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    In evolutionary response to the 24-h period of 
Earth’s rotation, diverse species—from cyanobacteria 
to humans—possess a molecular oscillator termed 
the circadian clock. In mammals, the circadian clock 
is involved in the daily rhythms of numerous aspects 
of physiology, including sleep ( Borbély and 
Achermann, 1999 ), metabolism ( Bugge et  al., 2012 ), 
and DNA repair ( Kang et  al., 2009 ). The clock also 
appears to be disrupted in multiple conditions, 
including cancer ( Cadenas et  al., 2014 ) and major 
depressive disorder ( Li et al., 2013 ). 

 Because the mammalian circadian clock is cell-
autonomous, each organism possesses not one clock, 
but many ( Yamazaki et  al., 2000 ;  Nagoshi et  al., 
2004 ). The “master” clock in the SCN receives infor-
mation about the light-dark cycle from specialized 
cells in the retina ( Do and Yau, 2010 ;  Evans et  al., 

2011 ). Clocks in peripheral organs receive signals 
from the SCN and can respond to non-photic envi-
ronmental cues, especially the feeding schedule 
( Mohawk et al., 2012 ). 

 Increasing evidence suggests that the alignment of 
clocks throughout the body is important for circadian 
function. In mice, the clocks in (in terms of expression 
of core clock genes) various organs are normally in 
phase with each other ( Zhang et al., 2014 ;  Evans et al., 
2015 ). This alignment can be disrupted—i.e., periph-
eral clocks can be decoupled from the clock in the 
SCN—by a number of environmental perturbations, 
including cold and hunger ( van der Vinne et  al., 
2014 ), or by restricting feeding to the daytime 
( Damiola et  al., 2000 ); the latter has recently been 
shown to impair hippocampal-dependent learning 
and memory ( Loh et al., 2015 ). Unfortunately, what 
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Abstract     The daily timing of mammalian physiology is coordinated by circa-
dian clocks throughout the body. Although measurements of clock gene expres-
sion indicate that these clocks in mice are normally in phase with each other, 
the situation in humans remains unclear. We used publicly available data from 
five studies, comprising over 1000 samples, to compare the phasing of circa-
dian gene expression in human brain and human blood. Surprisingly, after 
controlling for age, clock gene expression in brain was phase-delayed by ~8.5 
h relative to that of blood. We then examined clock gene expression in two 
additional human organs and in organs from nine other mammalian species, as 
well as in the suprachiasmatic nucleus (SCN). In most tissues outside the SCN, 
the expression of clock gene orthologs showed a phase difference of ~12 h 
between diurnal and nocturnal species. The exception to this pattern was 
human brain, whose phasing resembled that of the SCN. Our results highlight 
the value of a multi-tissue, multi-species meta-analysis, and have implications 
for our understanding of the human circadian system.  
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1. For JBR, whenever there is one affi liation for all authors, do you remove the asterisk.
2. All original articles for JBR do not need to have the header ‘ORIGINAL ARTICLE’. It is only in 
the online metadata that it needs to go so that it appears on the website.
All other article types (e.g. LETTER, COMMENTARY, etc.) need to have the heading on the PDF.



Hughey, Butte / Phasing of circadian clocks in mammals 589

1. For JBR, whenever there is one affiliation for all authors, do you remove the asterisk.
2. All original articles for JBR do not need to have the header ‘ORIGINAL ARTICLE’. It is only in 
the online metadata that it needs to go so that it appears on the website.
All other article types (e.g. LETTER, COMMENTARY, etc.) need to have the heading on the PDF.

constitutes normal alignment of circadian clocks in 
human organs is unknown.

Given that the core clock genes in mammals are 
highly conserved, one might expect that the interac-
tions between clock genes and proteins—and there-
fore the clock’s dynamics—are also conserved. Indeed, 
mouse and human cells show similar relative phasing 
of clock gene expression in vitro (Hughes et al., 2009). 
In vivo, one might hypothesize that peripheral clocks 
in nocturnal and diurnal mammals would be out of 
phase by 12 h. Previous work, however, found that the 
clocks in mouse brain (nocturnal) and human brain 
(diurnal) were out of phase by only 6.5 h (Li et  al., 
2013). The reason for this discrepancy remains unclear.

