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Abstract We consider an agent-based model of emotional contagion cou-
pled with motion in one dimension that has recently been studied in the
computer science community. The model involves movement with a speed
proportional to a “fear” variable that undergoes a temporal consensus av-
eraging based on distance to other agents. We study the effect of Riemann
initial data for this problem, leading to shock dynamics that are studied both
within the agent-based model as well as in a continuum limit. We examine
the behavior of the model under distinguished limits as the characteristic
contagion interaction distance and the interaction timescale both approach
zero. The limiting behavior is related to a classical model for pressureless gas
dynamics with “sticky” particles. In comparison, we observe a threshold for
the interaction distance vs. interaction timescale that produce qualitatively
different behavior for the system - in one case particle paths do not cross
and there is a natural Eulerian limit involving nonlocal interactions and in
the other case particle paths can cross and one may consider only a kinetic
model in the continuum limit.
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1 Introduction

A recent empirical analysis of computational emotional contagion models was
studied in [40], in which various models were compared to video footage of
crowd dynamics during an evacuation, to determine which of the models most
accurately describe the behavior of the crowd. A model known as ASCRIBE
[4], which we will study in detail in this paper, was observed to be the one
most similar to the observed crowd dynamics. This model was subsequently
used in an agent-based simulation tool (ESCAPES [41]) that incorporates
emotional contagion in an evacuation scenario of the International Terminal
at Los Angeles International Airport (LAX).

Though the ASCRIBE model reproduces actual crowd behavior well, run-
ning massive simulations of individual interacting agents can be computation-
ally expensive and does not directly provide a theoretical understanding of
the dynamic range and limits of the model. We present here an analysis of
a contagion-movement model based on ASCRIBE, that provides insight into
how the system behaves with very large numbers of particles, by taking a
continuum limit of the agent-based model and examining what the ensuing
issues are. This work has direct mathematical connection to related problems
including traffic flow [3,21,25], swarming models [42,13,38,39,23], economics
and social sciences [24,17,11], and pressureless gas models [6,7,26,30,43,37,
28]. For simplicity, and to focus on a specific problem that captures some of
the most interesting dynamics in one dimension, we focus on the Riemann
problem and shock formation.

1.1 Discrete contagion models

The ASCRIBE model introduced in [4] involves moving, interacting agents,
each of whom possesses an emotional variable qi(t), typically interpreted to
represent fear or panic. The simplest form of the movement rule for these
agents involves a speed proportional to the emotion level, so that the posi-
tion xi(t) of agent i evolves according to ẋi ∝ qi. The emotion qi, meanwhile,
undergoes a form of contagion, so that qi equilibrates according to the con-
sensus model

q̇i = γ(q∗i − qi), q∗i =

∑
j∈Gi wijqj∑
j∈Gi wij

. (1)

Here, γ is an equilibration rate and Gi denotes the set of agents j that
interacts with agent i with weights wij , so that q∗i denotes a weighted average
of emotion across this set. The weights could correspond to a straight average
(wij constant) or depend on some environmental variable such as distance
between agents. We note that the basic contagion model is a variant of a
classical consensus model in control theory for which there is an extensive
literature [22,19,14,34].

The weights w in the full ASCRIBE model depend on five parameters for
every pairwise interaction, based on the theory from [2]. These involve the
level of sender’s emotion qj , level of receiver’s emotion qi, sender’s expressive-
ness, receiver’s openness, and the channel strength between the agents. The
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study [40] compared it with another class of contagion model, the Durupinar
model [18], which, in contrast to the previous one, uses a probabilistic thresh-
old model based on epidemiological models of disease contagion [16,29,33,
36]. In [40], the authors identified key attributes of appropriate models using
real data; namely, a video of an Amsterdam crowd scene [5] and a video of
recent protests in Greece in which officers fired tear gas into a small crowd
[15]. The ASCRIBE model produced a 14% improvement per agent per frame
over the Durupinar model in a 15s clip and a 12% improvement in only a
four-second clip.

As with consensus models, there is a strong connection between the con-
tagion model and swarming models. In particular, when considered in one
dimension, the emotion level q has the same role as the velocity in swarming
models, and Equation (1) strongly reminds us of the Cucker-Smale formula-
tion [13,32]. In higher dimension, taking into account the emotion in addition
to the position and velocity allows for a richer description of the behavior of
gregarious groups [1].

1.2 Specific model studied in this paper

To focus on a problem that allows for mathematical analysis and insight
into the general behavior of such models, we consider the following discrete
Riemann problem and its continuum limits. Consider initial data consisting
of an infinite number of agents spaced on the real line at grid points xi = hi
(i an integer), where hL and hR are the agent spacing to the left and right
of zero, respectively. Assign qi at time zero to be a value qL for all i ≤ 0 and
qR for all i > 0, with all agents traveling to the right with a speed equal to
their q value. The relevant dynamics occur when qL > qR, in other words,
the agents with higher fear level try to push through the ones with a lower
value. Each agent attempts to equilibrate his emotional level equally with
any other agent within a distance R of himself. The dynamic equations for
the emotion variable are then

q̇i = γ(q∗i − qi), q∗i =
1

Ni

∑
j,|xj−xi|<R

qj , ẋi = qi, (2)

where Ni is the number of j’s such that |xj − xi| < R, including i.

