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F. Le Diberder,35 V. Lepeltier,35 A. M. Lutz,35 T. C. Petersen,35 S. Plaszczynski,35 M. H. Schune,35 G. Wormser,35

C. H. Cheng,36 D. J. Lange,36 M. C. Simani,36 D. M. Wright,36 A. J. Bevan,37 C. A. Chavez,37 J. P. Coleman,37

I. J. Forster,37 J. R. Fry,37 E. Gabathuler,37 R. Gamet,37 D. E. Hutchcroft,37 R. J. Parry,37 D. J. Payne,37 C. Touramanis,37

C. M. Cormack,38 F. Di Lodovico,38 C. L. Brown,39 G. Cowan,39 R. L. Flack,39 H. U. Flaecher,39 M. G. Green,39

P. S. Jackson,39 T. R. McMahon,39 S. Ricciardi,39 F. Salvatore,39 M. A. Winter,39 D. Brown,40 C. L. Davis,40 J. Allison,41

N. R. Barlow,41 R. J. Barlow,41 M. C. Hodgkinson,41 G. D. Lafferty,41 J. C. Williams,41 C. Chen,42 A. Farbin,42

W. D. Hulsbergen,42 A. Jawahery,42 D. Kovalskyi,42 C. K. Lae,42 V. Lillard,42 D. A. Roberts,42 G. Blaylock,43

C. Dallapiccola,43 S. S. Hertzbach,43 R. Kofler,43 V. B. Koptchev,43 T. B. Moore,43 S. Saremi,43 H. Staengle,43 S. Willocq,43

R. Cowan,44 K. Koeneke,44 G. Sciolla,44 S. J. Sekula,44 F. Taylor,44 R. K. Yamamoto,44 D. J. J. Mangeol,45 P. M. Patel,45

S. H. Robertson,45 A. Lazzaro,46 V. Lombardo,46 F. Palombo,46 J. M. Bauer,47 L. Cremaldi,47 V. Eschenburg,47

R. Godang,47 R. Kroeger,47 J. Reidy,47 D. A. Sanders,47 D. J. Summers,47 H. W. Zhao,47 S. Brunet,48 D. Côté,48 P. Taras,48

H. Nicholson,49 N. Cavallo,50,* F. Fabozzi,50,* C. Gatto,50 L. Lista,50 D. Monorchio,50 P. Paolucci,50 D. Piccolo,50

C. Sciacca,50 M. Baak,51 H. Bulten,51 G. Raven,51 H. L. Snoek,51 L. Wilden,51 C. P. Jessop,52 J. M. LoSecco,52

T. Allmendinger,53 K. K. Gan,53 K. Honscheid,53 D. Hufnagel,53 H. Kagan,53 R. Kass,53 T. Pulliam,53 A. M. Rahimi,53

R. Ter-Antonyan,53 Q. K. Wong,53 J. Brau,54 R. Frey,54 O. Igonkina,54 M. Lu,54 C. T. Potter,54 N. B. Sinev,54 D. Strom,54

E. Torrence,54 F. Colecchia,55 A. Dorigo,55 F. Galeazzi,55 M. Margoni,55 M. Morandin,55 M. Posocco,55 M. Rotondo,55
0031-9007=05=95(17)=171802(7)$23.00 171802-1 © 2005 The American Physical Society



PRL 95, 171802 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
21 OCTOBER 2005
F. Simonetto,55 R. Stroili,55 C. Voci,55 M. Benayoun,56 H. Briand,56 J. Chauveau,56 P. David,56 Ch. de la Vaissière,56

L. Del Buono,56 O. Hamon,56 M. J. J. John,56 Ph. Leruste,56 J. Malcles,56 J. Ocariz,56 L. Roos,56 G. Therin,56

P. K. Behera,57 L. Gladney,57 Q. H. Guo,57 J. Panetta,57 M. Biasini,58 R. Covarelli,58 M. Pioppi,58 C. Angelini,59

G. Batignani,59 S. Bettarini,59 M. Bondioli,59 F. Bucci,59 G. Calderini,59 M. Carpinelli,59 F. Forti,59 M. A. Giorgi,59

A. Lusiani,59 G. Marchiori,59 M. Morganti,59 N. Neri,59 E. Paoloni,59 M. Rama,59 G. Rizzo,59 G. Simi,59 J. Walsh,59

M. Haire,60 D. Judd,60 K. Paick,60 D. E. Wagoner,60 N. Danielson,61 P. Elmer,61 Y. P. Lau,61 C. Lu,61 V. Miftakov,61

J. Olsen,61 A. J. S. Smith,61 A. V. Telnov,61 F. Bellini,62 G. Cavoto,61,62 R. Faccini,62 F. Ferrarotto,62 F. Ferroni,62

M. Gaspero,62 L. Li Gioi,62 M. A. Mazzoni,62 S. Morganti,62 M. Pierini,62 G. Piredda,62 F. Safai Tehrani,62 C. Voena,62

S. Christ,63 G. Wagner,63 R. Waldi,63 T. Adye,64 N. De Groot,64 B. Franek,64 N. I. Geddes,64 G. P. Gopal,64 E. O. Olaiya,64

