistic 

framework to assess prediction skill of extreme seasonal precipitation totals. As an 

application of this framework, we use the prediction problem of precipitation over SWUS and 

highlight the most predictive SST features in observed and model-simulated climates. 

In Chapter 2 we explore the long-term effect of future climate change on the position 

of the tropical rainbelt/intertropical convergence zone (ITCZ). Future changes in the ITCZ 

position with climate change are of high interest since they could substantially alter 

precipitation patterns in the tropics and subtropics, and affect the livelihood and food 

security of billions of people. However, although climate models predict a future narrowing 

of the ITCZ during the 21st century in response to climate warming, uncertainties remain large 

regarding its future position, with most past work focusing on the zonal-mean ITCZ shifts. 

Thus, this problem offers a great case study for highlighting climate models’ biases and 

uncertainty of their outputs, regarding the future response of tropical hydroclimate to global 

climate change. 
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We first introduce a new probabilistic framework to track the ITCZ position as a 

function of longitude. We then use projections from 27 state-of-the-art (CMIP6) climate 

models and document a robust zonally-varying ITCZ response to the SSP3-7.0 scenario by 

2100, with a northward shift over eastern Africa and the Indian Ocean, and a southward shift 

in the eastern Pacific and Atlantic Oceans. The revealed zonally-varying response is consistent 

with changes in the divergent atmospheric energy transport, and sector-mean shifts of the 

energy flux equator.  

Chapters 1 and 2 are written in stand-alone format based on already published or 

submitted work. 
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CHAPTER 1 

 

 

Climate teleconnections and predictability of winter 

precipitation over the southwestern US  

  



 

6 
 

1.1. A new interhemispheric teleconnection increases predictability of 

winter precipitation in southwestern US 

Part of this chapter has been published in Nature Communications 

Citation: Mamalakis, A., J.-Y. Yu, J.T. Randerson, A. AghaKouchak, and E. Foufoula-Georgiou (2018) A 

new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US, 

Nature Communications, doi: 10.1038/s41467-018-04722-7 

 

Seasonal and sub-seasonal precipitation prediction typically relies on deterministic climate 

models or statistical methods1. However, both climate models (which represent the complex 

land-ocean-atmosphere interactions) and statistical models (that either harness empirical 

relationships between precipitation and large-scale ocean-atmosphere teleconnections or 

are persistence-based) have shown limited success for precipitation prediction1-7. As climate 

change is expected to modify precipitation patterns, the need for improved seasonal to sub-

seasonal predictive skill becomes critical for sustainable management of ecosystems and 

water resources8-12. 

Traditional drivers of winter precipitation in the southwestern US (SWUS) are the El 

Niño-Southern Oscillation (ENSO), decadal oscillations of the sea surface temperature (SST) 

in the Pacific and Atlantic oceans (i.e. Pacific Decadal Oscillation; PDO, Interdecadal Pacific 

Oscillation; IPO, Atlantic Multidecadal Oscillation; AMO), and persistent high-pressure ridges 

over the Gulf of Alaska13,17-25,46. Although these teleconnections are physically 

established38,39,42, their predictive power on seasonal scales is limited. For example, there 

have been several years where El Niño conditions did not coincide with positive precipitation 

anomaly in SWUS, while years of extreme precipitation anomalies corresponded to neutral 

ENSO conditions23,25-27. More generally, ENSO as well as other climate modes (e.g. PDO, AMO) 

exhibit weak statistical relationships with precipitation amounts, and even lower 

predictability as lead time increases24-27.  

In this study, we use historical records and reanalysis data to show that late-summer 

SST anomalies close to New Zealand strongly correlate with SWUS winter precipitation, 

outperforming all commonly used teleconnections, and enhancing the potential for earlier 
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and more accurate prediction of precipitation. We provide evidence that the strength of the 

discovered teleconnection has been increasing during the latest 3-4 decades, in contrast to 

ENSO indices, which have been losing predictive strength. The new teleconnection is linked 

to an interhemispheric atmospheric bridge which occurs over western Pacific and is 

proposed to be driven by the migration of the intertropical convergence zone to the northern 

hemisphere during late summer, and the accompanied expansion of the southern Hadley 

cell55, which allows for SST anomalies in the south to affect the north Pacific.  

Results 

Evidence for a new teleconnection. Grounded on the hypothesis that still undiscovered 

relationships between large-scale atmosphere-ocean dynamics and SWUS precipitation 

might exist, we followed a diagnostic approach by which instead of restricting ourselves to 

the established teleconnections, we analyzed systematically the correlation of global SST and 

geopotential height (GPH) with winter precipitation amounts for all of the climatic divisions 

in SWUS. The premise was that if a coherent pattern emerged from such a data-analytic 

approach, it would warrant merit for further investigation of its physical/mechanistic 

underpinning and its possible relation with other climate modes known to influence SWUS 

precipitation. For our analysis, we used observations of winter precipitation amount (data 

source: https://www.ncdc.noaa.gov/cag/time-series/us, [40]), together with SST data from 

two different datasets (monthly SSTs on a 1º×1º grid, [34] and [36]) and GPH reanalysis data 

(monthly GPH on a 2º×2º grid, [33]). We assessed predictability based on global correlation 

maps between winter (Nov-Mar) precipitation amount in each climate division within SWUS 

(California, Nevada, Arizona, and Utah) and SST and GPH, averaged over 3-month periods 

corresponding to different lead times. We performed the analysis for the 66-yr period of 

1950-2015, when higher quality SST and GPH observations are available. Specifically, for each 

grid cell on the globe, we calculated the correlation between Pm and 𝐼𝑖:𝑖+𝑑𝑡
𝑘,𝑙 , where Pm is the 

precipitation (Nov-Mar) in climate division m, 𝐼𝑖:𝑖+𝑑𝑡
𝑘,𝑙  is the SST (or GPH) at latitude k and 

longitude l, while i indicates the starting month, and i + dt the ending month of the period over 

which SST and GPH were averaged; here we considered i = 7 and 9 (Jul and Sep) and dt = 2, 

that is, we correlated Pm (Nov-Mar) to I(Jul-Sep) and I(Sep-Nov), i.e. late summer and fall 

https://www.ncdc.noaa.gov/cag/time-series/us
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period. This analysis allowed us to examine the presence, and the strengthening or weakening 

of spatial correlation patterns with lead time.  

The unexpected result of our investigation was the emergence of persistent SST and 

GPH patterns located in the southwestern Pacific, which exhibited strong negative correlation 

with precipitation in most SWUS climate regions. By examining the correlation maps for all 

climate divisions, the location and areal extent of the SST pattern was first qualitatively 

assessed to ensure its robustness. Then, by considering the SST anomalies enclosed within 

contours of statistically significant correlation, the location and size of the emergent 

teleconnection was formally defined as the 30° × 15° region of 170°E-200°E and 25°S-40°S 

(Figure 1.1g). We refer to the emergent teleconnection as the New Zealand Index (NZI; Figure 

1.1g) because of its proximity to New Zealand.   
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Figure 1.1: Evidence for a new teleconnection in the southwestern Pacific. (a)-(b) Correlation 
coefficients of –NZI and Niño 3.4 with winter precipitation (Nov-Mar) for all climate divisions of 
Southwestern US (SWUS) and for two different periods (Jul-Sep and Sep-Nov) for 1950-2015. Average 
precipitation is defined as the area-weighted average precipitation amount over climate divisions 
where Niño 3.4 exhibits statistically significant correlation (see colored numbers in panels a-b, and 
regions in panel h). (c) Correlation map between SST (Jul-Sep) and the average winter precipitation in 
SWUS for 1950-2015. White color indicates statistically insignificant correlations (α = 0.05 significance 
level); (d) Same as (c), but SST is averaged over Sep-Nov; (e)-(f) Correlation maps as in (c)-(d) but using 
GPH (400 mb). The emergence of a persistent correlation pattern in the southwestern Pacific (coined 
as the New Zealand Index, NZI) is robust for both SST and GPH; (g) the location and areal extent of NZI 
and Niño 3.4; (h) The selected climate divisions in SWUS (in color), for deriving the regionally averaged 
precipitation amount, based on their significant correlation with Niño 3.4.  
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Correlations between NZI (Jul-Sep and Sep-Nov) and winter precipitation (Nov-Mar) 

for each climate division within CA, AR, UT, and NV revealed two important properties of the 

teleconnection (Figure 1.1a-b). First, NZI correlations were stronger than Niño 3.4 

correlations for most climate divisions, highlighting the potential for earlier and more 

accurate precipitation predictions than those afforded by ENSO. Second, correlations of NZI 

and ENSO exhibited similar variability among different regions, with precipitation amount 

over northern CA, NV, and UT showing lower correlation with both indices. This is not 

surprising, since precipitation in these regions is known to be less dependent on Pacific SSTs. 

Specifically, by modulating the latitude at which the jet stream prevails, Pacific SSTs influence 

the US climate over the northern and southern west coast, but not over regions in the central 

western US, which exhibit very different precipitation variability13,16,17,19,46,57. For the 

remainder of this study, we focused our analysis on the region where precipitation was 

significantly related to Pacific SST variability. We defined a regionally averaged SWUS 

precipitation time series as the area-weighted average precipitation amount over climate 

divisions for which ENSO (Niño 3.4) exhibited a statistically significant correlation (at a 

significance level of α = 0.05; Figures 1.1a-b and 1h).  

The spatial correlation patterns between SST and the area-weighted average SWUS 

precipitation are shown in Figure 1.1c-d, for two lead times. Pacific SSTs in ENSO region had 

correlation values that did not exceed 0.4, whereas the strongest dependencies occurred in 

the southwestern Pacific, where correlations were less than -0.6. Similar patterns were 

apparent when using GPH data (400 mb), where a correlation of -0.5 was observed over the 

NZI region (Figure 1.1e-f). The correlations with GPH did not depend on pressure level 

(Figure 1.2), revealing that the GPH pattern had a barotropic structure, a major characteristic 

of teleconnection patterns in the atmosphere41.  
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Figure 1.2: NZI had a barotropic structure. Correlation maps between GPH (Jul-Sep and Sep-Nov, at 
different pressure levels) and the average precipitation in SWUS (Nov-Mar), for 1950-2015 (same 
results as in Figure 1.1e-f, but for different pressure levels). White color indicates statistically 
insignificant correlations (α = 0.05 significance level).  
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Decadal variation of precipitation teleconnections. ENSO teleconnections to US 

precipitation have been shown to exhibit decadal and multidecadal variations in their 

strength13-18. These variations have been mainly attributed to natural climate variability16-18 

(e.g. PDO, AMO), and have been linked to the recurrence of persistent dry/wet periods in 

California and Arizona, with a periodicity of the order of 15 years20,27(Figure 1.3). Here, to 

explore the decadal variations and trends of NZI and ENSO teleconnection with winter 

precipitation in SWUS, we considered a 30-yr moving window (starting in 1950), and 

calculated the correlation of NZI and ENSO indices averaged over periods of Jul-Sep and Sep-

Nov with the regionally averaged winter precipitation amount. This analysis showed that the 

correlation of NZI with precipitation steadily increased over the duration of the time series, 

exceeding ENSO’s correlation during the last 3-4 decades (Figure 1.4a-b). ENSO indices, in 

contrast, showed a declining teleconnection strength since the 1970s.  

Although the ENSO teleconnections had a similar decadal structure of variability over 

the record, differences among the indices have important implications for seasonal 

prediction. Niño 3 exhibited statistically insignificant correlation for the Jul-Sep interval (at α 

=0.05 significance level), indicating that eastern Pacific SSTs may not be effective for SWUS 

precipitation prediction. SOI, in contrast, had the strongest correlation with winter 

precipitation of all the ENSO indices (Figure 1.4b), suggesting that atmospheric pressure 

variations across the tropical central/western Pacific may be more effective for prediction 

than SST-derived indices. ENSO teleconnection strength did not seem to be affected by the 

increased frequency of central-Pacific ENSO events relative to those of the eastern-Pacific, 

which has been reported recently48,49,58. Specifically, SST-based ENSO indices for different 

zonal regions (including Niño 3, Niño 3.4, and Niño 4) did not show diverging correlation 

patterns over the past several decades.  
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Figure 1.3. Time series of Niño 3.4, and NZI indices (both averaged over Sep-Nov) and precipitation 
anomaly (Nov-Mar). In (c), each year in horizontal axis refers to the beginning of Nov-Mar. 
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Figure 1.4: Strengthening of NZI after the mid-1970s.  30-year running averages of ENSO and NZI 
teleconnection strengths for two different lead times: (a) Correlation values for 30-yr moving 
windows between different climate indices (averaged over Jul-Sep) and winter precipitation in SWUS 
(Nov-Mar); (b) same as (a) but when climate indices are averaged over Sep-Nov. Dashed lines indicate 
the threshold below which correlations are statistically insignificant (α = 0.05 significance level); (c) 
the location and areal extent of NZI and ENSO indices. SOI (Southern Oscillation Index17) is defined as 
the standardized difference of the sea level pressure anomalies at Tahiti and Darwin (Australia).  

 

To quantitatively compare the predictive skill of NZI and ENSO indices, we 

sequentially performed cross-validation analysis (over 30-yr running windows) using three 

linear prediction models based on NZI, SOI and Niño 3.4 time series. We assessed the 

predictive skill of each index based on the RMSE of the corresponding model prediction for 

regionally-averaged winter (Nov-Mar) precipitation; the percentage of precipitation 

variability each model explained (R2); and the probability of each model to correctly predict 

dry or wet conditions in the SWUS, with the former referring to precipitation amounts below 

the 33% quantile, and the latter above the 66% quantile.  
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Figure 1.5: 30-year running averages of ENSO and NZI predictive skill for two different lead 
times indicated the strengthening of NZI after the mid-1970s. Prediction metrics for 30-yr moving 
windows are established by comparing models’ forecasts and average precipitation amount in SWUS 
(Nov-Mar): (a)-(b) Standardized RMSE; (c)-(d) Coefficient of determination; (e)-(f) Probability of 
correctly predicting wet conditions; (g)-(h) Probability of correctly predicting dry conditions. 

 

Based on all metrics, after the mid-1970s NZI’s predictive skill increased, while ENSO 

indices lost predictability (see Figure 1.5). Specifically, in the past three decades, NZI’s 

correlation to winter SWUS precipitation was about -0.7, while SSTs in the Niño 3.4 region 

exhibited almost statistically insignificant relationships (Figure 1.6). The correlation of NZI 
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with winter precipitation for each climate division and for each of the different time lags is 

shown in Figure 1.7, further establishing higher level of performance of NZI compared to the 

most commonly used ENSO indices. The correlation of winter precipitation and NZI in late 

summer (during Jul-Sep) was high (about -0.55), and increased more during Sep-Nov (about 

-0.7).   

 

 
Figure 1.6: During the last three decades, NZI associated more strongly with the average winter 
precipitation in the SWUS than Niño 3.4. NZI and Niño 3.4 anomalies correspond to the Sep-Nov 
period, while average winter (Nov-Mar) precipitation is computed over climate divisions of significant 
correlation with Niño 3.4 (see caption of Figure 1.1). In the lower panel, the 5 coolest/warmest NZI 
years are indicated (lower/upper ~15%) as well, to be used in Figure 1.14 and in Figure 1.15. 
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Figure 1.7: Comparison of ENSO and NZI teleconnection strengths. Colors illustrate correlation 
values between precipitation in different climate divisions over SWUS (Nov-Mar) and selected 
climatological indices corresponding to different 3-month periods, for 1982-2015. Colors denote 
statistically significant correlations (α = 0.05 significance level). Results in the last column were 
calculated using the regionally-averaged precipitation amount. NZI outperformed existing indices 
(correlation of -0.7 compared to 0.3-0.5) and provided statistically significant predictions with a 3-
month lead time. Multivariate ENSO Index5 (MEI) and Bivariate ENSO Timeseries44 (BEST) are 
comprehensive indices consisting of multiple meteorological variables (SST, sea level pressure, 
surface wind, etc.) for determining ENSO state.  
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The western Pacific pathway. Important insight about the physical mechanism 

underpinning the NZI teleconnection is gained by exploring the dynamic evolution of the 

relationship between winter precipitation in the SWUS and ocean and atmosphere state 

variables in the Pacific basin during the preceding year. SSTs in the NZI region and SWUS 

precipitation exhibited statistically significant (α=0.05 significance level) correlations (Figure 

1.8) during boreal spring (correlations of -0.5), which strengthened during boreal summer, 

and reached maximum values in fall (correlations of -0.7). Approaching winter, the 

association of precipitation with the SST and GPH in the NZI region decreased significantly; 

see also the decrease in the correlation of NZI in the lower panel of Figure 1.7. For zero lead 

time, precipitation was strongly correlated with SSTs in the northwestern Pacific and GPH 

directly to the west of SWUS21-23,50,51, while correlations with ENSO regions emerged, but 

remained low (lower than 0.5). Two important conclusions were drawn from this analysis. 

First, climate information from the southwestern Pacific was critical for early prediction of 

the winter precipitation in the SWUS. Second, winter precipitation in SWUS was modulated 

by a northward cascade of SST and GPH anomalies through the year, starting in the southern 

hemisphere during late summer and fall, and cascading to the northwestern Pacific during 

fall and winter. We propose that this cascade was a key characteristic of the NZI 

teleconnection and worked through an atmospheric bridge in boreal summer, connecting 

SSTs in the southern hemisphere with those in the northern hemisphere. We present a 

mechanistic explanation of the NZI teleconnection in Figure 1.9, and elaborate on it below. 
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Figure 1.8: Within-year evolution of the association of winter precipitation in SWUS with SSTs 
and GPHs revealed a northward interhemispheric cascade. Correlation maps between average 
winter precipitation in SWUS (Nov-Mar) and global SST (shading) and GPH (400 mb; contours), for 
1982-2015. SSTs and GPHs are averaged over different periods, starting Mar-May (previous spring) 
and ending Jan-Mar. Only statistically significant correlations are shown (α = 0.05 significance level).  
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Figure 1.9: The NZI teleconnection depends on a western Pacific ocean-atmosphere pathway. 
(a) Negative SST anomalies (blue shading) in the NZI region cascade in the northern hemisphere 
through a late summer interhemispheric atmospheric bridge and are maintained by air-sea coupling 
until the following winter. The SST anomalies affect the atmospheric pressure in the US west coast 
and strengthen the regional jet stream which brings more winter storms in the SWUS; (b) Late-
summer positive SST anomalies (red shading) in the NZI region deflect the jet stream to the north, 
leading to dry conditions over the SWUS.    
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SST anomalies in the NZI region exhibited strong correlation with time-concurrent SST and 

GPH anomalies near the Philippines, with statistically significant correlations throughout the 

year (order of 0.5 or less), which intensified during late boreal summer reaching values of 

0.7 or higher (Figure 1.10). By analyzing the zonal average vertical velocity over the eastern 

Asia – western Pacific region of 70°E – 220°E (Figure 1.11), we found that positive SST 

anomalies in the NZI region induced an anomalous Hadley circulation that ascended from 

the southwestern Pacific and descended over the Philippines. Its descending motion 

produced adiabatic warming and increased downward shortwave radiation (likely by means 

of suppressing cloud formation) resulting in positive SST anomalies near the Philippines. The 

descending motion also produced positive GPH anomalies. This inter-hemispheric 

teleconnection was strongest during boreal summer (Figure 1.10), when the southern 

Hadley cell expands the most55, connecting the two regions (Figure 1.12). The maximum 

correlation between late summer NZI and SSTs in the northern hemisphere occurred during 

late fall (see Figure 1.13) in the eastern side of the Philippines (as high as 0.85). This 3-4 

months lag is a main characteristic of the atmospheric bridge and is associated with the time 

needed for ocean surface heat content and SSTs to respond to the cumulative atmospheric 

forcing59. A similar inter-hemispheric relation, connecting 500 mb GPH anomalies in the area 

east of Australia with those over the Philippines has been reported and described in the 

literature52,53,54. Specifically, past studies document that the latter teleconnection also takes 

place during late summer, and that the longitudinal zone around the globe where the most 

significant interhemispheric interaction occurs is the region of east Australia to east Asia52,53. 
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Figure 1.10: SSTs in the region of NZI were closely related with those in the region east of 
Philippines especially during late boreal summer and fall. Correlation maps between SSTs in the 
NZI region and global SSTs (shading) and GPHs (400 mb; contours), for 1982-2015. In each panel, 
NZI, and global SSTs and GPHs are averaged over the same time period, starting Mar-May (top left 
panel) and ending Jan-Mar (bottom right panel). Only statistically significant (α = 0.05 significance 
level) correlations are shown. 
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Figure 1.11: Positive SST anomalies in the NZI region weaken the southern Hadley circulation 
during late boreal summer. (a) Correlation between the NZI (Jul-Sep) and zonal average (70°E-
220°E) vertical velocity in Jul-Sep, for 1982-2015 (here, vertical velocity is defined simply as the 
opposite of omega velocity). Only statistically significant (α = 0.05 significance level) correlations are 
shown; (b) Same as (a), but for the zonal average meridional wind. In both subplots, the anomalous 
Hadley circulation is indicated with transparent arrows.  
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Figure 1.12: During late boreal summer, the southern Hadley cell expands and connects the 
area of NZI with the northern hemisphere. Upper panels: zonal average precipitation (mm) over 
eastern Asia - western Pacific region (70°E-220°E), for 1982-2015; bottom panels: zonal average 
omega velocity in Pa s-1, over 70°E-220°E, for 1982-2015. Note that positive (negative) omega 
velocity corresponds to descending (ascending) motion.  