Although this is a simple model problem, it captures the kind of dynamics
of interest, in which scared individuals are trying to push through others
that are less scared in front of them. It also captures the basic contagion
interactions from the ASCRIBE model with a fixed interaction radius. We
can now study the behavior of this system as γ and R vary, and perform
an analysis of the continuum limits in different settings. Later, we will also
consider different interaction weights wij , and the interaction kernels that
arise from them in the continuum limit.
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1.3 Goals and organization

The remainder of this paper is organized as follows. Section 2 is dedicated
to the microscopic description of the problem (2). We study in detail the
conditions under which individual agents will maintain order, even if getting
dangerously close to each other, or when this order will be broken. In Section
3, we consider the macroscopic limit. We start by considering the limiting
case as the interaction radius R tends to zero and the equilibration rate
γ tends to infinity in the particle setting and the corresponding singular
shock formation in the macroscopic framework. Then we study the general
case with finite equilibration rate and a more general interaction kernel. We
again find conditions under which solutions will either remain bounded for
all finite time or blow up in finite time. This framework is accurate while the
characteristics of the equation do not intersect. When the characteristics do
intersect, a kinetic approach is necessary; this is introduced in Section 4.

2 Microscopic description

In this section we want to study the qualitative behavior of a system of N
agents whose dynamics is described by (1). First, we consider the case of
only two interacting “particles” in the context of (2). Here, we use the term
“particle” to refer to groups of n ≥ 1 agents that share the same position
and velocity. In this setting, we can easily compute the exact solution and,
specifically, determine whether the particle paths will cross, as is stated in
the following Theorem:

Theorem 1 Let p1 and p2 be two particles located at positions x1(0) and
x1(0)+d(0), with velocities q1(0) and q2(0) and containing n1 and n2 agents,
respectively, and d(0) ≤ R. Then their paths will cross if and only if q1(0)−
q2(0) > γd(0). Furthermore, if q1(0) − q2(0) > γ [d(0) +R], their paths will
cross and they will eventually cease to interact with each other. Furthermore,
if the particles do cease interacting at some finite time, the speeds of the two
particles after separation will be

q1 = q1(0)− γn2 [d(0) +R]

n1 + n2
, q2 = q2(0) +

γn1 [d(0) +R]

n1 + n2
. (3)

Proof Without loss of generality we can assume q1(0) > q2(0) ≥ 0. With the
particles p1 and p2 interacting only with each other, we have a conserved
average fear level q∗:

q∗1 = q∗2 = q∗ =
n1q1(0) + n2q2(0)

n1 + n2
. (4)

In this situation, the emotion variables are given by:

q1(t) = q∗ + e−γt(q1(0)− q∗); (5)

q2(t) = q∗ + e−γt(q2(0)− q∗). (6)
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We can then integrate these equations to find position information:

x1(t) = x1(0) +

∫ t

0

q1(s)ds

= x1(0) + q∗t+ (1− e−γt)(q1(0)− q∗)/γ,

x2(t) = x1(0) + d(0) +

∫ t

0

q2(s)ds

= x1(0) + d(0) + q∗t+ (1− e−γt)(q2(0)− q∗)/γ.

Hence, the distance d(t) = x2(t)− x1(t) between the two particles is

d(t) = d(0)− q1(0)− q2(0)

γ

(
1− e−γt

)
. (7)

Given (7), we may first ask if the two particles will ever meet, i.e., is there
any finite time at which d(t) = 0? The answer is that the particles will meet
only if

q1(0)− q2(0) > d(0)γ ; (8)

that is, they will meet if the difference in speeds is sufficiently large relative
to their initial separation and the equilibration rate. Similarly, we may ask
if the two particles will ever stop interacting, i.e., is there any finite time at
which d(t) < −R? The answer is that the particles will stop interacting only
if

q1(0)− q2(0) > [d(0) +R] γ . (9)

Assuming that the particles stop interacting after a finite time t∗, that we
can easily obtain from Equation (7), inserting t∗ into Equations (5)-(6) will
yield the last assertion of the statement.

Theorem 1 illustrates the relevance of the relation between the difference
in the emotion level between two particles ∆q, and the quantities γδ(0) and
γR. In the remainder of this section, let us discuss how this affects the behav-
ior of the system when we consider more than two particles, in two different
regimes.