Here we sought to take advantage of recently pub-
lished gene expression datasets to compare the phases 
of circadian clocks across multiple organs in humans 
and across mammalian species.

MATERIALs AND METhODs

All data and code to reproduce this study are avail-
able at http://dx.doi.org/10.5061/dryad.g928q.

selecting the samples

Overall, we analyzed 15 datasets of genome-wide 
gene expression data (5 from humans, 7 from mice, 
and 3 from rats) and included published results from 
an additional 13 studies on various diurnal and noc-
turnal mammals. For the datasets from human blood, 
we included samples corresponding to control condi-
tions (e.g., we excluded samples obtained during 
sleep deprivation). For GSE45642, we only included 
samples from control subjects (i.e., we excluded sub-
jects with major depressive disorder). For studies 
from non-human species, we included samples from 
wild-type animals in control conditions, including 
both DD (continuous darkness) and LD (alternating 
light-dark) regimens. See Suppl. Table S1 for the 
details of all datasets.

Processing the Metadata

Studies from non-human species and studies from 
human brain provided the circadian time for each 
sample (where CT0 represents sunrise). Studies from 
other human organs provided the time of day for 
each sample (e.g., 0800 h). For the latter, we converted 
the time of day to circadian time using the dates pro-
vided by the authors or the average sunrise time in 
the respective geographic location. We validated the 
averaging procedure using GSE56931 (the only study 

for which we could make the comparison): the aver-
age sunrise time and the actual sunrise time gave 
nearly identical results.

The studies from human brain and one study from 
blood (GSE56931) provided the biological sex of the 
corresponding subject for each sample. For all three 
studies of human blood (GSE39445, GSE48113, and 
GSE56931), we inferred biological sex using the 
median expression of RPS4Y1 (prior to batch correc-
tion) across all samples for each subject, which is 
unambiguously low or high in females or males, 
respectively. For GSE56931, the inferred sex was 
exactly concordant with the information provided.

For the analysis of the effect of age on circadian 
phasing in human brain, the threshold of 40 years 
was chosen for consistency with prior work (Chen 
et al., 2016) and to ensure a similar age distribution 
for blood and young brain samples and a sufficient 
number of samples for young brain. The age distribu-
tions of the younger and older groups were 29.7 ± 8.9 
years and 58 ± 10 years, respectively (M ± SD).

Processing the Expression Data

Gene expression from microarray data was pro-
cessed using metapredict, which maps probes to 
Entrez Gene IDs and performs intra-study normal-
ization and log-transformation (Hughey and Butte, 
2015) (https://github.com/jakejh/metapredict). For 
GSE72095, which is an RNA-seq dataset, we down-
loaded the sequencing reads from the NCBI Sequence 
Read Archive (SRA), then used kallisto to quantify 
transcript abundance in units of transcripts per mil-
lion (tpm) (Bray et al., 2016). To make the RNA-seq 
data comparable with the microarray data, we first 
used the mapping of Ensembl Transcript IDs to 
Entrez Gene IDs to calculate “gene” abundances as 
the sum of tpm values for transcripts mapping to a 
given gene, then used the formula log tpm+1( )  in the 
analysis. In each dataset, genes from non-human spe-
cies were mapped to their respective human ortho-
logs using information from NCBI (Fong et al., 2013).

To reduce the effects of inter-individual and inter-
organ variability in gene expression in humans, we 
used ComBat to adjust the expression values within 
each human dataset (Johnson et  al., 2007). Within 
each dataset from human blood, in which there were 
7-14 samples taken throughout the day for each sub-
ject, we applied the batch correction by subject. 
Within each dataset from human brain, in which all 
samples from a given subject corresponded to the 
same circadian time, we applied the batch correction 
by anatomical area (correcting by subject would 
remove all circadian variation). For the results in 
Figure 2B-C and Figures 3-4, we also applied a batch 
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correction to adjust for expression differences 
between the two datasets from human brain.

Analyzing Circadian Gene Expression

Within each dataset, we used ZeitZeiger to fit a 
periodic smoothing spline, f tj ( ), to the expression of 
each gene, j, as a function of circadian time, t  
(Hughey et al., 2016; Helwig and Ma, 2014) (https://
github.com/jakejh/zeitzeiger). To constrain their 
flexibility and prevent overfitting, all spline fits were 
based on three knots.