 

25 
 

 

Figure 1.13: NZI anomalies are followed by a northward cascade of SST anomalies in the 
northern Pacific Ocean starting late summer and ending late winter. Correlation maps between 
–NZI (averaged over Jul-Sep) and global SST (shading) and GPH (400 mb; contours) in subsequent 
seasons, derived from reanalysis during 1982-2015. SSTs and GPHs are averaged over 3-month 
periods, starting Jul-Sep, and ending Jan-Mar. Only statistically significant (α = 0.05 significance level) 
correlations are shown. We correlate SSTs and GPHs with –NZI, so this figure is directly comparable 
with results in Figure 1.8. 
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As soon as the cascade to the northern hemisphere has occurred, SST anomalies in 

the northwestern Pacific persist through boreal winter (see Figure 1.13) via local 

atmosphere-ocean couplings. Previous studies have shown that SST anomalies in this region 

interact with local mean trade winds to induce anomalous surface heat flux, and create a 

positive feedback loop between anticyclonic (cyclonic) activity and sea surface cooling 

(warming)60. This mechanism allows for maintenance and propagation of the SST anomalies 

from the northwestern Pacific to the northcentral Pacific (Figure 1.13). When the SST 

anomalies in the western and central north Pacific persist into the boreal winter, they alter 

the atmospheric pressure in the western US through a short-wave train which links the two 

areas23,61, modifying the track and strength of the jet stream over the west US coast (220°E-

260°E). These changes in the jet stream can steer more or fewer winter storms to impact 

SWUS precipitation (see Figures 1.8e,f and 1.9). Specifically, cool NZI conditions during late 

summer, after propagating into the northwestern Pacific and maintaining themselves during 

fall and winter, intensify the upper zonal winds at 30-35°N, and bring above average 

precipitation to SWUS (Figure 1.14). In contrast, warm SSTs in the NZI region excite positive 

anomalies in the northwestern Pacific, deflecting the jet stream northward (at 45°-50°N), 

and leading to wet conditions over the northwestern US, and dry conditions in SWUS. 

Accordingly, NZI is associated with a dipole pattern along the west coast of the US, which is 

evident in both zonal winds of the upper atmosphere, as well as in precipitation amounts 

(see Figure 1.15). Note that this behavior is well-known to be also associated with ENSO 

events13,16,17,19,46,57, yet in the last three to four decades, ENSO did not correlate significantly 

with precipitation amount for many regions along the west coast (Figure 1.16). 
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Figure 1.14: NZI affects the upper zonal winds in the northeastern Pacific and modulates SWUS 
precipitation. (a) Zonal average (220°E-260°E) of zonal wind in m s-1 for different latitude and 
pressure levels, during Nov-Mar, for 1982-2015; (b) Same as (a), but for the 5 coolest NZI years; see 
Figure 1.6; (c) Same as (a), but for the 5 warmest NZI years.  
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Figure 1.15: NZI was a driver of a dipole of precipitation anomalies along the west coast. (a) 
Difference of zonal average (220°E-260°E) zonal wind in cool and warm NZI conditions, in m s-1, for 
Nov-Mar; (b) Zonal average winter precipitation in mm (Nov-Mar), corresponding to the 5 coolest 
(blue) and 5 warmest (red) NZI years; see Figure 1.6; (c) Correlation of –NZI (Sep-Nov) with winter 
precipitation (Nov-Mar) in all climate divisions over the west US coast, for 1982-2015. The area 
between the two solid black lines on the colorbar indicates statistically insignificant (α = 0.05 
significance level) correlations.  
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Figure 1.16: Southwestern Pacific SSTs were strongly correlated with the second principal 
component of winter precipitation in the western US. (a) The spatial pattern of the first principal 
component (PC) of winter (Nov-Mar) precipitation series of all climate divisions in the western US, 
as determined by its correlation with precipitation in each climate division. Only statistically 
significant (α = 0.05 significance level) correlations are shown; b) Correlation map between the first 
principal component and global SST (Sep-Nov), for 1982-2015; (c)-(d) same as (a)-(b), but for the 
second principal component. Note that PC1 is not related to SSTs, while PC2 exhibits strong statistical 
dependence with SSTs in the NZI region (correlation on the order of -0.6) but no statistical 
dependence with SSTs in the ENSO region. 

 

The proposed mechanism of NZI reveals a western Pacific pathway and can be 

summarized by the following three sub-processes (Figure 1.9): 
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Late Summer: The expansion of the Southern Hadley cell creates an interhemispheric 

atmospheric bridge connecting geopotential heights (and SSTs) in the area close to New 

Zealand with those in the northwestern Pacific. Similar interhemispheric teleconnections 

have been described in previous studies52,53,54. 

Late Fall: Local air-sea coupling maintains atmospheric pressure and SST anomalies in the 

northwestern Pacific60. 

Winter: SSTs in the northwestern Pacific influence atmospheric pressure and upper zonal 

winds in the western US, which in turn change the positioning of storm tracks and 

precipitation amount in SWUS 21-23,50,51,61. 

Changes in Pacific dynamics. By establishing similar analyses in the period before the 1980s, 

we determined that the correlation of NZI with SSTs in the region east of the Philippines 

(referred to as EPh: the areal average SSTs in the region of 5-15°N and 130-150°E), has not 

been stationary (Figure 1.17). During 1950 – 1983, the connection of NZI and EPh was weak 

(correlations did not exceed 0.45), whereas during the last 35 years, it was remarkably 

strong and robust, with correlations reaching 0.8 during boreal fall, and with NZI leading EPh 

by 3-4 months. The intensification of this connection between the two hemispheres was the 

primary reason for the increased correlation of NZI and SWUS precipitation observed during 

the last several decades (Figure 1.4). In contrast, during the earlier period where the NZI was 

only weakly connected to the northern hemisphere, its correlation with precipitation 

variability in SWUS was lower.  

The time-evolving covariance of SSTs in the two regions highlights the non-stationary 

nature of ocean-atmosphere dynamics on decadal time scales, and its direct impact on 

regional hydroclimatic variability. The intensification of this northward interhemispheric 

cascade may be a result of the expansion of the tropics which has been observed after the 

1980s11,28-31,56, and allows SST or GPH variability at lower latitudes to more strongly affect 

the meridional atmospheric circulation at higher latitudes. However, it is still not known 

what exactly is the relative contribution of the natural variability (multi-decadal oscillations) 

and external (anthropogenic) forcing to the latter change30,31, so it is not certain whether the 

strength of the NZI signal will continue to increase or undergo periodic fluctuations in the 
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future. The observed increase of the correlation of NZI with precipitation may also be 

influenced by changes in data quality after the late 1970s, when satellite data improved 

coverage, particularly in the southern hemisphere37,38.  

Figure 1.17: Interhemispheric teleconnections between NZI and SST anomalies in the 
northwestern Pacific have significantly strengthened during the last three to four decades. (a) 
Time-lagged correlation between NZI (averaged over the month indicated in the vertical axis) and 
SST in the region east of the Philippines (EPh) (box in 5-15°N and 130-150°E; lagged forward in time 
as indicated in the horizontal axis) in 1950-1983. Solid black line on the colorbar indicates the 
threshold below which correlations are statistically insignificant (α = 0.05 significance level); (b) 
Same as (a), but for the period 1982-2015.  

 

Discussion 

Non-stationary relationships between potential predictors (ENSO or NZI) and 

precipitation due to climate change or internal climate variability can significantly impact 

our ability to develop accurate seasonal forecasts17,35,62. The revealed changes in the strength 

of the NZI and ENSO signals to winter precipitation in SWUS is an example of such variation, 

offering the chance to quantify the effect of large-scale non-stationarity on regional 

precipitation predictability. To illustrate this point, we evaluated and compared the 

prediction error of an SST-based regression model in settings in which the calibration and 

prediction periods coincided versus settings that they did not (i.e., in-sample vs. out-of-

sample predictions). Specifically, we predicted winter precipitation over two non-
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overlapping periods (1951-1983 and 1983-2015) using a multiple regression model based 

on NZI, SOI and Niño 3.4 series. We quantified the effect of non-stationarity on the prediction 

skill as the relative increase of RMSE when the calibration and prediction periods did not 

overlap (e.g. prediction in 1983-2015, calibration in 1951-1983) relatively to the case that 

the calibration and prediction periods completely overlapped (e.g. prediction in 1983-2015, 

calibration in 1983-2015). If stationary conditions held, the increase of RMSE would be close 

to zero, since calibration in either period would result to almost identical regression 

functions (deviation from zero would be a result of sample variability). However, this 

analysis revealed that the relative increase of RMSEs can be as high as 400%-500% (Table 

1.1), which means that our predictive skill is approximately 5-6 times lower than what it 

would have been if stationary relationships actually held. The latter analysis demonstrates 

the important effect of the stationarity assumption in a changing climate, and highlights the 

importance of understanding the multi-scale patterns of change from climate dynamics to 

regional precipitation.  

Table 1.1: Effect of non-stationarity in the NZI/ENSO teleconnection strength on the 
precipitation prediction error. Computed RMSEs (cm) of precipitation prediction, when 
calibration and validation periods overlap (cross validation) and when they do not (bold italics font).  

prediction period 1951-1983 1983-2015 

averaging period of 
predictors 

Jul-Sep Sep-Nov Nov-Jan Jul-Sep Sep-Nov Nov-Jan 

calibration 
period 

1951-1983 5.85 5.39 5.48 30.75 32.45 33.97 

1983-2015 31.26 32.25 32.31 5.97 5.32 5.74 

standardized difference (%) 434 498 490 415 510 492 

 

In summary, we show that during the last several decades, SST anomalies in the 

southwestern Pacific Ocean have been closely related to precipitation in SWUS through a 

western Pacific pathway, and thus, they may be useful in increasing precipitation 

predictability. Idealized climate model experiments can be used to provide further evidence 

for our proposed teleconnection mechanism, by quantifying how prescribed SST anomalies 

in the southwestern Pacific influence the meridional circulation, north Pacific SSTs, and the 

western US precipitation. Further research is also needed to better understand the drivers 

of the decadal variability of the newly established teleconnection. Our work emphasizes the 
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need to understand the dynamic nature of the coupled atmosphere-ocean system in a 

changing climate, for improving future predictions of regional precipitation.  
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1.2. The impact of El Niño-Southern Oscillation and external forcing on 

the identified teleconnection 

Part of this chapter has been published in Nature Communications 

Citation: Mamalakis, A., J.-Y. Yu, J.T. Randerson, A. AghaKouchak, and E. Foufoula-Georgiou 

(2019) Reply to: A critical examination of a newly proposed interhemispheric teleconnection to 

Southwestern US winter precipitation, Nature Communications, 

https://doi.org/10.1038/s41467-019-10531-3 

 

Gibson et al. comment on the physical mechanism suggested by Mamalakis et al. (2018) 

(hereafter referred to as M18), and question the first step of the newly proposed 

interhemispheric teleconnection, i.e. the atmospheric bridge, whereby sea surface 

temperature (SST) close to New Zealand (termed as NZI; the New Zealand Index) modulates 

the SST in the northwestern Pacific. Specifically, they suggest that there is no direct causal 

relationship between these key areas since the observed high statistical correlations 

between the corresponding SST anomalies can be largely explained by local SST memory and 

the El Niño-Southern Oscillation (ENSO), and that the increase in the correlations over the 

past four decades, as reported in M18, is likely the result of internal variability alone, not 

caused by historical forcings. Gibson et al. also argue that warm NZI is not associated with 

decreased convective activity and cloud cover over the east of the Philippines region, as 

suggested by M18. We appreciate the opportunity to debate these issues. In principle, we 

agree that a combination of more than one contributors can drive climate (and SST) 

variability in the northwestern Pacific (i.e. M18 did not argue that NZI is the only driver). 

However, we disagree with the general suggestion by Gibson et al. that the atmospheric 

bridge, as proposed in M18, is not supported by the data (observations and models). Here, 

we present evidence that indeed NZI carries non-redundant information that cannot be 

dismissed, it cannot be explained by internal variability alone, and we provide further 

analysis that supports the causal mechanism of the proposed atmospheric bridge. We also 

point out some intricate limitations in the analysis of Gibson et al., that might have affected 

their conclusions.  
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One of the arguments of Gibson et al. in challenging the NZI lagged association with 

northwestern Pacific SST is that the statistical correlations between these key areas decrease 

when accounting for (using partial correlation) local SST memory or ENSO (specifically, the 

Southern Oscillation Index - SOI). However, their analysis exhibits some limitations. Firstly, 

M18 did not argue that NZI is the only driver of SST variability in the northwestern Pacific. 

In fact, M18 already invoked the local SST memory in their proposed teleconnection 

mechanism (see step 2 in Figure 5 of M18). M18 simply argued for the emergence of a new 

western Pacific interhemispheric teleconnection, which in the ocean-atmosphere coupled 

system can affect, among other contributors, the north Pacific climate and ultimately the 

precipitation in the southwestern US (SWUS). Having clarified this, the meaningful question 

is not whether correlations of NZI and SST in the northwestern Pacific decrease when 

considering additional predictors/mechanisms (this is to be expected), but whether there 

are still patterns of statistically significant relations not explained by other predictors. As 

Gibson et al.’s own results suggest, a consistent pattern of statistically significant (local 

hypothesis testing at a = 0.05) correlations is still evident after accounting for both local SST 

memory and SOI (see their Figure 1e,f), which means that NZI is not a redundant predictor 

of the SST in the northwestern Pacific. Thus, we do not think the results of Gibson et al. 

challenge our general suggestion. Note that although in the results of Gibson et al. (their 

Figure 1f) there is an entire pattern of local statistically significant correlations, the authors 

seem to assess correlation significance solely by using the results from the false discovery 

rate (FDR) method. This can be misleading, because FDR only controls the likelihood of the 

type I error (rejecting a true null hypothesis), yet without controlling the likelihood of the 

type II error (not rejecting a false null hypothesis), which is known to increase as the number 

of multiple hypotheses increases (known as cost of multiplicity control; Benjamini and 

Hochberg, 1995).  
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Figure 1.18: NZI interhemispheric connection when accounting for local SST memory and 
ENSO. a) Correlation map of NZI during Jul-Sep and Pacific SST during Sep-Nov, after accounting for 
the SST memory in each grid point. Before calculating correlations all series were detrended. Black 
dots indicate statistical significance at a = 0.05. b)  Same as in (a), but using SST during Nov-Jan. c)-
d) Same as in (a)-(b), but after accounting for the Southern Oscillation Index (SOI). e)-f) Same as in 
(c)-(d), but SOI is correlated with Pacific SST, after accounting for the NZI. It is evident that NZI 
correlations with SST in the northwestern Pacific remain high and statistically significant even after 
accounting for local SST memory and/or SOI. In contrast, when accounting for NZI, correlations of 
SOI with SST in the northwestern Pacific are not statistically significant.   
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Moreover, assessing the solidity of the atmospheric bridge mechanism by using only 

a small box (20° × 10°) to capture the SST variability in the northwestern Pacific can be 

misleading, especially when there is no investigation of how sensitive the general 

conclusions are to the choice of that box. The specific box east of the Philippines was 

tentatively used in our original study to summarize and compare the western Pacific 

dynamics before and after the 1980s (Figure 7 in M18); a very different context than the 

present investigation of causality and mechanism assessment. Thus, in order to rigorously 

assess the arguments of Gibson et al., we investigate herein the effect of local SST memory 

and SOI on the correlation between the late summer NZI and lagged SSTs over the entire 

western Pacific (not only over a specified box). We find that statistically significant 

correlation patterns are evident in the northwestern Pacific (with correlations reaching 0.7 

in specific areas, see Figure 1.18), even after accounting for local SST memory (Figure 1.18a-

b) or SOI (Figure 1.18c-d). When reproducing Figure 1 of Gibson et al. by considering a larger 

region in the northwestern Pacific (of comparable size to the NZI region and defined as the 

30° × 15° box of 130°E-160°E and 5°N-20°N – we call the average SST in that box as the East 

of the Philippines Index, EPI), we find that NZI-EPI correlations remain high and statistically 

significant at a = 0.05, after accounting for the EPI memory (see Figure 1.19). Particularly in 

the summer period, correlations on the order of 0.6 are still evident, which means that NZI 

leads EPI SST in the following winter. Accordingly, our results show that when accounting 

for SOI, strong NZI-EPI correlation patterns are still evident (see Figure 1.19). All above 

results support that the lagged association between late summer-early fall NZI and 

northwestern Pacific SST is robust, and is not undermined by SOI or local SST persistence. 

Lastly, we note that if there was no direct causal relationship between NZI and EPI, and SOI 

was the driver of this interhemispheric connection (as implied by Gibson et al.), then 

following the reasoning by Gibson et al., one would expect that the correlation of SOI with 

the northwestern Pacific SSTs would be significant even after accounting for the NZI 

variability. However, our results indicate that this is not the case (not shown in Gibson et al.). 

Particularly, when accounting for the NZI variability, significant correlations of SOI and 

Pacific SST appear only in the tropics and do not extend to the northern Pacific (Figure 1.18e-

f). Moreover, statistically significant SOI-EPI correlations are only found after November (see 

Figure 1.19f), which suggests that in late summer, NZI carries non-redundant information 
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for the fall-winter SST over the northwestern Pacific. In summary, although SOI and local SST 

memory are known to account for a fraction of SST variability in the northwestern Pacific, 

our results show that they do not undermine the robustness of the NZI-EPI statistical 

relationship. 

 

Figure 1.19: Upper Panels: a) Time-lagged correlations between NZI (averaged over the month 
indicated in the vertical axis) and SST in the region east of the Philippines (EPI) (box in 5–20°N and 
130–160°E; lagged forward in time as indicated in the horizontal axis) in 1982–2015. Before 
calculating correlations all series were detrended. b) Same as in (a), but when the memory (monthly 
persistence) of EPI is taken into account. c) Same as in (a), but when the effect of SOI is taken into 
account. Black circles indicate statistical significance at a = 0.05, while black crosses indicate global 
significance at aglobal = 0.05. For the latter, we have used the false discovery rate as in Gibson et al., 
with aFDR = 2aglobal = 0.1, to account for dependence of the local tests, as suggested by Wilks (2016). 
Bottom Panels: Same as in upper panels, but using (d) SOI as predictor instead of NZI, and accounting 
for (e) EPI memory and (f) NZI variability. The coherent patterns of statistically significant NZI-EPI 
correlations when accounting for EPI memory and SOI establish the interhemispheric connection on 
its own right and not slaved to local SST memory or ENSO. 
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The second point raised by Gibson et al. concerns the decadal changes in the NZI-EPI 

relationship. Gibson et al. use SST data from the Community Earth System Model-Large 

ENSemble project (CESM-LENS, see Kay et al., 2015) and show that there are some ensemble 

members (realizations) where NZI-EPI are highly coupled and some where they are not 

statistically related. Based on this result, they cast doubt on the statement by M18 that the 

recent strengthening in the NZI-EPI relationship may be attributed, among others, to climate 

change. Specifically, Gibson et al. conclude that “any apparent lagged correlations found 

between these regions are not likely a consistent or emerging feature of the climate system 

under historical forgings, but instead occasionally arise due to stochastic internal climate 

variability”.  

 

Figure 1.20: Changes in the strength of correlation between the NZI and EPI regions derived 

from the CESM-LENS project. Ensemble mean (a,c) and ensemble standard deviation (b,d) of time-

lagged correlations between NZI (averaged over the month indicated in the vertical axis) and EPI 

(lagged forward in time as indicated in the horizontal axis) in 1930–1960 (a,b) and in 1975-2005 

(c,d). Before calculating correlations all series were detrended. Black dots indicate statistical 

significance at a = 0.05. A higher level of agreement among ensembles and a clear increase in the NZI-

EPI correlations is observed after 1975.    
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We respectfully disagree with this statement, since their results suggest that internal 

variability can indeed contribute in shaping the NZI-EPI relation (something that M18 did 

not argue against) but they cannot exclude historical forcings from being a contributor as 

well. To more extensively explore this, here we use the same set of LENS simulations that 

Gibson et al. use and compare the simulated NZI-EPI correlations before and after 1970s. 

Our results show that indeed there is a strengthening in the NZI-EPI relationship after the 

1970s (see Figure 1.20), which is in accordance with the findings by M18. The latter is 

indicated not only by the increase of the ensemble mean correlations between NZI and EPI 

(especially in the late-summer season) but also by the decrease of the inter-ensemble 

variability in the recent decades, which indicates convergence of the ensembles. Thus, in 

accordance with M18, the LENS simulations suggest that the increased NZI-EPI correlations 

can be an emerging feature of the climate system under historical forcings, and cannot be 

solely explained by internal variability. Note that if stochastic internal variability was the 

only driver of the changes in the observed NZI-EPI correlations, then no changes should be 

apparent in the LENS ensemble mean correlations between the two periods, since changes 

in individual realizations would not be synchronized, and would cancel each other out.  

The last claim by Gibson et al. is that warm NZI is not associated with decreased 

convective activity and cloud cover over the east of the Philippines region, as suggested by 

M18. Here, we show that this is not the case by performing composite and correlation 

analyses with multiple reanalysis and satellite datasets. When we consider the composite 

differences in the Jul-Nov SST, omega velocity, total cloud cover (TCC), and incoming solar 

radiation (ISR), between the five warmest and coldest NZI years, the mechanism suggested 

by M18 is supported (Figure 1.21). In late boreal summer, the intertropical convergence 

zone migrates close to the Philippines (see Mamalakis and Foufoula-Georgiou, 2018) and the 

southern Hadley cell expands the most (Lindzen and Hou 1988), dominating the atmospheric 

meridional circulation over the western tropical Pacific (see e.g. Trenberth et al., 2000 and 

supplementary Figure 7 in M18) and connecting the areas of NZI and EPI. In warm NZI years, 

both the descending motions over the southwestern Pacific (close to New Zealand) and 

ascending motions over the northwestern Pacific (close to the Philippines) weaken in all 

pressure levels, which translates to a weakened Hadley circulation (not reversed as Gibson 
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et al. imply) relatively to the cool NZI years (see the north-south dipole in Figure 1.21b). 

Accordingly, the suppressed cloud formation over EPI results in increased solar radiation 

reaching the surface (see Figure 1.21c-d), which can induce positive SST anomalies in this 

region (process 1 in Figure 5 of M18). In the Nov-Mar period, the cyclonic activity 

southwestward of the Philippines helps maintain the SST anomalies in the northwestern and 

central Pacific (process 2 in Figure 5 of M18), while a persistent high pressure ridge is 

evident off the coast of California, deflecting the jet stream to the north (process 3 in Figure 

5 of M18) and introducing positive precipitation anomalies over the northwestern US and 

negative precipitation anomalies (drought) over the SWUS. Similar conclusions are obtained 

using correlation analysis and multiple other atmospheric variables (see Figures 1.22 and 

1.23 of the present study). Particularly, a clear north-south dipole pattern is obtained over 

the western Pacific, which reveals the modulation effect of the NZI on the regional Hadley 

circulation. Finally, we note that the different findings of Gibson et al. regarding the effect of 

NZI on the convective activity over the northwestern Pacific might be attributed to the 

following reasons. First, Gibson et al. base their conclusions on the ERA-Interim dataset 

which, as shown in Figure 1.23 of the present study, exhibits the lowest level of agreement 

with other reanalysis and satellite datasets in reproducing the relationship of NZI and the 

convective activity over EPI. Second, their results presented in their Figure 2c,f,i are based 

on only 17 years of climatology (compared to our analysis based on 34 years, 1982-2015), 

which is not a sufficient size for statistical (correlation or composite) analysis.    