R. Aleksan,65 S. Emery,65 A. Gaidot,65 S. F. Ganzhur,65 P.-F. Giraud,65 G. Hamel de Monchenault,65 W. Kozanecki,65

M. Legendre,65 G. W. London,65 B. Mayer,65 G. Schott,65 G. Vasseur,65 Ch. Yèche,65 M. Zito,65 M. V. Purohit,66
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We present measurements of the branching fractions for the three-body decays B0 ! D����K0�� and
their resonant submodes B0 ! D����K�� using a sample of approximately 88� 106 B �B pairs collected by
the BABAR detector at the SLAC PEP-II asymmetric energy storage ring. We measure: B�B0 !
D�K0��� � �4:9� 0:7stat � 0:5syst� � 10�4, B�B0 ! D��K0��� � �3:0� 0:7stat � 0:3syst� � 10�4,
B�B0!D�K��� � �4:6� 0:6stat� 0:5syst�� 10�4, B�B0!D��K��� � �3:2� 0:6stat� 0:3syst�� 10�4.
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From these measurements we determine the fractions of resonant events to be f�B0 ! D�K��� � 0:63�
0:08stat � 0:04syst and f�B0 ! D��K��� � 0:72� 0:14stat � 0:05syst.

DOI: 10.1103/PhysRevLett.95.171802 PACS numbers: 13.25.Hw, 14.40.Nd
Several independent measurements are needed to test
the standard model description of CP violation. The angle
� can be determined using decays of the type B! D���K���

[1]. The experimental challenges are color suppression of
the b! u transition, reconstruction of D0 CP eigenstates,
and interfering doubly-Cabibbo-suppressed decays
(DCSD) [2]. Also, two-body mode analyses are compli-
cated because there are eight degenerate solutions for � in
the interval 	0; 2�
.

In recent papers [3,4] three-body decays have been
suggested for measuring �, since these do not suffer
from the color suppression penalty. Furthermore, the chan-
nels B0 ! D����K0�� do not have the above problems
with CP states and DCSD interference, and can resolve
most of the ambiguities [3]. The angle � can be extracted
from a time-dependent Dalitz analysis of these decay
modes.

The analysis presented here is based on 81:8 fb�1 of
data taken at the ��4S� resonance, corresponding to ap-
proximately 88� 106 B �B pairs, with the BABAR detector
[5] at the SLAC PEP-II storage ring. We measure the
branching fractions of the B0 ! D����K0�� decays and
consider their distribution in the Dalitz plot.

We reconstructD� mesons in the decay modeK�����

and D�� mesons in the mode D0��, with the D0 decaying
to K���, K����0, and K�������. Here and through-
out the Letter charge conjugate states are implied. Tracks
from the D decay are required to originate from a common
vertex. Positive kaon identification is enforced on kaons
from D meson decays, except for the D0 ! K��� mode.

The D� candidates are required to have a mass within
12 MeV=c2 (2�) of the D� mass, while the mass of D0

candidates decaying to charged daughters only is required
to lie within 15 MeV=c2 (2:5�) of the D0 mass, where � is
the experimental resolution. The D0 ! K����0 candi-
dates are required to have a mass within 30 MeV=c2

(2:5�) of the D0 mass and to be located at a point in the
D0 Dalitz plot where the density of events is larger than
1.4% of the maximum density.

The D�� candidates are accepted if the mass difference
mD�� �mD0 is within 2 MeV=c2 (3�) of the nominal
value, except for the D0 ! K����0 candidates where
we use 1:5 MeV=c2 to reduce this mode’s larger combina-
toric background.

We combine oppositely charged tracks from a common
vertex into K0

S candidates. The K0
S candidates are required

to have a mass within 7 MeV=c2 (3�) of theK0
S mass and a

transverse flight length that is significantly (4�) greater
than zero.

To form B0 candidates, the D���� candidates are com-
bined with a K0

S candidate and a ��, for which the particle
17180
identification (PID) is inconsistent with being a kaon or an
electron. The probability of a common vertex is required to
be above 0.1%. Using the beam energy, two almost-
independent kinematic variables are constructed: the

beam-energy substituted mass mES �
������������������������������
�
���
s
p
=2�2 � p�2B

q
,

and the difference between the B0 candidate’s measured
energy and the beam energy, �E � E�B �

���
s
p
=2. The aster-

isk denotes evaluation in the ��4S� c.m. frame. B0 candi-
dates are required to have �E in the range
	�0:1; 0:1
 GeV, and mES in the range 	5:24; 5:29
�
�	5:20; 5:288
� GeV=c2 for D�K0���D��K0���.