We estimated the time of peak expression for gene, 
j, as argmax f tj ( ) , and the time of trough expression 

as argmin f tj ( ). Differences between peak times or 
trough times were calculated using ZeitZeiger, and 
accounted for the periodic nature of circadian time 
(e.g., CT2 is 6 h ahead of CT20).

We calculated the signal-to-noise ratio of circadian 

rhythmicity as SNR =
max f t - min f t

sj
j j

j

( )( ) ( )( )
, 

where sj is the root-mean-square error of the periodic 
spline fit.

The mean peak times in Figure 3 were calculated 
as circular means; i.e.,
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Simulations to determine accuracy of peak and 
trough time detection assumed sinusoidal periodicity 
(period of 24 h), i.i.d. additive Gaussian noise, and 
that observations were randomly spaced in time. For 
each combination of number of observations and 
expected signal-to-noise ratio, we generated 100 sim-
ulations. For each simulation, we fit a periodic 
smoothing spline (based on three knots) and esti-
mated peak and trough times in the same way as for 
the actual gene expression data.

REsuLTs

Clock Gene Expression in human Blood and 
human Brain

We first assembled five publicly available datasets 
of genome-wide circadian gene expression in 
humans: three from blood (Archer et al., 2014; Möller-
Levet et  al., 2013; Arnardottir et  al., 2014) and two 
from brain (Li et al., 2013; Chen et al., 2016) (Table 1 
and Suppl. Table S1). Each dataset from blood  
consisted of ~8 samples taken throughout the day for 
each participant (~20 participants per study). Both 

datasets from brain were based on postmortem tissue 
from multiple anatomical areas: amygdala, anterior 
cingulate cortex, cerebellum, dorsolateral prefrontal 
cortex, hippocampus, and nucleus accumbens 
(GSE45642); Brodmann’s areas 11 and 47 of the pre-
frontal cortex (GSE71620). Circadian time for each 
sample from the brain was based on the respective 
donor’s time and date of death and geographic loca-
tion (55 donors for GSE45642, 146 donors for 
GSE71620)

Because most circadian gene expression is organ-
specific (Zhang et al., 2014), we limited our analysis 
to genes known to be part of the core circadian clock 
(or a direct output of the clock, in the case of DBP). In 
mice, these are among the few genes whose expres-
sion shows circadian oscillations at the same phase 
across organs. Expression of the core clock genes is an 
accurate indicator of internal circadian time and can 
be used to detect when the clock is phase-shifted 
(Hughey et  al., 2016). For each clock gene in each 
dataset, we quantified the signal-to-noise ratio (SNR) 
of circadian rhythmicity of expression (Suppl. Fig. S1 
and Materials and Methods). Clear rhythmicity (SNR 
> 1) in both blood and brain was exhibited by seven 
clock genes (ARNTL, DBP, NR1D1, NR1D2, PER1, 
PER2, and PER3), and we focused on these for the 
remainder of the study.

We next examined the expression of those seven 
genes in each dataset as a function of circadian time 
(CT0 corresponds to sunrise; Fig. 1 and Suppl. Fig. 
S2). For each gene, the circadian phase of expres-
sion was similar across the datasets from the same 
organ (blood or brain). Surprisingly, however, when 
comparing clock gene expression between organs, 
we observed a consistent phase difference. To quan-
tify this phase difference, we estimated the time of 
peak expression for each gene in each dataset (Fig. 
2A and Materials and Methods). In simulations, 
given data with 200 samples and SNR = 2 (typical 
for human data in this study), our method esti-
mated peak time with a 95% confidence interval of 
1.14 h (Suppl. Fig. S3). For six of the seven genes, 
peak time in brain was 6-8 h later (equivalently, 
16-18 h earlier) than peak time in blood. For exam-
ple, the expression of NR1D1 peaked near CT20 in 
blood, but near CT2 in brain.

