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Observation of a topologically non-trivial surface
state in half-Heusler PtLuSb (001) thin films
J.A. Logan1, S.J. Patel1, S.D. Harrington1, C.M. Polley2, B.D. Schultz3, T. Balasubramanian2, A. Janotti4,

A. Mikkelsen5 & C.J. Palmstrøm1,3

The discovery of topological insulators, materials with bulk band gaps and protected

cross-gap surface states in compounds such as Bi2Se3, has generated much interest in

identifying topological surface states (TSSs) in other classes of materials. In particular, recent

theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds.

If experimentally realizable, this would provide a materials platform for entirely new

heterostructure spintronic devices that make use of the structurally identical but

electronically varied nature of Heusler compounds. Here we show the presence of a TSS in

epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin- and angle-resolved

photoemission spectroscopy, complemented by theoretical calculations, reveals a surface

state with linear dispersion and a helical tangential spin texture consistent with previous

predictions. This experimental verification of topological behaviour is a significant step

forward in establishing half-Heusler compounds as a viable material system for future

spintronic devices.
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T
opological insulators are a recently discovered new state of
matter, which possess bulk band gaps and metallic surface
states. Their experimental realization in materials such as

Bi2Se3 (ref. 1) has spurred a number of efforts to observe new
physics and computationally predict other host compounds2,3.
One particularly promising avenue for a new family of
topologically non-trivial materials is the half-Heusler family.
Half-Heusler compounds are ternary intermetallics (XYZ), which
share strong structural similarities to III–V zinc blende binary
semiconductors. Crystallographically, these compounds can be
thought of as a zinc blende lattice of the X and Z atoms, with
additional Y atoms introduced in the octahedral sites. Depending
on the particular elemental species involved, half-Heusler
compounds have a much wider range of electronic structures
than III–Vs, owing to the important role that the total valence
electron count per formula unit has on the Fermi level position4.
For instance, Heusler compounds have previously been
shown to exhibit electronic behaviours such as half-metallic
ferromagnetism5, superconductivity6 and semiconductivity7.
Consequently, this flexibility allows for the design of
heterostructures of the same crystal structure, but highly
varying electronic and magnetic properties. In addition, this
enables the possibility of discovering materials with combined
properties, such as topological superconductors, which are of
interest for the appearance of Majorana fermions3,8.

For this study, we examine the electronic structure of the
half-Heusler compound PtLuSb (001). Samples were grown by
molecular beam epitaxy and characterized by reflection high-
energy electron diffraction and X-ray diffraction, to ensure high
sample quality. First-principles calculations9–11 predict PtLuSb to
lie at the border between normal and inverted band ordering with
a zero-gap semiconducting band structure. Previous experimental
studies on bulk single crystals12,13 and thin films14 have
confirmed that PtLuSb has the expected zero-gap density of
states, but have not measured the momentum-resolved
electronic band structure. Consequently, we use angle-resolved
photoemission spectroscopy (ARPES) to directly probe the
electronic band structure and search for the predicted
topological surface state (TSS). Critically, we also use spin
resolution to discern the spin texture and ensure no spin-opposite
partner bands are present. With this capability, we point-by-point
identify all of the relevant signatures of a TSS: first, that no
out-of-plane dispersion is observed, due to the confined surface
nature; second, that a linear in-plane dispersion is apparent,
with no evidence of partner bands; and third, that helical
spin–momentum locking is evident2. Experimental ARPES data
are directly compared with new ab-initio calculations that further
support the results.