To suppress the dominant continuum background
events, which have a more jetlike shape than B �B events,
we use a linear combination, F , of four variables: L0 �P
ipi, L2 �

P
ipij cos�ij2, and the absolute values of the

cosine of the polar angles of the Bmomentum and of the B
thrust direction [6]. Here, pi is the momentum and �i is the
angle with respect to the thrust axis of the signal B candi-
date of the tracks and clusters not used to reconstruct the B.
All of these variables are calculated in the c.m. frame. The
coefficients are chosen to maximize the separation between
the signal Monte Carlo distribution and 9:6 fb�1 of con-
tinuum events from data taken 40 MeV below the ��4S�
resonance (off-resonance data). F has negligible correla-
tions with mES and �E.

After the event selection, approximately 5% of the
events have more than one B0 candidate. We choose the
one with mD closest to the expected value and correct for
differences between data and simulation. In simulated
signal events, the final selection is 19.3% efficient for
B0 ! D�K0�� and 15.5%, 3.9%, and 8.2% efficient for
B0 ! D��K0�� in the three D0 decay modes K���,
K����0, and K�������, respectively.

We perform an unbinned extended maximum likelihood
fit with the variables mES, �E, and F on the selected
candidates, using the logarithm of the likelihood

lnL �
X

i�events

ln
�X
j

NjPij�mi
ES;�E

i;F i�

�
�
X
j

Nj; (1)

where Pij is the product of probability density functions
(PDFs) for event i of mi

ES, �Ei, and F i, and Nj is the
number of events of each sample component j: signal,
continuum, combinatoric B �B decays, and B �B events that
peak in mES but not in �E signal region (denoted peaking
B �B background).

The signal is described by a Gaussian distribution in
mES, two Gaussian distributions with common mean in
�E, and a Gaussian distribution with different widths on
each side of the mean (‘‘bifurcated Gaussian distribution’’)
in F . Their shape is obtained from the high-statistics data
2-4
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FIG. 1. mES distributions in data for the four decay modes. In
solid markers are shown events weighted by Wsig (see text).
Following the presciption of [8] the mES variable was removed
from the likelihood to perform the second fit needed to obtain the
mES free yields and covariance matrix entering into Wsig. The
PDF used in the main fit is superimposed for comparison. For
comparison, the mES distribution obtained with j�Ej< 25 MeV
(2�) is included (dotted points).

TABLE I. Signal yields and purities.

Decay mode Signal yield Purity

B0 ! D�K0�� 230� 24 40%
B0 ! D�K�� 143� 14 73%
B0 ! D��K0�� 134� 17 46%
B0 ! D��K�� 78� 10 78%
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control samples B0 ! D����a�1 (similar topology of the
final state as the signal) for mES and �E, and B0 !
D���� for F , and all nine parameters are fixed in the fit.

The continuum and combinatoric B �B backgrounds are
described by empirical endpoint functions [7] in mES,
linear functions in �E, and bifurcated Gaussian distribu-
tions in F . The F distribution of continuum is obtained
from off-resonance data, while the F distribution of the
B �B backgrounds is obtained from Monte Carlo simulation,
and compared with data in high-statistics samples to ensure
that there is no significant difference. The two F distribu-
tions and the common endpoint in mES are fixed in the fit,
while the mES shape and �E distributions are left free to
float, leaving four out of 11 parameters free in the fit.

The peaking B �B background is parametrized by a
Gaussian distribution in mES, an exponential distribution
in �E, and shares the PDF in F with the nonpeaking B �B
background. The mean and width inmES of the peaking B �B
background are fixed to values obtained from Monte Carlo
simulation, which are consistent with values measured in
the �E sideband of data, thus adding one free and two fixed
parameters.

The likelihood function is determined by the 27 parame-
ters described above, of which all four yields and five
background shape parameters are fitted. Subsequent to
the fit, possible residual backgrounds from combinatoric
D and K0

S candidates are estimated using the sidebands of
mD and mK0

S
, and subtracted.

The three-body and quasi-two-body [that is B0 !

D����K��]) branching fractions are obtained by fitting first
without regard to event positions in the Dalitz plot, and
then with the requirement that the K0

S�
� invariant mass lie

within 100 MeV=c2 of the K���892� mass. Because of the
relatively small number of background events in the sec-
ond fit, all B �B shape parameters are kept fixed to the value
obtained in the first fit.

