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Abstract 

Ancient transcriptional regulators can easily evolve new pair-wise cooperativity 

Kyle R. Fowler 

The immense diversity of life is astounding. Yet this variety is in stark contrast with life’s genetic 

similarity. Many of the same genes and even gene sequences are shared by much of the life on Earth. Thus, 

perhaps what best defines a species is not its gene complement, per se, but how those genes are used and 

regulated. Much of gene regulation depends on the binding of sequence specific transcription factors to cis-

regulatory sites in other gene promoters. Changes in these protein factors, or the DNA sites they bind, can 

alter gene expression and give rise to new traits and forms of life. Likewise, these transcription factors 

themselves may change, gaining (or losing) functionalities that alter the organism. For example, in some 

budding yeast species two ancient and unrelated transcription factors – Matα2 and MCM1 – acquired the 

ability to bind one another and co-regulate new genes. This facilitated the emergence of a new mode of 

combinatorial gene control in these species. In this work, I show that this new form of regulation likely 

arose easily due to the promiscuous nature of the Matα2-MCM1 interaction. This promiscuity allows for 

many alternative ways for Matα2 to bind MCM1 and involves widespread intramolecular epistasis within 

Matα2. The gain of new functional protein-protein interactions between transcriptional regulators, as 

explored here, is believed to be a general way that life diversifies and likely has broad implications. 

Understanding how and why new biological traits emerge is a fundamental question in biology.   



vii 

 

Table of Contents 

 

Chapter 1 Introduction ………………………………………………………………..…………1 

  References …………………………………………………………………..………..4 

 

Chapter 2 Ancient transcriptional regulators can easily evolve new pair-wise cooperativity …..8 

  References …………………………………………………………………………..41 

  



viii 

 

List of Figures 

 

Chapter 2 

 Figure 2.1 Evolution of the Matα2-MCM1 interaction and the discovery of novel  

functional variants ………………………………………………………………………………..31 

 Figure 2.2 Functional Matα2 proteins with highly degenerate interaction interfaces ……..……..33 

 Figure 2.3 Functional Matα2-MCM1 interactions exhibit rampant intra-domain epistasis .……..35 

 Figure 2.4 The fitness landscape of the Matα2-MCM1 interaction …………………….….…….36 

 Supplementary figure 2.1…………………………….…………………………………………...37  

 Supplementary figure 2.2………………………………….……………………………………...38  



ix 

 

List of Tables 

 

Chapter 2 

 Table 2.1 Matα2 variant mating efficiencies ………...…………………………………………. 39 

 Table 2.2 Saccharomyces cerevisiae strains used in this chapter ……………………....………. 40 

 

  



1 

 

 

 

 

 

 

 

 

 

 

 

Chapter One 

 

Introduction 

 

  



2 

 

Any genetic change has the potential to alter an organism’s phenotype. Genetic changes can arise 

in multiple ways: de novo mutations, for example, generate novel DNA sequences, while recombination 

shuffles together novel configurations of existing genetic diversity. Geneticists have long studied the 

physical manifestation and consequence of mutation and recombination (Creighton and McClintock, 1931; 

Harris et al., 1994; Muller, 1964). Even before the discovery that DNA was the primary molecule of 

heritability, the study of genetics has been intimately coupled with the study of heritable phenotypes 

(Johannsen, 1911). Some genetic variation results in a predictable change to the organism, which can be 

either beneficial, detrimental, or neutral with regard to an organism’s ability to reproduce and propagate 

that genetic change. Most genetic phenotypes, however, exhibit complicated and unpredictable patterns of 

inheritance that depend on other genetic factors (Bateson and Mendel, 1911; Elena and Lenski, 1997; 

Fisher, 1919; Phillips, 2008; Tong et al., 2004). This phenomenon of genetic interactions – termed epistasis 

– means that the effect of a mutation depends on the genetic background (Bateson and Mendel, 1911; Fisher, 

1919). Because of this context-dependence, many mutations don’t have any immediate effect on the 

phenotype of the population, though they will still contribute to genetic diversity. The significance of these 

unseen mutations – and of epistasis – wouldn’t become apparent for many more years.  

Genetically diverse model organisms, such as those among the Saccharomycotina fungi, have 

proven instrumental in the study of epistasis. This fungal lineage spans an incredible evolutionary distance 

– approximately equal to the diverge of humans from sea squirts – and therefore provides diverse genetic 

contexts in which to study mutations (Shen et al., 2018). Many epistatic interactions are even harbored 

amongst the standing genetic diversity found within individual species, such as among strains of the 

budding yeast Saccharomyces cerevisiae, which have dispersed around the world and are found in diverse 

ecological niches (Brem et al., 2005; Fournier et al., 2019; Fournier and Schacherer, 2017; Peter et al., 

2018). Mutations that affect many diverse cellular processes, such as DNA mismatch repair and sugar 

metabolism, have been found to have strain-specific effects and depend on other genetic factors dispersed 

throughout the genome (Heck et al., 2006; Sato et al., 2016). Mapping these modifier sites is difficult but 
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often localize to other genes in the same or related pathways (Costanzo et al., 2016; Segrè et al., 2005). 

Indeed, many instances of intermolecular epistasis involve epistatic interactions across a molecular 

interface, such as between a transcription factor protein and its cis-regulatory sequence, or between a kinase 

and its target (Podgornaia and Laub, 2015; Starr et al., 2017). This work highlights the ubiquity of epistasis 

between diverse molecules and among complex genetic systems. 

Intramolecular epistasis conversely involves genetic interactions between different parts of the 

same molecule, such as among amino acid residues in a protein. Just as epistasis emerges from complex 

molecular pathways, so too can it be found among the network of amino acid interactions within a protein 

(Miton et al., 2021; Starr and Thornton, 2016; Storz, 2018). Because protein evolution (or engineering) 

involves the alteration of these amino acid networks, epistasis can influence which outcomes are 

permissible. Given that the gene (and its encoded protein) are considered the fundamental unit of heredity, 

intramolecular epistasis likely has profound evolutionary implications. In this thesis, I investigate the 

significant influence of epistasis on the evolution of a new trait, namely combinatorial gene regulation. 
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Abstract 

Cells regulate gene expression by the specific binding of one or more transcription regulators to 

cis-regulatory sequences. Pairwise cooperativity between regulators – whereby they physically interact and 

bind DNA in a cooperative manner – permits complex modes of gene regulation. The combinatorial 

interactions of transcriptional regulators represent a major source of phenotypic novelty, facilitating the 

integration of new target genes or new inputs into gene networks, and resulting in increased network 

complexity. How functional cooperative interactions arise between regulators is poorly understood, despite 

abundant examples in nature of pairwise interactions. Here we explore a protein-protein interaction between 

two ancient transcriptional regulators in ascomycete yeasts that were recently (at least 200 million years 

ago) gained. This newly-formed interaction was due to the acquisition of a short amino acid sequence in 

the homeodomain protein Matα2 which interacts with the MADS-box regulator MCM1 and causes the two 

proteins to bind DNA cooperatively. By combining deep mutational scanning with a functional selection 

for cooperativity, we tested millions of possible alternative evolutionary solutions in the sequence space of 

this interaction interface. Our selection and analysis of functional alternatives reveals biochemical 

principals guiding and constraining the evolution of cooperativity. The newly-evolved solutions are highly 

degenerate, with diverse amino acid chemistries permitted at all positions but with widespread epistasis 

limiting functional solutions, yet ~45% of the random sequences function as well or better than the naturally 

evolved sequence. Permissive contexts often involve large aromatic residues, emphasizing biochemical 

properties that facilitate cooperativity without being strictly necessary. This work highlights how natural 

solutions often represent a single evolutionary path in a vast landscape of alternatives. We propose that the 

capacity of ancient transcriptional regulators to easily gain new combinatorial interactions contributes to 

the rapid evolution and diversification of transcriptional networks. 
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Introduction 