Results
Theoretical PtLuSb electronic structure. Recent first-principles
calculations have suggested that numerous half-Heusler com-
pounds may exhibit topologically non-trivial behaviour9–11,15,16.
Focusing on the high average atomic number 18 valence electron
per formula unit topological insulator candidates, these materials
are predicted to exhibit a zero-gap semiconducting or
semimetallic bulk band structure, where, as a result of the
interaction between the chemical bonding, crystal field splitting
and spin–orbit coupling, an inversion between the G8

(p-character) and G6 (s-character) bands occurs across the
Fermi level9–11. This band inversion is further predicted to
induce the formation of a TSS with linear dispersion, spin–
momentum locking and a Dirac-like crossing similar to those
seen in Bi2Se3 (ref. 1). Examining the ab-initio-calculated bulk
band structure for PtLuSb (Fig. 1c), we also observe that,

unusually, owing to the position of the lower G8 band, the TSS
should exist in a region where it threads between inverted bulk
bands despite the presence of an extra bulk band (similar to that
in HgTe17 and a-Sn18,19).

In-plane ARPES. To begin experimentally, we examine the
in-plane ARPES dispersion maps for various photon energies
(Fig. 2), to perceive the bulk band motion relative to any surface
states. Changing the incident photon energy results in an
adjustment in kz enabling bulk bands, which disperse with kz, to
be easily distinguished from surface states, which do not disperse
in kz, at normal emission (kx, ky¼ 0). For PtLuSb (001), an
incident photon energy of 13 eV corresponds to the bulk G point
at the Fermi level, whereas an incident photon energy of 26 eV
corresponds to the bulk X point at the Fermi level, based on the
bulk band periodicity. By comparing spectra taken at 14–19 eV,
we observe two sets of high-intensity bands that are non-
dispersive with photon energy (position extractions from
multi-peak Voigt fits are overlaid on the surface projections of the
calculated bulk bands—see Supplementary Note 1 for theory
calculation alignment): one set that crosses the Fermi level (blue)
and one set B0.5 eV below the Fermi level at �G (green). In
addition, we note the presence of several weaker intensity bands,
which appear to move downward in binding energy as kz moves
towards the bulk X point (higher photon energies), consistent
with the projected bulk bands (red). The low intensity of these
bulk bands is a combination of the extremely high intensity of the
non-dispersive states and the relative sensitivity of the incident
linearly polarized light to bands with different character. Here,
the lower bulk G8 and G6 (away from �G ) have mixed py and d
character, whereas the experimental setup is more sensitive to px

and pz character. Examining these non-dispersive states more
closely, which are not explained by our first-principle bulk band
calculations (suggesting a surface origin), we first note the
lower state’s similarity to a Rashba-like split hole band (see
Supplementary Note 2 for detailed analysis). This split hole band
is reminiscent, both in terms of shape and binding energy, to
features seen in ARPES measurements of cleaved bulk PtLuBi
(111) and PtGdBi (111) half-Heusler crystals20. Consequently,
it is reasonable to assume that this lower surface state arises due
to a common crystallographic or chemical feature shared by a
variety of high Z half-Heusler compounds. Second, we note that
the upper non-dispersive state is qualitatively similar to the lower
half of a Dirac cone, matching with the expectation for a TSS.

Surface-state identification. To prove that this observed
Dirac-like state arises from the sample’s surface, we scan the
incident photon energy over a wide range at normal emission
(corresponding to sweeping along bulk G–X for several Brillouin
zones) and simultaneously examine the binding energy depen-
dence along the �G� �X2 direction (Fig. 3a). We immediately note
a lack of kz dispersion, in agreement with our initial observations
from the photon energy varying in-plane snapshots (Fig. 2) and
consistent with the behaviour of a surface state. By examining a
waterfall plot for a range of photon energies at a constant binding
energy (Fig. 3b), we notice that intensity modulations appear
within the surface state, which closely correspond with the values
of the bulk G points21, and momenta where the calculated bulk
bands cross the constant binding energy surface. Furthermore, by
extracting the surface-state position for various binding energies
and photon energies, a linear dispersion can be seen (Fig. 3c).
Extrapolating this Dirac-like dispersion upward yields a crossing
B0.24 eV above the Fermi level (see Supplementary Note 3 for
additional detail). The extraction suggests the TSS may exist in an
energy range on the order of B1 eV, larger than expected.
This may be the result of the most negative data points occurring
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after the TSS merges with the bulk or due to underprediction
in the theory. Furthermore, in agreement with a previous
experimental study14 where Hall measurements of similar films
revealed B1� 1020 cm� 3 p-type carriers, we observe that the
Fermi level falls within the valence band. This is in contrast with
theory calculations, which predict the Fermi level to fall at the
valence band maximum, suggesting that there may be a
low-energy defect that induces p-type doping, similar to
antimony antisite disorder in III-Sb semiconductors22.