2.1 Zero interaction radius, infinite equilibration rate

In a dense crowd setting, it is reasonable to assume a relatively small in-
teraction radius and a rather quick equilibration rate. Thus, it is natural to
consider the case in which R → 0, γ → ∞. Let us further suppose, though,
that as we approach these limiting values, the quantity Rγ = C remains
fixed, so that we can use the results of Theorem 1, with d(0) = R (since
R → 0, the particles will not interact until they are within distance R of
each other for any non-zero initial spacing d(0)) to determine if two particles
may cross paths upon meeting. Specifically, Theorem 1 tells us that if the
greatest difference in emotion between two particles ∆q = qL − qR satisfies
∆q ≤ 2C, particle paths will never cross, while if ∆q > 2C, particle paths
may cross.
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Fig. 1 Description of particle characteristics with zero radius of interaction and
infinite reaction time.

We first examine the case ∆q ≤ 2C; here, agents do not interact until they
collide, at which point they average their emotion/speed and stick together,
which resembles the modeling of sticky particles in gas dynamics [6,7,26,28,
43,44]. In this case, we can solve the discrete Riemann problem exactly and
the solution is a singular shock. Although this is unphysical – one would not
expect individuals to simultaneously occupy the same position in space – it
serves as a useful class of exact solutions to compare with the small R and
large γ problems. We have the following theorem.

Theorem 2 Consider the system (2) in which R = 0 and agents average
their fear and stick together when they collide. Then the solution satisfies

xi(t) = hLi+ qLt for i < (xs(t)− qLt)/hL
xi(t) = hRi+ qRt for i > (xs(t)− qRt)/hR
xi(t) = xs(t) otherwise

(10)

in which hL (respectively hR) is the distance between two consecutive particles
on the left side (respectively the right side) of the shock xs(t), which is the
location of the accumulation of agents that collide from the left and from

the right, satisfying ẋs(t) = avgi∈S(qi) :=
∑
i∈S qi∑
i∈S 1 , where S is the set of all

indices i such that the particle pi belongs to the singular shock. Moreover, as
t→∞ we have ẋs → s∗ with

s∗ =

√
ρLqL +

√
ρRqR√

ρ
R

+
√
ρ
L

, (11)

where ρL = 1/hL and ρR = 1/hR, are the respective densities of agents on
the left and the right.

The proof of this theorem can be found in the literature, such as [9] and the
references therein, but we add it here for completeness.
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Proof A diagram of the solution of the discrete problem is shown in Fig. 1,
where one sees that the agents are independent of each other as long as
they do not meet, but once they collide they stick together and form a
shock. Therefore, the dynamics are well represented by (10). The asymp-
totic shock speed can be computed by noticing that the rate at which agents
enter the shock from the left and from the right are respectively rL =
ρL(qL − s∗) and rR = ρR(s∗ − qR). This gives an asymptotic shock speed of
s∗ = (rLqL + rRqR)/(rL + rR). Combining these equations and solving the
quadratic equation for s implies (11).

Now we consider the case when∆q > 2C, so that when two particles meet,
they may pass through each other and then continue moving with separate
trajectories. For simplicity’s sake, let us consider here a symmetric initial
state with respect to density, so that ρL = ρR = ρ0. In this case, we switch
into a frame of reference moving at the average speed s∗ = (qL+qR)/2, which,
due to symmetry, must be the shock speed. When the first two particles meet,
p0 with speed qL and p1 with speed qR, they will certainly pass through each
other, so that p0 will move ahead of the “shock” (that currently contains
zero particles) while p1 will fall behind it. Once passed through the shock, p0
(p1) will have a reduced (increased) speed, as given in (3), and will continue
to encounter particles of speed qR < s∗ (qL > s∗), causing further reductions
(increases) in speed each time, and may even stick to some of the other
particles encountered, given the reduced difference in speed relative to ∆q.
Hence, p0 (p1) will eventually reach a speed less than (greater than) s∗, and
begin moving back toward the shock. When particles p0 and p1 (each now
potentially a group of multiple agents) meet again, it will be at the location
of the shock, due to symmetry, at which time they may pass through each
other again, or may now stick together if the differences in their speeds is
now less than 2C. This same basic behavior is true of all the particles, so that
the shock in this case will consist not only of a large particle moving at speed
s∗, as it did in the sticky particle case above, but will also be surrounded
by particles oscillating around the shock and passing through it, at least at
small values of t.