Combinatorial control of gene expression allows for complex transcriptional networks to evolve 

(Johnson, 2017; Sorrells and Johnson, 2015; Wang et al., 2005). While some transcriptional regulators work 

on their own, most act in combination with additional regulators. Gene networks – sets of functionally 

related genes controlled by shared cis-regulatory sequences – are typically bound and regulated by multiple 

regulators simultaneously (Lee et al., 2002; Nobile et al., 2012; Sorrells and Johnson, 2015). Co-regulation 

is often facilitated by specific cooperative interactions between pairs of different regulators that are essential 

for the binding of the regulators on cis-regulatory sequences (Jolma et al., 2015; Mead et al., 1996; Monahan 

et al., 2017; Pilpel et al., 2001; Ravasi et al., 2010). 

The rewiring of gene networks over evolutionary timescales is an important source of phenotypic 

novelty (Li and Johnson, 2010; Wray, 2003). Over evolutionary time, both cis-regulatory sequences and 

the regulatory proteins that bind them change, either neutrally or adaptively. Although transcription 

regulators often preserve their DNA-binding specificity over long evolutionary times, changes within 

regulators can give rise to new combinatorial interactions between established regulators and allow for 

large-scale rewirings (Sorrells et al., 2018; Tuch et al., 2008). Although extensive pleiotropy is thought to 

significantly constrain changes in regulatory proteins, there are well-documented instances of changes in 

the transcriptional regulators themselves, including the gain or loss of protein-protein interactions (Britton 

et al., 2020; Sorrells et al., 2018). 

One well-studied gain of a protein-protein interaction is found in a particular clade of fungi where 

the ancient homeodomain protein Matα2 binds DNA cooperatively with the MADS box protein MCM1 

(Figure 2.1A)(Vershon and Johnson, 1993). This cooperativity arose when Matα2 gained the ability to 

physical interact and cooperatively bind DNA with MCM1 within the clade; the interaction is not found in 

species outside the clade (Baker et al., 2012; Britton et al., 2020). The emergence of the interaction is due 

to changes only in Matα2; the MCM1 surface involved in the interaction is deeply conserved and did not 

change when the interaction evolved (Mead et al., 2002, 1996; Tsong et al., 2006). The novel Matα2-MCM1 
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interaction facilitated the formation of a new transcriptional network to repress the a-specific genes, which 

are involved in cell type specification. Prior to this new form of transcriptional control, the a-specific genes 

were instead positively regulated by the single HMG-domain protein Mata2, which was subsequently lost 

in many species within the clade (Butler et al., 2004; Tsong et al., 2006). Thus, the emergence of this protein 

interaction marked a fundamental shift in the mode of gene regulation – from positive to negative – and in 

the transcription regulators responsible for it. 

The cooperative interaction between Matα2 and MCM1 is due to a short (approximately 7-11 amino 

acid) region of Matα2 (Mead et al., 1996; Tsong et al., 2006). A crystal structure of the Matα2-MCM1 

complex bound to DNA shows that this region forms a short beta-strand when bound to MCM1 (Tan and 

Richmond, 1998). Numerous contacts between the two proteins occur over a relatively small (~20 Å) 

interface, including an apparent cation-pi interaction with a phenylalanine in Matα2. Prior genetic work 

(alanine-scanning) has shown that seven contiguous residues in this region of Matα2 (including the above 

phenylalanine) are essential for efficient a-specific gene repression (Mead et al., 1996). 

In this work, we investigate the emergence and evolvability of combinatorial gene regulation using 

the Matα2-MCM1 complex as a model. We began with the pairwise interaction missing and selected from 

a highly diverse pool of Matα2 variants those that could efficiently repress transcription in combination 

with MCM1. We uncovered many distinct alternatives to the “naturally evolved” sequence, suggesting that 

functional interactions can arise with relative ease. Indeed, nearly half of the derivatives we assayed worked 

as well or better than the natural sequence. From these variants we discern rules and constraints governing 

the emergence of cooperativity between transcriptional regulators. This work provides a mechanistic basis 

for long-standing observations of transcription network plasticity and highlights the importance of epistasis 

in the evolution of new protein-protein interactions. 
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Results 

Selection for cooperative gene repression from a library of Matα2 mutants 

In S. cerevisiae, expression of the gene CAN1 in the presence of canavanine in the medium arrests 

cell growth (Gocke and Manney, 1979). We replaced the endogenous CAN1 promoter with a synthetic 

constitutive construct containing a Matα2-MCM1 cis-regulatory sequence (Figure 2.1B). When bound by 

Matα2-MCM1, which requires pairwise-cooperativity between the proteins, this sequence element brings 

about strong transcriptional repression of CAN1 and allows growth in canavanine. S. cerevisiae a-cells 

(which lack Matα2) transformed with this selection system were susceptible to canavanine even at low 

concentrations (MIC ~1 µg/mL) and failed to produce colonies on solid media containing canavanine. 

Conversely, α-cells (which produce Matα2) transformed with this system were able to grow in the presence 

of high concentrations of canavanine (MIC > 100 µg/mL) and produced large uniform colonies on solid 

media containing canavanine. 

We generated two different Matα2 mutant libraries based on the S. cerevisiae protein. Both libraries 

consist of Matα2 from S. cerevisiae with its endogenous promoter cloned into a low-copy plasmid and 

mutations introduced at key positions that mediate its interaction with MCM1. The first library introduced 

individual amino acid changes at eleven consecutive residues (G113-M123) known to span the sequence 

of Matα2 that interacts with MCM1. Variants in this library possess a single amino acid change relative to 

the wild-type protein. Seven of these eleven positions (114-120) represent the essential “core”, which 

interacts directly with MCM1 as observed in a crystal structure of the Matα2-MCM1 complex bound to 

DNA (Tan and Richmond, 1998). A wild-type Matα2 construct (Sc-α2) was also included as a control. 

In the second library, we randomized the seven core residues using an NNK oligonucleotide and 

obtained ~1.2 million constructs with unique amino acid combinations. Variants in this library differ from 

the wild-type protein, on average, at all seven amino acids. With this library we sought to estimate the 

ubiquity of functional proteins and thereby reveal the ease with which this function could evolve. The total 

number of possible amino acid combinations in this library is immense (207 or ~1.3 billion possibilities) 
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and technically infeasible to sample completely. However, we reasoned that even a sparse sampling of this 

sequence space could reveal important functional trends. 

To screen for functional variants of Matα2 that could interact with MCM1, we transformed the 

Matα2 mutant library into S. cerevisiae a-cells where the only expressed Matα2 protein is from the plasmid 

library. As a control, we spiked in cells carrying the wild-type Sc-α2 plasmid at a concentration of 0.1%. 