In conclusion, we thank Gibson et al. for their careful analysis and exploration of the 

proposed physical mechanism of the NZI teleconnection, and for providing us with the 

opportunity to further examine and strengthen our original arguments. We believe their 

letter and our response advance the important topic of understanding sources of 

predictability of regional precipitation and their physical underpinnings in the western 

Pacific. As noted already by M18, given the short observational record that is available, 

whether NZI SST anomalies alone are sufficient to modulate the meridional circulation over 

the western Pacific demands extensive further testing, which will require the performance 

and analysis of a hierarchy of well-designed and targeted numerical simulations. We hope 
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that this undertaking will be the scope of future work in our group and others in the 

community.   

 

Figure 1.21: Composite differences between 5 warmest and 5 coldest NZI years during 1982-

2015. a) Jul-Nov SST, b) Jul-Nov zonal average omega velocity over 100°E-200°E (positive sign 

corresponds to decreased ascending motion), c) Jul-Nov total cloud cover (TCC), d) Jul-Nov incoming 

solar radiation (ISR) at the surface, and e) Nov-Mar SST (shading over ocean), land precipitation 

(shading over land),  geopotential height (GPH; contours) and horizontal wind (vectors) at 500 mb 

pressure level. All values have been standardized by dividing with the standard deviation of the 

respective series in 1982-2015. In (a),(c),(d), the EPI box is also shown. As suggested in M18, results 

support that warm NZI is associated with decreased convective activity and cloud cover, and 

increased incoming solar radiation over the east of the Philippines.   
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Figure 1.22: Jul-Sep correlation maps (1982-2014) between NZI and a) omega velocity at 500mb 
(positive sign corresponds to descending or decreased ascending motion), b) outgoing longwave 
radiation (OLR) at the top of the atmosphere, c) incoming solar radiation (ISR) at the surface, and d) 
total cloud cover (TCC). Before calculating correlations all series were detrended. Black dots indicate 
statistical significance at a = 0.05, while green dots indicate global significance at aglobal = 0.05. For the 
latter, we have used the false discovery rate as in Gibson et al., with aFDR = 2aglobal = 0.1, to account for 
dependence of the local tests, as suggested by Wilks (2016). EPI region is indicated with a magenta 
box. NZI is calculated using the Optimum Interpolation SST, while other series are obtained from the 
20th Century Reanalysis project. All results show that positive NZI is associated with decreased 
convective activity and increased ISR over the northwestern Pacific. Note also that a clear north-
south dipole pattern is obtained over the western Pacific, which reveals the modulation effect of the 
NZI on the regional Hadley circulation. 
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Figure 1.23: Same as in Figure 1.22, but TCC and OLR are obtained from the NCEP-DOE dataset in 
the top plots, while satellite precipitation is obtained from PERSIANN-CDR, and TCC is from the ERA-
Interim project in the bottom plots. Relatively to results presented in other subplots and in Figure 
1.22, results from the ERA-Interim project (used in Gibson et al.) are unclear as to the relationship 
between NZI and the convective activity over the EPI.    
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1.3. Probabilistic assessment of predictive skill of extreme wet and 
dry years in southwestern US in observed and CMIP6 simulated 
climates 

This chapter is currently in preparation for submission 

Citation: Mamalakis, A., E. Foufoula-Georgiou, A. AghaKouchak and J.T. Randerson (2021) 

Probabilistic assessment of predictive skill of extreme wet and dry years in southwestern US in 

observed and CMIP6 simulated climates  

 

Early and accurate seasonal prediction of winter precipitation totals in southwestern US 

(SWUS) is an exigent task of high practical and scientific interest, and has received great 

attention over the past three decades (Schonher and Nicholson, 1989; McCabe and Dettinger, 

1999; Gershunov and Cayan 2003; Schubert et al., 2016; Madadgar et al., 2016; Liu et al., 

2018; Hao et al., 2018; Zhang et al., 2018; Mamalakis et al., 2018; Pan et al., 2019; Stevens et 

al., 2020). From a practical and engineering point of view, failing to accurately predict winter 

precipitation totals limits the ability of practitioners to plan for sustainable water resources 

management and has caused considerable economic damage in the past, with the recent 

multi-year SWUS drought in 2012-2016 serving as a prominent example (Howitt et al., 2014; 

2015; AghaKouchak et al., 2015; Medellín-Azuara et al., 2016).  

From a science perspective, SWUS exhibits a highly variable hydroclimate on inter-

annual scales (Dettinger et al., 2011), which makes precipitation prediction quite 

challenging. Specifically, the majority of the region’s annual precipitation occurs during 

November to March, with most of the SWUS considered a dry region. This partially stems 

from the fact that SWUS lies within a transition zone, between the northern subtropics and 

mid-latitudes (i.e. 30°- 40°N) and is collocated with the descending branch of the Hadley 

circulation, where cool and dry air masses descend, reducing in relative humidity. However, 

SWUS is occasionally the area of landfall of powerful winter storms which carry their 

moisture from the Pacific basin. Some of them resemble long, narrow corridors of 

concentrated moisture in the atmosphere, known as atmospheric rivers (Ralph et al., 2006; 

Ralph et al., 2019; Gershunov et al., 2019; Huang et al., 2020). Just a small number of such 

winter storms is sufficient to bring more than twice the long-term average precipitation to 
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the SWUS, elevating the risk of flash flooding (Dettinger et al., 2011; Dettinger and Cayan, 

2014; Corringham et al., 2019).    

Despite the high variability and complexity of the precipitation-producing 

mechanisms in the SWUS, research has shown that precipitation in the region is associated 

with the presence of persistent anomalous patterns of atmospheric pressure over the Gulf of 

Alaska (Wang et al., 2014; Swain et al., 2014; Seager et al., 2015; Swain et al., 2016; 2017; 

Teng and Branstator, 2017; Gibson et al., 2019). Physically, these high-pressure or low-

pressure patterns can weaken or strengthen the winter-time jet stream and storm tracks, 

causing dry or wet conditions, respectively. As a consequence of the relatively short-term 

memory of the atmosphere, however, early seasonal prediction of precipitation totals 

typically rely on sea surface temperatures (SSTs), either through deterministic models (i.e. 

SST-forced climate model simulations) or statistical models which aim to exploit physically- 

and historically- established teleconnections of precipitation with large-scale modes of 

climate variability. The latter typically include the El Niño-Southern Oscillation (ENSO), and 

modes of decadal or multi-decadal variability such as the Pacific Decadal Oscillation (PDO) 

and the Atlantic Multi-decadal Oscillation (AMO); see e.g., Schonher and Nicholson (1989), 

Redmond and Koch (1991), McCabe and Dettinger (1999), Enfield et al. (2001), McCabe et 

al. (2004), Dai (2013), Newman et al. (2016) and Lindsey (2016).  

Although considerable progress has been made in the field of climate modelling, early 

and accurate seasonal precipitation prediction remains an important challenge (Wang et al., 

2009; NASEM, 2016). Limits to predictive skill of dynamical models arise from incomplete 

knowledge of initial conditions, uncertainties in model physics, and limits on computational 

resources that place constraints on the grid resolution used in operational systems (Chang 

et al., 2000; Becker et al., 2014). Similarly, empirical statistical techniques exhibit limited 

predictive skill, arising primarily from the complex and changing nature of the relationship 

between large scale modes and regional hydroclimate. Notably, the relationship between 

ENSO and US climate variability has been shown to undergo multidecadal fluctuations 

(McCabe and Dettinger, 1999; Yu et al., 2012), with many recent studies pointing out that it 

has been losing strength in the recent decades, while the western Pacific climate variability 

(e.g. SST, sea level pressure, convection activity, etc.) appears to be gaining importance in 

driving SWUS precipitation and the atmospheric circulation over the Pacific (Wang et al., 
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2014; Baxter and Nigam, 2015; Teng and Branstator, 2017; Seager et al., 2017; Swain et al., 

2017; Myoung et al., 2018; Mamalakis et al., 2018; Johnson et al., 2019; Zhou et al., 2020). 

The relative contribution of anthropogenic forcing and natural variability to these multi-

decadal changes is still not clear. For example, regarding the drivers of the recent multi-year 

(2012-2016) drought in California (Seager et al., 2017), some studies suggest that it had an 

anthropogenic component (Wang et al., 2014; Swain et al., 2014, Diffenbaugh et al., 2015), 

while other studies highlight the importance of natural variability and SST forcing (e.g. 

Seager et al., 2015; Seager and Henderson, 2016; Teng and Branstator, 2017).               

Here, we revisit the problem of early seasonal precipitation prediction in the SWUS 

from a policy and decision making perspective, and we aim to explore the practical 

predictability of different classes of precipitation totals (i.e. dry, normal or wet), which are 

defined based on a range of probability levels. Specifically, we use copula modelling and a 

five-fold cross validation approach to avoid model overfitting and ensure robustness of the 

results, and we resolve the entire predictive distribution of precipitation for each year in the 

last five decades, conditioning on SST information. This allows us to assess each model’s 

predictive performance in capturing different aspects of the historical probability 

distribution (e.g., mean, median, and high and low extremes), while also accounting for the 

prediction’s uncertainty (i.e. going beyond point estimates), informative for planning and 

risk assessment. As predictors, we consider different combinations of widely used SST 

indices from all major ocean basins of the world (see Figure 1.24), principal components of 

SSTs, and we also perform a global-pattern significance analysis (e.g. Wilks, 2016) to assess 

predictability when thousands of null hypotheses (each per every grid point) are assessed 

simultaneously. Moreover, we design suitable metrics to statistically assess the null 

hypothesis of no predictive skill. The asymptotic, theoretical values of these statistics under 

the null hypothesis are presented and their finite-sample distributions are obtained using 

Monte Carlo simulations. Lastly, we repeat the analysis using outputs from state-of-the-art 

climate model simulations, in order to gain insight into how climate models simulate 

historical teleconnections between large scale SST modes and regional hydroclimate. We 

find that for normal precipitation totals, there is virtually no SST sources of predictability so 

that one can beat the climatology-based predictions. For extreme dry/wet precipitation 

totals, prediction skill is significant, with wet years being more predictable than dry years. 
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Such an asymmetry is known to exist in the ENSO climate teleconnections (Zhang et al., 

2014), yet, here we show that wet conditions in SWUS are inherently more predictable even 

when using non-ENSO SST information. Regarding the latter, we find that state-of-the-art 

climate models might on average undermine the importance of non-ENSO SST variability in 

predicting extreme precipitation totals over SWUS. 

The structure of the paper is the following. First, we describe the datasets used in this 

study, we outline the copula-based predictive model, and we propose some statistical 

metrics to assess the skill in predicting seasonal precipitation totals. Then, we apply the 

introduced probabilistic framework to retrospectively assess the practical predictability of 

winter (specifically Nov-Mar) precipitation totals over the SWUS, using observations and 

climate simulation outputs. Last, we state our conclusions and future research directions.     

Data and Methods 

Data Sets. For our analysis, we used observations of Nov-Mar precipitation amount in SWUS 

(see Figure 1.24), which are freely available at https://www.ncdc.noaa.gov/cag/time-

series/us (Vose et al., 2014). Monthly SST on a 1º×1º grid were obtained from 

https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html (Hirahara et al., 2014). 

Monthly time series of PDO was obtained from the NOAA website 

https://www.esrl.noaa.gov/psd/data/climateindices/list.  

We used the 50-yr period from 1969-70 to 2018-19 to build and test our statistical 

models. We avoided considering earlier years in the record because the 1970s is roughly the 

time that many studies have pinpointed as the start of major changes in the atmospheric 

teleconnections (Wang et al., 2014; Swain et al., 2016; Mamalakis et al., 2018; Johnson et al., 

2019). Both the precipitation and SST time series were linearly detrended before they were 

used in the analysis, so that long term trends do not impact our assessment.  

Apart from observations, we repeated the analysis using monthly precipitation and 

SST outputs from each model in the sixth phase of the Coupled Model Intercomparison 

Project (CMIP6; see Eyring et al., 2016), focusing on the 50-yr historical period from 1965-

66 to 2014-15 (note that for year 2015 and on, CMIP6 models are forced with climate change 

scenarios, and so, their outputs do not correspond to historical forcings). 

https://www.ncdc.noaa.gov/cag/time-series/us
https://www.ncdc.noaa.gov/cag/time-series/us
https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html
https://www.esrl.noaa.gov/psd/data/climateindices/list


 

54 
 

 

Figure 1.24. Correlation matrix for the 14 SST indices that were examined in this study (over the 
years from 1969-70 to 2018-2019). After considering their statistical significance with SWUS 
precipitation (highlighted with ‘×’), only eight of them were retained for prediction (see indices 
marked with red color). Here, winter precipitation over the SUWS corresponds to the Nov-Mar 
season and indices are averaged during the preceding Aug-Oct. All series are first linearly detrended.   
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Figure 1.25. a) The predictive Probability Density Function (PDF) of SWUS precipitation for the year 
1995-1996. The prediction is made using Equation 2, and conditioning on the first two principal 
components of the considered SST indices; see also lower panel of Figure 1.27. b) Summary of all 
possible outcomes when predicting precipitation. Qe denotes the e-th quantile of the historical 
precipitation PDF.  
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Predictive Model. For each year 𝑡 = 1969 − 70, 1970 − 71, … , 2018 − 19, we used SST 

predictors averaged in Aug-Oct to estimate the predictive Probability Density Function 

(PDF) of SWUS precipitation in the following Nov-Mar season; see example in Figure 1.25a, 

for 𝑡 = 1995 − 96. Specifically, if 𝑓𝑌|𝐗
𝑡  is the conditional predictive PDF of the random 

variable 𝑌 (in our case SWUS total precipitation in Nov-Mar season) in year 𝑡, given the 

random vector X (M predictors), then: 

𝑓𝑌|𝐗
𝑡 (𝑦) =

𝑓𝑌,𝐗(𝑦,𝐱𝑡)

𝑓𝐗(𝐱𝑡)
     (1) 

where 𝑓𝑌,𝐗 is the joint PDF of 𝑌 and 𝐗, and 𝑓𝐗 is the joint PDF of 𝐗. Since the marginal PDFs of 

the predictor and the predictand variables are in principle different (e.g., SST vs. 

precipitation), simple theoretical multivariate distributions (like the multivariate Normal or 

Gamma distributions) cannot be used to model the joint distributions of 𝑌 and 𝐗. To address 

this issue and to keep our approach simple, we used copula functions to represent the above 

joint distributions (see also Madadgar and Moradkhani, 2013; Madadgar et al., 2016). 

Equation (1) becomes (Nelsen, 1999): 

𝑓𝑌|𝐗
𝑡 (𝑦) =

𝑐𝑌,𝐗(𝑣,𝐮𝑡)

𝑐𝐗(𝐮𝑡)
 𝑓𝑌(𝑦)     (2) 

where 𝑓𝑌 is the marginal PDF of 𝑌, 𝑐𝑌,𝐗 and 𝑐𝐗 are the PDFs of the copulas,  𝑣 = Pr[𝑌 ≤ 𝑦] is 

the marginal cumulative distribution function (CDF) of 𝑌 evaluated at 𝑦, and 𝐮𝑡 =

[𝑢1
𝑡 , 𝑢2

𝑡 , … 𝑢𝑖
𝑡, … , 𝑢𝑀

𝑡 ]T, where 𝑢𝑖
𝑡 = Pr [𝑋𝑖 ≤ 𝑥𝑖

𝑡] is the marginal CDF of the ith predictor 𝑋𝑖 

evaluated at its value 𝑥𝑖
𝑡 . As previously described, to train this model we first linearly 

detrended all series and then fit parametric distributions to the historical precipitation totals 

and the predictor series, to model the marginal distributions. The fitted distributions were 

Gamma and Gaussian, respectively, both statistically significant at α = 0.05, based on the 

Kolmogorov-Smirnov test. To model the joint distributions, we chose to use Gaussian 

copulas in equation 2, because the Gaussian copula is radially symmetric (i.e. assigning the 

same probability to both the right and the left tail, Nelsen, 1999; this way our predictions 

were not systematically tilted towards either of the extremes), and it is among the simplest 

model to preserve high dimensional dependencies (Joe, 1997). Besides, as we have tested, 

our results were not sensitive to any of the above distributional choices.  
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As predictor variables, we examined various SST indices in the three oceans: Pacific, 

Atlantic and Indian Ocean (see Figure 1.24). Specifically, we examined the Pacific indices 

(Niño 4, Niño 3.4, Niño 3, Niño 1.2, PDO), the Atlantic indices (TNA, TSA, AMO, TASI) and the 

Indian Ocean indices (WTIO, SETIO, SWIO). More information about these indices is 

provided at NOAA's State of the Ocean website (http://stateoftheocean.osmc.noaa.gov/) and 

in Chen et al. (2016). We also considered two newly introduced Pacific indices, i.e., the New 

Zealand Index (NZI; 40ºS-25ºS and 170ºE-200ºE) and the East of the Philippines Index (EPI; 

5ºN-20ºN and 130ºE-160ºE), which have been recently shown to exhibit strong statistical 

relationship with SWUS precipitation (Mamalakis et al., 2018; 2019). For our analysis, we 

disregarded indices that did not exhibit a statistically significant correlation (α = 0.05) with 

SWUS precipitation in the 50-yr period (see Figure 1.24), since the present predictive 

formula captures only linear dependencies. This led us to use eight SST indices in total (see 

red boxes in Figure 1.24a), considering them both individually and combined, while we also 

built a predictive model using their first two principal components (PCs), since this allows 

us to retain most of the indices information (the first and second PCs capture 51.1% and 

26.1% of the variance of the 8 indices, respectively, i.e. yielding to a total of more than 75%), 

without dramatically increasing the complexity of the predictive model, and thus, avoiding 

overfitting (i.e. when thinking in terms of a linear regression model, using the first two PCs 

of eight indices requires the estimation of only two weights, rather than eight).  

To ensure that our assessment of the prediction skill is robust, we adopted a five-fold 

cross validation approach. Under this setting, the 50-y period was separated into five, non-

overlapping and continuous 10-yr sets (i.e. the first set included the years [1969 −

70, 1970 − 71, … , 1978 − 79], the second set included the years [1979 − 80, 1980 −

81, … , 1988 − 89], etc.), and for each year 𝑡 in every set, prediction was made by fitting the 

predictive model (i.e. fitting the marginal and copula distributions) to the remaining 40 

years. Note that the latter is a much stricter approach relatively to the leave-one-out cross 

validation, which can lead to unrealistically high predictive performance (usually from 

overfitting), especially as the complexity of the model increases (DelSole and Banerjee; 

2017). 

 

http://stateoftheocean.osmc.noaa.gov/
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2.1.  Statistical Metrics of Prediction Skill 

For a probability of non-exceedance 𝑒, we define historical “dry years” as the years 

when the precipitation total did not exceed the 𝑒-quantile 𝑄𝑒 of the historical probability 

distribution. Similarly, historical “wet years” correspond to years when the precipitation 

total was above the historical 𝑄1−𝑒; note that different values of 𝑒 can be used to assess the 

prediction skill for a range of extremes. Based on these definitions, we can form a table with 

all possible outcomes with regard to correctly or incorrectly predicting an actual dry, normal, 

or wet year (see schematic in Figure 1.25b). The latter is known as “the contingency table” 

(Wilks, 2006), and has been widely used in many hydrologic and weather forecasting 

applications, to assess the skill of correctly predicting/monitoring events in different 

spatiotemporal scales (Behrangi et al., 2011; Haile et al., 2012; Hao et al., 2013). The typical 

contingency table consists of four possible outcomes (hit, miss, false alarm, and correct 

rejection), which originate from predicting two possible states: the occurrence or lack of 

occurrence of an event. In our case, the states (classes) are three, i.e. dry, normal, or wet 

totals of seasonal precipitation. Many different metrics to assess predictive skill can be 

defined, even when considering only two classes (Wilks, 2006; AghaKouchak and Mehran, 

2013), however, the probabilities of hit (known as probability of detection; POD) and of false 

alarm (known as the false alarm ratio; FAR) are mostly used in the literature (Anagnostou et 

al., 2010; Gourley et al., 2012; Hao et al., 2013). To assess the predictive skill, we herein use 

different values of e (i.e. 0.15, 0.25, 0.333), and for each case, we calculate the following 

statistical metrics in the period from 1969-70 to 2018-19.  

i) Dry success: The probability of observing a dry year, while predicting dry  

𝐷𝑆 = Pr[𝑌 ≤ 𝑄𝑒 | 𝑌̂ ≤ 𝑄𝑒] =
Pr[𝑌̂≤𝑄𝑒 | 𝑌≤𝑄𝑒] Pr[𝑌≤𝑄𝑒]

Pr[𝑌̂≤𝑄𝑒]
,     (3)  

where Y is the observed value, 𝑌̂ is the prediction, and the above equation is known as the 

Bayes’ theorem. The term Pr[𝑌 ≤ 𝑄𝑒 | 𝑌̂ ≤ 𝑄𝑒] on the left cannot be calculated, since no 

single prediction values of 𝑌̂ are available, but rather entire predictive distributions. Yet, the 

term Pr[𝑌̂ ≤ 𝑄𝑒 | 𝑌 ≤ 𝑄𝑒], in the numerator on the right, corresponds to the probability of 

the considered model detecting an actual drought (dry hit; similar to the POD), and it can be 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20498#wrcr20498-bib-0007
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20498#wrcr20498-bib-0017
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20498#wrcr20498-bib-0018
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20498#wrcr20498-bib-0006
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20498#wrcr20498-bib-0016
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20498#wrcr20498-bib-0018
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easily calculated as the integral ∫ 𝑓𝑌|𝐗
𝐷𝑟𝑦(𝑦)𝑑𝑦

𝑄𝑒

0
, where 𝑓𝑌|𝐗

𝐷𝑟𝑦
 is the composite PDF of all 

predictive PDFs during the actual dry years within the period from 1969-70 to 2018-19. 