Fermi-surface mapping. To check for other surface states and
obtain a more complete picture of the Fermi surface (FS), a higher
photon energy can be used to increase the accessible reciprocal
space area. As seen in Fig. 4a, it is clear that the FS is more
complicated than existing calculations suggest. The sample’s
(1� 3) surface reconstruction, seen in low-energy electron
diffraction (Fig. 4b), contributes an additional replica state with a
threefold periodicity in the �G� �X1 direction. The intensity
difference between the first and second �G points is consistent
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Figure 1 | PtLuSb bulk crystallographic and electronic structure. (a) Half-Heusler C1b crystal structure consisting of three interpenetrating

face-centred-cubic sub-lattices. For PtLuSb, the platinum, lutetium and antimony atoms are denoted by the green, blue and orange spheres, respectively.

(b) Half-Heusler bulk Brillouin zone with the (001) surface Brillouin zone projection. The high-symmetry surface Brillouin zone points are defined as
�G(0, 0), �X1 (k0/2, 0), �X2 (0, k0/2) and �M (k0/2, k0/2), where, for PtLuSb (001), the surface unit momentum k0¼ 2p(O2/a0)¼ 1.376 Å� 1.

(c) First-principles calculated bulk electronic band structure of PtLuSb with corresponding band character shown. The experimental Fermi level (blue),

Ef-Exp, is B0.35 eV below the calculated Fermi level (red), Ef-Thry. A band inversion can be clearly seen at the bulk G point, where the orbital character of the

G8 and G6 bands are inverted. This is in agreement with prior predictions11 that the TSS should connect these two bands.
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Figure 2 | Experimental and calculated in-plane band structure. In-plane constant photon energy ARPES dispersion maps and corresponding constant kz

calculated bulk band structure projections (red) with overlaid extracted surface state positions (blue and green) along the �G� �X2 direction for incident

photon energies of (a–f) 14–19 eV, respectively. The maps highlight the presence of two surfaces states, which do not disperse as a function of changing kz,

unlike the bulk bands. The theory calculation Fermi level has been shifted �0.35 eV to align with the experimental Fermi level position. Error bars

correspond to 1 s.d. for Voigt peak fits.
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Figure 3 | Out-of-plane-momentum kz dependence and surface state extrapolation. (a) Intensity as a function of out-of-plane and in-plane momenta

for various binding energy slices. An absence of kz dispersion can be observed, consistent with the behaviour of a surface state. (b) Corresponding waterfall

plot at a binding energy of �0.075 eV for photon energies between 43 eV (kz E 3.65 Å� 1) and 81 eV (kz E 4.82 Å� 1). Examining the spectra closely,

an intensity increase can be seen near 65 eV (approximately one-third of the way from the bulk G point towards the bulk X point). This agrees with the

calculated bulk band motion as the lower G8 band crosses the constant binding energy surface. (c) By tracking the surface-state position through

binding energy for various photon energies, the predicted linear in-plane dispersion can be seen. The fitted peak positions are shown for several photon

energies and no significant difference is observed. The Dirac point can be extrapolated to B0.24 eV above the Fermi level. Error bars correspond to 1 s.d.