Cells with the Matα2 constructs were then grown for 24 hours in media either lacking canavanine 

(representing the pool of unselected variants) or at 250 µg/mL to enrich for functional variants. Following 

growth, the Matα2 plasmid was purified from the final populations and sequenced deeply. The frequency 

of any given construct among the reads from each pool correlates with its abundance in that population of 

cells. We can then calculate a fold-change (FC) for each construct after selection relative to either the 

starting population or the population grown without canavanine selection, allowing us to control for growth 

effects due to the vector or protein expression. For example a FC of < 1 means that the sequence was 

selected against in canavanine. This fold-change allows us to estimate relative fitness for each sequence 

examined. 

In both libraries, Matα2 mutants with premature stop codons diminished in frequency in the 

population and therefore exhibited low FCs. Conversely, the frequency of the wild-type Sc-α2 gene – as 

well as those bearing synonymous mutations – remained stable after selection (Figure 2.1C & 2.1D). The 

fully functional Sc-α2 had a FC around 1.0 and was surpassed by numerous other constructs. This indicates 

that our selection regime successfully enriched for functional Matα2-MCM1 interactions. 

 

The evolved S. cerevisiae interaction is robust to many single amino acid changes 

Using the first library, we assessed the consequences of single amino acid mutations on Matα2-

MCM1 function. Many amino acid substitutions were well tolerated and remained at high frequency after 

selection (Figure 2.1D). For example, the extant glycine at the first position (G113) could be substituted 

with any other amino acid without a significant fitness effect (Figure 2.1E). Previous work similarly found 
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G113A to be permissive for Matα2-MCM1 function, while the next seven “core” positions (L114-T120) 

were much more sensitive to alanine substitution. This pattern was also apparent in our screen: mutation of 

a core residue was more likely to be detrimental than mutation of a neighboring residue. This was especially 

apparent for certain amino acid replacements. For example, the core was especially sensitive to amino acids 

with negatively charged (D/E) or small (G/A) side chains. 

Notably, not all positions were equally sensitive to mutation. The phenylalanine at position 116 is 

especially critical, as many substitution mutations were highly detrimental (Figure 2.1E). However, 

replacement with another large aromatic (e.g. F116W) or aliphatic residue (F116I) did not diminish its 

function, suggesting that a bulky or hydrophobic side chain at this position is critical for the naturally 

occurring Matα2-MCM1 interaction. Aromatic amino acids were also tolerated at other positions 

throughout the region: mutation to phenylalanine, tryptophan, or tyrosine at most positions had little or no 

effect. Together these results suggest the Matα2-MCM1 interaction depends broadly on hydropathy, as well 

as specific side chain chemistries at critical positions. These apparent requirements may have constrained 

the naturally occurring Matα2-MCM1 interaction once it had formed. 

 

Abundant functional alternative interaction domains 

Single amino acid mutations tell us which individual residues contribute to function for a given 

configuration (in this case, Matα2 of S. cerevisiae), but this approach does not reveal the broad spectrum 

of possible solutions. To address this question we turned to our second library where the interfacial positions 

of Matα2 were randomized generating a complex library of amino acid sequences. This library of random 

interfaces (which is not based on the naturally occurring interface) reflects the possibilities of de novo 

evolution of a cooperative interaction.  

We used the selection scheme described above to enrich for functional Matα2 variants that had the 

ability to cooperate with MCM1. Following selection, these Matα2 variants exhibited a broad, largely 

symmetric fitness distribution with a median FC around one (Figure 2.1C). The Sc-α2 construct also 
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exhibited a FC close to one (0.93) and was surpassed by many variants, indicating a large dynamic range 

of “successful” variants, many of which perform better in the selection scheme than the naturally occurring 

Sc-α2. 

Using the naturally occurring Sc-α2 as a basis for comparison, we estimate that ~35% of variants 

in our library (> 100,000 unique proteins) are at least as functional as the extant protein in our transcriptional 

repression assay (Figure 2.1C). We refer to these as “fit” Matα2 variants. This high frequency was 

reproducible between replicates and robust to read depth: when variants with a low starting frequency were 

excluded, the percentage of fit sequences was even higher approaching ~45%. Thus, many combinations 

of random amino acids result in a functional Matα2-MCM1 complex. This suggests that a sizable fraction 

of this sequence space is functional. 

We note that it is difficult to capture and quantify low abundance variants due to stochastic 

losses/gains, especially if variants are unfit and decrease in frequency. Indeed, many variants exhibiting 

low fitness (low FC) were poorly recovered in replicate experiments and exhibited relatively noisy FC 

values (Supplemental figure 2.1A). Among the variants with a high starting frequency, however, we find 

the FC values to be highly reproducible. This further confirms that 35-45% of the variants examined here 

are at least as functional as Sc-α2. This result suggests that the evolution of cooperativity between these 

two ancient transcription factors can occur with relative ease. 

 

Functional Matα2 variants are diverse and degenerate 

What is the molecular basis for this large number of functional alternatives? Do their solutions 

exhibit any patterns? When we align the amino acid sequences of fit variants (those at least as functional 

as Sc-α2), we find that no position is strongly constrained and, instead, many amino acids are tolerated at 

each position (Figure 2.2A). For example, among the 100 most fit sequences, all amino acids except proline 

can be found at each position (Supplemental figure 2.1B), consistent with our observation that many 

different sequences can functionally interact with MCM1. Tabulating the amino acids from variants at least 
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as fit as Sc-α2 did reveal a bias for certain residues, such as for phenylalanine and leucine, with proline and 

charged residues being disfavored (Supplemental figure 2.1C). Because these preferences are not strongly 

position specific, they are not readily apparent in Figure 2.2A. 

To further investigate these preferences, we assessed how individual residues and positions 

contributed to fitness. Normalizing amino acid frequencies to their abundances in the unselected library 

revealed how residues increased or decreased in frequency after selection, and therefore which residues 

likely promote function (Figure 2.2B). Phenylalanine showed the strongest enrichment at each position, 

followed by most aliphatic amino acids and tryptophan. Disfavored amino acids were primarily charged. 

Most striking, however, is the lack of position-specificity: all sites share the same general pattern. This is 

in sharp contrast to the effects of individual mutations on the extant Sc-α2 protein, which exhibited strong 

position-specific effects, such as the strong dependence on F116 (Figure 2.1E). Thus, the fitness landscape 

for this protein-protein interaction using small deviations from the naturally occurring Sc-α2 is not broadly 

representative and may severely underestimate the range of possibilities. 

While many amino acid preferences are not position-specific in the broad sense, some positions do 

exhibit quantitative differences. For example, phenylalanine seems universally beneficial at all positions, 

yet F114 was only slightly enriched while F120 was strongly favored. Similarly, selection against 

disfavored residues was stronger at this latter position than at other positions. This quantitative bias largely 

increased with each position (reading from N- to C-terminus) with the most C-terminal position (T120) 

being most significant. This analysis indicates that an amino acid’s contribution to fitness is largely intrinsic 

(e.g. phenylalanines are broadly beneficial) but the quantitative effect depends on position or context. 