Moreover, the probability of false dry alarm (similar to the FAR) is essentially embedded in 

the term in the denominator Pr[𝑌̂ ≤ 𝑄𝑒], i.e. how often the considered model predicts dry 

conditions. For example, if we imagine a trivial model which always predicts dry conditions 

(for all 𝑡 years), then it is obvious that this model would exhibit a perfect dry hit score (i.e. 

Pr[𝑌̂ ≤ 𝑄𝑒 | 𝑌 ≤ 𝑄𝑒] = 100%), however, it would also generate high levels of false dry 

alarms. Thus, by accounting for the overall probability of the model to predict dry, in the 

denominator, the proposed statistic combines, in a sense, the dry hit and false dry alarm 

scores. Lastly, note that the term Pr[𝑌 ≤ 𝑄𝑒] is by definition equal to e.  

The above statistical metric can be generalized in the form Pr[𝑌 ∈ 𝐴 | 𝑌̂ ∈ 𝐴] which 

represents the probability that the observation belongs to a set of outcomes 𝐴 (or generally 

satisfies a condition 𝐶), given that the model predicts so. Thus, we similarly define: 

ii) Wet success: The probability of observing a wet year, while predicting wet  

𝑊𝑆 = Pr[𝑌 > 𝑄1−𝑒 | 𝑌̂ > 𝑄1−𝑒] =
Pr[𝑌̂>𝑄1−𝑒 | 𝑌>𝑄1−𝑒] Pr[𝑌>𝑄1−𝑒]

Pr[𝑌̂>𝑄1−𝑒]
   (4) 

iii) Normal success: The probability of observing a normal year, while predicting 

normal  

𝑁𝑆 = Pr[𝑄𝑒 < 𝑌 ≤ 𝑄1−𝑒 |𝑄𝑒 < 𝑌̂ ≤ 𝑄1−𝑒] =
Pr[𝑄𝑒<𝑌̂≤𝑄1−𝑒 | 𝑄𝑒<𝑌≤𝑄1−𝑒]  Pr[𝑄𝑒<𝑌≤𝑄1−𝑒]

Pr[𝑄𝑒<𝑌̂≤𝑄1−𝑒]
   (5) 

iv) No drought success: The probability of not observing a dry year, while predicting 

no dry  

𝑁𝐷𝑆 = Pr[𝑌 > 𝑄𝑒 | 𝑌̂ > 𝑄𝑒] =
Pr[𝑌̂>𝑄𝑒 | 𝑌>𝑄𝑒] Pr[𝑌>𝑄𝑒]

Pr[𝑌̂>𝑄𝑒]
,    (6) 

 

The latter statistic may be especially useful for decision makers. Lastly, we use a 

summarizing statistical metric which combines the skill with regard to all classes (dry, 

normal, wet): 
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v)  The categorical log-likelihood of the data: 

𝐿𝑜𝑔𝐿 =  
1

𝑁
Log [∏ (𝐼𝐷

𝑡 ∫ 𝑓𝑌|𝐗
𝑡 (𝑦)𝑑𝑦

𝑄𝑒

0
+ 𝐼𝑁

𝑡 ∫ 𝑓𝑌|𝐗
𝑡 (𝑦)𝑑𝑦

𝑄1−𝑒

𝑄𝑒
+ 𝐼𝑊

𝑡 ∫ 𝑓𝑌|𝐗
𝑡 (𝑦)𝑑𝑦

+∞

𝑄1−𝑒
)𝑡 ],        (7) 

where 𝑁 is the number of years (in our case 𝑁 = 50). The above statistic represents, in 

logarithmic scale, the probability assigned by the considered model to the correct (observed) 

precipitation class per year, i.e. the likelihood of the observed class per year. The three 

integrals in Equation (7) represent the probability of dry, normal, and wet conditions in year 

𝑡, as estimated from the model given 𝐱𝑡. For any 𝑡, the coefficients (indicator functions) of 

the integrals indicate whether the year was actually dry, normal, or wet: 

𝐼𝐷
𝑡 = {

1, 0 ≤ 𝑦𝑜𝑏𝑠
𝑡 ≤ 𝑄𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 𝐼𝑁

𝑡 = {
1, 𝑄𝑒 < 𝑦𝑜𝑏𝑠

𝑡 ≤ 𝑄1−𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 𝐼𝑊

𝑡 = {
1, 𝑦𝑜𝑏𝑠

𝑡 > 𝑄1−𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

The above statistical metrics are used to assess the null hypothesis, H0: “The predictors 𝑿 are 

independent of Y, and thus, non-informative for prediction”. 

Under H0, the copula ratio in Equation (2) is equal to unity and the predictive 

distribution of precipitation for any 𝑡, is equal to the historical marginal PDF of precipitation 

(i.e. the climatology), 𝑓𝑌|𝐗
𝑡 (𝑦) = 𝑓𝑌(𝑦). Based on this, the asymptotic (𝑁 → ∞) values of the 

considered statistical metrics under H0, can be easily derived: 

𝐷𝑆𝐻0
= 𝑒  

𝑊𝑆𝐻0
= 𝑒  

𝑁𝑆𝐻0
= 1 − 2𝑒  

𝑁𝐷𝑆𝐻0
= 1 − 𝑒  

𝐿𝑜𝑔𝐿𝐻0
= 2𝑒Log[𝑒] + (1 − 2𝑒)Log[1 − 2𝑒] 

However, because of the limited sample size, 𝑁 = 50, the asymptotic values cannot 

be used to assess significance, i.e., to reject the H0. Thus, we use Monte Carlo simulations to 

obtain the critical values of the above statistics, for a significance level of α = 0.05. 
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Particularly, we simulate 5000 pairs of independent 𝑌 and 𝑋 series (of sample size 𝑁 = 50), 

and determine the empirical 95%-quantile for each of the above statistics and for different 

definitions of the extremes (e values), which we then use to assess significance (see Figure 

1.26). For the sake of completeness, in Figure 1.26, we also present results for 𝑁 = 200. As 

expected, for larger sample sizes, the sample variability decreases, and the distributions of 

the statistical metrics get narrower around the asymptotic values. 

 

Figure 1.26. The empirical distribution of the considered statistical metrics under the null 
hypothesis H0 of no predictive skill, for different sample sizes (𝑁 = 200, blue; 𝑁 = 50, red) and for 
different definitions of extremes (e = 0.333, 0.25, 0.15). Dashed black lines correspond to the 
asymptotic (𝑁 → ∞) values of the considered statistical metrics under H0, while dashed red lines 
show the 95%-quantiles of the distributions of the metrics for 𝑁 = 50, which are used in our analysis 
to assess significance at α = 0.05 significance level.  
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Results 

Using observations. Figure 1.27 shows the series of the predictive distribution of 

precipitation for all years from 1969-70 to 2018-19 using different sets of climate indices. 

When using the traditional Niño 3.4 index, a small percentage of interannual precipitation 

variability is explained by the mean value of the predictive distribution (R2 of only 7%), 

which corresponds to a non-significant linear correlation (at α = 0.05 significance level) 

between the prediction and the observations (see also Table 1.2). When adding NZI to the 

predictive model, the explained variance increases significantly, reaching 17%. Indeed, 

among all univariate predictive models NZI is the best performing one, according to all 

statistical metrics (Table 1.2). When we combine all the indices, the performance is lower 

than that of the Niño 3.4-NZI model (at least in terms of R2). This implies that although 

additional information may be provided by adding many more predictors, the complexity of 

the model increases significantly, leading to a lower prediction skill due to overfitting (i.e. a 

known tradeoff between complexity and prediction skill). However, this is not the case when 

using the first two components of the indices as the predictors. Specifically, although roughly 

the same amount of information is used for prediction (i.e. the first two PCs collectively 

capture more than 75% of the variance of the eight indices), the model is much simpler (a 

bivariate model) yet the prediction skill improves, with R2 = 24%. This is because the first 

two PCs provide a compressed representation of the eight indices. Note that if the above 

analysis is conducted without using the five-fold cross validation approach, results are much 

different, and one would mistakenly think that adding more predictors leads to better 

prediction skill, whereas the model is actually fitting noise (specifically, if the five-fold cross 

validation is not applied, R2 = 13% when using only the Niño 3.4 index, R2 = 24% when using 

both Niño 3.4 and NZI, and R2 = 33% when using all indices).  
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Figure 1.27. Series of the predictive PDF of SWUS winter precipitation from 1969-70 to 2018-19, 
using different predictive models. Observations of precipitation correspond to the Nov-Mar season, 
while predictors correspond to the Aug-Sep season. The observed precipitation variability that is 
explained by the mean value of the predictive PDF (broken black line) is also given (see R2 values). In 
the lower panel, the grey rectangle highlights the prediction shown in Figure 1.25a. 
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Table 1.2. The skill scores based on the defined statistical metrics for different predictive models and for 

different extreme thresholds (i.e., probability of non exceedance e). Bold values of the statistics imply 

statistical significance at α = 0.05 significance level. 

 

Adding information from other climate indices to the Niño 3.4 model (or using the 

compression offered by principal components) also improves prediction of extreme 

precipitation totals (see Figure 1.28 and Table 1.2). For dry extremes, the Niño 3.4 index is 

on the edge of being a statistically significant predictor during the last five decades (Figure 

1.28a), while wet years are more strongly associated with ENSO (Figure 1.28b). This 

asymmetry of the strength of the ENSO climate teleconnection (El Niño vs La Niña) has been 

previously reported (Zhang et al., 2014; Feng et al., 2017), and it has been attributed to the 

internal asymmetry of the ENSO dynamics, with El Niño events being typically more extreme 

and driving larger circulation anomalies than La Niña events (An and Jin 2004; Zhang et al., 

2014). Overall, the Niño 3.4 index has not been a robust predictor in the last five decades, as 

indicated from the log-likelihood of the data (Figure 1.28e); see also remarks in recent 

studies (Wang et al., 2014; Baxter and Nigam, 2015; Teng and Branstator, 2017; Zhang et al., 

2018).  

  

INDIAN

Niño 4 Niño 3.4 Niño 3 NZI EPI TNA AMO SETIO Niño 3.4 & NZI All Indices First two PCs

R 2 0.081 0.073 0.041 0.181 0.080 0.039 0.109 0.062 0.170 0.112 0.241

Dry Success 0.367 0.373 0.351 0.426 0.366 0.347 0.363 0.326 0.426 0.423 0.404

Wet Success 0.364 0.362 0.350 0.407 0.387 0.355 0.381 0.377 0.400 0.412 0.448

Normal Success 0.330 0.322 0.320 0.333 0.332 0.323 0.327 0.342 0.332 0.348 0.337

No Drought success 0.684 0.688 0.676 0.716 0.684 0.674 0.683 0.663 0.716 0.712 0.704

Exp[LogL] 0.332 0.335 0.329 0.358 0.343 0.331 0.342 0.328 0.351 0.326 0.355

Dry Success 0.300 0.303 0.282 0.342 0.271 0.252 0.262 0.247 0.343 0.333 0.317

Wet Success 0.307 0.315 0.290 0.339 0.321 0.287 0.312 0.348 0.332 0.360 0.430

Normal Success 0.488 0.489 0.492 0.505 0.497 0.491 0.488 0.498 0.502 0.521 0.508

No Drought success 0.771 0.773 0.763 0.789 0.759 0.751 0.755 0.749 0.790 0.784 0.779

Exp[LogL] 0.371 0.375 0.365 0.385 0.361 0.352 0.360 0.360 0.380 0.355 0.396

Dry Success 0.163 0.164 0.158 0.229 0.138 0.171 0.178 0.160 0.225 0.207 0.199

Wet Success 0.198 0.217 0.172 0.330 0.199 0.157 0.185 0.230 0.315 0.284 0.325

Normal Success 0.692 0.691 0.693 0.704 0.688 0.697 0.694 0.695 0.703 0.704 0.697

No Drought success 0.853 0.853 0.852 0.869 0.847 0.855 0.856 0.852 0.867 0.863 0.861

Exp[LogL] 0.435 0.445 0.431 0.504 0.415 0.431 0.434 0.442 0.496 0.429 0.472

Predictive Model

e  = 0.15

e  = 0.25

e  = 0.333

PACIFIC ATLANTIC MULTIVARIATE
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Figure 1.28. Performance of different predictive models, as evaluated using the introduced statistical 
metrics and different definition of extremes. Dashed black lines correspond to the critical values of 
the metrics under the null hypothesis H0 of no predictive skill, at α = 0.05 significance level. Values of 
the metrics above these limits are assessed as statistically significant (the shaded areas indicate 
significance). In most cases, models more efficiently predict wet than dry years (especially, that as 
the definition of extremes gets stricter), while normal years are virtually not predictable compared 
to extreme years.   

When adding the NZI to the prediction, the skill increases and becomes statistically 

significant. This increase is especially the case for predicting dry years, which is consistent 

with recent reports that have shown SSTs over the western tropical and subtropical Pacific 

were an important driver of the recent multiyear drought in California from 2011-12 to 

2015-16. Specifically, Wang et al. (2014) found that during the late boreal summer in 2013, 

increased convective activity eastward of the Philippines excited a cross-Pacific Rossby wave 

train, establishing a persistent high blocking ridge over the western coast of the U.S., 

resulting to a dry winter in 2013-2014 for the SWUS. In a more recent study, Mamalakis et 

al. (2018) found that the NZI is robustly associated with climate variability over the 
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Philippines (and SWUS precipitation), a connection which was has strengthened particularly 

in the last four decades, as climate models also show (Mamalakis et al., 2019). Similar 

remarks about the importance of western Pacific SSTs can be drawn when predicting non-

drought conditions (see Figure 1.28d). Lastly, when using the first two PCs, the skill of 

predicting wet years increases even more. For example, wet precipitation totals 

corresponding to e =0.33 (average exceedance probability of 1 per 3 years) or e =0.25 (1 per 

4 years) are successfully predicted more than 40% of the time. For extreme wet totals 

corresponding to e =0.15 (1 per 6-7 years), prediction skill exceeds 30%.  

From Figure 1.28 and Table 1.2, it is also obvious that for most models, wet conditions 

are more predictable than dry conditions, especially as the definition of the extremes gets 

stricter (as e decreases). Moreover, all models show very limited, to virtually no skill in 

predicting normal conditions. In fact, for prediction of normal conditions, all models are on 

the edge of being statistically significant (see Figure 1.28 and Table 1.2). These results 

suggest that SST based predictions cannot beat the climatology-based predictions with 

regard to normal precipitation, and in other words, only extreme (dry/wet) precipitation 

years carry an early (late summer-early fall) ocean signature.  

To further explore the above findings, we establish a global-pattern significance 

analysis (see e.g. Wilks 2016). We first repeat the prediction, but using as predictor the 

individual SST series over each grid point in the entire globe (first linearly detrending all the 

SST series and then applying the five-fold cross validation approach), and we present the 

maps of the statistical metrics in Figures 1.29-1.30. The purpose of this diagnostic approach 

is by no means to argue that SST variability in a single grid point can be used to predict SWUS 

precipitation, but rather to identify and extract coherent SST patterns that may be more or 

less effective for predicting different components of the precipitation distribution. These 

maps verify that wet years are more predictable than dry years based on SSTs. This is seen 

from the more robust and more coherent spatial pattern that wet years are associated with, 

especially as the definition of extremes becomes stricter (note that stippling indicates 

rejection of H0 at α = 0.05 significance level). Similarly, it is clear that normal conditions are 

virtually not predictable compared to extreme conditions, and as the analysis of the SST 
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indices concluded, only extreme precipitation years are associated with a statistically 

significant ocean signature.  

 

Figure 1.29. Same as in Figure 1.28, but when SST in each grid point was used separately as a 
predictor. The results for Dry, Wet and Normal Success are presented (top, middle and bottom panels, 
respectively). Dark blue color refers to the asymptotic values of the metrics under the null hypothesis 
H0 (see Figure 1.26) indicating statistically insignificant prediction skill and stippling indicates 
significance (rejection of H0) at α = 0.05 significance level. It is shown that wet years are more 
predictable than dry years based on SST information, especially as the definition of extremes 
becomes stricter. Normal conditions are virtually not predictable compared to extreme conditions. 
Moreover, western Pacific SSTs are shown to be stronger predictors of extreme SWUS precipitation 
in the last five decades.   
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Figure 1.30. Same as in Figure 1.29, but the results for No Drought Success, and categorical Log-

likelihood are presented (top and bottom panels, respectively). 

 

Lastly, because in Figure 1.29, thousands of “local” null hypotheses are tested 

simultaneously, it is of importance to assess the so called global-pattern significance by 

controlling the false discovery rate (i.e. using the FDR method; see Wilks, 2016). Figure 1.31 

shows the application of the FDR method for different significance levels (αFDR = 0.20, 0.10, 

0.05; see dashed lines), and for predicting different precipitation conditions (dry, wet, 

normal; see different colors of the curves). Specifically, in Figure 1.31, we sort all the “local” 

p-values of every grid point from each panel in Figure 1.29 (different colors correspond to 

different precipitation conditions, and different curves of the same color correspond to 

different definition of extremes, i.e. value of e). Based on the FDR method, the pattern 

significance is assessed by the number of p-values (see dots) being below the dashed lines in 

Figure 1.31 (see Wilks, 2016). It is shown that for all values of e, and all values of αFDR, normal 

conditions are virtually not predictable. Wet conditions consistently carry a much larger 

significant SST pattern than dry conditions (consistently more blue points lie below the 

dashed lines than orange points), which verifies the higher predictability of wet conditions 

relatively to dry conditions, based on SSTs.     
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Figure 1.31. Application of the false discovery rate (FDR) method for different significance levels 
(dashed lines correspond to αFDR = 0.20, αFDR = 0.10, and αFDR = 0.05), and for predicting different 
precipitation conditions (dry, orange dots; wet, blue dots; normal, black dots). Note that different 
curves of the same color correspond to predicting extremes of different e value. Each dot corresponds 
to a specific grid point of Figure 1.29 (orange, blue, and black dots correspond to the top, middle, and 
bottom panels in Figure 1.29, respectively), and to a specific p-value under the null hypothesis H0 
(see Figure 1.26). The pattern significance is assessed by the number of dots being below the dashed 
lines (see Wilks 2016). It is shown that for all values of e, normal conditions are virtually not 
predictable. Wet conditions consistently carry a much larger significant SST pattern than dry 
conditions (more blue points lie below the dashed lines than orange points).  

 

Using CMIP6 model outputs. Here we repeat the analysis using precipitation and SST 

outputs from 27 CMIP6 models (see Table 1.3), for the period from 1965-66 to 2014-15. As 

shown in Figure 1.32, the majority of CMIP6 models significantly overestimate the multi-

year average (Nor-Mar) precipitation in the SWUS, which indicates a systematic bias in 

reproducing regional precipitation. Because the copula-based predictive model in Equation 

(2) exploits multivariate relationships in the probability space and not in the real space, such 

systematic biases in the average first-order statistics of the predictand variable do not affect 

the assessment of predictability.  
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Figure 1.32. Multi-year mean and standard deviation of the winter (Nov-Mar) precipitation over the 
SWUS, as calculated using observations (from 1969-70 to 2018-2019) and individual CMIP6 model 
outputs (from 1965-66 to 2014-2015). The region of SWUS in each case is also shown on the right.  
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Table 1.3. CMIP6 models used in this study. 

 

 

In Table 1.4 and Figure 1.33, we present the CMIP6 multi-model mean values of all 

statistical metrics based on different predictors, after predicting (in a 5-fold cross validation 

setting) precipitation in each CMIP6 model separately. With regard to ENSO, our results 

show that CMIP6 slightly overestimate its important as a source of precipitation 

predictability. This is shown from the higher values of R2 and of most statistical metrics for 

all definitions of extremes that correspond to the ENSO indices (compare Tables 1.2 and 1.4). 

More importantly, it is surprising that all other indices over the western Pacific, Indian and 

1 ACCESS-CM2 1

2 ACCESS-ESM1-5 3

3 BCC-CSM2-MR 1

4 CAMS-CSM1-0 2

5 CanESM5 20

6 CanESM5-CanOE 3

7 CESM2 6

8 CESM2-WACCM 1

9 CNRM-CM6-1 6

10 CNRM-CM6-1-HR 1

11 CNRM-ESM2-1 5

12 FGOALS-f3-L 1

13 FGOALS-g3 1

14 GFDL-ESM4 1

15 GISS-E2-1-G 1

16 INM-CM4-8 1

17 INM-CM5-0 5

18 IPSL-CM6A-LR 11

19 KACE-1-0-G 3

20 MIROC6 3

21 MIROC-ES2L 1

22 MPI-ESM1-2-HR 10

23 MPI-ESM1-2-LR 10

24 MRI-ESM2-0 1

25 NorESM2-LM 1

26 NorESM2-MM 1

27 UKESM1-0-LL 5

Model
Number of 

ensembles
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Atlantic Oceans seem to be unimportant sources of predictability according to CMIP6 

models. Indeed, all the statical metrics show statistically insignificant connection between 

non-ENSO SST indices and SWUS precipitation. Consistently with the latter, when 

considering multiple indices together (see last three columns in Table 1.4), the performance 

is very similar to the one that individual ENSO indices exhibit. This means that adding non-

ENSO indices does not improve the performance of predictions, and so, according to CMIP6 

models, any non-ENSO index is not a robust source of SWUS precipitation predictability. The 

latter is in direct contradiction with the results from the analysis of observations and 

highlights a systematic bias in CMIP6 models in overestimating the ENSO effect to 

precipitation and, at the same time, underestimate the effect of non-ENSO SST variability. 

For similar conclusions referring to CMIP3 and CMIP5, see Langenbrunner and Neelin 

(2013), Polade et al., (2013). Nevertheless, results in Table 1.4 and Figure 1.33 show that, no 

matter the predictor used, normal years are not predictable based SST information, while 

wet years are inherently more predictable. This is in accordance to with the conclusions 

reached from the analysis of the observations.  

 

Table 1.4. Same as Table 1.2, but using multi-model mean of 27 CMIP6 model simulations. Bold 
values of the statistics imply statistical significance at α = 0.05 significance level. 