We then confirmed that the phase difference was not 
due to differences in the sex ratio or age distribution 
between the datasets. Although the sex ratio differed 
across datasets for the two organs (~50% female for 
blood and ~20% female for brain), we observed no con-
sistent difference in peak times between males and 
females within either organ (Suppl. Fig. S4A). More 
significantly, the participants in the blood datasets 
tended to be much younger (27 ± 5 years) than the 
donors in the brain datasets (52 ± 15 years). Therefore, 
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we merged the two brain datasets, split the samples 
into two groups based on the donor’s age (≤40 or >40 
years), and calculated the peak times separately for 
each group. Consistent with previous work (Chen 
et al., 2016), clock gene expression was phase-advanced 
in samples from older compared with younger indi-
viduals (Fig. 2B). Consequently, after controlling for 
age, the absolute phase difference between blood and 
brain across all seven genes was 8.6 ± 2.1 h (M ± SD; 
median 8.6 h; Fig. 2C). We obtained similar results 
when quantifying the absolute phase difference using 

the trough time instead of the peak time (8.3 ± 1.8 h and 
median 8 h; Suppl. Fig. S5). In addition, when we calcu-
lated the peak time for each gene relative to the peak 
time of ARNTL, the differences between the two organs 
largely disappeared (Suppl. Fig. S4B; the choice of ref-
erence gene is arbitrary and does not affect the results). 
Taken together, these results suggest that the circadian 
clocks in human brain and human blood are progress-
ing similarly, but are phase-shifted from one another.

Because the datasets from brain were based on 
tissues from postmortem donors, we considered 

Table 1. Datasets of circadian gene expression in humans.

Dataset Reference Organ Condition Subjects Samples

GSE39445 Möller-Levet et al., 2013 blood living 24 221
GSE48113 Archer et al., 2014 blood living 22 147
GSE56931 Arnardottir et al., 2014 blood living 14 130
GSE45642 Li et al., 2013 braina postmortem 55 269
GSE71620 Chen et al., 2016 brainb postmortem 146 292

a. Amygdala, anterior cingulate cortex, cerebellum, dorsolateral prefrontal cortex, hippocampus, and nucleus accumbens. b. Brodmann’s 
areas 11 and 47 of prefrontal cortex. See Suppl. Table S1 for more details.

Figure 1. Circadian expression of three clock genes across five datasets in two human organs (top three rows are blood, bottom two 
rows are brain). Circadian time 0 corresponds to sunrise. Each point is a sample and the shape indicates the dataset. In each plot, the 
black line shows the periodic smoothing spline corresponding to the mean expression over time. Expression values for each gene in each 
dataset were scaled to have mean of zero and an sD of 1. Expression of the four other clock genes considered in this study is shown in 
suppl. Fig. s2.
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that the observed circadian phasing might be an 
artifact of the clock continuing to progress after the 
official time of death. Based on the postmortem 
interval for samples from GSE71620, however, even 
8 h of postmortem progression of the clock could not 
explain the phase difference between blood and 
brain (Suppl. Fig. S6 and S7A). Because the postmor-
tem interval was strongly dependent on the time of 
death (Suppl. Fig. S7B-C), longer-lasting postmor-
tem progression would imply that the variation in 
gene expression between samples is caused not by 
variation in circadian time of death, but by some 
other factor. Given that many of the top oscillatory 
genes in both brain datasets (assuming no postmor-
tem progression) are known to be part of or regu-
lated by the circadian clock (Li et  al., 2013; Chen 
et al., 2016), this seems unlikely.

Clock Gene Expression across Mammalian species 
and Organs

We next expanded our analysis to include data 
from two additional human organs and from three 
other mammalian species: mouse, rat, and Siberian 
hamster (Suppl. Table S1). Where possible for a given 
species and organ, we included multiple independent 
datasets from multiple light-dark regimens (predomi-
nantly LD 12:12 and DD). For human skin, human 
hair follicle, and Siberian hamster heart, we curated 
the times of peak expression from published results 
(Spörl et al., 2012; Akashi et al., 2010; Crawford et al., 
2007). For all other datasets (Bray et  al., 2008; Dyar 
et  al., 2014; Haspel et  al., 2014; Hughes et  al., 2009; 
Zhang et al., 2014; Boorman et al., 2005; Almon et al., 
2008a; Almon et al., 2008b), we analyzed the publicly 

Figure 2. Quantifying the phase difference between human blood and human brain. (A) Time of peak expression for each clock 
gene in each dataset. symbols as in Figure 1. CT0 is equivalent to CT24. (B) similar to A, except that samples from the two brain data-
sets have been merged, then split by subject age (≤40 or >40 years). (C) Pairwise absolute differences in peak time within and across 
organs. Each point corresponds to one pairwise comparison. Circles correspond to comparisons between the three blood datasets. 
upward-pointing triangles correspond to comparisons between each blood dataset and the merged, young brain dataset (upward-
pointing triangles in B).
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available microarray data identically to how we ana-
lyzed the data from human blood and brain (Suppl. 
Fig. S8). Clock genes in non-human species were then 
mapped to the respective human orthologs.