The long-term behavior of the shock with regards to these oscillations
can be determined by asking whether new particles entering the shock with
speeds qL or qR are able to pass through any possible central shock particle
moving at speed s∗. This will be the case if qL−s∗ > 2C, which is equivalent
to ∆q > 4C. Hence, in the case ∆q > 4C, oscillations of particles around
the shock will continue indefinitely, while in the case 2C < ∆q ≤ 4C, the
oscillations will quickly die out, and the long term behavior will be the same
as that in the sticky particle case examined above, with a single massive
particle moving at speed s∗ serving as the shock. The indefinite oscillations
case is illustrated in Fig. 2. The figure is constructed from a simulation that
employs the analytic solution (3) for the case in which R → 0 and γ → ∞
with Rγ = 1/30 and d(0) = R (since we are considering the case R → 0),
and exactly solves the resulting system as particles collide and potentially
pass through each other.
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Fig. 2 An example of the indefinite oscillations of particles passing through the
central shock that occurs when ∆q > 4C. Here, ∆q = 1 while C = 1/30, and the
initial density of particles is 1. The colored lines correspond to the portions of the
trajectories of particles after they have encountered at least one other particle or
the central shock, as observed from a reference frame moving with the shock speed
s∗ = 1/2; all other portions of trajectories are removed to allow for easier viewing
of the oscillations.

2.2 Fast equalization

We now consider the model away from the limit R→ 0, γ →∞, that is, when
the interaction radius is positive and the equilibration rate, albeit possibly
large, is bounded, though still in the regime in which particle paths do not
cross. As time advances, the framework we adopted for the previous discus-
sion will not be valid: a positive radius of interaction will allow for multiple
particles at different locations interacting at the same time, and possibly with
different subsets of particles. Also, now it is possible for particles to equili-
brate their levels of fear while still being at a positive distance from each
other, leading us to consider an extended shock region with high accumula-
tion of particles. A detailed description of the dynamics inside of the shock
region, and in particular to be able to answer the question of whether or
not the paths of any particles in it will eventually cross, requires a thorough
analysis of the system of ODEs associated with the particles in the shock.
This is not the goal of this paper, but a heuristic description of the behavior
of this region will give us insight into the expected dynamics and provide a
basis of comparison with the macroscopic formulation presented in the next
section.

First, we adopt a framework where the initial distance between particles
is larger than the interaction distance, so all interactions will occur around
the shock region. As in Section 2.1, for the sake of simplicity we will assume
symmetry with respect to the density in the following description. We start
by considering the specific case when ∆q = γR; in this case a sharp shock
moving with velocity equal to the average initial velocities will form and, if
the radius of interaction is small enough, the dynamics will resemble that of
the sticky particle, as seen in Fig. 3.
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Fig. 3 Shock Formation: qL = 1, qR = 0, γ = 200, R = 0.005. Simulation done
with 200 particles, set at an initial distance 1 from each other. Plot of 1 path every
10 particles.

What happens if γ and R do not satisfy this condition, though? If we
vary γ and R in such a way that ∆q < γR, we are in the “swarming” regime
where the contagion interaction happens fast compared to the length scale of
the interactions. In this case, the particles emotion levels equilibrate before
their paths can cross and the shock diffuses as the characteristics accumulate
around the trajectory that would correspond with it, forming a sort of cone.
This is seen in Fig. 4.

Fig. 4 Diffusion of the shock. From left to right: N = 200, qL = 1, qR = 0, γ = 10,
R = 0.1; N = 200, qL = 1, qR = 0, γ = 200, R = 0.1; N = 1000, qL = 1, qR = 0,
γ = 200, R = 0.5. Particles set at an initial distance 1 from each other. Plot of 1
path every 10.

If, in addition, the interaction radius is large with respect to the starting
distance between the particles, such that more particles interact simultane-
ously, the boundary of the cone loses its sharpness, and as the equilibration
rate increases, velocities become uniform instantly (Fig. 5).

Moreover, in this regime, we must take into account that the effect of
incoming particles will alter the relative distances among particles already
in the shock region, which may potentially cross. As a consequence of this,
the results summarized in Theorem 1 are not sharp any more. As we will
see in the next section in detail, a macroscopic approach allows us to answer
this question, and capture accurately the behavior we see in the microscopic
description.
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Fig. 5 No sharp boundaries. From left to right: N = 1000, qL = 1, qR = 0,
γ = 10, R = 5; N = 1000, qL = 1, qR = 0, γ = 200, R = 5. Particles set at an
initial distance 1 from each other. Plot of 1 path every 10.

Finally, if we vary γ and R in such a way that ∆q > γR, Theorem 1 tells
us that particles will cross. As in the previous section, we are interested in the
long time behavior of the shock, but again the fact that after crossing (maybe
several times) particles can equilibrate at a positive distance from each other
affects the asymptotic dynamics of the system. In this framework, we have to
ask ourselves if a new incoming particle will escape all the particles already
in the shock region (which may still be oscillating around the average speed
s∗). Instead of the sharp threshold observed in Section 2.1, now this will
depend on the width of the shock region, not taking into account possible
interaction-free islands inside it. Fig. 6 shows an example of the dynamics of
the system in this framework.