 

Testing the fitness of Matα2 variants in their natural setting 

The analysis described here relied on the ability of Matα2 variants to repress transcription of a 

CAN1 reporter construct. We tested several variants spanning the entire range of FC values by replacing 

the endogenous Matα2 locus with the variant and monitoring the resulting phenotype, namely, the ability 
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to mate, which requires repression of multiple a-specific genes by Matα2. Using a quantitative mating assay, 

we measured the mating efficiencies of α-cells bearing either wild-type or mutant Matα2. Cells with wild-

type Matα2 were highly proficient at mating (Table 1). In contrast, replacing the MCM1 interaction region 

of Matα2 with that of C. albicans, which diverged prior to the emergence of the interaction, strongly 

reduced mating efficiency. Replacement with variants from our library resulted in a range of mating 

efficiencies. Cells bearing Matα2 variants with low FC scores mated as poorly as the C. albicans-like 

protein. Conversely, no difference was observed between the mating efficiencies of the highest scoring 

variant (FC=5.2, core sequence PCLRFVF) and wild-type Matα2. However, a variant with an intermediate 

FC of 1.6 which indicates proficient growth in the bulk canavanine competition was mating deficient. This 

discrepancy likely reflects the different requirements of these assays: repression of the a-specific genes for 

mating involves the binding of Matα2-MCM1 to varied cis-regulatory sequences at multiple genes while 

growth in canavanine involves binding a single sequence at CAN1. Thus, novel Matα2 variants that are 

proficient at repressing our CAN1 reporter also function as well as the wild-type Matα2 in its natural setting 

to repress the a-specific genes and allow mating. 

 

Fitness effects are strongly context dependent and non-additive 

A single phenylalanine or leucine in the mutated sequence seems to promote fitness at all positions 

(Figure 2.2B), but two phenylalanines occurred less frequently together than expected (Figure 2.2C). This 

was not the case for leucine, with leucines co-occurring as frequently as expected assuming independence. 

Such non-additive interactions are indicative of intramolecular epistasis, so we next examined epistasis 

more systematically. 

Absent epistasis, amino acids favored (or disfavored) at one position should remain favorable 

regardless of adjacent residues. We therefore assessed amino acid favorability in different contexts.  For 

example, among variants with a phenylalanine at the seventh position (7F), the pattern of 

favored/disfavored amino acids differs from that in the general population (Figure 2.2D). This context-
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dependence is amino acid and position specific. To reveal how the pattern changes in the context of 7F, we 

further normalized the amino acid frequencies among the 7F subset to the overall frequencies post-selection 

(Figure 2.2E). Surprisingly, all previously favorable amino acids (e.g., aromatic residues) were less 

abundant in the presence of 7F, while disfavored amino acids (e.g., charged residues) were more abundant. 

Even prolines, which were generally selected against and known to be disruptive to protein secondary 

structure, were enriched among 7F variants. This pattern was highly idiosyncratic, however, with drastically 

different amino acid biases exhibited by fixing different amino acids at different positions. However, each 

position seemed to toggle between two distinct patterns: enrichment of aromatics and aliphatics and 

depletion of charged residues (as in Figure 2.2B), or the inverse (as for the 7F subset in Figure 2.2E). This 

conclusion can be visualized by correlating the position-specific amino acid frequencies of each subset (i.e., 

F1, W1, etc.) to the frequencies observed overall (Figure 2.2F). Notably, in every context the 7th position 

was strongly influential, and the effect depended entirely on the fixed amino acid. Thus, the successful 

protein-protein interactions are characterized by complex epistatic interactions, with amino acid preferences 

across the interface being strongly contingent on the amino acids at other positions, especially at the 7th 

position. 

 

Rampant intra-molecular epistasis between all positions 

We further probed the extent and nature of this epistasis. Given that many of the interactions with 

phenylalanine were both position- and amino acid-specific, we wished to quantify pairwise epistatic 

interactions between all amino acid states across the seven positions. To do so, we first determined the 

frequency of each amino acid at each position among the fit variants (Figure 2.3A). We then calculated the 

expected co-occurrence of each amino acid state pair assuming independence (i.e. no epistasis). Deviations 

from this expectation indicate a genetic interaction between residues (Figure 2.3B). 

We found numerous instances of both positive and negative epistatic interactions (Figure 2.3B). 

For example, the heat map illustrating the relationship between the first and seventh positions reveals that 
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many amino acid pairs exhibit some degree of epistasis (Figure 2.3C). This pattern was consistent between 

replicate selections and was not observed in the absence of selection (Figure 2.3B & supplemental figure 

2.2A). In sum, 29% of all pairs of amino acid states along the interface exhibited a significant epistatic 

interaction, with positive and negative interactions equally represented. Consistent with the analysis 

discussed above, epistatic interactions were notably stronger and more numerous between position 7 and 

all other positions (Figure 2.3D). 65% of all amino acid state pairs involving position 7 exhibited epistasis. 

This epistasis likely reflects distinct structural differences between positions along this interface, and likely 

influences how this interaction evolves. 

As a final analysis of epistasis, we asked whether the naturally occurring Matα2 sequence that 

interacts with MCM1 (e.g., L1, V2, F3, etc.) is subject to more or less epistasis than the sequences that 

arose in our experimental system. We did not find significant differences between the wild-type amino acid 

states and our variants in this regard. This observation suggests that the amino acids found in S. cerevisiae 

are not distinct from the numerous other functional alternatives with regard to epistatic interactions. 

 

The rugged fitness landscape for the Matα2-MCM1 interaction 

Can the Matα2 variants examined in this study help us understand how this function evolved? 

Fitness landscapes describe how function relates to sequence changes, and the topography of such 

landscapes can be smooth or rough depending in part on interactions (epistasis) between mutations. Sign 

epistasis – whereby the sign of a mutation’s fitness effect depends on the genetic background, thus positive 

in some contexts and negative in others – results in rugged fitness landscapes. This is known to constrain 

mutational paths toward higher fitness by stalling populations at local maxima which are difficult to move 

away from.  

An empirical determination of a complete fitness landscape for seven resides as examined here is 

technically not possible because the sequence space is so vast. We instead relied on our sparse but broadly 

sampled sequence set to assess general features of the Matα2-MCM1 interaction landscape. We took 
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advantage of the ~11,000 pairs of variants in our library that differ by a single amino acid. Each pair 

represents a single mutational step sampled randomly from across the entire fitness landscape. 

Using such pairs, we can ask how often a single amino acid mutation significantly altered function. 

Using the fitness of the naturally occurring Sc-α2 to define the functional threshold, we found that most of 

the single mutations did not significantly impact function: both sequences either remain fit or unfit (Figure 

2.4A). Overall only 20% of mutation pairs exhibit a functional change (i.e. one is fit and the other unfit). 

When these pairs were grouped by the mutation’s location, we find that not all positions are equal: 35% of 

mutations effect function at position 7, whereas only 15% at position 1 (Figures 2.4A & 2.4B). This 

independent analysis confirms the conclusions described above that position 7 exhibited the most epistasis 

(Figure 2.3D). This analysis also allowed us to ask whether particular amino acids were more or less likely 

to alter fitness. After grouping mutational pairs by their sequence difference, we found that the gain of 

specific residues drastically altered function (Figure 2.4A). For example, mutation of position 7 to a 

phenylalanine (7F) from any other amino acid was highly beneficial: in 90% of contexts (n=…), the 7F 

mutation resulted in a functional protein (by either retaining or gaining functionality). This pattern was not 

observed when phenylalanine was instead substituted at position 1, again highlighting the complex 

interaction between amino acid and position. 