In all organs from nocturnal species, each of the 
seven clock genes showed similar circadian phasing 
(Fig. 3 and Suppl. Fig. S9). In particular, expression of 
the ARNTL ortholog peaked near CT0 (equivalent to 
CT24), and expression of the other genes peaked 
between CT8 and CT14. Interestingly, peak times in 
rat tended to be slightly later than those in mouse and 
Siberian hamster.

Compared to peak times in nocturnal species, peak 
times in almost all organs from humans were shifted 
by ~12 h (Fig. 3 and Suppl. Fig. S9). The exception was 
human brain, whose phase signature was distinct 
from human blood, skin, and hair follicle. Again, peak 
times relative to ARNTL were similar for organs in all 
species, both nocturnal and diurnal (Suppl. Fig. S10).

Clock Gene Expression in the Mammalian 
suprachiasmatic Nucleus

Finally, we expanded our analysis to include stud-
ies of clock gene expression in the site of the master 
clock, the SCN (Albrecht et al., 1997; Maywood et al., 
1999; Miyake et al., 2000; Yan et al., 1999; Vosko et al., 

2009; Lambert, 2005; Caldelas et al., 2003; Mrosovsky 
et al., 2001; Pembroke et al., 2015; Takumi et al., 1998b; 
Takumi et al., 1998b) (Suppl. Table S1). Most of these 
studies, which were conducted on various diurnal 
and nocturnal rodents, measured the expression of 
the respective PER1 and PER2 orthologs by in situ 
hybridization. From these studies, we curated peak 
times from the published result. The two datasets of 
genome-wide gene expression in the mouse SCN, on 
the other hand, were analyzed identically to that of 
human blood and brain.

In contrast to tissues outside the SCN, where peak 
times differed by 12 h between diurnal and nocturnal 
mammals, peak times in the SCN were nearly identi-
cal across species (CT5 for PER1 and CT9.5 for PER2; 
Suppl. Fig. S11). As a result, peak times in the SCN 
were 4-8 h later than that of most other organs of 
diurnal mammals (Fig. 4) and 4-8 earlier than that of 
other organs of nocturnal mammals (Suppl. Fig. S12). 
Interestingly, the phasing of clock gene expression in 
human brain was similar to that of the SCN (Fig. 4).

DIsCussION

Here we described the most comprehensive 
analysis to date of the circadian phasing of clock 

Figure 3. Circadian phasing of clock genes across mammalian species and organs. (A) Time of peak expression for three sets of clock 
gene orthologs. Each point represents the peak time for one gene in one dataset and organ. Dashed lines show the circular mean peak 
time for diurnal (excluding human brain) and nocturnal species, calculated as described in the Materials and Methods. For human brain, 
samples from subjects older than 40 years were excluded and the two datasets were merged as in Figure 2B-C. Plots of peak times for the 
other clock genes considered in this study are shown in suppl. Fig. s9. The three points for mouse brain were measured in brain stem, 
cerebellum, and hypothalamus (all from GsE54650). (B) heatmap of peak time for seven clock genes across species and organs. In the 
case of multiple datasets per combination of gene and species-organ, the color is based on the circular mean peak time. White squares 
correspond to genes that either were not measured or did not show rhythmicity in the respective species-organ.
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gene expression in mammals. Our results indicate 
conservation of not only the clock’s molecular com-
ponents, but also its dynamics (in terms of relative 
phasing of gene expression). What differs between 
species is not the clock itself but the alignment of 
the clocks in various organs with each other and 
with the external environment. The clock in the 
SCN, consistent with its responsiveness to the 
light-dark cycle, showed the same circadian phas-
ing in diurnal and nocturnal species. Clocks out-
side the SCN, in general, were phase-shifted by ~12 
h between diurnal and nocturnal species. The 
exception to this pattern was human brain, whose 
clock gene expression was distinct from that of 
other peripheral organs in humans and other diur-
nal mammals and resembled that of the mamma-
lian SCN.