Fig. 6 Crossing of characteristics (∆q > γR). qL = 1, qR = 0, γ = 0.5, R = 0.1.
Simulation done with 200 particles, set at an initial distance 1 of each other. Plot
of 1 path every 10. Observe that, although 4C = 4γR = 0.2 << 1 = ∆q, incoming
particles do not oscillate indefinitely around the shock region but rather they are
captured by it.
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3 Macroscopic description

In this section, we study the dynamics of system (2) when the density of
particles approaches infinity. When particle paths do not cross, we can di-
rectly obtain the macroscopic system without passing through the kinetic
description. We first examine the macroscopic equivalent to the extreme case
in Section 2.1. In this case, the continuum system is described by the pres-
sureless Euler equations, while for the general interaction, studied next, we
derive the macroscopic equations following the particle paths and show their
correspondence with the particle model.

3.1 Shock formation: zero interaction radius and infinite equilibration rate

The discrete solution proposed in Equation (10) in Section 2 has a continuum
limit as described by a 2× 2 system of conservation law as follows

ρt + (Q)x = 0; Qt + (Q2/ρ)x = 0, (12)

where ρ is the local density of agents and Q is the local fear level weighted
by the density of agents. As already mentioned in Section 2, this system
arises as a model for sticky particles in gas dynamics. The solution admits a
δ-singularity, and has been analyzed extensively in the literature since 1994
[8,6,7,12,44,26,30,31,35,37,?,43,28]. Below we present a derivation of the
singular shock dynamics that will serve as a base model for the more general
nonlocal problem.

Fig. 7 Open region V ⊂ R × [0,∞) cut through by a curve S on which the
singularity happens.

Define the local average fear level as q = Q/ρ; from the microscopic
dynamics, one sees that q is bounded from above and below, thus the sin-
gularity of system (12) only appears in ρ and Q, but not q. Therefore, the

fluxes Q = ρq and Q2

ρ = ρq2 are well defined in the distribution sense.

Now, denote U = (ρ,Q)T , F (U) =
(
Q,Q2/ρ

)T
, and choose an open region
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V ⊂ R × [0,∞) such that U is smooth on either side of a smooth curve S.
We look for a measure solution that is classical on either side of S but may
have mass accumulation as well as a jump discontinuity on S. This is a gen-
eralization of standard Rankine-Hugoniot theory [20]. Let Vl and Vr be the
part on the left and right of the curve, respectively (see Fig. 7), and choose
a smooth test function ϕ with compact support in V . Then a weak solution
U satisfies

0 =

∫
V

Uϕt + F (U)ϕxdxdt

=

∫
Vl

Uϕt+F (U)ϕxdxdt+

∫
Vr

Uϕt+F (U)ϕxdxdt+

∫ S+

S−
Uϕt+F (U)ϕxdxdt

=−
∫
Vl

(Ut + Fx)ϕdxdt+

∫
S−

(U−ν1 + F−ν2)ϕdΓ −
∫
Vr

(Ut + Fx)ϕdxdt

−
∫
S+

(U+ν1 + F+ν2)ϕdΓ +

∫ S+

S−
U

(
ϕt +

dxS(t)

dt
ϕx

)
dxdt

=

∫ t2

t1

(
dxS
dt

[U ]− [F (U)]

)
ϕdt+

∫ t2

t1

M(t)
dϕ(xS(t), t)

dt
dt

=

∫ t2

t1

(
dxS
dt

[U ]− [F (U)]− dM(t)

dt

)
ϕdt, (13)

where we use the fact that along the curve S, the flux satisfies F (u(xS(t), t)) =
dxS(t)
dt u(xS(t), t) by definition. Here M =

∫ S+

S−
Udxdt =

∫ t2
t1
dt
∫ xS(t)+
xS(t)−

Udx is

the singular mass. Therefore, we have

dMρ(t)

dt
= s∗[ρ]− [Q],

dMQ(t)

dt
= s∗[Q]− [Q2/ρ], (14)

where s∗(t) = dxS(t)
dt .

However, relation (14) is not enough to uniquely define the weak solution
for (12) with Riemann initial data, since s∗ is unknown. Sheng and Zhang
in [37] derive this speed by constructing a delta distribution solution as a
vanishing viscosity solution of (12) with a Dafermos regularization. Cheng
et. al revisit it in [12] in the vanishing pressure framework. Here we derive
the shock speed in a very simple way. Notice that the singular mass Mρ(t)
describes the total number of agents accumulated along S, MQ(t) describes
the total amount of fear along S, and the shock speed s∗ represents the
average fear level. Thus we have the constitutive relation

MQ(t) = s∗Mρ(t). (15)

Combining it with (14) immediately leads to (11). This derivation indeed
shares the same spirit as the derivation of Theorem 2 for the agent based
model.
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3.2 Fast equalization with nonlocal spatial interactions