We can also learn something about the fitness landscape by considering all mutational pairs with 

at least one fit sequence, as these represent mutational steps on or around fitness peaks. The magnitude of 

the fitness difference between such mutational pairs describes the ‘steepness’ of the peak, while the 

landscapes overall ‘smoothness’ can be estimated from the fraction of all mutation pairs that don’t 

compromise function. Of these fitness peak-associated pairs, we find that 40% of mutations compromise 

the function of random fit variants (i.e. reduce fitness below that of Sc-α2). This suggests that many 

functional sequences exist on broad fitness peaks where more than half of potential mutations are 

permissible. 
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Is mutational robustness also characteristic of the natural occurring Matα2 protein – such as Matα2 

from S. cerevisiae? Since our randomized and point mutant libraries of Matα2 are in the same genetic 

background and used the same selection regime, we can directly compare the effects of single point 

mutations with the above. As with the random fitness peaks, we find that Matα2 from S. cerevisiae is 

similarly sensitive to mutation using the same criteria: 43% of all point mutants lost function. This similarity 

suggests that extant Matα2-MCM1 interactions occupy a fitness peak similar to the others probed here, at 

least in terms of mutational accessibility. 

Discussion 

 In this work we investigated how ancient transcriptional regulators acquire protein-protein 

interactions that result in the cooperative control of a target gene. The natural interaction between Matα2 

and MCM1 found in S. cerevisiae provides an excellent case study. We investigated many of the 

evolutionary ‘paths not taken’ by Matα2 to uncover the constraints – or seemingly lack thereof – governing 

the emergence of this interaction. There apparently exist many diverse protein interfaces capable of 

mediating a functional, cooperative interaction with MCM1. We relied on this chemically and structurally 

diverse set of novel MCM1-interacting interfaces to reveal rules and constraints, including widespread 

intramolecular epistasis, that underlie this diversity.  

Many deep mutational scans focus primarily on the consequences of many single point mutations, 

while our approach allows us to assess combinations of mutations (Fowler and Fields, 2014; Hietpas et al., 

2011; McLaughlin Jr et al., 2012; Roscoe et al., 2012, 2013). We feel this consideration is especially 

important when studying the evolution or engineering of proteins. Protein interactions are a distributed 

property involving multiple interfacial amino acids, and the mutation of which can have unpredictable 

results (Aakre et al., 2015; McClune et al., 2019; Podgornaia and Laub, 2015; Starr et al., 2017). The 

appearance of highly idiosyncratic (epistatic) mutational effects suggests that the behavior of single mutants 

poorly predicts the consequences of mutations in different contexts or for combinations of mutations. 
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When researchers have tested combinations of mutations, epistasis has frequently emerged in other 

studies of protein evolution (Aakre et al., 2015; Podgornaia and Laub, 2015; Pokusaeva et al., 2019; 

Sarkisyan et al., 2016; Starr et al., 2018). Notably, other kinds of pair-wise protein-protein interactions have 

revealed instances of intramolecular epistasis. For example, particular residues in the interface between the 

E. coli PhoQ protein kinase and its substrate PhoP exhibit epistatic interactions involving a handful of 

residues (Podgornaia and Laub, 2015). Likewise, the evolution of bacterial toxin-antitoxin proteins appears 

to frequently involve intermediate antitoxins that are promiscuous, allowing the antitoxin to simultaneously 

recognize and inactivate an ancestral cognate toxin as well as newly evolved toxin targets (Aakre et al., 

2015). Such promiscuous intermediates facilitate the evolution of new toxin-antitoxin specificities by 

avoiding non-functional (or less-functional) intermediates. The emergence of this promiscuity frequently 

depended on epistatic interactions between residues, with the promiscuous intermediate state being 

contingent on the order of mutations (Aakre et al., 2015). Likewise, the epistasis we observe between 

residues of Matα2 appear to facilitate the emergence of a new function, namely the interaction with MCM1. 

The degree of epistasis observed here, however, is unprecedented. We found that every position of the 

interface, for multiple amino acid states, exhibits epistasis. Other instances of intramolecular epistasis have 

involved one or a few positions, and typically between specific amino acids (Aakre et al., 2015; Podgornaia 

and Laub, 2015; Puchta et al., 2016; Sarkisyan et al., 2016). 

The functional paths through this sequence space are thus difficult to predict due to this epistasis. 

Nonetheless, the preference for aromatic and hydrophobic residues is striking. Our analysis of diverse 

Matα2 variants that differ by a single residue suggests that the addition (or removal) of a phenylalanine 

dramatically affects fitness regardless of its position. This is also the case for tryptophan and tyrosine but 

to a lesser extent, suggesting aromatic side chains generally promote the formation of this interaction. 

Notably, aromatic amino acids still epistatically interact with other residues, indicating that while such 

residues may be broadly beneficial, the neighboring amino acids modulate the effect. 
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The apparent rules governing the Matα2-MCM1 interaction are reminiscent of ‘fuzzy’ interactions 

involving activation domains (ADs) of some transcription factors (Brent and Ptashne, 1985; Tompa and 

Fuxreiter, 2008). The ectopic expression of ADs is sufficient to stimulate transcription and involves binding 

the Mediator complex (Brzovic et al., 2011; Kornberg, 2005; Tuttle et al., 2018). Akin to the Matα2-MCM1 

interaction, ‘fuzzy’ binding involves degenerate interfaces that are enriched for hydrophobic residues and 

favor aromatic residues (Brzovic et al., 2011; Sanborn et al., 2021; Warfield et al., 2014). Besides bulky 

hydrophobic residues, ADs are frequently negatively charged; the opposite is observed among Matα2 

variants able to function with MCM1. This suggests AD- and Matα2-mediated interactions may have a 

similar basis despite the apparent binding geometries being fundamentally different. ‘Fuzzy’ AD binding 

involves multiple sites on Mediator, with ADs capable of binding in multiple discrete conformations, while 

Matα2 binding MCM1 likely involves a single site (Brzovic et al., 2011; Sanborn et al., 2021). Though it 

remains possible that some Matα2 variants identified here may bind MCM1 in a manner distinct from that 

of the S. cerevisiae protein, and may involve more than one conformation. 

Why do some protein interaction interfaces exhibit epistasis and functional degeneracy while others 

are more constrained? It’s possible the evolutionary histories of these proteins influence how these 

interactions emerge. The above antitoxin proteins, for example, have evolved under strong positive 

selection to maintain tight toxin binding even if the affinities are promiscuous (Aakre et al., 2015). Because 

loss of toxin protection results in a strong growth defect, this may promote the evolution of mutational 

robustness in antitoxin proteins and profoundly change the evolvability of the system.  Conversely, the gain 

of a novel interaction interface in an unconstrained and highly variable protein region – as with Matα2 – 

may have fundamentally different constraints. 