In this study, we relied on datasets in which the 
time of day for each sample was known. Although 
many genes show circadian rhythmicity in expres-
sion (up to 50% in mice) (Zhang et  al., 2014), such 

datasets are unfortunately in the minority. As a result, 
circadian variation could be a confounding factor in 
many analyses of genome-wide gene expression. In 
the future, it may be possible to detect, correct for, 
and learn from unannotated circadian variation in 
publicly available data, perhaps using methods 
developed primarily for the cell cycle (Buettner et al., 
2015; Leng et al., 2015).

In mice, circadian gene expression can vary from 
one brain region to another (Feillet et al., 2008; Zhang 
et  al., 2014). Because previous analyses of human 
brain revealed similar patterns of circadian gene 
expression in each region (Li et al., 2013; Chen et al., 
2016), our analysis combined the data from the  
various regions of human brain in each dataset. 
Nonetheless, there are many regions of the human 
brain for which circadian gene expression has not  
yet been measured, most notably the SCN itself. 
Moreover, circadian rhythms in different cell types of 
the nervous system (e.g., neurons and glia) have yet 
to be thoroughly examined.

Figure 4. Circadian phasing of clock gene expression in various tissues (including the sCN) of various diurnal mammalian species. 
Data from diurnal rodents was curated from published studies that measured transcript levels using in situ hybridization.
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Although the two datasets from human brain were 
the only ones based on tissue from postmortem 
donors, our analysis suggests that the observed circa-
dian phasing is unlikely to be an artifact of the tissue 
collection procedure or the postmortem interval. Two 
additional points support this view. First, both datas-
ets only included samples from donors who suffered 
rapid death, avoiding the drop in pH and alterations 
in gene expression associated with prolonged agonal 
states (Li et al., 2004). Second, the circadian phasing 
in the human brain is consistent across multiple clock 
genes and both datasets, even though the two datas-
ets include samples from different regions of the 
brain and were collected by different institutions. 
That said, it is important that these results be repli-
cated in additional studies.

Although the details are unclear, the SCN seems 
to coordinate the clocks throughout the body using a 
combination of neural and humoral cues (Dibner 
et al., 2010) and temperature (Buhr et al., 2010). The 
alignment of clocks in non-SCN tissues to behavior 
rather than to the light-dark cycle suggests that the 
mechanism by which the SCN communicates with 
other tissues differs between diurnal and nocturnal 
mammals. Our results also imply that the SCN in 
humans communicates qualitatively differently with 
other regions of the brain than with organs outside 
the brain. Due to the paucity of data from non-human 
diurnal mammals, it is unclear whether this differen-
tial communication is specific to humans or a general 
property of diurnality. One possible explanation for 
the former could be the modern environment, which 
contains many features that affect the clock, includ-
ing caffeine (Burke et  al., 2015), social jetlag 
(Wittmann et al., 2006), night-time exposure to artifi-
cial light (Gooley et al., 2011), and decreased expo-
sure to sunlight (Wright et al., 2013). Current evidence 
indicates that the phase shifts induced by these con-
ditions (~1 h) are considerably less than the phase 
difference we observed between brain and other 
organs. Even so, it seems reasonable to wonder if the 
circadian phase of the human brain is somehow 
related to the unnatural environment in which many 
humans live.

Recent evidence suggests that the circadian clock 
is an important factor in the response to many thera-
peutics (Zhang et al., 2014). Our observations are rel-
evant to the future of chronotherapy for two reasons. 
First, they can serve as guidelines for how to convert 
circadian drug delivery schedules from one species to 
another. Second, they imply that, in humans, the opti-
mal timing for a drug could depend on the anatomi-
cal site of action.

The adverse effects of shift work and jet lag are 
thought to be mediated by misalignment between  
the external environment and the internal circadian 

system (Reid and Zee, 2009). Based on our findings, 
we speculate that such perturbations may also cause 
misalignment between the clocks throughout the 
body. Either way, further work is needed to deter-
mine how the circadian phases of different organs 
drive circadian rhythms in physiology, and how the 
alignment between clocks is perturbed in various 
pathophysiological states.
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