In this subsection, we consider the dynamics in Section 2.2 in the limit as the
particle density goes to infinity. We work in the regime where particles will
adjust their speed to that of their neighbors quickly enough so as to not cross
each other, thus we can derive the limit in a Lagrange formulation. Consider
the flow map X(α, t) such that

dX(α, t)

dt
= q(X(α, t), t), X(α, 0) = α. (16)

Then the changing of fear level q can be written as DqDt = γ(q∗ − q), which,
going back to the Eulerian variable, reads qt + qqx = γ(q∗ − q). Combining
this equation with the conservation of mass, we have a macroscopic model
as follows:

ρt + (ρq)x = 0, (17)

qt + qqx = γ(q∗ − q), q∗ =
K ∗ (ρq)

K ∗ ρ
, (18)

with Riemann initial data

ρ(x, 0) = ρ0, q(x, 0) =

{
qL, x < 0,
qR, x > 0,

, qL > qR. (19)

We will specify the interaction kernel K later. Compared to (12), this model
takes into account the positive radius of interaction and finite reaction time.

As mentioned in Section 3.1, for zero radius of interaction and infinite
equilibration rate, a singular shock will happen in the macroscopic model
corresponding to the mass concentration in the particle model. Then for
(17)–(18), will we still see mass concentration? That is, will ρ stay uniformly
bounded for any time T or blow up in finite time? First we have the following
results.

Theorem 3 Consider the system (17)–(18) with initial data ρ(x, 0) = ρ0,
∂xq(x, 0) ≤ 0 and limx→−∞ q(x, 0) = qL, limx→∞ q(x, 0) = qR < qL. Then,
if maxx |∂xq(x, 0)| > γ, ρ will blow up in finite time.

Proof Let ω = −qx, ω∗ = −(q∗)x and take the derivative in x of (18), we
have

ωt + qωx = ω2 + γω∗ − γω. (20)

Now, consider the flow map X(α, t) such that

dX(α, t)

dt
= q(X(α, t), t), X(α, 0) = α.

Then (17) and (20) become

Dρ
Dt

= ρω(X(α, t), t),
Dω
Dt

= ω2 + γω∗ − γω. (21)
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Therefore, if maxx |∂xq(x, 0)| = |ω(X(αc, 0), 0)| > γ, DωDt > 0, and thus

ω(x, t) is growing with time, whence ω2−γω+γω∗ > 0 for any T by noticing
that ω∗ stays nonnegative. Moreover, from (21) one sees that DωDt > ω2−γω,
which implies ω(X(αc, t), t) >

γ

1−(1− γ
ω(X(αc,0),0)

)et
and leads to finite time

blow up.
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Fig. 8 Comparison of simulation of macroscopic model (17)–(18), (22) with ρ0 =
10, qL = 1, qR = 0 and and particle model (23) with the same initial data for q
and 1000 particles in domain [-50,50] at time t = 4. Here γ = 5, R = 0.1.

To illustrate this behavior, we choose a smoothed Riemann initial data
q(x, 0) = (1− tanh(20x)) /2, so that qL = 1 and qR = 0, and let ρ0 = 10,

R = 0.1, and γ = 5. The kernel takes the form

K(x) =
1

x2 +R2

R

π
. (22)

From the above theorem, we expect the crossing of characteristics in this
case. To see this, we solve (17)–(18) numerically and compare it with the
particle model

q̇i = γ(q∗i − qi), q∗i =

∑N
j=1K(|xj − xi|)qj∑N
j=1K(|xj − xi|)

, ẋi = qi (23)

using the same initial data for q and 1000 particles uniformly distributed in
the domain [−50, 50]. The plots of density ρ and fear q at time = 4 are dis-
played in Fig. 8, where the density plot clearly implies the crossing. Though
particles have crossed at this time, the plot of q(x, 4) still matches very well
between the particle and continuum versions at the scales illustrated here.
This is because the values of γ and R we chose here are right near the edge
for blowing up and particles equilibrate very quickly after crossing. If we de-
crease γ, we will more clearly see a multivalued solution for q in the particle
case, resulting in a discrepancy of the two models; we will see this in more
detail in Section 4. It is also interesting to point out that even in the presence
of particles crossing, the macroscopic model still captures the correct shock
speed.
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Theorem 4 For the system (17)–(18) with initial data ρ(x, 0) = ρ0, ∂xq(x, 0) ≤
0, limx→−∞ q(x, 0) = qL, limx→∞ q(x, 0) = qR < qL, assume that there ex-
ist a constant C1 such that the kernel satisfies K ′(x) ≤ C1K(x), then if
maxx |∂xq(x, 0)| ≤ γ

2 , γ > 8C1qL, then for any time T , we have ρ < C2T
with C2 being a constant.

In order to prove Theorem 4, we need the result in the following lemma,
regarding the uniform boundedness of ω∗.

Lemma 1 If the Kernel K ∈ W 2,1 and there is a constant C1 such that K
satisfies |K ′(x)| ≤ C1K(x), then ω∗ is uniformly bounded.