  

 

 

INDIAN

Niño 4 Niño 3.4 Niño 3 NZI EPI TNA AMO SETIO Niño 3.4 & NZI All Indices First two PCs

R 2 0.124 0.125 0.117 0.070 0.061 0.052 0.045 0.060 0.124 0.112 0.126

Dry Success 0.383 0.382 0.377 0.348 0.346 0.329 0.327 0.338 0.381 0.383 0.382

Wet Success 0.395 0.396 0.391 0.351 0.353 0.328 0.329 0.344 0.394 0.404 0.399

Normal Success 0.336 0.337 0.334 0.330 0.330 0.331 0.330 0.331 0.334 0.336 0.336

No Drought success 0.691 0.692 0.689 0.674 0.673 0.664 0.664 0.669 0.691 0.692 0.692

Exp[LogL] 0.347 0.346 0.343 0.328 0.328 0.322 0.320 0.324 0.341 0.309 0.342

Dry Success 0.294 0.294 0.289 0.265 0.261 0.243 0.241 0.251 0.294 0.295 0.294

Wet Success 0.304 0.310 0.306 0.264 0.268 0.242 0.243 0.259 0.309 0.312 0.312

Normal Success 0.500 0.502 0.500 0.496 0.497 0.495 0.496 0.496 0.500 0.501 0.503

No Drought success 0.765 0.766 0.764 0.755 0.754 0.747 0.747 0.750 0.766 0.766 0.766

Exp[LogL] 0.363 0.363 0.360 0.347 0.348 0.340 0.338 0.343 0.359 0.320 0.358

Dry Success 0.184 0.183 0.179 0.159 0.153 0.142 0.140 0.147 0.184 0.185 0.182

Wet Success 0.189 0.195 0.194 0.158 0.165 0.138 0.141 0.150 0.192 0.203 0.195

Normal Success 0.700 0.699 0.699 0.697 0.695 0.696 0.696 0.696 0.699 0.699 0.699

No Drought success 0.858 0.857 0.856 0.852 0.851 0.848 0.848 0.850 0.857 0.858 0.857

Exp[LogL] 0.445 0.444 0.442 0.430 0.432 0.423 0.422 0.424 0.439 0.393 0.437

Predictive Model

e  = 0.15

e  = 0.25

e  = 0.333

PACIFIC ATLANTIC MULTIVARIATE
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Figure 1.33. Same as in Figure 1.28, but results from CMIP6 model outputs (from 1965-66 to 2014-
2015) are also presented. 

 

Discussion and Concluding Remarks 

In this study we have revisited the problem of seasonal prediction of winter precipitation 

totals over SWUS, focusing on extreme dry and wet conditions of different magnitude. We 

have presented a probabilistic framework, where prediction is made conditioning on SST 

information, and resolving the entire predictive precipitation distribution in each year. We 

have introduced statistical metrics which focus on assessing the models’ ability in capturing 

different aspects of the precipitation distribution, also assessing the null hypothesis of no 

predictive skill, based on Monte Carlo simulations to account for the limited sample size.  

 After applying our framework to predict winter precipitation totals during the last 

five decades, we find that normal conditions are virtually not predictable relatively to 
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extreme conditions, and wet conditions are more predictable than dry conditions. We show 

that, for non-zero lead times, traditionally used indices based on central Pacific SST (like the 

Niño 3.4 index) have not been robust predictors of precipitation during the last five decades, 

especially with regard to dry conditions. In contrast, SSTs over the southwestern Pacific have 

been better predictors of precipitation totals. Although beyond the scope of this study, it is 

important to note that the exact physical mechanism of the latter connection remains 

unclear. On one hand, some studies support that climate variability (e.g. SST, sea level 

pressure, etc.) over the southwestern Pacific (i.e. in the proximity of the south Pacific 

convergence zone) leads by a few seasons the ENSO variability (Trenberth and Shea, 1987; 

van Loon and Shea, 1987; Stephens et al., 2007), and considering these dynamics, specific 

indices have been suggested to increase predictive skill of ENSO state (Hamlington et al., 

2015). Given that ENSO is more robustly related to SWUS precipitation during winter (i.e. 

for zero lead time), the southwestern Pacific SSTs may provide important predictors of 

precipitation, by leading the ENSO state. More recent studies, however, suggest that western 

Pacific SSTs can affect precipitation not necessarily through ENSO teleconnections (e.g. 

Wang et al., 2014; Baxter and Nigam, 2015; Teng and Branstator, 2017; Mamalakis et al., 

2018). The importance of this western Pacific pathway for driving SWUS precipitation has 

been increasing during the last 40 years, which is also the time when new, ENSO-

independent SST patterns have been emerging and affecting tropical atmospheric circulation 

(Johnson et al., 2019). We note that the importance of the Indo-Pacific climate state in 

general, as a source of precipitation predictability, is increasingly acknowledged in the 

recent literature, and many studies focus on beyond ENSO indices to improve predictions 

and understanding of the variability of SWUS hydroclimate (Wang et al., 2014; Baxter and 

Nigam, 2015; Teng and Branstator, 2017; Seager et al., 2017; Swain et al., 2017; Myoung et 

al., 2018; Mamalakis et al., 2018; Johnson et al., 2019; Zhou et al., 2020; Stevens et al., 2020).  

 Our analysis of CMIP6 outputs verifies that copula-based models are not reliable 

when predicting normal years conditioned on SST information, but they are more reliable 

when predicting wet years. However, our results show that CMIP6 models seem to fail to 

reproduce non-ENSO SST indices to be important sources of predictability of SWUS 

precipitation, which contradicts the analysis of observations and the conclusions of the 
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recent literature, and it highlights that there are still standing important biases in climate 

models physics.  

The framework introduced herein can be applied to any predictive model (beyond 

copula models) and allows to determine the predictive skill of precipitation not only in the 

past (retrospectively), but also in the future climate, by using climate model outputs to 

explore possible changes in the strength of climate teleconnections, highly important for 

assessment of climate change impacts on regional hydroclimate. It may be relatively 

straightforward to extend our approach to predict other aspects of the precipitation 

distribution, even beyond the ones considered here, e.g. by defining extremes based on 

specified magnitudes (instead of quantiles), and/or by using additional statistical metrics 

(e.g. probability of miss), important for risk quantification and water management decisions. 
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2.1. A multivariate probabilistic framework for tracking the 
intertropical convergence zone: Analysis of recent climatology and 
past trends 

 

Part of this chapter has been published in Geophysical Research Letters 

Citation: Mamalakis, A. and E. Foufoula-Georgiou (2018) A multivariate probabilistic 

framework for tracking the intertropical convergence zone: Analysis of recent climatology and 

past changes, Geophysical Research Letters, doi:10.1029/2018GL079865 

 

The intertropical convergence zone (ITCZ) is the area where the northeasterly and 

southeasterly trade winds converge to the low-pressure zone on the equator. It is collocated 

with the ascending branch of the atmospheric meridional overturning circulation in the 

tropics (i.e. the Hadley circulation) and is characterized by deep convection and high amount 

of precipitation (Schneider et al., 2014), greatly affecting the tropical and subtropical 

hydroclimatic variability.  

On seasonal timescales, the ITCZ migrates toward the warmer hemisphere, leading to 

the expansion of the Hadley cell and increasing the meridional heat transport toward the 

cooler hemisphere, which flattens the tropical temperature gradient (Donohoe et al., 2013; 

Schneider et al., 2014; Bischoff and Schneider, 2014; 2016; Adam et al., 2016a,b). The 

location and intra-annual variability of the ITCZ vary with longitude (Waliser and Gautier, 

1993; Waliser and Somerville, 1994), and generally depend on the geometry and distribution 

of the continents, and the sea surface temperature (see e.g. Graham and Barnett, 1987; 

Philander et al., 1996; Chao and Chen, 2001; Trenberth, 2011; Schneider et al., 2014). In 

particular, the ITCZ migrates more over continental regions, where it collocates with the 

trough of the global monsoon (see Trenberth, 2000), and it is driven by the seasonal change 

of the solar heating. In contrast, over the Atlantic and eastern Pacific oceans, the ITCZ does 

not migrate seasonally between the two hemispheres and resides north of the equator 

during most of the year (Philander et al., 1996). In the western Pacific, apart from the 

northern ITCZ, the so-called south Pacific convergence zone (SPCZ) is also prominent from 
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the equatorial region north of Australia poleward and eastward toward 30°S in the central 

Pacific, with seasonally-varying strength, which picks during boreal winter (see Widlansky 

et al., 2011; Haffke and Magnusdottir, 2013; Berry and Reeder, 2014; Haffke and 

Magnusdottir, 2015). It should be also noted that although the ITCZ in the northern Pacific 

and Atlantic oceans is mainly a zonal feature, the SPCZ, as well as the south Indian ocean 

convergence zone (SICZ; Cook, 1998; 2000) and the south Atlantic convergence zone (SACZ; 

Carvalho et al., 2004) are diagonally oriented.  

On decadal and longer scales, local features like the geometry of coastlines are not 

likely to be affecting the variability in the location of the ITCZ (Schneider et al., 2014). 

Instead, the ITCZ is influenced by the heating contrast between the two hemispheres, or 

more generally, the energetic asymmetry of the globe, and it tends to move toward the 

warmer hemisphere, mimicking its seasonal migration (Chiang and Bitz, 2005; Broccoli et 

al., 2006; Kang et al., 2008; Sachs et al., 2009; Arbuszewski, et al., 2013; Broecker and 

Putnam, 2013; Bischoff and Schneider, 2014; Schneider et al., 2014; Allen et al., 2015).  

Due to its importance for efficient water resources management in tropical and 

subtropical regions, and for the sustainability of ecosystems and rainforests, efficient 

detection and tracking of the ITCZ on seasonal to decadal scales, as well as reliable 

assessment of changes in its dynamics are of high interest. Usually, the latter is based on 

tracking changes in the outgoing longwave radiation (OLR) or precipitation using global-

zonal and annual averages (Hwang et al., 2013; Allen, 2015), thus not offering much insight 

into the changes of the intra-annual dynamics of the ITCZ, and not facilitating assessment of 

regional changes. Moreover, in particular seasons or regions of the Earth, the detection of 

ITCZ is rather subjective and the use of a single variable can be questionable (Nicholson, 

2009; 2018). In the light of the above, more rigorous methods to objectively detect the ITCZ 

have been recently proposed (see method proposed by Bain et al., 2011), which consider 

multiple physical variables to assess the probability of any point to be part of the ITCZ using 

Bayesian inference. Although more insightful and theoretically consistent, these methods are 

computationally intensive, and require the use of manually-identified ITCZ points as training 

datasets, both of which limit their applicability only in specific longitudinal sectors and over 

short time periods, and are not offered for straightforward analysis of the extensive 
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observational, reanalysis or climate simulation products available, which is essential for 

climate change assessment studies.  

Here, recognizing the fact that the ITCZ location has to be inferred based on physical 

variables (e.g., precipitation, OLR, cloud cover, etc.) which vary stochastically in space and 

time, we propose a new probabilistic approach for tracking the ITCZ. This approach allows 

for detailed analysis of the intra-annual dynamics in all longitudes of the globe, while being 

computationally efficient and flexible in its implementation. Our approach is based on the 

following principles:  

i) The location of the ITCZ is longitudinally and seasonally explicit: at each longitude 

and in each month/season, there are latitudes at which the ITCZ is most likely to 

prevail. 

ii) The ITCZ is a large‐scale feature and isolated features of deep convection are not 

parts of it (Bain et al., 2011). Accordingly, we consider zonal means of the defining 

variables (e.g., precipitation or OLR) to reduce the likelihood of detecting small‐

scale, isolated patterns of convection as ITCZ points.  

iii) In particular seasons or regions of the Earth, the definition of ITCZ based on the 

use of a single variable may be questionable (Nicholson, 2018), and thus, the joint 

consideration of multiple variables is necessary to increase robustness and 

physical causality.  

Principles (i)‐(ii) become less robust on finer than monthly/seasonal temporal scales, 

where tropical waves like the Madden‐Julian Oscillation (MJO; Madden and Julian, 1971) can 

disturb the large‐scale features of deep convection in the Indo‐Pacific basin. Thus, our 

analysis is focused on seasonal to decadal scales. The proposed probabilistic framework is 

used to determine the recent climatology of the ITCZ, particularly its annual mean location 

as an explicit function of longitude, its intra‐annual variability, and its overall probability 

distribution, i.e., the frequency at which every point within the ITCZ zone experiences the 

physical conditions used to define it, e.g., extreme precipitation, minimum OLR, etc. We also 

assess changes in ITCZ dynamics since the mid of the 20th century and report longitudinal 

trends. 
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Data. For our analysis, we use both observations and reanalysis products. Particularly, to 

study the recent climatology of the ITCZ, we use a high-resolution dataset of satellite 

precipitation (monthly precipitation series in 1983-2012 and on a 0.25º × 0.25º grid, see 

Ashouri et al., 2015) developed by the Center for Hydrometeorology and Remote Sensing 

(CHRS), and referred to as the PERSIANN-CDR dataset, and monthly records of OLR 

developed by the Physical Sciences Division of NOAA (monthly OLR series in 1983-2012 and 

on a 1º × 1º grid, see Lee, 2015) referred to as the PSD-CDR dataset. To study the ITCZ trends 

since the mid 20th century, we use reanalysis products obtained from the 20th Century 

Reanalysis V2c project (monthly series of precipitation, OLR, omega velocity, and cloud cover 

in 1948-2014 and on a 2º × 2º grid, see Compo et al., 2011), which is here referred to as the 

20C dataset, and from the National Centers for Environmental Prediction–National Center 

for Atmospheric Research (monthly series of precipitation, OLR, omega velocity, and cloud 

cover in 1948-2014 and on a 2º × 2º grid, see Kalnay et al., 1996), which we here refer to as 

the NCEP/NCAR dataset. See Table S1 for more information on the data used.  

Probabilistic tracking of the ITCZ. Many different variables have been used in the literature 

to define the location of the ITCZ, including pressure, surface wind convergence, 

precipitation, OLR, and cloudiness (see Nicholson, 2018 and references therein). Yet, the 

most commonly used variables are precipitation and OLR, since both are indicative of deep 

convection which takes place along the ITCZ (see for example Sachs et al., 2009; Bain et al., 

2011; Donohoe et al., 2013; Schneider et al., 2014; Zhang and Wang, 2015; Bischoff and 

Schneider, 2014; 2016; Adam et al., 2016a,b, among others). Thus, we use here the latter two 

variables to track the ITCZ, but our framework is general and applicable in considering any 

single variable, and/or jointly distributed multiple variables to define the ITCZ. 
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Figure 2.1. Probabilistic tracking of the ITCZ at longitude l = 175ºE, based on monthly precipitation 
(from PERSIANN-CDR). a) The zonal precipitation (167.5ºE – 182.5ºE) in January (blue curve) and 
July (red curve) for 1983-2012 (climatological means are presented). b) The location of the ITCZ in 
January (t = 1) and July (t = 7) at longitude l = 175º, using a longitudinal window of width w = 15º, 
and probability of non-exceedance a = 90%. It is shown that in July, the ITCZ is tracked in both 
hemispheres (double ITCZ). c) Annual probability density function (PDF) of the location of the ITCZ 
at longitude l = 175ºE, using “ITCZ points” obtained in each calendar month (t = 1, 2, …, 12). The 
probability of ITCZ residing in the northern (southern) hemisphere during the year is 0.62 (0.38). 
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Let X denote the variable (e.g. precipitation) used for defining the ITCZ location, and 

𝑋𝑤
𝑙,𝑡 the zonal average of X within the longitudinal window [l-w/2, l+w/2] of width w and 

during month/season t. The latitudinal distribution of 𝑋𝑤
𝑙,𝑡 can be obtained from observations 

or model outputs (see example in Figure 2.1a). For a specified probability of non-exceedance 

a, we define 𝑥𝑤,𝑎
𝑙,𝑡  to be the ath quantile of 𝑋𝑤

𝑙,𝑡, i.e., 

𝐹(𝑥𝑤,𝑎
𝑙,𝑡 ) ≡ Pr[𝑋𝑤

𝑙,𝑡 ≤ 𝑥𝑤,𝑎
𝑙,𝑡  ] = 𝑎 

where F is the cumulative distribution function (CDF) of 𝑋𝑤
𝑙,𝑡. We define the random variable 

𝑌𝑤,𝑎
𝑙,𝑡 to be the location (in degrees of latitude) at which the ITCZ is most likely to prevail, in 

longitude l, and in month/season t. A sample of 𝑌𝑤,𝑎
𝑙,𝑡  may then be the set of latitudinal points 

𝑦𝑤,𝑎
𝑙,𝑡 (hereafter labeled as “ITCZ points”) at which the value of 𝑋𝑤

𝑙,𝑡 exceeds the ath quantile 

𝑥𝑤,𝑎
𝑙,𝑡 , that is: 

{𝑦𝑤,𝑎
𝑙,𝑡 }:  𝑋𝑤

𝑙,𝑡(𝑦𝑤,𝑎
𝑙,𝑡 ) > 𝑥𝑤,𝑎

𝑙,𝑡 = 𝐹−1(𝑎)  or  

{𝑦𝑤,𝑎
𝑙,𝑡 }: 𝐹 (𝑋𝑤

𝑙,𝑡(𝑦𝑤,𝑎
𝑙,𝑡 )) > 𝑎    (8) 

In other words, we track the position of ITCZ based on the upper (1 - a)×100% of the 

zonal precipitation in longitude l and month/season t, using the points 𝑦𝑤,𝑎
𝑙,𝑡  (see example in 

Figure 2.1a-b). When considering the OLR to track the ITCZ, the negative zonal OLR is used, 

since deep convection associates with minimum (not maximum) OLR. Such an approach is 

rather computationally efficient and allows the analysis of both the mean annual location 

and the intra-annual variability of the ITCZ, simply by obtaining the “ITCZ points”, 𝑦𝑤,𝑎
𝑙,𝑡 , for 

each calendar month t = 1, 2, …, 12 (see Figure 2.1c) or each season.  

When jointly considering multiple (e.g. N ≥ 2) variables X = [X1, X2, …, XN] to track the 

ITCZ, the “ITCZ points”, 𝑦𝑤,𝑎
𝑙,𝑡 , also satisfy Equation (8), but F is now the joint CDF of 𝐗𝑤

𝑙,𝑡. This 

joint CDF can be estimated using copulas which offer the flexibility to express the joint 

distribution of multiple variables in terms of the quantiles of their marginal distributions 

(e.g., Nelsen, 1998; Salvadori and De Michele, 2007). Figure 2.2 illustrates an example where 

zonal precipitation and negative zonal OLR have been jointly used (i.e. N = 2) to detect the 
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location of the ITCZ during January (i.e. t = 1), at longitude l = 175ºE (and with w = 15º), in 

the period 1983-2012 (the latter is the period which all datasets cover; see Table S1). Note 

that in order to obtain results for the entire period, we have used the climatological mean 

precipitation and OLR (see also Figure 2.1). In this example, the zonal precipitation and – 

OLR are strongly correlated (r = 0.98) as indicated by the scatter plot and the copula function 

(see Figure 2.2b-c), which means that the ITCZ is well defined, and similar results would have 

been obtained by using the marginal distribution of either variable. Yet, this is not the case 

in all longitudes or seasons, and thus, the use of joint statistics becomes necessary. Using a = 

90%, the ITCZ in January is located close to 10ºS (Figure 2.2d). By obtaining the samples 

𝑦15,90%
175,𝑡  for each calendar month t = 1, 2, …, 12, the annual distribution of the location of the 

ITCZ is obtained (see Figure 2.2e). It is shown that during the year, the ITCZ is more likely to 

be established in the northern hemisphere with probability 58%. Moreover, its annual 

average location is at 1ºN, while its intra-annual variability (defined here as twice the st. 

deviation of the distribution of the “ITCZ points”, and measured in degrees of latitude) is 

about 15 degrees of latitude. The use of the st. deviation to quantify the intra-annual 

variability of ITCZ is preferred here against more complicated metrics (like the bimodal 

separation) which may be sensitive to outliers.      

The proposed framework is physically motivated, straightforward, and flexible in its 

implementation. Moreover, by using different values of the parameters N, w, and a, the 

sensitivity of the results for a considered problem (regional analysis of ITCZ dynamics, 

analysis of trends, etc) can be investigated. Next we use the proposed framework to analyze 

the climatology of the ITCZ in the entire globe in the period 1983-2012, and the trends in the 

location of the ITCZ since the mid 20th century. For this purpose, we choose here to use N = 

2 (precipitation and OLR), w = 15º and a = 90% (or in some cases a = 85%). The choice of w 

= 15º is important, since larger longitudinal windows (e.g. w > 30º) may not allow the 

tracking of non-zonal (diagonal) ITCZ features like the SPCZ, SICZ and SACZ. However, we 

note that depending on the region, season, scale, and scope of the investigation, future 

analysts may decide to use different/more variables (e.g. cloud cover, divergence, diabatic 

heating, pressure, vertical velocity, and/or a joint combination of them), different width of 
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the longitudinal window w, and different probability of non-exceedance a, to define the ITCZ, 

and no universally optimal values of these parameters exist.  

 

Figure 2.2. Probabilistic tracking of the ITCZ at longitude l = 175ºE, based on the joint 
distribution of the monthly precipitation and OLR. a) The zonally averaged (167.5ºE - 182.5ºE) 
precipitation (blue curve; from PERSIANN-CDR) and OLR (orange curve; from PSD-CDR) in January, 
1983-2012 (climatological means are presented). b) Scatter plot of the points in (a). Coloring 
indicates the value of the joint cumulative distribution function (CDF) of precipitation and – OLR. c) 
The joint distribution is modelled using the Frank copula. d) The value of the joint CDF of 
precipitation and – OLR as a function of latitude. The location of the ITCZ is also indicated based on 
the probability of non-exceedance a = 90%. e) Annual probability density function (PDF) of the 
location of the ITCZ at longitude l = 175ºE, using “ITCZ points” obtained in each calendar month (t = 
1, 2, …, 12). For a = 90%, five “ITCZ points” are tracked in each calendar month; see e.g. panel (d). The 
probability of ITCZ residing in the northern (southern) hemisphere during the year is 0.58 (0.42). 



 

90 
 

Recent climatology of the ITCZ. By obtaining the samples 𝑦15,90%
𝑙,𝑡  in all longitudes l = 0º, rl, 

2 rl, …, 360º – rl (rl is the longitudinal resolution), and all calendar months t = 1, 2, …, 12 (we 

use climatological mean precipitation and OLR for each calendar month), the seasonal and 

annual distributions and basic statistics of the location of the ITCZ in the entire globe are 

obtained for the period 1983-2012 (Figures 2.3 and 2.4). Results are generally consistent 

using either precipitation or OLR, with slight discrepancies being apparent over the Indian 

ocean and east Asia (compare Figure 2.4a to 2.4b). When using OLR, some outliers are 

obtained over Mexico, and generally, the results when jointly considering both precipitation 

and OLR are more robust (see Figure 2.3).  