Finally, we bring up an apparent paradox raised by our results: if so many solutions exist for a 

functional interaction between Matα2 and MCM1, why is the naturally occurring solution preserved across 

a whole clade of closely related species. We consider three possibilities. (1) There is some other function 

for this region of Matα2 that constrains its sequence. This possibility seems unlikely given the detailed 
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biochemical, genetic, and structural studies of Matα2 over the past three decades, which has revealed its 

only role is interacting with MCM1 to promote mating by repressing the a-specific genes (Mead et al., 

2002, 1996; Vershon and Johnson, 1993). The fact that one of our randomly chosen de novo variants (which 

lacked any resemblance to the naturally occurring sequence) functioned and properly recapitulated Matα2-

MCM1’s role in promoting mating does argue against an “unknown” function, at least one that would have 

a noticeable consequence on the cell. (2) The MCM1-interacting sequence of Matα2 is constrained to 

prevent promiscuous interaction of Matα2 with other transcriptional regulators. Over the short term, we 

know that the de novo functional Matα2’s did not cause a noticeable fitness defect because in the control 

experiments (that is, in the absence of canavanine) their representation in the library did not increase or 

decrease. However, it is possible over evolutionary timescales that small defects caused by promiscuous 

Matα2’s could constrain its sequence. (3) The naturally occurring sequence is precisely optimized so that 

even small changes which weaken or strengthen the interaction are selected against over long evolutionary 

times. 

In conclusion, the purpose of this study was not to trace the historical evolution of an extant protein-

protein interaction that allowed two ancient transcriptional regulators to cooperatively regulate gene 

expression. Rather, the purpose was to explore the range of possible solutions that could create such a 

functional interaction. Our finding that approximately 40% of random amino acid sequences can 

recapitulate a functional interaction between two ancient proteins suggests that new interactions between 

existing transcriptional regulators are sampled continuously over evolutionary time, some of which are 

maintained by selection. We suggest that the weak, degenerate nature of the pair-wise cooperative 

interaction observed here is broadly applicable and could facilitate the relatively rapid rewiring of 

transcription networks and the arrival of new phenotypes. 
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Materials and Methods 

S. cerevisiae strain construction 

 All S. cerevisiae strains were in the S288C background and grown on yeast extract peptone dextrose 

(YEPD) media at 30°C unless otherwise indicated. Transformations were conducted using the standard 

lithium acetate/polyethylene glycol method (Gietz and Woods, 2002). In the S288C a cell, the CAN1 gene 

was engineered to be repressed by Matα2-MCM1 by inserting immediately upstream of the CAN1 ORF a 

PCR product amplified from pKF145 using oKF437 and oKF438. This PCR product contains part of the 

CYC1 promoter with a Matα2-MCM1 cis-regulatory sequence from STE2 inserted upstream of its 

transcriptional start site. The resulting strain yKF230 constitutively expresses CAN1 in the absence of 

Matα2 but strongly repressed by Matα2-MCM1. Deletion of the silent Matα locus (HML) in yKF230 used 

a NatR marker amplified from pFA6a-natMX with homology to HML and resulted in yKF231. The initial 

Matα2 selection screen was done in yKF230 (in which HML is intact) with all subsequent work being done 

in yKF231 (HMLΔ). All genetic manipulations were confirmed by PCR and DNA sequencing. 

 

Matα2 expression plasmid construction 

 Matα2 and its endogenous promoter were synthesized as gBlocks (IDT) and ligated together before 

being inserting into the AscI site of pRNDM (Addgene), a compact CEN/ARS plasmid, to generate 

pKF146. This Matα2 expression plasmid was subsequently digested with NdeI and AgeI and oKF457 was 

inserted to generate a mutant Matα2 with a unique EcoRV site in place of the MCM1 interaction region 

(pKF154). This served as an efficient ‘landing pad’ for the subsequent insertion of various DNA sequences, 

which eliminates the EcoRV site in the process of regenerating either the wild-type Matα2 DNA sequence 

or variants containing mutations. A separate silent mutation was also introduced nearby at I124 (codon 

ATA to ATC) to differentiate the Matα2 construct from any chromosomal gene sequence. Regeneration of 

full length Matα2 was accomplished using the NEBuilder HiFi DNA Assembly master mix (New England 
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Biolabs) following EcoRV digestion of pKF154. The wild-type S. cerevisiae Matα2 protein was assembled 

using oKF458 and oKF459. To test if the homologous region of Matα2 from C. albicans was capable of 

interacting with MCM1, a chimeric protein was constructed using oKF460 and oKF461 which substitutes 

the C. albicans amino acid sequence SPFSNSADT in place of the S. cerevisiae sequence 

GLVFNVVTQDM. 

 

Design of Matα2 libraries 

 The assembly of Matα2 mutant libraries was conducted as above using NEBuilder HiFi DNA 

Assembly master mix (New England Biolabs) but used degenerate oligonucleotide pools synthesized by 

Integrated DNA Technologies (IDT). Two different mutant libraries were generated. The first consisted of 

single amino acid changes at each position in the S. cerevisiae MCM1 interaction region. This was 

accomplished by annealing pairs of oligonucleotides (oKF521-542) in which each codon in the 11 amino 

acid MCM1 interaction region has been separately replaced by an NNK codon (where N indicates an A, C, 

G, or T, and K indicates a G or T). This resulted in 11 separate plasmid pools (pKF159-169) each with 32 

possible DNA sequences at each NNK codon (4×4×2). In the second library, a single pair of annealed 

oligonucleotides (oKF462 and oKF463) containing seven consecutive NNK codons was used to randomize 

positions L114-T120, generating library pKF157. This second library consists of many distinct Matα2 

variants, each with all seven core residues randomized, and the total possible number of combinations (327) 

exceeding 34×109. 

 Following assembly, these Matα2 mutant constructs were electroporated into 5-alpha 

electrocompetent E. coli cells (New England Biolabs) according to the manufacturer’s instructions. The 

first library of codon point mutations were transformed separately for each codon and the cells then pooled. 

To maximize the number of transformants from the second (7×NNK) randomization library, ten 

electroporations were done in parallel and later pooled. Immediately after electroporation pre-warmed SOC 

media was added to the cells and they recovered for one hour at 37°C. Following recovery, we determined 
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the transformation efficiencies and library complexities by diluting an aliquot of cells and plating on LB 

media supplemented with 30 µg/mL kanamycin. The single codon, point mutation library reached 

saturation with every DNA mutation being represented several times over in the transformed stock. We 

estimate the complexity of the second 7×NNK library to be ~2.92 million unique transformants.  

 To select E. coli transformants in bulk, each library was used to inoculate 500 mL LB media 

supplemented with 50 µg/mL kanamycin and grown overnight shaking at 37°C. The next morning, plasmid 

was purified from each culture using ten QIAprep spin miniprep columns (QIAGEN). The saturated 

overnight E. coli cultures were also used to make 1 mL and 10 mL library freezer stocks stored at -80°C 

for later use.  

The purified plasmid libraries were used to transform yKF230 or yKF231 to G418R according to 

a high-efficiency yeast transformation protocol (Benatuil et al., 2010). Prior to transformation, a plasmid 

bearing the wild-type S. cerevisiae Matα2 was spiked into both libraries at a frequency of 1/1000. For the 

more complex 7×NNK library, six transformations were done in parallel and then pooled. Transformants 

were selected in bulk by adding each transformation to 500 mL YEPD media supplemented with 200 µg/mL 

G418 sulfate and growing overnight shaking at 30°C. An aliquot of transformed cells were also diluted and 

spread on YEPD plates containing 200 µg/mL G418 sulfate to determine transformation efficiencies. 