Proof From the definition of ω∗, we have

|ω∗| =
∣∣∣∣ (K∗ρx) (K ∗ ρq)−(K∗(ρq)x) (K∗ρ)

(K∗ρ)
2

∣∣∣∣
=

∣∣∣∣ (Kx∗ρ) (K∗ρq)− (Kx∗(ρq)) (K∗ρ)

(K∗ρ)
2

∣∣∣∣ ,
where we have used integration by parts since K ∈ W 2,1. Notice that since
q < max{qL, qR}, we have

|ω∗| ≤ 2 max{qL, qR}
∣∣∣∣Kx ∗ ρ
K ∗ ρ

∣∣∣∣ ≤ 2C1 max{qL, qR} (24)

Proof (Proof of Theorem 4) As in the proof of Theorem 3, we look at equation
(21) for ω∗. Since 4ω∗ � 8C1qL < γ, the polynomial ω2 − γω + γω∗ always

has two real roots R1/2(ω∗) = 1
2

(
γ ±

√
γ2 − 4γω∗

)
, and 0 ≤ R1(ω∗) ≤ γ

2 ≤
R2(ω∗) ≤ γ. Therefore, if initially R1(ω(α, 0)) < ω(α, 0) < γ

2 , we will have
Dω
Dt < 0. In the same way, if initially ω(α, 0) < R1(ω(α, 0), 0)), DωDt > 0 and
ω increases, but once it surpasses the value of R1(ω) it decreases again. So
in both cases ω will never increase over γ

2 . Then from the expression for ρ

ρ(X(α, t), t) = ρ(X(α, 0), 0)e
∫ t
0
ω(X(α,τ),τ)dτ , (25)

we see that for any T > 0, maxα ρ(α, t) < maxα ρ(α, 0)e
γ
2 T .

We also compare the solutions of both particle and macroscopic models
under the assumptions of Theorem 4 in Fig. 9. Here ρ remains bounded and
good agreements are observed. In fact, for the case in Theorem 4, we see
that ω is not only uniformly bounded, but also decaying to zero with time,
as illustrated in Fig. 10, which gives a profile of ω(X(0, t), t) versus t. As one
can see, the decay rate of ω(X(0, t), t) is approximately 1/t, so ρ will have
infinite time blow up.



16

−40 −30 −20 −10 0 10 20 30 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

fe
a
r 

q

x

time = 4

 

 

particle

continuum

−40 −30 −20 −10 0 10 20 30 40
9.5

10

10.5

11

11.5

12

12.5

13

13.5

d
e
n
s
it
y
 ρ

x

time = 4

 

 

particle

continuum

Fig. 9 Comparison of a simulation of macroscopic model (17)–(18), (22) with
ρ0 = 10, qL = 1, qR = 0 and particle model (23) with the same initial data for q
and 1000 particles in domain [-50,50] at time t = 4. Here γ = 110, R = 0.1.
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Fig. 10 Plot of ω(X(0, t), t) versus time in log scale for macroscopic model (17)–
(18), (22) with ρ0 = 10, qL = 1, qR = 0, γ = 110, R = 0.1.

4 Crossing characteristics: kinetic description

For parameters and initial conditions that lead to particle crossing, the PDE
description of (12) will fail to replicate the behavior of the particles after the
crossing time, which corresponds to the blow-up of the PDEs as discussed
in Theorem 3. However, following classical results from kinetic theory, we
could use the BBGKY hierarchy to describe the evolution of the particle
system with a single PDE in multiple dimensions. That is, we can consider
the N -particle distribution in the space/emotion phase space

FN (x1, q1, . . . , xN , qN , t), (xi, qi) ∈ R× [0, 1] i = 1, . . . , N

and the corresponding Liouville equation. Under the assumption of symmetry
and indistinguability of the particles, the system can be described by the
marginal associated to one of the particles, say, the first one:

f := fN1 (t, x, q) :=

∫
R2(N−1)

FN (x1, q1, . . . , xN , qN , t)dx2 . . . dxNdq2 . . . dqN
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Integrating the Liouville equation will yield

∂f

∂t
+ q

∂fN1
∂x

= Interaction Term,

where the term on the right hand side of the equation depends on the partial
derivatives with respect to q of fN1 and the second marginal

fN2 (t, x1, x2, q1, q2) :=

∫
R2(N−2)

FNdx3 . . . dxNdq3 . . . dqN .