Our results are consistent with the known physics of the ITCZ. Concerning the intra-

annual variability, our framework shows that the ITCZ is more migratory over continental 

regions (compare Figures 2.3a-b and see Adam et al., 2016a,b), with the deep convection 

zone being mostly evident in the northern hemisphere during Apr-Sep (Figure 2.3a), and 

migrating to the south mainly over Africa and America, during Oct-Mar (Figure 2.3b). Also, 

the SPCZ is shown to increase in strength during Oct-Mar; note for example, that during Apr-

Sep, the subtropical part of the SPCZ is not tracked (see also Figure 1 in Waliser and Gautier, 

1993; Figures 2, 4, 5 and 8 in Trenberth, 2000; Figure 1 in Widlansky et al., 2011; and Figure 

1 in Adam et al., 2016a,b). Both these remarks are in accordance with the suggestion that the 

ITCZ collocates with the trough of global monsoon, which seasonally follows solar heating 

(Trenberth, 2000). 
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Figure 2.3. The location of the ITCZ around the globe in 1983-2012. a) The empirical 

probability density function (PDF) of the location of the ITCZ during Apr-Sep, as computed in 
overlapping longitudinal windows of width w = 15º, based on the upper 10% (probability of non-
exceedance a = 90%) of the joint distribution of zonal precipitation (from PERSIANN-CDR) and zonal 
– OLR  (from PSD-CDR); we use the long-term climatology of precipitation and OLR in each month, 
see also Figure 2.2. b) Same as in (a), but for Oct-Mar. c) Same as in (a), but the annual distribution is 
presented. d) The annual mean (blue color) and the intra-annual variability (twice the st. deviation 
of the distribution of the “ITCZ points”; green color) of the location of the ITCZ as a function of 
longitude. 
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Figure 2.4. Location of the ITCZ in 1983-2012 as defined using multiple physical variables. 
a) The empirical annual probability density function (PDF) of the location of the ITCZ computed in 
overlapping longitudinal windows of width w = 15º and probability of non-exceedance a = 90%, using 
zonal precipitation (from PERSIANN-CDR). b) Same as in (a), but using zonal – OLR (from PSD-CDR). 
c) Same as in (a), but using the joint distribution of precipitation and – OLR. d) The probability of 
ITCZ residing in the northern/southern hemisphere as a function of longitude, in 1983-2012, based 
on satellite observations of precipitation (green color; data from PERSIANN-CDR), OLR (red color; 
data from PSD-CDR) and their joint distribution (dark blue color). 
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Concerning the longitudinal variability, the ITCZ resides in the northern hemisphere 

(Philander et al., 1996), apart from the area of the Indian and the western Pacific Oceans, and 

the Amazon (see Figures 2.3 and 2.4). Over Indian Ocean, the ITCZ is positioned in the 

southern hemisphere during most of the year (see Figures 2.3d, 2.4d and Waliser and 

Gautier, 1993), while in boreal summer, it is difficult to define, as its interaction with the 

Indian monsoon is still under debate (note the noisy patterns over India in Figure 2.3a and 

S2.a). Particularly, although the traditional view is that the Indian monsoon is driven by land-

sea thermal contrast, recent studies support that it is a manifestation of the seasonal 

migration of the ITCZ towards India (Chao and Chen, 2001; Gadgil, 2003; Fleitmann, et al., 

2007; Bordoni and Schneider, 2008). In the western and central Pacific, the ITCZ consists of 

two distinct and much distant zones, the northern ITCZ and the SPCZ, which co-exist almost 

year-round, however, with high intra-annual variability in their strengths (see Figure 2.3d 

and Waliser and Gautier, 1993). As proposed recently by Mamalakis et al. (2018), the large 

intra-annual variability of the ITCZ and of the overturning meridional circulation (see 

Figures 2, 5 and 8 in Trenberth, 2000) over the western and central Pacific can establish 

interhemispheric connections through the accompanied expansion of the regional Hadley 

cell (atmospheric bridge; see also Alexander et al., 2002 and Liu et al., 2010). Accordingly, 

studies suggest that the longitudinal zone around the globe where the most significant 

interhemispheric interaction occurs is the region of east Australia to east Asia (Tao and Xu, 

1962; Wang and Zhao, 1987; Liu et al., 2010). Over the eastern Pacific and Atlantic Oceans, 

observations suggest that the ITCZ is least variable (Figure 2.3d), tending to stay in the 

northern hemisphere during the whole year (see Figure 2.4d and Waliser and Gautier, 1993), 

although a double ITCZ may form during boreal spring in the eastern Pacific (see Figure 2.3 

and Haffke et al., 2016; Yang and Magnusdottir; 2016; Bischoff and Schneider, 2016; Adam 

et al., 2016b).  
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Figure 2.5.  Same as Figure 2.4, but using monthly products from the 20CR dataset; w = 15º, a = 90%. 
a-e) The location of ITCZ is defined using precipitation, OLR, the joint distribution of precipitation 
and – OLR, total cloud cover, and omega velocity at the 500 mb level (upward motion corresponds to 
negative omega velocity), respectively. The cloud cover is obtained by considering the entire 
atmosphere as a single layer. 
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Figure 2.6. Same as Figure 2.5, but using monthly products from the NCEP/NCAR dataset. 
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The ITCZ climatology has also been obtained based on monthly products from the 

20CR and the NCEP/NCAR datasets (see Figure 2.5 and 2.6, respectively). Particularly, to 

illustrate the generality of our framework, we have used many different variables to track 

the ITCZ (i.e. precipitation, OLR, joint statistics of precipitation and OLR, total cloud cover 

and omega velocity), and the corresponding distributions of the location of ITCZ are shown 

to be very similar with that presented in Figure 2.3, especially when using products from the 

20CR dataset. The general agreement of the results in Figures 2.3-2.6, indicates the 

effectiveness of the reanalysis datasets in capturing the ITCZ dynamics, and thus, their 

suitability to be used in assessing decadal changes in the ITCZ location.   

Another important result is that when one investigates the annual distribution of the 

ITCZ based on season by season analysis in 1983-2012 (i.e. t = 1, 2, …, 119), or month by 

month analysis  (i.e. t = 1, 2, …, 320), results are very similar (see Figure 2.7a-b and 2.8, 

respectively) to the case of using monthly climatology of precipitation and OLR (Figure 2.3), 

indicating the robustness and consistency of our framework. However, we note that in 

months when the MJO is active, it may introduce biases in the tracking of the ITCZ, thus, the 

seasonal tracking is more accurate.   

The physical consistency of the tracking framework is also illustrated by exploring 

the effect of El Niño-Southern Oscillation (ENSO) on the ITCZ location. As an example, Figure 

2.7c presents the sampled “ITCZ points” in all seasons in 1983-1992, at l = 175ºE.  Our results 

show that in almost all seasons two ITCZs are tracked (one in each hemisphere; the northern 

ITCZ and the SPCZ), and reveal a dependence between the ENSO and the location of the SPCZ 

in the central/western Pacific (here at l = 175ºE), as shown by the co-variation of the latter 

with the series of the Niño 3.4 index. It is shown that during El Niño (La Nina) years, the 

derived “ITCZ points” are located northern (southern) than average (see for example 

Trenberth and Shea, 1987; Widlansky et al., 2011; Berry and Reeder, 2014; Adam et al., 

2016a,b).  
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Figure 2.7. Seasonal tracking of the ITCZ. a-b) Same as in Figure 2.3c-d, but using all 119 seasons in 
1983-2012 (winter of 1983 is excluded); w = 15°, a = 85%. c) The sampled “ITCZ points” (blue points) 
in all seasons of 1983-1992, based on the upper 15% (probability of non-exceedance a = 85%) of the 
joint distribution of zonal precipitation and – OLR, at longitude l = 175ºE (using w = 15º). To indicate 
the effect of the El Niño-Southern Oscillation on the location of the SPCZ (here corresponding to the 
“ITCZ points” in the southern hemisphere), we also present seasonal series of Niño 3.4 (the scale in 
the right vertical axis was chosen so that the series of Niño 3.4 can be co-displayed with the “ITCZ 
points”).   
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Figure 2.8. Same as Figure 2.7a-b, but using all 320 months in 1983-2012. 

 

ITCZ trends. Time series (2-yr averages of the seasonal series) of the location of the ITCZ 

for the entire globe and for the period 1948-2014 are presented in Figure 2.9, based on 

reanalysis products from the 20C dataset (Figure 2.9a) and the NCEPNCAR dataset (Figure 

2.9b). Generally, there are evident changes in several regions, with the most prominent and 

consistent (i.e. identified in both reanalysis products) change being a southward shift/trend 

of ITCZ in the central and western Pacific Ocean (see also Berry and Reeder, 2014). 

Specifically, differences in the distribution of the location of the ITCZ in the period 1991-

2010 relative to the period 1951-1970 clearly indicate the southward shift, which is more 

profound in the results of NCEP/NCAR (see Figure 2.9c-d). In terms of annual precipitation, 

a similar southward shift has been reported and studied in the literature. Particularly, during 

the late 20th century, the tropical rainbelt shifted southward, due to the decrease of the 

interhemispheric temperature gradient (Friedman et al.,2013; Hwang et al., 2013; Polson et 

al., 2014; Allen et al., 2015; Chung and Soden, 2017). The latter was mainly driven by the 

increased anthropogenic release of sulfate aerosols in the northern hemisphere, which 
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counteracted the effect of the greenhouse gases (Friedman et al., 2013) and altered the cloud 

radiative properties (Hwang et al., 2013; Chung and Soden, 2017), making the north-to-south 

temperature difference decrease. Our results clearly support these precipitation trends, but 

we additionally report similar changes when the ITCZ is defined using OLR and/or multiple 

variables (note that similar trends are obtained when using total cloud cover and omega 

velocity to define the ITCZ from either reanalysis dataset; not shown here). More 

particularly, over the region of 150º E - 220º E, results derived from the 20CR dataset 

indicate southward trends from -0.5 to -1 degrees of latitude per decade, while the 

NCEP/NCAR results indicate trends from -1 to -1.5 degrees of latitude per decade (see Figure 

2.10a). Time series for a specific longitude l = 200º E are also presented (see Figure 2.9e), 

and results from applying a simple linear regression (considering also the autocorrelation of 

the series) confirm the statistical significance of the trends.  

Conclusions. Due to its high importance in water resources management and sustainability 

of ecosystems in tropical and subtropical regions, efficient tracking of the changes in the 

seasonal and decadal dynamics of the ITCZ at different longitudes is necessary. In the light 

of the limitations of existing approaches, here we proposed and applied a new probabilistic 

framework which facilitates detailed analysis of changes in the seasonal dynamics of the 

ITCZ, and offers the ability to use multiple variables to define it, which adds to its physical 

rigor. Moreover, it is rather computationally efficient and flexible in its implementation, 

which makes it useful for the analysis of multi-model ensembles in climate change 

assessment studies.  
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Figure 2.9. Changes in the location of the ITCZ. a) 2-yr average of the seasonal series of the location 
of the ITCZ as a function of longitude, for 1948-2014. The location of the ITCZ is obtained in each 
season using overlapping longitudinal windows of length w = 15°, based on the upper 15% of the 
joint distribution of zonal precipitation and – OLR. Data are from the 20CR dataset. b) Same as in (a), 
but data are from the NCEP/NCAR dataset. c) Difference in the probability distribution of the location 
of the ITCZ (ΔPDF) between the periods 1991-2010 and 1951-1970. Data are from the 20CR dataset. 
d) Same as in (c), but data are from the NCEP/NCAR dataset. The central Pacific region is where 
results from the two datasets show the most prominent trends, indicating a southward shift of the 
ITCZ. e) The ITCZ series at l = 200ºE (using w = 15º) and the corresponding linear trends.   
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Figure 2.10. Trends and changes in the distribution of the location of the ITCZ. a) Linear trends of 
the 2-yr average location of the ITCZ in 1948-2014 as a function of longitude, using simple linear 
regression. b) The difference in probability of the ITCZ residing in the northern hemisphere, between 
periods 1991-2010 and 1951-1970. The central Pacific region is where results from the two datasets 
show the most prominent trends, indicating a southward shift of the ITCZ. 
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2.2. Zonally contrasting shifts of the intertropical convergence zone in 
response to climate change 

 

This chapter is currently under review 

Citation: Mamalakis, A., J.T. Randerson, J.-Y. Yu, M.S. Pritchard, G. Magnusdottir, P. Smyth, P.A. 

Levine, S. Yu and E. Foufoula-Georgiou (2020) Zonally contrasting shifts of the tropical rainbelt 

in response to climate change 

  

The intertropical convergence zone (ITCZ) and its dynamics63 play a vital role in the tropical 

atmospheric circulation and hydroclimate, affecting the vulnerability of tropical forest 

ecosystems, and influencing the food security and property of billions of people. As such, 

intense research has been focused on identifying the physical mechanisms that determine 

the climatology and variability of the ITCZ position across seasonal and interannual scales63-

71, and its long-term response to large scale natural climate variability and external 

anthropogenic forcing63,67,72-83. Evidently, this research topic has been highlighted in the 

literature as one of a few scientific questions of prime importance, towards accelerating the 

progress and filling in gaps in our knowledge of climate science84.   

From a local perspective, the ITCZ has been shown to be controlled by tropical 

mechanisms impacting near-equatorial sea surface temperature (SST) gradients85. From an 

energetic perspective, analysis of paleoclimate records, reanalysis data, and idealized 

climate simulations all indicate that the ITCZ variability can be influenced by differences in 

atmospheric heating between the two hemispheres (in the zonal mean, such hemispheric 

energy asymmetries determine the cross-equatorial atmospheric energy transport; AET0), 

with the ITCZ tending to shift toward the more heated hemisphere, mimicking its seasonal 

behavior63. Hemispheric energy asymmetries can be the result of natural climate variability 

(shifts of the Interdecadal Pacific Oscillation, the Atlantic Multi-decadal Oscillation, or 

volcanic eruptions86) or external anthropogenic forcing (e.g., changes in emissions of sulfate 

aerosols77,80,87). Many studies have also highlighted the importance of extratropical energy 

sources/disturbances in altering tropical dynamics88-96. In the case of a northern 

atmospheric cooling, the ITCZ is displaced southward, increasing the northward AET0 to 
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maintain the atmospheric energy balance91 (a recent example of a southward ITCZ shift 

occurred during the late 20th century97 likely because of increasing emissions of sulfate 

aerosols in the northern hemisphere, which decreased the hemispheric temperature 

difference77,80,82,98). Apart from AET0, ITCZ variations have been also linked to the equatorial 

net energy input (NEI0) into the atmosphere, with ITCZ shifting equatorward when NEI0 

increases (e.g. during an El Niño event)63,68,70. More generally, the ITCZ has been shown to 

covary with the energy flux equator (EFE; a zone where the meridional AET vanishes91), the 

latitude of which can be (to a first order) approximated by the ratio of AET0 and NEI063,68,70, 

a proxy that combines in a sense both local (mostly reflected in NEI0) and non-local (reflected 

in AET0) energy sources/disturbances. The close link between the ITCZ and the EFE holds 

not only in the zonal mean63,70, but also over large longitudinal sectors (e.g. over a whole 

continent or ocean basin)71, which has motivated recent studies to try to explain sector-mean 

ITCZ variability under a “2D energetic framework”, i.e. where both zonal and meridional 

fluxes are taken into account71,99-102.  

Regarding the response of the ITCZ to future climate change in particular, past 

research has mostly focused on zonal-mean changes, and it shows that many different factors 

(greenhouse gases, aerosols, albedo, clouds, ocean heat transport or storage, regional ocean 

circulation, etc.) can affect the geographic pattern of tropical SSTs and/or the energy balance, 

and consequently the ITCZ location79,83,92. For example, future reduction in aerosol 

emissions87,98,103, as well as Arctic sea-ice loss (closely related to Arctic amplification104) and 

glacier melting in the Himalayas105,106 are expected to reduce the hemispheric albedo 

significantly more in the northern hemisphere than in the southern hemisphere, resulting in 

a northern warming and an ITCZ shift to the north79,83,94. On the other hand, the Atlantic 

Meridional Overturning Circulation (AMOC) is expected to weaken in the future107-109 (new 

results indicate that it has already been weakening110), which will result in a reduction of the 

northward oceanic heat transport from the tropics to the northern Atlantic and a northern 

cooling, leading to a southward shift of the ITCZ83,89,94,111.  

Despite the relative consensus in the literature with regard to the ITCZ response to 

individual forcing agents and processes as discussed above, there is still uncertainty about 

the ITCZ response to the integrated effect of all these processes under climate change. This 
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uncertainty mainly stems from model inaccuracies and biases, and high inter-model 

variability due to different conceptualization and modelling of the subgrid processes 

impacting relevant radiative and dynamical processes. Particularly, although a future 

narrowing of the ITCZ is a robust projection under climate change81, results significantly 

differ across models regarding the future ITCZ position, leading to an almost zero zonal-

mean ITCZ shift when considering the multi-model mean83. Another reason for this 

uncertainty is that, as mentioned earlier, most studies have focused on zonal-mean changes 

of the ITCZ, possibly masking model agreements over particular areas. Indeed, because of 

the compensating effects of the relevant radiative and dynamical processes influencing the 

ITCZ position (e.g. the northward ITCZ shift caused by snow and ice albedo feedbacks and 

reduction of aerosols in the northern hemisphere will be compensated by a weaker AMOC83), 

and since most of these processes are not expected to be equally influential in different 

longitudinal sectors of the globe, the integrated ITCZ response to climate change should not 

be expected to be homogeneous in longitude79. Thus, more explicit analysis, focusing on the 

regional ITCZ and EFE changes (rather than zonal-mean changes) is necessary to gain insight 

into the future response of the ITCZ to climate change, and the associated inter-model 

uncertainty/consensus.  

In light of the above, here we explored the ITCZ responses to climate change from the 

present through 2100 using Earth system model simulations from the sixth phase of the 

Coupled Model Intercomparison Project112 (CMIP6; see Table 2.1), forced with a combined 

SSP3/RCP7.0 scenario113,114 (that is, the combination of the shared socioeconomic pathway 

3 and the representative concentration pathway 7.0). In our analysis, we explicitly explored 

seasonal and annual-mean ITCZ trends as a function of longitude, while also taking into 

account the present-day ITCZ biases of each model. In this way, we aimed to identify model 

consensus over particular areas, elucidate the regional responses of the ITCZ to climate 

change, and gain insight into the processes that influence the ITCZ location in different 

longitudinal sectors.  

With regard to regionally tracking the ITCZ, we acknowledge that there is ambiguity 

in the literature as to a precise regional definition of the ITCZ and/or which is the optimal 

variable/method to use for its tracking115. For example, past studies have variously used the 
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surface pressure minimum, surface wind convergence, precipitation maximum, minimum 

outgoing longwave radiation (OLR) or cloudiness maximum to track the ITCZ115. The 

justification for using so many different variables to track the ITCZ is the assumption that 

the above minima/maxima collocate with each other (i.e. pressure minima roughly collocate 

with convergence maxima, etc.); yet, this assumption may not be true over specific regions 

or in specific seasons115, and so, this ambiguity in the regional ITCZ definition is problematic. 

For the purposes of this study, to address the latter ambiguity, we have used a newly 

proposed probabilistic framework97, which tracks the ITCZ over different longitudes and 

seasons by simultaneously assessing the statistics of multiple variables, and thus increasing 

the robustness of the tracking approach (see [116] for other probabilistic methods which 

use multiple variables to track the ITCZ). In particular, we considered overlapping 

longitudinal windows, and used the window-mean precipitation and OLR (two most 

common variables in the ITCZ literature) to track the ITCZ. For each window and season, 

ITCZ points were defined as those which correspond to the maximum (above a certain 

threshold) joint probability of non-exceedance of the two window-mean variables (note that 

in cases where precipitation and OLR extrema collocate, the latter definition falls back to 

simply tracking the points of the extrema; see [97] for more information). The end product 

of the method is to provide the probability of every grid point in the tropics to be part of the 

ITCZ in a longitudinally-explicit manner (see Figure 2.11). The resulted probability 

distribution of ITCZ position is used to compare the climatology and interannual variability 

of the ITCZ between observations and CMIP6 models during the base period, as well as to 

assess future ITCZ changes, while in specific cases, we also present results based on simple 

precipitation or OLR maps/indices, for the shake of completeness.  

In our analysis, we used satellite precipitation data117 and OLR time series118 as our 

refence datasets in the base period 1983-2005, and outputs from 27 different CMIP6 models 

(totally 105 runs) to explore the effect of climate change on ITCZ location by 2100; see Table 

2.1. The revealed ITCZ shifts were also assessed as to their physical consistency with future 

changes in equatorial SSTs and AET0, and EFE shifts.  
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Figure 2.11: Application of a longitudinally explicit, multivariate probabilistic approach to 
track the ITCZ on annual scales. The approach is shown here for the case when the defining 
variables are M = 2, i.e. precipitation and OLR (we use satellite data; see data availability statement), 
and the tracking probability threshold is a = 85%. When aiming to track the ITCZ on seasonal scales, 
only the season of interest is used from each year.  For more information, please see Mamalakis and 
Foufoula-Georgiou (2018).  
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Table 2.1: CMIP6 models used in this study and their double-ITCZ biases. For models with multiple 
runs, the average value of bias across all runs is presented.  