for Voigt peak fits.
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with considerations of the bulk Brillouin zone projections
(see Supplementary Fig. 4). At this photon energy, the first
�G point projects from near the bulk X point, where the bulk
bands are far from the Fermi level, whereas the second �G point
projects from near the bulk G point of an adjacent Brillouin zone,
leading to overlap of surface and bulk bands, and greatly
increased intensity. Focusing on the potential TSS near �G more
closely, we measure constant energy contours at photon energies
of 16 eV (Fig. 4d–g) and 18 eV (Fig. 4h–k). Similar to that
in Bi2Te3 (111)23,24 and W (110)25, where warping is seen, the
constant energy contours are anisotropic, eventually resembling
the square of the (001) surface Brillouin zone at binding energies
far from the Dirac point. Furthermore, the linear state’s
rectangular FS is convoluted with features from the threefold
state leading to the appearance of distortions, in particular along
the shorter edge at lower binding energies. By examining the
second-derivative maps we note the presence of several weak
features closer to �G than the surface state with linear dispersion,
which disappear as photon energy is increased to 18 eV.
Consequently, we attribute these states to the bulk bands,
which agrees well with our calculated bulk FS structure.

Spin-texture identification. Lastly, we conduct spin-ARPES to
map the spin texture of the surface states closely surrounding �G
and then ensure no partner bands are present. By examining the
spin polarization and energy distribution curves for various
points on the FS (Fig. 5e–g), it becomes clear that the surface state
with linear dispersion has a strong spin texture with either
side having opposite polarization. Furthermore, we observe a
anticlockwise helical tangential spin texture with minimal radial
components, similar to that seen in the lower cone of Bi2Se3

(ref. 1) and consistent with theoretical calculations for a TSS in
half-Heusler compounds with positive spin–orbit coupling15. We

also observe that the surface state at lower binding energy is spin
split, consistent with the expectation for a Rashba-like split hole
band. In both cases, although our calculations suggest the bulk
bands may also exhibit spin splitting (see Supplementary Fig. 5
for more detail) due to the lack of bulk inversion symmetry, the
low detection efficiency for spin-ARPES causes only the highest
intensity states to be measured. Consequently, when we consider
the intensity difference seen between the bulk and surface states
in Fig. 2, the observed spin signal must be dominated by surface
state behaviour (see Supplementary Note 4 for additional details
on the polarization calculations).

Discussion
Although the experimental data are well explained by a TSS, a
possible alternative explanation is that the upper surface state is
instead a trivial surface state with unequal contributions of bulk
(Dresselhaus) and structural (Rashba) inversion asymmetries,
similar to that shown by Ganichev and Prettl26. However,
several observations argue against such an interpretation. First,
a Rashba/Dresselhaus combination state requires the presence of
a partner band with opposite spin polarization. Examining our
spin-ARPES data, we do not observe any such behaviour.
Furthermore, in the event that partner bands were too close
together to resolve in momentum space, the observed spin
polarization would be very weak or non-existent, in contradiction
with the measured data. Second, examining the spin-integrated
ARPES data, we note that although there is some residual
intensity between the Fermi level and the lower surface state with
an incident photon energy of 16 eV, the intensity drops rapidly as
kz is moved towards the bulk X point, consistent with the bulk
band motion. Third, the surface-state extraction fits to a linear
dispersion with high accuracy. This is in contrast with the
expectation for a trivial Rashba/Dresselhaus surface state, where a
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purely linear dispersion would not be expected26. Finally, the
observed surface-state behaviour corresponds well, both with
theory in literature as well as our own first-principles calculations.
Therefore, we conclude that no partner bands are present, and
that consequently the observed surface state is not a trivial
Rashba/Dresselhaus surface state.

In summary, we report the direct experimental observation of a
topologically non-trivial surface state in the half-Heusler material
system. Our spin-ARPES data of PtLuSb (001), supported by
first-principles calculations, reveal a topological state that has an
anticlockwise helical spin polarization and extrapolated Dirac
point B0.24 eV above the Fermi level. It is important to note
that although unstrained PtLuSb is a zero-gap semiconductor,
it demonstrates that half-Heusler compounds may exhibit
topologically non-trivial surface states. With this experimental
verification, it opens the door for the numerous other compounds
in the Heusler family that have been suggested to possess the
necessary bulk band inversion, some of which have non-zero bulk
bandgaps. This continues to highlight the multifunctional nature
of Heusler compounds by demonstrating the presence of another
unique electronic structure, potentially enabling a range of new
heterostructure devices that combine the widely varied electronic
properties of these materials without changing crystal structure.
Consequently, Heusler compounds are an exciting and promising
direction for further exploration to find new topologically non-
trivial materials and for the potential to discover materials with
new electronic structures such as topological superconductors.