The evolution of fN2 would depend on fN3 , which in turn depends on fN4
and so on. Nevertheless, in the thermodynamic limit of very large num-
bers of agents, the chaos assumption holds, and thus we can approximate
fN2 (t, x1, x2, q1, q2) ∼ fN1 (t, x1, q1)fN1 (t, x2, q2) thus the force term can be
simplified, yielding the kinetic equation

∂f(t, x, q)

∂t
+ q

∂f(t, x, q)

∂x
=

∂

∂q
[γ (q − q∗(x, t)) f(t, x, q)] . (26)

Here, f(t, x, q) is the density of agents with fear q at the point x at time t,
and q∗(x, t), the average fear at location x at time t, would be given by

q(x, t) =

∫ ∫
q′f(t, x′, q′)K(x, x′)dq′dx′∫ ∫
f(t, x′, q′)K(x, x′)dq′dx′

, (27)

where K(x, x′) is the interaction kernel between the particles at location x
and x′. It should be noted that this equation is only a valid approximation
of a particle system of infinite density, as was also the case of the PDE
model in (12). A detailed derivation for the similar Cucker-Smale equation
for swarming can be found in [27,10], and for the general N -dimensional case
of the contagion model in [1].

Simulations of (26) are compared to the results of the agent-based sys-
tem and the PDEs (12) in Fig. 11. Here, we use γ = 0.1, K(x, x′) =[
1 + (x− x′)2/R2

]−1
, R = 0.1, a spatial domain of length L = 160 with

1600 particles, and initial fear distribution

q(x, 0) = 0.5 [1 + tanh(0.25(80− x))] , (28)

which will lead to eventual particle path crossing. There is general agreement
between the particle and kinetic simulations, though the numerical method
used to solve the kinetic equation contains non-negligible numerical diffusion,
causing the kinetic solutions to be smoothed out relative to the agent-based
simulation. The PDE model, however, does not describe the particles well
at this point in time, as it insists upon a sharp shock that particles cannot
cross through, while the particles and kinetic equation allow the passage of
individuals through the shock, causing it to be much more spatially extended
than the PDE will allow.
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Fig. 11 Comparing results of the particle, kinetic, and PDE models after particle
crossing has occurred, using parameters and initial conditions described in the
text. (Left) Colorplot of the kinetic distribution f(40, x, q), with colors ranging
from purple at low values to red at high values. Overlayed on the colorplot are
the q(x, 40) values obtained from both the particle model (solid, black) and the
PDE model (dashed, white). Both the kinetic and particle models display a wide
shock due to agents passing through each other, while the PDE results show a very
narrow shock. (Right) Plots of the cumulative density distribution N(x) (number
of agents with position y ≤ x) at time t = 40 obtained for particles (solid, black),
the kinetic equation (red, short-dashed), and the PDE system (green, long-dashed).
The kinetic and particle models match well even over the shock region, while the
PDE model does not.

5 Summary and Conclusions

In this work, we considered a system of interacting agents that move in
one dimension according to the intensity of some emotion that spreads and
equilibrates through the agents, and studied the dynamics of this system at
three different levels: microscopic, macroscopic, and kinetic.

We provide a thorough description of the behavior of the system at the
microscopic level in terms of the relation between the difference in emo-
tion intensity between two consecutive agents ∆q and the quantity C = γR
that characterizes how fast agents equilibrate in relation to the characteristic
length at which the interaction happens. In the regime where γ → ∞ and
R→ 0 we observe three different regimes: for ∆q < 2C we recover the classi-
cal sticky particle model; for 2C < ∆q < 4C particles will initially cross but
eventually converge on the trajectory of the shock such that new incoming
particles will not cross the shock but adhere to it; and for ∆q > 4C particles
oscillate indefinitely through the shock. For finite γ and strictly positive R,
we observe that if particles do not cross, as we move away from the limit
the shock becomes smoother, and we talk about a shock region with high
density of particles that grows with time. If particles do cross, a shock region
will also form but in this case the effect of a large ∆q will be an increase in
the width of this region, that eventually will capture any newly approaching
particle.

At the macroscopic level, we first recover the continuum version of the
sticky particle model and provide a formula for the asymptotic speed of the
shock. Then we use the Eulerian formulation to derive a continuum equation
with the same dynamics as the particle system when the equilibration rate
is finite and the characteristic interaction length is strictly positive. In this
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framework we consider more general kernels than the one introduced in the
microscopic description, and we can provide a theory for when the solution
will blow up, corresponding to crossing of characteristics (or particles in
the microscopic formulation). Namely, we see that if |∂xq(x, 0)| > γ then the
density ρ will blow up in finite time, while if maxx |∂xq(x, 0)| ≤ γ

2 , γ > 8C1qL,
and for certain classes of kernels, then ρ will remain bounded. The blow up
of the density is of particular interest, since it corresponds in the model to
areas of high risk within a crowd where individuals can be trampled on by
their neighbors. Understanding the behavior of the system in the regime
γ
2 < |∂xq| < γ is still an open question.

Finally, we formally derive a kinetic equation that provides a continuous
description of the particle model when the characteristics of the PDE cross,
so that the PDE model does not capture the dynamics of the particle system
accurately. We show a numerical example of how, with the kinetic description,
we can again recover the behavior observed at the microscopic level.
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