  Model 
Number 

of 
ensembles 

East Pacific 
double-ITCZ 

Bias 

Atlantic double-
ITCZ Bias 

Average 
Bias 

 
1 ACCESS-CM2 1 0.48 0.54 0.50  

2 ACCESS-ESM1-5 3 0.36 0.20 0.31  

3 BCC-CSM2-MR 1 0.53 0.60 0.55  

4 CAMS-CSM1-0 2 0.53 0.85 0.64  

5 CanESM5 20 0.35 0.70 0.46  

6 CanESM5-CanOE 3 0.36 0.71 0.47  

7 CESM2 6 0.23 0.40 0.29  

8 CESM2-WACCM 1 0.22 0.46 0.30  

9 CNRM-CM6-1 6 0.32 0.51 0.38  

10 CNRM-CM6-1-HR 1 0.28 0.50 0.35  

11 CNRM-ESM2-1 5 0.35 0.51 0.40  

12 FGOALS-f3-L 1 0.22 0.37 0.27  

13 FGOALS-g3 1 0.31 0.42 0.34  

14 GFDL-ESM4 1 0.49 0.72 0.57  

15 GISS-E2-1-G 1 0.53 0.78 0.61  

16 INM-CM4-8 1 0.44 0.77 0.55  

17 INM-CM5-0 5 0.43 0.67 0.51  

18 IPSL-CM6A-LR 11 0.19 0.74 0.38  

19 KACE-1-0-G 3 0.47 0.39 0.45  

20 MIROC6 3 0.16 0.38 0.24  

21 MIROC-ES2L 1 0.22 0.53 0.32  

22 MPI-ESM1-2-HR 10 0.34 0.83 0.50  

23 MPI-ESM1-2-LR 10 0.29 0.85 0.48  

24 MRI-ESM2-0 1 0.26 0.58 0.36  

25 NorESM2-LM 1 0.39 0.51 0.43  

26 NorESM2-MM 1 0.21 0.29 0.23  

27 UKESM1-0-LL 5 0.30 0.48 0.36  
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Figure 2.12: The baseline climatology of the ITCZ in observations and CMIP6, as shown in 
average precipitation and OLR maps, and using a multivariate probabilistic tracking 
framework. a) Observed tropical precipitation in 1983-2005. b) Same as in (a), but for OLR. c) 
Probability density function (PDF) of the location of the ITCZ on annual scales and in all longitudes. 
The ITCZ tracking is performed based on the joint statistics of the observed window-mean 
precipitation and outgoing longwave radiation (OLR) in overlapping longitudinal windows (see 
Figure 2.11);  this panel is the identical with Figure 2.13e. d-f) Same as in (a-c), but results are 
obtained from the CMIP6 output. The multi-model mean across 27 CMIP6 is presented. 

 

Results 

Model simulation of contemporary ITCZ position. Here, we explore the ability of the 

considered CMIP6 climate models in accurately reproducing the recent ITCZ climatology and 

interannual variability. In doing so, we compare the distributions of the location of the ITCZ 

in May-Oct and Nov-Apr (during the base period 1983-2005) as derived by using satellite 

observations with those derived by using model outputs (for information on the ITCZ 

tracking approach, see Figures 2.11-2.12). The analysis of observations indicates that during 

May-Oct, the ITCZ is a zonally oriented feature located mainly in the Northern Hemisphere, 

apart from the Indian Ocean (see Figure 2.13a), where a secondary ITCZ also prevails in the 

equator, and the western Pacific, where the tropical part of the south Pacific convergence 

zone (SPCZ) is also tracked by our method. In the Nov-Apr period, the ITCZ migrates to the 
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south (mainly over land; see Figure 2.13c), and three southern convergence features 

strengthen: the SPCZ, the south Atlantic convergence zone, and the south Indian ocean 

convergence zone, which, in contrast to the summer ITCZ, are diagonally oriented. The 

highest intra-annual variability of the ITCZ location is found in the western and central 

Pacific, where the ITCZ consists of two distinct and much distant zones, the SPCZ and the 

northern ITCZ. These two bands coexist for most of the year, with the SPCZ strengthening 

during boreal winter and the northern ITCZ strengthening during boreal summer. The 

smallest intra-annual variability of the ITCZ location is found in the eastern Pacific and 

Atlantic oceans, where the ITCZ tends to stay in the northern hemisphere during most of the 

year; however a double ITCZ may form in the eastern Pacific during boreal spring.  

Although CMIP6 models are mostly consistent in simulating the location of the ITCZ 

during May-Oct, they exhibit important biases in the Pacific and Atlantic oceans during Nov-

Apr (see Figures 2.13-2.14). Particularly, models tend to overestimate the probability of the 

ITCZ migrating to the southern hemisphere over the eastern Pacific and Atlantic Oceans. 

These biases have been well documented in the literature (the so-called “double-ITCZ 

biases” 119,120) and explored as to their linkage with other systematic biases in simulated 

equatorial sea surface temperatures and the atmospheric energy input/transport119-125.  

Due to these biases, projections of future ITCZ shifts, which are usually obtained as 

the difference between the simulated future and baseline averages, need to be cautiously 

interpreted and analyzed. Particularly, including information about the present-day ITCZ 

model biases in the analysis may lead to a better understanding of future ITCZ shifts, as 

recent literature suggests121,122. In order to assess the impact of these present-day model 

biases on our interpretation of the future ITCZ trends more quantitatively, we calculated the 

average difference in the (Nov-Apr) probability distribution of the ITCZ location between 

models and observations over specific boxes (see Figure 2.14a). Specifically, The double-

ITCZ bias of each CMIP6 model over the eastern Pacific or Atlantic Ocean is defined as the 

average (over the considered longitudinal sector) difference in the Nov-Apr probability 

distribution of the ITCZ location between the model and the observations: 

𝛥𝑃 =
1

(𝜆2−𝜆1)

𝑟𝜆
+1

 ∑ (
1

2
∫ |ΔPDF𝜆,𝜑| 𝑑𝜑

𝜑2

𝜑1
)

𝜆2
𝜆=𝜆1
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where ΔPDF𝜆,𝜑 is the difference in the Nov-Apr probability distribution function (PDF) of the 

ITCZ location between the model and the observations at latitude 𝜑 and longitude 𝜆, and 𝑟𝜆 

is the model’s longitudinal resolution. For calculating the bias over the Atlantic ocean, [𝜑1, 

𝜑2] = [15°S, 10°N] and [𝜆1, 𝜆2] = [310°E, 360°N], while for the eastern Pacific bias, [𝜑1, 𝜑2] = 

[10°S, 15°N] and [𝜆1, 𝜆2] = [200°E, 300°N]. The ITCZ biases of all models are presented in 

Table 2.1. The average bias (weighted by the longitudinal width of each sector) is also 

presented. 

Our results indicated that CMIP6 models simulate a more frequent southward 

migration of the Atlantic ITCZ than what is observed, by ΔP = 57 ± 17.8% (that is the 

spatially-averaged difference in probability between models and observations over tropical 

Atlantic), and likewise in the Pacific toward the southeastern sector of the basin, by ΔP = 34 

± 11.3% (see Figure 2.14b and Table 2.1). These numbers show that the Atlantic bias is more 

severe, and as such, the signature of the seasonal double-ITCZ biases on annual scales is 

apparent mainly over the Atlantic and not so much over the eastern Pacific basin (see Figure 

2.13f). Note that when we used the average tropical precipitation and/or OLR difference 

between models and observations to assess the systematic double-ITCZ biases (i.e. not the 

probabilistic method), we obtain similar results (see Figure 2.12). Moreover, our analysis 

shows that there is a statistically significant (p < 0.05) positive correlation of eastern Pacific 

and Atlantic biases across the CMIP6 models on the order of 0.42, which indicates that it may 

be unlikely for a model to exhibit relatively important biases only in one of the two basins. 

Apart from the double-ITCZ bias, climate models from both projects are also shown to 

produce a more zonally oriented SPCZ than what observations suggest120.  
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Figure 2.13: Climatological location of the ITCZ during 1983-2005 based on observations and 
CMIP6 models. a-b) Probability density function (PDF) of the location of the ITCZ in all longitudes 
during season May-Oct. The ITCZ tracking is performed based on the joint statistics of the observed 
(panel (a)) or the simulated (panel (b)) window-mean precipitation and outgoing longwave radiation 
(OLR) in overlapping longitudinal windows (see Figure 2.11). c-d) Same as in (a)-(b), but for season 
Nov-Apr. e-f) Same as in (a)-(b), but tracking is performed on an annual scale. In (b), (d), and (f), the 
multi-model mean across all 27 CMIP6 models is presented. Some well-known distinct ITCZ features 
are highlighted in the results from the observations, while the double-ITCZ biases in the eastern 
Pacific and Atlantic basins are apparent in the CMIP6 results (season Nov-Apr). The areas over which 
the double-ITCZ biases are quantified are shown as red boxes in panel (d).   
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Figure 2.14: Double-ITCZ biases in CMIP6. a) Difference in the distribution of ITCZ location (Nov-
Apr) between CMIP6 and observations. The multi-model mean across 27 CMIP6 models is presented. 
b) Scatter plot of the double-ITCZ biases in CMIP6 models (measured in probability; that is we 
calculated the average difference in the probability distribution of the ITCZ location between models 
and observations over the green boxes in panel (a)). Each model is labeled according to Table 2.1. 
For models with multiple runs, the average value of bias across all runs is presented. Based on both 
panels, CMIP6 models are shown to exhibit higher bias over the Atlantic basin than eastern Pacific, 
while a statistically significant (p < 0.05) positive dependence (r = 0.42) of these biases is apparent 
in panel (b). The latter indicates that it may be unlikely for a model to exhibit relatively important 
bias only in one of the two ocean basins.  
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To explore the ability of the models to accurately simulate the ITCZ on interannual 

time scales, we compared the effect of the El Niño – Southern Oscillation (ENSO) on the 

location of the ITCZ, as determined by satellite data and model outputs (not shown). 

Specifically, we calculated the difference in the distribution of the ITCZ location between 

years corresponding to the four strongest El Niño events and the four strongest La Niña 

events during the 23-yr base period 1983-2005. In models runs, El Niño and La Niña events 

do not correspond to the same years with reality, thus, we used the Niño 3.4 index to define 

ENSO events. Results showed that CMIP6 models are mostly consistent in reproducing the 

effect of ENSO on the location of the ITCZ during Nov-Apr (the period when ENSO typically 

peaks). Results from both the observations and the models indicate that during El Niño 

conditions, the ITCZ is displaced more equatorward in the Pacific relative to La Niña 

conditions, due to the anomalous heating in the tropical Pacific Ocean which favors deep 

convection69,71.  

 
Future ITCZ change. Our analysis of annual and zonal-mean changes indicated that the ITCZ 

shift under future climate change for the CMIP6 models is -0.5 ±1.2° N (slightly southward; 

see Table 2.2). The inter-model uncertainty within the CMIP6 models is very large (the 

standard deviation is more than twice the mean shift), which leads to the multi-model mean 

shift not being statistically distinguishable from zero (Table 2.2), and confirming the results 

of [83].  

One of the most important findings of this study is that despite the high inter-model 

uncertainty regarding the zonal-mean ITCZ shift, models exhibit greater agreement in ITCZ 

changes as a function of longitude (see Figure 2.15). Particularly, in the May-Oct season, 

CMIP6 models indicate a robust northward shift of the ITCZ over Africa and the Indian 

Ocean126, and a southward shift over most of the Pacific and Atlantic Oceans (in the Atlantic 

basin the shift is less statistically robust relative to the one in the Pacific; see Figure 2.15a). 

In the Nov-Apr season, the south Indian Ocean convergence zone and the south Pacific 

convergence zone both shift northward121, while the eastern Pacific ITCZ is shown to shift 

southward. In the Atlantic basin, most models predict a higher probability of the ITCZ to 

prevail over the equator in the future relative to the base period, revealing a pattern of an 
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equatorward ITCZ shift. In general, an interesting  zonally contrasting ITCZ response to 

climate change is revealed in both seasons and even more clearly on the annual scale (see 

Figure 2.15c and Table 2.2), which consists of a robust northward ITCZ shift over the eastern 

Africa/Indian ocean region, and a robust southward ITCZ shift over the eastern Pacific 

Ocean, south America, and the Atlantic Ocean. This zonally contrasting response is also 

apparent when calculating the future change in annual-mean precipitation or OLR (see 

Figure 2.16).  

To more precisely quantify this zonally contrasting ITCZ response to climate change, 

we tracked the temporal evolution of the ITCZ location as a function of longitude and over 

two different longitudinal sectors, i.e. the Eurasian sector (20°E-130°E) and the eastern 

Pacific and Atlantic sector (250°E-360°E); the boundaries of the two sectors were chosen 

based on Figure 2.17a, but following results are quite robust if the boundaries are 

moderately changed (i.e. ±10°). A clear northward ITCZ shift is observed over the Eurasian 

sector, while a southward shift is apparent in the eastern Pacific and Atlantic Oceans (Figure 

2.17a). Over the western Pacific, the ITCZ shifts southward during May-Oct and northward 

during Nov-Apr (as was shown in Figure 2.15), which translates into a decreased seasonal 

ITCZ migration in the future, and an annual-mean shift that is close to zero. When comparing 

the 2075-2100 and 1983-2005 periods, a statistically significant (based on the t-test; p < 

0.01) northward shift on the order of 0.8 ± 0.6° N was obtained over the Eurasian sector (see 

Table 2.2). In contrast, over the eastern Pacific and Atlantic sector, CMIP6 models indicate a 

statistically significant southward shift on the order of -0.7 ± 0.9° N. The future ITCZ shift 

and the change in precipitation asymmetry (i.e. the change in the quantity: Precip 0º-20ºN – 

Precip 0º-20ºS) between 2075-2100 and 1983-2005 for every CMIP6 model are shown in 

Figure 2.17b, indicating that the majority of models predict a future increase in precipitation 

in the northern subtropics relative to the south over the Eurasian sector (red color). The 

opposite is true for most CMIP6 models over the east Pacific and Atlantic sector (blue color).  
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Table 2.2: Mean and standard deviation of the future ITCZ and EFE shifts (2075-2100 minus 1983-
2005, positive values indicate northward movement) and changes of the hemispheric energetic 
asymmetry over different longitudinal sectors, as obtained from 27 CMIP6 models outputs. The 
baseline values (i.e. referring to 1983-2005) are also provided. Values with bold font correspond to 
a multi-model mean which is statistically distinguishable from zero, based on the t-test (p < 0.01). It 
is shown that there is a robust consensus across models regarding future changes in the Eurasian 
and E. Pacific – Atlantic sectors, but such a consensus is not apparent in the zonal mean.  

27 CMIP6 Models Global zonal mean 
Eurasian Sector  

[20ºE-130ºE] 
E Pacific & Atlantic 

Sector [250ºE-360ºE] 
 

ITCZ latitude 
(degrees 
North) 

Base Period 3.6 ±2.0 -1.0 ±1.1 4.1 ±2.3  

Future Shift -0.5 ±1.2 0.8 ±0.6 -0.7 ±0.9  

 QS - QN (PW) 
Base Period -0.03 ±0.37 0.93 ±0.21 -0.96 ±0.23  

Future 
Change 

-0.05 ±0.21 -0.24 ±0.10 0.31 ±0.16  

EFE latitude 
(degrees 
North) 

Base Period -0.4 ±0.8 -3.2 ±0.9 4.9 ±1.9  

Future Shift 0.2 ±0.5 0.7 ±0.4 -1.4 ±1.1  
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Figure 2.15: Future changes in the ITCZ location under climate change as predicted in CMIP6. 
a) Difference in the probability density function (ΔPDF) of the location of the ITCZ in May-Oct between 
2075-2100 and 1983-2005. b) Same as in (a), but for Nov-Apr. c) Same as in (a), but the changes in 
the annual distribution are shown. In all plots the multi-model mean across 27 CMIP6 models is 
presented, while stippling indicates agreement (in the sign of the change) in more than ¾ of the 
models considered. Results indicate a robust northward ITCZ shift over eastern Africa and Indian 
Ocean and a southward ITCZ shift over eastern Pacific and Atlantic Oceans.  
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Figure 2.16: Future changes in the ITCZ location in CMIP6, as shown in changes of average 
precipitation and OLR maps, and using a multivariate probabilistic tracking framework. a) 
Difference of mean precipitation (mm/d) between 2075-2100 and 1983-2005. b) Same as in (a), bur 
for OLR (W/m2). c) Difference in the annual probability density function (ΔPDF) of the location of the 
ITCZ between 2075-2100 and 1983-2005. The ITCZ tracking is performed using only precipitation. 
d) Same as in (c), but OLR is used to track the ITCZ. e) Same as in (c), but both precipitation and OLR 
are jointly used to track the ITCZ; this panel is the identical with Figure 2.15c. In all plots the multi-
model mean across 27 CMIP6 models is presented, while stippling indicates agreement (in the sign 
of the change) in more than ¾ of the models considered. All plots show (to a greater or lesser extend) 
a northward ITCZ shift over eastern Africa and Indian Ocean and a southward ITCZ shift over eastern 
Pacific and Atlantic Oceans. 
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With regard to the effect of the double-ITCZ biases on the revealed ITCZ response, we 

found that the results over the Eurasian sector are not sensitive to the performance of the 

models in the base period. That is to say that there is no statistically significant relationship 

between the bias of a model and the projected shift over the Eurasian sector (not shown). 

However, over the eastern Pacific and Atlantic sector (i.e. where the double-ITCZ biases 

occur), ITCZ biases seem to be affecting the sign of the predicted ITCZ shift to some extent. 

In particular, our analysis showed that the smaller the bias of a model over the southern 

Atlantic, the more likely it is to predict a southward shift of the Atlantic ITCZ in the future 

(see Figure 2.18). This means that the pattern of the ITCZ contraction over the Atlantic Ocean 

that is depicted in Figure 2.15b-c is likely a spurious result, originating from some of the 

models being highly biased in the base period. Since in reality the Atlantic ITCZ remains in 

the northern hemisphere for most of the year and there is very little to zero precipitation 

over the southern Atlantic (see Figures 2.12-2.13), a future southward Atlantic ITCZ shift as 

indicated by the models with lower bias is more likely (a future negative ITCZ-pattern over 

the southern Atlantic Ocean as shown in Figure 2.15b is an artifact from the high bias in some 

models and will be an algebraic impossibility in reality). In consistency with the above, we 

found that the small fraction of CMIP6 models that predict a northward ITCZ shift over the 

east Pacific and Atlantic sector (i.e. in contrast to the majority of the models which predict a 

southward ITCZ shift; see Figure 2.17b) exhibit relatively high double-ITCZ biases in the base 

period.  Thus, we argue that the double-ITCZ biases, if anything, are undermining the extend 

of the southward ITCZ shift over the eastern Pacific and Atlantic sector that will actually 

happen, and thus, our claims about the robustness of the zonally contrasting response of the 

ITCZ to climate change fall, if anything, on the conservative side.   

Overall, the robust agreement between climate models over these two large sectors 

(Table 2.2 and Figures 2.15-2.17) provides confidence that global warming will lead to 

opposite meridional shifts of the ITCZ in the Eurasian vs. E. Pacific/Atlantic sectors. As 

already mentioned, this zonally contrasting response leads to almost zero ITCZ shift from a 

zonal-mean perspective (Table 2.2), confirming the recent literature83,127.  
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Figure 2.17: 21st century series of ITCZ location as predicted in CMIP6. a) Series of the 5yr-mean 
ITCZ location relative to the base period as a function of longitude. The multi-model mean across 27 
CMIP6 models is presented, while stippling indicates agreement (in the sign of the change) in more 
than ¾ of the models considered. b) Scatter plot of the projected ITCZ shift (horizontal axis) and 
change of tropical precipitation asymmetry (vertical axis) between the periods 2075-2100 and 1983-
2005, using all 27 CMIP6 models zonally averaged over the Eurasian sector (20ºE-130ºE; red color) 
and the eastern Pacific and Atlantic sector (250ºE-360ºE; blue color). Each model is labeled 
according to Table 2.1. Based on either index (shift or precipitation asymmetry), a robust contrasting 
ITCZ response between the two sectors is revealed, whereby the ITCZ shifts northward over the 
Eurasian sector and southward over eastern Pacific and Atlantic Oceans. 
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Figure 2.18: The effect of the double-ITCZ bias on the sign of the projected ITCZ shift over the 
east Pacific and Atlantic Oceans.  a) The ITCZ shift (in degrees of latitude) over the east Pacific and 
Atlantic Oceans between 2075-2100 and 1983-2005 is shown as a function of the double-ITCZ bias 
(measured in probability; that is we calculated the average difference in the probability distribution 
of the ITCZ location between models and observations over the green boxes in Figure 2.14a) for all 
CMIP6 models (each model is labeled according to Table 2.1). b) Same as in (a), but results refer to 
the Atlantic Ocean. In both cases, a statistically significant positive dependence is apparent. This 
illustrated positive dependence indicates that the lower the double-ITCZ bias of the model over the 
east Pacific and Atlantic Oceans is in the base period, the more likely it is for the model to produce a 
southward shift of the ITCZ in the future. 
 

 

Link to sea surface temperature changes. Many different tropical 

explanations/mechanisms contributing to future and past regional ITCZ and precipitation 

shifts have been proposed in the literature (e.g. the wet-get-wetter mechanism128, feedbacks 

affecting near-equatorial sea surface temperatures126, plant physiological responses129, 

changes in monsoonal dynamics130, etc.). Motivated by the known close coupling between 

sea surface temperature and precipitation in the tropics126,131,132, we explored the 

consistency of the revealed contrasting response of the ITCZ with the changes in the SST. We 

found that, globally, the SST warming is more pronounced in the northern hemisphere than 

the southern hemisphere (Figure 2.19). This is a known and robust result under climate 

change and is partially due to the strengthening of the southeast trade winds which favor sea 

surface evaporation126. Another important contributor to this hemispheric asymmetry is the 

muted warming over the Southern Ocean (Figure 2.19), which has been attributed to the 
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intense vertical mixing which occurs in this area, resulting in considerable ocean heat 

uptake133. In fact, models and observations suggest that more than half of the historical 

excess heat due to the increased radiative forcing has been stored in the Southern Ocean 

over the last decades133-135. Muted warming is also observed over the north Atlantic Ocean, 

which is a result of the weakening of the AMOC, another robust feature under climate 

warming109.   

Regarding the tropics, we found that over the Pacific Ocean, SST warming is more 

pronounced in the east than the west, which is a consistent result with the anticipated 

weakening of the Walker circulation under climate change126,136. In both eastern Pacific and 

Atlantic Oceans, higher SST warming occurs in low latitudes between 10°S and 5°N, which is 

consistent with this region serving as an attractor for a southward shift of the ITCZ from its 

current baseline position at 4.1 ± 2.3°N for this sector (see Figure 2.19c). In contrast, over 

the Indian Ocean in the Eurasian sector, higher SST warming in the northern subtropics is 

consistent with the predicted shift of the ITCZ to the north from its current baseline position 

(Figure 2.19b). The pattern of SST change in the Indian Ocean resembles a positive Indian 

Ocean Dipole (IOD) pattern (with a more pronounced warming over the northwestern 

Indian Ocean and a less pronounced warming over southeastern Indian Ocean), which is 

linked to locally developed Bjerknes feedbacks between SST gradients, and wind and 

thermocline changes in the basin126,136,137.  