Transformation with the point mutation library resulted in ~1.1 million transformants; the pooled 7×NNK 

library had ~1.88 million transformants. Following overnight growth, 5 mL of saturated yeast culture was 

combined with 5 mL 50% glycerol to make freezer stocks, which were subsequently stored at -80°C for 

later use. 

 

Canavanine selection assay and sequencing 

 Frozen yeast library aliquots were thawed on ice and then added to 500 mL YEPD. Library cultures 

were grown overnight shaking at 30°C to allow for the equal expansion of all Matα2 variants. The following 

morning, cells were collected for sequencing by pelleting 45 mL of saturated culture, washing once in PBS, 
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and then freezing the cell pellets at -80°C for later plasmid purifications. This is the ‘Pre’ library and 

provides the starting frequencies of each variant. Selection for Matα2 variants capable of functionally 

interacting with MCM1 was carried out by diluting 5 mL of saturated overnight culture into 500 mL 

synthetic medium lacking arginine and supplemented with either 25 or 250 µg/mL L-canavanine (‘low’ and 

‘high’ treatment conditions, respectively). To control for growth differences due to the plasmid or protein 

expression, the same media lacking L-canavanine was used to start a third culture (‘zero’ treatment) in 

which there is no selection on Matα2-MCM1 function. After 24 hours of growth in either zero, low, or high 

canavanine, cells were pelleted in 45 mL aliquots and the pellets frozen at -80°C. Note the low and high 

canavanine selections resulted in very similar results and thus we focused our analysis on the high selection 

condition. All figures use the high canavanine selection data and any conclusions were corroborated using 

the low canavanine data. 

The Matα2 plasmid library was recovered by boiling the cell pellets for 5 minutes and then bead-

beating in the presence of phenol and chloroform. DNA was ethanol precipitated and purified using a 

QIAprep miniprep kit (QIAGEN). To prepare sequencing libraries, PCR was used amplify the variable 

region of Matα2 from the plasmid pool using primers containing Illumina adapter sequences and sample 

specific barcodes. For each library, ten 50 µL PCR reactions were pooled after nine PCR cycles. Each 500 

µL PCR pool was cleaned and concentrated using a MinElute PCR Purification Kit (QIAGEN) and 

quantified using either a Bioanalyzer or TapeStation (Agilent). Massively parallel sequencing was carried 

out using single end 50 base pair reads on an Illumina HiSeq 4000 sequencing system. 

 

Data processing and analysis 

 Processing of sequence data was done carried out in the programming language R using 

Bioconductor and custom scripts. Sequence reads were first trimmed based on their Phred quality scores to 

remove bases distal to the point a read’s quality drops below 20 (corresponding to 1% error). Trimmed 

sequences were then aligned to the Matα2 reference sequence and reads were eliminated if they did not 
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fully span the mutated region. Furthermore, reads were removed if they contained indels or any mutation 

outside the mutated region. Sequences passing these quality filters were tabulated and the counts normalized 

to the sequencing depth (i.e., reads per million). The normalized counts for each unique Matα2 sequence 

were then compared across all conditions. Fold-changes were calculated by taking the ratio of the 

normalized counts after selection over the frequency prior to selection (or without selection using the zero 

canavanine data). Matα2 variants were eliminated from most analyses if the variant was sequenced less 

than 10 times either before or after selection. 

 

Quantitative mating assays 

 Quantitative mating assays were performed according to previously described methods for yeasts  

(Sprague, 1991). Strains to test were created by replacing the endogenous Matα2 locus with specific 

variants identified from our library. The chosen variants span the full range of fold-change values and were 

highly reproducible between replicate experiments. Specific mutations were first cloned into pKF154, the 

Matα2 expression plasmid used above, as previously described to generate the mutant library. Plasmids 

with these new variants were digested with NdeI and NruI to liberate a DNA fragment containing Matα2 

and its promoter and a KanMX resistance marker. PCR primers were used to add sequence homology for 

the mating-type locus to the end of the KanMX gene. These DNA fragments were then used to transform 

yKF249, an α-cell from the W303 background with Matα2 replaced by the URA3 gene, generation strains 

yKF270-282. As controls, we also introduced the wild-type S. cerevisiae Matα2 gene (yKF266) and a 

variant with the C. albicans region (yKF268) which is unable to interact with MCM1. All genotypes were 

confirmed by PCR and sequencing. 

 The α-cells created above bearing Matα2 variants were Trp- G418R and were mated to Trp+ a-

cells. For each mating, the strains were grown to mid-log phase and their OD600 measured. Cells were then 

combined with an a:α ratio of 10:1 and concentrated onto 0.8 µm nitrocellulose filters using a Millipore 

1225 Vacuum Sampling Manifold. The filters were then placed on YEPD agar plates and incubated for 
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either 4 or 16 hours at 30°C to allow mating. The filters were then vortexed in 5 mL water to resuspend 

cells for plating. Dilutions were first plated on YEPD plates containing 200 µg/mL G418 sulfate and grown 

for 2 days at 30°C to select for conjugants and the limiting parental strain. These G418R colonies were 

counted and then replicated to SD-Trp to select for conjugants only. The Trp+ G418R colonies were 

counted and mating efficiencies calculated as follows: Mating efficiency = (number of Trp+ G418R 

colonies) / (total number of G418R colonies). 

 

Growth competition assays 

 Two Matα2 variants from our library appeared to grow slowly in the absence of canavanine, 

suggesting that some Matα2 mutations may be detrimental to growth. Both these variants involve a single 

amino acid change to the wild-type S. cerevisiae sequence and are at the same position (N117I and N117V). 

To test if these specific mutations impact growth, we introduced them into the endogenous Matα2 locus as 

above for quantitative mating assays. We then carried out growth competitions in an attempt to measure 

even subtle growth differences. Each mutant was competed against an isogenic parental strain bearing wild-

type Matα2 and constitutively expressing mCherry. For each competition, the mutant strain (N117I or 

N117V) and mCherry competitor were grown separately to saturation in liquid YEPD. Their OD600 was 

then measured and combined at a 1:1 ratio in a final volume of 1 mL. This mixture was then diluted to 

OD600 = 0.1 in synthetic (SD) media lacking arginine, which was the media condition in which the slow 

growth was first observed, and grown overnight at 30°C. The cultures were back diluted to OD600 = 0.1 

the next morning and grown again overnight at 30°C. This repeated growth and dilution process continued 

for 5 days. With each daily passaging, cells were also removed and counted on a BD FACSCelesta flow 

cytometer. The relative growth rate of the non-fluorescent mutant strain and the mCherry wild-type strain 

were then determined. 
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Figure 2.1 Evolution of the Matα2-MCM1 interaction and the discovery of novel functional variants 

A. Representative ascomycete yeast species and their mode of a-specific gene regulation. Functional 

Matα2-MCM1 complexes are found in S. cerevisiae and related species. Outside the L. kluyveri to 

S. cerevisiae clade, the mode of a-specific gene regulation is different: an activator made only in a-

cells induces the genes which aren’t otherwise expressed. 