Methods
Growth approach. Samples consisting of 18 nm of relaxed PtLuSb on five
monolayers of GdSb on relaxed B1� 1018 cm� 3 beryllium-doped Al0.1In0.9Sb on
pþ GaAs (001) substrates with an B200-nm antimony cap were grown by
molecular beam epitaxy with a system base pressure of o1� 10� 10 Torr.
500-nm thick, B1� 1018 cm� 3 beryllium-doped GaAs buffer layers were first
grown under an As4 overpressure to form a smooth (2� 4) surface reconstruction.
Al0.1In0.9Sb was then nucleated directly on the GaAs at 380 �C by first soaking the
GaAs surface with Sb2 for 10 s and then beginning co-deposition. Growth was
continued as the substrate was quickly heated to 450 �C, to smooth the surface and
prevent excess antimony from sticking, similar to the technique developed by Davis
et al.27. Al0.1In0.9Sb layers were terminated by an asymmetric (1� 3) surface
reconstruction after 300 nm of growth. Five monolayers of GdSb, calibrated by
Rutherford backscattering spectrometry of elemental films and reflection high-
energy electron diffraction (RHEED) oscillations28, were then grown to provide a
diffusion barrier29 between the PtLuSb and the Al0.1In0.9Sb buffer layer structure.
Samples were then transferred in situ to a separate molecular beam epitaxy system
for PtLuSb growth. Lutetium and antimony were evaporated from effusion cells,
whereas platinum was evaporated from an electron beam evaporator. Beam fluxes
were calibrated by a combination of Rutherford backscattering spectrometry and
RHEED intensity oscillations for lutetium and antimony, and by a quartz crystal
microbalance for platinum, to obtain a 1 lutetium:1 platinum:1.2 antimony atomic
flux ratio. Nucleation of the PtLuSb was initiated with a low-temperature shuttered
sequential monolayer growth technique followed by co-deposition at 380 �C using
the procedure developed by Patel et al.14,30. At this temperature, antimony is
self-limited, similar to the Al0.1In0.9Sb growth. RHEED patterns showed either
streaky (1� 3) or c(2� 2) surface reconstructions, depending on antimony
overpressure and substrate temperature. Finally, to prevent oxidation during ex situ
transfer to the MAX-lab synchrotron facility, a B200 nm antimony capping layer
was deposited at 100 �C (see Supplementary Fig. 1). X-ray diffraction analysis
shows clear thickness fringes consistent with the expected growth rate.

Experimental approach. ARPES and spin-ARPES measurements were taken at
beamlines I4 and I3, respectively, at the MAX-lab synchrotron facility in Lund,
Sweden. Before measurement, samples were heated to B390 �C whereupon the
antimony capping layer was desorbed, as confirmed by low-energy electron
diffraction and examination of shallow core levels by angle-integrated
photoemission spectroscopy. Spin-integrated ARPES was conducted at 100 K, to
reduce thermal broadening, whereas spin-resolved ARPES was conducted at 300 K
with vacuum conditions of 1� 10� 10 Torr. The observed band structures were
stable throughout the entire measurement duration.

Theoretical approach. The calculations are based on the density functional theory
within the generalized gradient approximation as implemented in the VASP
code31. The interactions between the valence electrons and the ion cores were

described using projected augmented wave potentials. A planewave basis set with
cutoff of 300 eV was employed and a special k-point mesh of 12� 12� 12 was used
for the face-centred cubic primitive cell. The calculated a0¼6.512 Å is less than 1%,
larger than the experimental value of 6.457 Å. A k-point mesh 8� 8� 6 was used
in the calculations for the six atom tetragonal cell (O2/2a0�O2/2a0� a0), where
a0 is the equilibrium lattice parameter. The electronic band structure calculations
were performed including spin–orbit interaction.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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