Despite the fact that the predicted changes in tropical north-south SST gradients are 

consistent with the zonally contrasting ITCZ response, more insight is needed as to why 

these SST changes occur. Both local and non-local process chains are relevant. For example, 

the positive IOD pattern in the Indian Ocean has been argued to be a result of the weakening 

of the Walker circulation locally, but also influenced at its southern margin by the oceanic 

lateral advection of relatively weak warming signatures from the remote Southern Ocean126. 

Other causatively relevant non-local possibilities include extratropics-to-tropics 

teleconnections within the atmosphere, which are usually based on energetic 

arguments91,126. Indeed, as noted in the introduction, to get more insight into past or future 

ITCZ shifts, recent studies have utilized atmospheric energetic constraints to explain tropical 

climatic changes, and in some cases attributed them to extratropical factors, even if these 
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changes were longitudinally confined, i.e. not referring to the zonal mean71,99-102,111. 

Motivated by this, we looked into the future changes in the atmospheric heat budget and 

further investigated whether the zonally contrasting ITCZ response could be related to 

similar zonally contrasting changes in the hemispheric heating and EFE shifts.  

 

Figure 2.19: Future changes in sea surface temperature and precipitation under 
climate change as predicted in CMIP6. a) Global changes in sea surface temperature (SST) between 
future 2075-2100 and base period 1983-2005. b) Zonal mean over the Indian Ocean (50ºE-100ºE) 
of the changes of precipitation (in mm/d) and SST (in Celsius). c) Same as in (b), but for the eastern 
Pacific and Atlantic Oceans (250ºE-360ºE); land changes are not considered in the zonal mean. All 
results refer to the multi-model mean across 27 CMIP6 models. 

 

Atmospheric Energetic constraints. Considering a long enough period (e.g. 1983-2005) so 

that the energy storage in the atmosphere is negligible63,138, and assuming that the system is 

in equilibrium, the atmospheric energy budget is 68,138: 

𝛁 · 𝐅 =  𝑅TOA − 𝑂 = 𝑄   (9) 
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where 𝐅 is the vector of vertically-integrated atmospheric moist static energy flux, 𝑅TOA is 

the net energy input at the top of the atmosphere (TOA; i.e. net downward shortwave minus 

the outgoing longwave radiation) and 𝑂 is the ocean energy uptake (𝑂 can be further 

partitioned to latent/sensible heat and radiative surface components) and represents the 

heating from the surface (note that the energy storage in the land is negligible on timescales 

greater than a season63). 𝑄 is the net energy input into the atmospheric column of unit 

horizontal area (see Figure 2.20a-b for the distribution of 𝑄 in the base period, and schematic 

in Figure 2.21a), and Equation (9) states that it is equal to the horizontal divergence of the 

AET. Thus, future changes in 𝑄 under climate change are related to changes in the horizontal 

AET, which can in principle be related to the future ITCZ shifts. 

In response to climate change, models indicate that the energy input into the 

atmosphere will increase in the tropics and decrease at high latitudes 50º-70º, especially 

over the ocean (see Figure 2.21b for the change in the total energy input, and its partitioning 

into TOA and surface components139 in Figure 2.21c-d, according to Equation (9)). 

Particularly, over the Atlantic Ocean, a pattern of northern atmospheric cooling and southern 

heating is revealed, which is consistent with a weakening in the AMOC (i.e. the see-saw 

response83,89,109,140-142), while over the Southern Ocean, atmospheric cooling is consistent 

with increased heat flux from the atmosphere to the ocean in response to increasing 

emissions of greenhouse gases143. Moreover, we find an increase in atmospheric heating over 

the tropics, which is mostly a result of the TOA component of the budget (Figure 2.21c), and 

is associated with cloud radiative effect; i.e.,  the OLR escaping to space is reduced in the 

future (see partitioning of TOA energy change in Figure 2.22c, and [83]). Over land, the effect 

of processes like snow and ice albedo feedbacks (see Figure 2.22d and studies regarding 

climate change-induced glacier melting over the Himalayas105,106, climate change-induced 

sea ice loss in the Arctic94,104,144) and reduction of anthropogenic aerosols, which are more 

pronounced over the northern hemisphere83,103, are partially compensated by increases in 

OLR cooling (see Figure 2.22c). As a result, we find that the net effect of all these processes 

is that more energy is being added into the atmosphere over land in the northern hemisphere 

and specifically over Europe, Southeast Asia, North America, and the Arctic (see Figure 
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2.21b), which contrasts the important heat loss in the northern Atlantic region due to the 

weakening of the AMOC.  

 

Figure 2.20: Atmospheric energy transport in base period 1983-2005, as predicted in CMIP6. 
a) The average energy input (W/m2) into the atmospheric column in the base period 1983-2005. b) 
Zonal mean of (a). The horizonal axis is scaled as sin(𝜑). c) Energy flux potential (red contours; 
contouring interval is 0.2 PW, with equatorial extrema being minima), and divergent atmospheric 
energy transport (blue vectors). Vectors are on the order of 108 W/m; see panels (d) and (e) for 
specific values. d) Divergent meridional component of the atmospheric energy transport over the 
tropics in 1983-2005, most of which is due to the mean meridional atmospheric circulation (Hadley 
circulation). e) Same as in (d), but the divergent zonal component is presented (it reflects the Walker 
circulation). In all plots, the multi-model mean across 27 CMIP6 models is presented.  
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Figure 2.21: Future changes in the atmospheric energy input under climate change as 
predicted in CMIP6. a) Graphic representation of the atmospheric energy budget.  b) Difference of 
the average energy atmospheric input between 2075-2100 and 1983-2005 periods (shading), while 
vectors show the change in the divergent component of the atmospheric energy transport; vectors 
are on the order of 107 W/m (see Figure 2.23 for specific values). c) Same as in (b), but only the top 
of the atmosphere (TOA) component is shown. d) Same as in (b), but only the surface component is 
shown. This panel highlights the contribution of the ocean to the future atmospheric heating/cooling. 
e) Zonal mean of (b) over the Eurasian sector (20ºE-130ºE; red curve) and the eastern Pacific and 
Atlantic sector (250ºE-360ºE; blue curve). The horizontal axis is scaled as sin(𝜑). In all plots, the 
multi-model mean across 27 CMIP6 models is presented. Results show that under global climate 
change, more energy is added in the atmosphere over the northern hemisphere than the southern 
hemisphere in the Eurasian sector, while the opposite is true in the eastern Pacific and Atlantic 
Oceans.  
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Figure 2.22: Future changes in the components of the atmospheric energy budget as predicted 
in CMIP6. a) Projected change in the top of the atmosphere (TOA) atmospheric energy input between 
2075-2100 and 1983-2005. The multi-model mean across 27 CMIP6 models is presented. b) Same as 
in (a), but only the TOA shortwave component is presented. c) Same as in (a), but only the TOA 
longwave component is presented. d) Same as in (a), but the change in the shortwave radiation 
reaching the surface due to surface albedo changes is presented.  

 

In terms of the zonal mean, the compensating effects of all these processes lead to an 

almost zero net change in the hemispheric energy asymmetry. Particularly, CMIP6 models 

predict a change on the order of Δ (𝑄𝑆 − 𝑄𝑁) = -0.05 ± 0.21PW (𝑄𝑆 and 𝑄𝑁 refer to the 

hemisperically integrated energy input over the southern and northern hemisphere, 

respectively) consistent with the negligible zonal-mean ITCZ shift (see Table 2.2). However, 

when considering the Eurasian sector and the eastern Pacific and Atlantic sector separately, 

significant differences emerged (Table 2.2), with models showing a higher level of consensus 

in terms of the sign of the change in the energy asymmetry (changes were assessed to be 

statistically significant; p < 0.01). Over the Eurasian sector, most models predict that more 

energy is added into the northern hemisphere than the southern hemisphere under climate 

change (Figure 2.21e), which reduces the baseline hemispheric energy asymmetry; i.e. Δ 
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(𝑄𝑆 − 𝑄𝑁) = -0.24 ± 0.10 PW (see Table 2.2). In contrast, over the eastern Pacific and Atlantic 

Oceans, the northern hemisphere atmosphere receives less energy in the future (Figure 

2.21e) probably due to the weakening of the AMOC, which contributes to a northern 

hemisphere atmospheric cooling; i.e. Δ (𝑄𝑆 − 𝑄𝑁) = 0.31 ± 0.16 PW. These results highlight 

contrasting changes of the hemispheric energy asymmetry to global climate change between 

the two considered sectors, which is statistically consistent with the revealed zonally 

contrasting response of the ITCZ (we have established statistically significant dependence 

between changes in hemispheric heating and precipitation asymmetries; not shown), i.e. our 

results suggest that the ITCZ shifts towards the more heated hemisphere in each of the two 

sectors. However, such a suggestion is generally physically grounded only in the zonal mean 

perspective. Since these results do not refer to the zonal mean, more extensive analysis (e.g. 

considering the zonal energy fluxes at the sectors’ boundaries as well as the NEI063,68,70) is 

needed in order to gain more insight into the quantitative link between future sector-mean 

ITCZ shifts and their regional energetic constraints. In doing so, we used a 2D theoretical 

energetic framework (where both zonal and meridional fluxes are taken into account)71,99, 

which has only recently been used to explain sector-mean ITCZ shifts71,99-102 and to the best 

of our knowledge, it has not yet been applied in any climate change scenario.  

The energy flux 𝐅 in Equation (9) can be decomposed into the divergent and 

rotational components (𝐅𝜒 and 𝐅𝜓, respectively), and since the divergence of the rotational 

component is identically zero (i.e. 𝛁 · 𝐅𝜓 = 0), Equation (9) takes the form of Poisson’s 

equation: 

𝛁 · 𝐅𝜒 = 𝛁2𝜒 = 𝑄  (10) 

where 𝜒 is the energy flux potential (an arbitrary scalar function)71,99, such that its gradient 

is equal to the divergent component of AET, i.e. (𝜕𝑥𝜒, 𝜕𝑦𝜒) = 𝛁𝜒 = 𝐅𝜒 = (𝑢𝜒, 𝑣𝜒). By solving 

Equation (10), the potential 𝜒 (also 𝐅𝜒) can be obtained; all derivatives are evaluated in 

spherical coordinates but written here in Cartesian coordinates for simplicity. In accordance 

to previous studies71,99,100, outside from the tropics, the zonal component of the divergent 

AET is negligible compared to the meridional component in the base period (i.e. 𝑣𝜒 ≫  𝑢𝜒; 

see Figure 2.20c), while in the tropics, they are of the same magnitude (i.e. both the Walker 
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and Hadley circulations contribute to the divergence of heat; Figure 2.20d-e). The changes 

of 𝐅𝜒 in response to climate change are presented in Figure 2.21b, and they are shown to be 

consistent with changes in 𝑄. Noticeable features in these changes are the patterns of 

divergence over increased heating in the tropics and Eurasia, and the patterns of 

convergence over increased cooling of the atmosphere in the Southern and north Atlantic 

Oceans.  

With regard to the changes of 𝐅𝜒 specifically in the tropics (where the mean 

circulation and thus the ITCZ control AET), the results are insightful. Over the tropics of the 

Eurasian sector, a robust increase of southward energy transport is apparent in the future 

(see Figure 2.23a), which is consistent with the revealed northward shift of the ITCZ. In 

contrast, the future cooling over the Atlantic Ocean (Figure 2.21b) is compensated by 

changes in the extratropical 𝐅𝜒 (controlled by extratropical eddies; see Figure 2.21b), but 

also by a robust increase in the northward energy transport over the tropics of the eastern 

Pacific and Atlantic (see Figure 2.23a), which is consistent with the revealed southward shift 

of the ITCZ in this sector. Similarly to the changes in the ITCZ location and in 𝑄, these results 

highlight zonally contrasting changes in the meridional component of 𝐅𝜒, providing more 

confidence regarding the contrasting ITCZ shifts over the two considered sectors. Note also 

that future changes in the zonal energy fluxes roughly resemble the opposite of the baseline 

pattern (i.e. opposite in sign and about 10% smaller in magnitude), which signifies the 

weakening of the Walker circulation under climate change126,136.  
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Figure 2.23: Future changes in the atmospheric energy transport (AET) over the tropics and 
the energy flux equator (EFE) under climate change, as predicted in CMIP6. a) Change is the 
divergent meridional component of the atmospheric energy transport over the tropics between 
2075-2100 and 1983-2005. The multi-model mean across 27 CMIP6 models is presented, while 
stippling indicates agreement (in the sign of the change) in more than ¾ of the models considered. 
b) Same as in (a), but for the divergent zonal component. c) Change in the precipitation asymmetry 
(between 2075-2100 and 1983-2005) as a function of the EFE shift, using all 27 CMIP6 models 
zonally averaged over the Eurasian sector (20ºE-130ºE; red color) and the eastern Pacific and 
Atlantic sector (250ºE-360ºE; blue color). Each model is labeled according to Table 2.1. Results show 
that under global climate change, the future state of the atmospheric energy transport will be 
characterized by an increased southward transport (divergent component) over the Eurasian sector, 
which implies a northward shift of EFE (see Equation 11), and it is statistically consistent with a 
northward shift of the ITCZ. The opposite (i.e. increased northward energy transport and southward 
shift of EFE) is true in the eastern Pacific and Atlantic Oceans.  



 

135 
 

Finally, to further verify the consistency of the zonally contrasting ITCZ shifts with 

regional energetics, we evaluated the future EFE shifts over the two sectors (see Table 2.2 

and Figure 2.23c). Note that the EFE variability has been shown to be linked with the ITCZ 

variability, not only in the zonal mean63,70, but also over large longitudinal sectors (the ITCZ 

– EFE link breaks down only over the western and central Pacific)71. For a sector with 

longitudinal boundaries 𝜆1and 𝜆2, the sector-mean position of the EFE (or equivalently of the 

ITCZ), can be approximated to a first order by meridionally expanding (Taylor series) 

Equation (10) at the equator71:  

[𝜑EFE]
𝜆1

𝜆2  = −
1

𝑎

[𝑣𝜒0
]

𝜆1

𝜆2

[𝑄0]
𝜆1

𝜆2− 
1

𝜆2−𝜆1
 𝑢𝜒0

| 
𝜆1

𝜆2
   (11) 

where [∙]𝜆1

𝜆2  represents the zonal mean over the sector. Our results showed that although 

CMIP6 models do not predict a robust future EFE shift in the zonal mean (on the order of 0.2 

± 0.5° N; see Table 2.2), over the Eurasian sector a robust norward shift is revealed on the 

order of 0.7 ±0.4° N, while over the Eastern Pacific and Atlantic sector the EFE shifts to the 

south by -1.4 ±1.1° N. Both these shifts are statistically significant (p < 0.01), and they explain 

30-40% of the inter-model variance of the projected precipitation change (see Figure 2.23c).  

Overall, results show that the revealed ITCZ shifts show a robust statistical and 

physical link with the future changes in the regional energy balance.  It can be also concluded 

that CMIP6 models do exhibit a consensus over the two considered sectors, highlighting 

contrasting ITCZ shifts, contrasting changes in 𝑄, and contrasting EFE shifts. This contrasting 

response of all these quantities and the corresponding models’ consensus have been hidden 

in the zonal-mean analysis of past work.  

Discussion  

In this study, the future ITCZ shifts under global climate change were explored as a function 

of longitude and season using climate model simulations. A zonally contrasting response of 

the ITCZ has been revealed, which was found to be robust across different climate models, 

and different seasons, and to be of large longitudinal extent, covering about two thirds of the 

globe. The contrasting ITCZ pattern has been masked in the analysis of zonal-mean ITCZ 
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shifts in previous literature, as well as due to the presence of model biases in the present-

day climatology of the ITCZ. The contrasting ITCZ response can be summarized as a 

northward shift over the eastern Africa and Indian Ocean and a southward shift over the 

eastern Pacific, south America and the Atlantic.  

We found that the revealed ITCZ response is driven by a positive IOD-like pattern 

over the Indian Ocean, and high SST warming in low latitudes over the eastern Pacific and 

Atlantic Oceans. This is consistent with the known coupling between tropical SST and 

precipitation changes. From an atmospheric energetic perspective, our analysis showed that 

future climate change induces a zonally contrasting change in the hemispheric heating of the 

atmosphere, as a result of the combined effect of radiative and dynamical processes. These 

included snow and ice-albedo feedbacks, forcing from reductions of the aerosols, cloud 

radiative effects, OLR cooling, an AMOC weakening, and increases in Southern Ocean heat 

uptake. Independent of the physical approximations to simulate these processes, most 

models revealed that future changes in the atmospheric energy budget consist of increases 

in atmospheric heating over Eurasia and cooling over the Southern Ocean, which contrast 

with atmospheric cooling over the North Atlantic Ocean as a consequence of an AMOC 

weakening. These changes in the atmospheric heating induce an increase in the southward 

energy transport over the tropics of eastern Africa and Indian Ocean (and an northward EFE 

shift), and an increase in the northward energy transport over the tropical eastern Pacific 

and Atlantic Oceans (and a southward EFE shift), both of which are physically and 

statistically consistent with the zonally contrasting ITCZ response. We note that further 

analysis based on careful design of idealized climate experiments is needed to determine the 

relative contribution of extratropical and tropical mechanisms/forcing (causality 

investigation) to the revealed ITCZ shifts in each sector.  

Based on our results, we can simultaneously explain anticipated future increases of drought 

stress in southeastern Africa and Madagascar, intensifying flooding in southern India130, and 

greater drought stress in Central America111 – large hydrological hotspots of global 

change145,146 that will affect the livelihood and food security of billions of people. 
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In this dissertation we aimed to gain insight into a) the physical teleconnections and 

predictability of winter precipitation variability over the southwestern US (SWUS), and b) 

the future shifts in the position of the tropical rainbelt/intertropical convergence zone 

(ITCZ) in response to climate change.    

We found that traditional climatic drivers of SWUS precipitation like the El Niño-

Southern Oscillation (ENSO) have decreased in importance while new emerging modes of 

sea surface temperature (SST) over the southwestern Pacific have been more robust 

predictors in the last decades. We introduced a new SST mode, termed the New Zealand 

Index (NZI), which was found to correlate significantly with SWUS precipitation (correlation 

coefficient on the order of 0.7), also corresponding to non-zero lead times of prediction. We 

have suggested that the revealed teleconnection depends on a western Pacific ocean-

atmosphere pathway, whereby SST anomalies propagate from the southern to the northern 

hemisphere during boreal summer and early fall, through an atmospheric bridge that 

materializes via the mean atmospheric meridional circulation (Hadley circulation). Our 

analysis also showed an amplification of this new teleconnection over the past four decades.  

To test more quantitatively the traditional and the revealed teleconnections as to their 

importance for prediction skill, we presented a comprehensive probabilistic framework to 

assess the predictability of dry/wet and normal precipitation years in the SWUS. Based on 

newly proposed statistical metrics to assess the null hypothesis that there is no predictive 

skill, we confirmed that the NZI has been a stronger predictor of SWUS precipitation in the 

last decades than ENSO. Our results also highlighted that predictive models are more reliable 

when predicting wet years compared to dry years, and they lack skill in predicting normal 

years. By repeating the analysis using CMIP6 climate model outputs, we found that, with 

respect to its relevance to SWUS precipitation, climate models might on average undermine 

the importance of non-ENSO SST variability. 

Our results highlight the need to understand the dynamic nature of the coupled ocean-

atmosphere system and exploit climate information that goes beyond the traditionally used 

indices for improving future prediction skill of regional precipitation in a changing climate. 

Future research should focus on the development of new, data-driven methodologies that 

aim to integrate physics and machine learning, and predict seasonal precipitation variability 

in a setting where the predictors are not prescribed a priori, but rather emerge from the 
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model fit to the data. An important challenge of such methods would be addressing 

overfitting and non-stationarity, as well as quantifying prediction uncertainty. Lastly, the 

physical mechanisms of the NZI teleconnection need further exploration, beyond statistical 

analysis, and based on carefully-designed idealized climate experiments. 

Regarding the ITCZ response to climate change, our results document a robust zonally 

contrasting response of the ITCZ, with a northward shift over eastern Africa and the Indian 

Ocean, and a southward shift in the eastern Pacific and Atlantic Ocean by 2100, for the SSP3-

7.0 scenario. By using a two-dimensional horizontal energetics framework, we found that 

the revealed ITCZ response is consistent with future changes in the divergent atmospheric 

energy transport over the tropics, and sector-mean shifts of the energy flux equator (EFE). 

The changes in the EFE appear to be the result of zonally contrasting imbalances in the inter-

hemispheric atmospheric heating over the two sectors, consisting of increases in 

atmospheric heating over Eurasia and cooling over the Southern Ocean, which contrast with 

atmospheric cooling over the North Atlantic Ocean due to a model-projected weakening of 

the Atlantic meridional overturning circulation.  

Our results provide new insights about the mechanisms that will influence the future 

position of the tropical rainbelt, and may allow for more robust projections of climate change 

impacts. Particularly, although our results establish consistency between the energetics 

framework and projected changes in tropical precipitation, only about 40% of the inter-

model variance of precipitation change is explained based on energetic arguments. This 

highlights the important limitations of the energetics framework, and the need to further 

explore mechanisms involving ocean-atmosphere-land coupling at a regional scale. As future 

work, to further infer causality, carefully designed idealized climate experiments are needed, 

as a complement to analyses like this one that attempt to understand mechanisms 

contributing to robust future changes in the hydrological cycle within and across different 

Earth system models. Another important dimension of our results that needs further 

investigation is how the revealed ITCZ shifts are projected to alter the frequency and 

magnitude of precipitation extremes over the tropics and subtropics. Future studies should 

quantify the socio-economic effects of these changes, in a setting where no new adaptation 

policies are in place versus where climate-informed preparedness guides adaptation and 
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management. This would help to highlight the importance and potential damage these 

changes might have, if no adaptation policies are adopted. Also, from an engineering 

perspective, new designing methods need to be developed for practitioners to implement, 

which will take into account the risk of climate change-induced intensification of extreme 

events and natural hazards. 