 

B. Diagram of the selection for functional Matα2-MCM1 complexes. CAN1 expression in the 

presence of canavanine is toxic, but it’s repression by Matα2-MCM1 allows for robust growth. 

 

C. Fitness distribution of randomized variants post-selection. Histogram showing the log2 fold-

changes for variants in our randomized library. Each protein variant contains seven random 
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residues at positions 114-120. Dashed red line indicates the fold-change of the wild-type Matα2 

from S. cerevisiae. Those to the right of the line show greater enrichment than the wild-type 

sequence. 

 

D. Fitness distribution of point mutants to the wild-type S. cerevisiae Matα2. Histogram showing the 

log2 fold-changes for all point mutants and controls. Mean fold-change of all variants is indicated 

by the black dashed line; fold-change of wild-type S. cerevisiae Matα2 indicated by green dashed 

line. Green shaded region designates the range of fold-change values for variants with synonymous 

mutations. 

 

E. Heat-map showing log2 fold-change values for point mutants of the wild-type S. cerevisiae Matα2. 

The effect of the indicated amino acid substitution (y-axis) at each position (x-axis) is colored by 

its fold-change after selection compared with no selection. Premature stop codons are indicated by 

* (bottom row). Grey boxes denote the wild-type amino acids. 
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Figure 2.2 Functional Matα2 proteins with highly degenerate interaction interfaces 

A. Logo plot showing the amino acid complexity of the randomized library before (left) and after 

(right) canavanine selection. The size of each amino acid abbreviation corresponds with its 

abundance in the population and are ordered from most (top) to least (bottom) abundant. 

 

B. Normalized logo plot showing changes in amino acid abundance at each position after selection. 

Positive values indicate amino acids that increased in frequency, while frequency decreases are 

negative. The size of each letter corresponds with the magnitude of the change and are ordered as 

in (A). 

 

C. The co-occurrence of some amino acids is underrepresented among the functional variants. The 

black horizontal line in the second column indicates the expected frequencies of double leucine 

(left) or double phenylalanine (right) containing variants given the frequencies of each alone (left 

bar). Note that while the number of functional variants containing two leucines is approximately 

the square of the single leucine frequency, double phenylalanine variants are less abundant than 

expected given independence. 

 

D. Favorable amino acid compositions are heavily context dependent. Normalized logo plot as in (B) 

generated from the subset of variants with a phenylalanine at position 7 (F7). 
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E. Influence of F7 on adjacent amino acids. Logo plot of F7 sequences normalized to post-selection 

amino acid frequencies showing the effect of F7 alone. The preferred amino acid composition 

among these variants contrasts strongly with the overall pattern in (B). 

 

F. Correlation between position-specific amino acid frequencies. For different sequence subsets (e.g., 

F1, W1, etc.), the change in amino acid frequencies (e.g., panel E) was correlated with the overall 

amino acid pattern (e.g., panel B) for each position separately and plotted as a heat map. Constant 

positions in each subset were excluded (indicated by grey boxes in the heat map). 

 

  



35 

 

 
Figure 2.3 Functional Matα2-MCM1 interactions exhibit rampant intra-domain epistasis 

A. The frequency of amino acids across all positions among functional variants.  

 

B. Histogram of the effects of epistasis on the frequency of amino acid pairs across all positions 

relative to expected frequencies given independence. Values calculated using unselected control 

sequences (red) were used to define a 95% confidence interval (red dashed lines). 

 

C. Heat map showing the frequency of amino acid pairs at positions 1 & 7 relative to the frequency 

given independence as in (B). 

 

D. Heat maps as in (C) comparing all pairwise positions. Plot from (C) is indicated by an orange box. 
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Figure 2.4 The fitness landscape of the Matα2-MCM1 interaction 

A. Effects of single amino acid mutations based on variant pairs that differ by a single residue. Variant 

pairs are grouped based on their fitness (left) and then by mutation type (e.g., mutating to 

phenylalanine) and/or its position (e.g., mutation the 7th position to phenylalanine). The FC of 

wild-type Matα2 was used to define fit vs. unfit. 

 

B. Fitness effects based on mutation position. As in (A), fitness change is relative to the wild-type 

Matα2 from S. cerevisiae. 

 

C. Magnitude of the mutational effects. Point mutations to the wild-type Matα2 from S. cerevisiae 

(top) effect fitness less than among random variant pairs (bottom). 
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Supplementary figure 2.1 

A. Reproducibility of fitness measurements of Matα2 variants. 25,000 variants from the randomized 

library were chosen at random and the fold-changes observed in both replicate experiments are 

plotted. Variants that were recovered in only one experiment are represented by points along the 

plot margin. The red line indicates y = x. 

 

B. Frequency of variants with each amino acid among the 100 most fit variants. The 100 variants with 

the greatest fold-change were grouped and the fraction with each amino acid is indicated. 

 

C. Frequency of variants with each amino acid among all fit variants. As in (B) but tabulating all fit 

variants. 
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Supplementary figure 2.2 

Epistatic interactions depend on selection. The library was grown in media lacking canavanine and variant 

fold-changes were used to calculate epistatic interactions as in Figure 2.3C & 2.3D. The color scale matches 

that of Figure 2.3D. 
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Table 1. Matα2 variant mating efficiencies  

 

 

  
Strain Alpha2 allele % mating 

Mean                     

% mating 

 

Fold-change 

yKF266 S. cerevisiae 72 
71 0.93 

yKF266 S. cerevisiae 70 

yKF268 C. albicans 0.1 
0.1 n/a 

yKF268 C. albicans 0.1 

yKF270 FV*T*VF 0 
0 0.03 

yKF270 FV*T*VF 0 

yKF272 TLMRERP 0 
0 0.13 

yKF272 TLMRERP 0 

yKF274 FMSISNT 0 
0 0.54 

yKF274 FMSISNT 0 

yKF276 ILNWFTL 0 
0.05 1.6 

yKF276 ILNWFTL 0.1 

yKF278 PCLRFVF 57 
56.5 5.2 

yKF278 PCLRFVF 56 

yKF280 N5V 45 
65.5 0.6 

yKF280 N5V 86 

yKF282 N5I 59 
53.5 0.3 

yKF282 N5I 48 
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Table 2. Saccharomyces cerevisiae strains used in this chapter 

All strains are in the indicated background and the indicated genotypes denote modifications to the given 

background. Note for yKF270-282, the amino acid sequence of the MCM1 interaction region is indicated. 

These variants are in the background of the S. cerevisiae Matα2 protein.     

Strain 

ID 

Genotype Genetic 

background 

yKF230 MATa hph-PCYC1 (Scer STE2 CRE)-CAN1 S288C 

yKF231 MATa hph-PCYC1 (Scer STE2 CRE)-CAN1 hmlΔ::NatMX S288C 

yKF249 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::URA3  W303 

yKF266 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2Scer W303 

yKF268 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2Calb W303 

yKF270 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2FV*T*VF W303 

yKF272 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2TLMRERP W303 

yKF274 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2FMSISNT W303 

yKF276 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2ILNWFTL W303 

yKF278 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2PCLRFVF W303 

yKF280 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2N5V W303 

yKF282 MATα ura3Δ::hph-PCYC1 (Scer STE2 CRE)-GFP matα2Δ::MATα2N5I W303 
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