The results are shown in Fig. 1, while yields and purities
[defined as Nsig=�2�Nsig�] are listed in Table I, with the
K�� resonant part included in the three-body state. To
determine the three-body branching fractions optimally, a
mapping of the efficiency across the Dalitz plot is needed.
This is obtained from simulated signal events. Incor-
porating the efficiency variations (� 30%) across the
Dalitz plot requires a measure of the (a priori unknown)
event distribution in the Dalitz plot. We obtain the number
of signal events from the likelihood fit using weights
defined as

Wi
sig �

P
j

Vsig;jPij�mi
ES;�E

i;F i�

P
j
NjPij�m

i
ES;�E

i;F i�
; (2)

where Nj and Pij are defined as in Eq. (1), and Vsig;j is the
signal row of the covariance matrix of the component
yields obtained from the likelihood fit. These weights
Wi

sig, which in the absence of correlations are signal prob-
17180
abilities Psig=Ptotal, contain the signal distribution and its
uncertainty for any quantity, uncorrelated with the varia-
bles in the likelihood fit [8]. It has been checked that the
Dalitz variables have no significant correlation with the
likelihood fit variables. It should be noted that because of
2-5
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FIG. 2 (color online). Signal Dalitz distributions with events
weighted by Wsig and corrected for efficiency variations. Each
bin is colored according to its contribution to the branching
fraction. The bins in white also include the contributions which
are negative but still statistically compatible with zero.

TABLE II. Sources and sizes of systematic errors. The com-
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the use of the covariance matrix, the weight can be negative
especially for backgroundlike events.

The efficiency-corrected Dalitz distributions, weighted
by Wsig, are shown in Fig. 2. The K��892�� resonance is
dominant in both the B0 ! D�K0�� and B0 !
D��K0�� modes, while no other resonant structures are
significant. In the B0 ! D�K0�� channel, the spin-1 K��

meson has the helicity distribution dN=d cos� / cos2�,
where � is the angle between the K�� and the K0 in the
K�� center of mass frame. This can be seen in Fig. 3.
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FIG. 3. Distribution of cos� for data for the B0 ! D�K0��

decay mode in the K�� region using the signal weights Wsig and
correcting for efficiency variations. The solid curve shows the
expected spin-1 distribution dN=d cos� / cos2�.
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The systematic errors are summarized in Table II. Most
systematic errors are due to possible differences between
data and Monte Carlo calculations. The tracking efficiency
residuals and associated systematic error are obtained from
a large sample of � decays. The efficiency correction as a
function of the position in the Dalitz plot obtained from
simulated signal events comes with systematic uncertain-
ties due to resolution effects and binning, which are mostly
of statistical origin. A �1� variation of all fixed variables
in the fit, including relevant correlations, is used to obtain
the systematic from the uncertainty in the PDFs.

Our final branching fraction results, weighting the three
D0 modes according to their combined statistical and un-
correlated systematic error, are

B�B0 ! D�K0��� � �4:9� 0:7stat � 0:5syst� � 10�4;

B�B0 ! D��K0��� � �3:0� 0:7stat � 0:3syst� � 10�4;

B�B0 ! D�K��� � �4:6� 0:6stat � 0:5syst� � 10�4;

B�B0 ! D��K��� � �3:2� 0:6stat � 0:3syst� � 10�4:

To summarize, a clear signal is seen in both the B0 !
D�K0�� and B0 ! D��K0�� channels, and in both
modes the K��892�� resonance is dominant. Defining the
K� resonant fractions, f, as B�B0 ! D����K���B�K�� !
K0���=B�B0 ! D����K0���, we obtain the fractions
f�B0 ! D�K��� � 0:63� 0:08stat � 0:04syst and f�B0 !

D��K��� � 0:72� 0:14stat � 0:05syst, respectively, where
the systematic errors are mainly from correcting for any
possible nonresonant contributions.

Both the method of this analysis and the resulting three-
body branching fraction measurements are the first of their
kind, while the resonant decay modes have been measured
before [9]. To determine the sensitivity to � of these
modes, a time-dependent Dalitz fit is required, for which
the data sample is inadequate. However, the branching
bined errors take correlations into account. All numbers are in
percent.

Systematic DK� DK� D�K� D�K�

Tracking efficiency 5.9 5.9 6.1 6.3
PID efficiency 2.2 2.0 2.0 2.0
B�D��� � � � � � � 0.7 0.7
B�D�=0� 6.5 6.5 3.4 3.8
D��� reconstruction 0.7 0.7 1.2 1.2
K�� fraction fit � � � 3.7 � � � 5.1
B�K0

S� 0.2 0.2 0.2 0.2
K0
S reconstruction 1.8 1.9 1.9 1.9

�0 reconstruction � � � � � � 0.8 1.2
PDF parametrization 4.5 2.9 7.1 3.7
Efficiency variation 3.5 4.9 6.3 5.6
B �B counting 1.1 1.1 1.1 1.1

Combined error 11.0 11.6 12.6 12.2
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fractions and Dalitz distributions suggest that these modes
will be useful for measuring � at the B factories.
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