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ABSTRACT OF THE DISSERTATION

The Second-order Bias and MSE of Quantile and Expectile Estimators

by

He Wang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, September 2018

Professor Aman Ullah, Co-Chairperson
Professor Tae-Hwy Lee, Co-Chairperson

This dissertation covers several topics in the second-order bias and mean squared

error (MSE) of quantile and expectile estimators.

Chapter one presents the introduction of this dissertation. The finite sample theory

using higher order asymptotics provides better approximations of the bias and MSE for a

class of estimators. Rilstone, Srivastava and Ullah (1996) provided the second-order bias

results of conditional mean regression. The goal of this dissertation is to develops analytical

results on the second-order bias and MSE for quantile and expectile estimators.

Chapter two develops new analytical results on the second-order bias up to order

O
(
N−1

)
and MSE up to order O

(
N−2

)
of the conditional quantile regression estimators.

First, we provide the general results on the second-order bias and MSE of conditional quan-

tile estimators. The second-order bias result enables an improved bias correction and thus

to obtain improved quantile estimation. In particular, we show that the second-order bias

are much larger towards the tails of the conditional density than near the median, and

therefore the benefit of the second order bias correction is greater when we are interested
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in the deeper tail quantiles, e.g., for the study of income distribution and financial risk

management. The higher order MSE result for the quantile estimation also enables us to

better understand the sources of estimation uncertainty. Next, we consider three special

cases of the general results, for the unconditional quantile estimation, for the conditional

quantile regression with a binary covariate, and for the instrumental variable quantile re-

gression (IVQR). For each of these special cases, we provide the second-order bias and MSE

to illustrate their behavior which depends on certain parameters and distributional charac-

teristics. The Monte Carlo simulation indicates that the bias is larger at the extreme low

and high tail quantiles, and the second-order bias corrected estimator has better behavior

than the uncorrected ones in both conditional and unconditional quantile regression. The

second-order bias corrected estimators are numerically much closer to the true estimators

of data generating processes. As the higher order bias and MSE decrease as the sample

size increases or as the regression error variance decreases, the benefits of the finite sample

theory are more apparent when there are larger sampling errors in estimation.

Chapter three develops the second-order asymptotic properties (bias and mean

squared error) of the asymmetric least squares (ALS) or expectile estimator, extending

the second-order asymptotic results for the symmetric least squares (LS) estimators of

Rilstone, Srivastava and Ullah (1996). The LS gives the mean regression function while

the ALS gives the ”expectile” regression function, a generalization of the usual regression

function. The second-order bias result enables an improved bias correction and thus to

obtain improved ALS estimation. In particular, we show that the second-order bias is much

larger as the asymmetry is stronger, and therefore the benefit of the second-order bias
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correction is greater when we are interested in extreme expectiles which are used as a risk

measure in financial economics. The higher order MSE result for the ALS estimation also

enables us to better understand the sources of estimation uncertainty. The Monte Carlo

simulation confirms the benefits of the second-order asymptotic theory and indicates that

the second-order bias is larger at the extreme low and high expectiles, and the second-order

bias correction improves the ALS estimator in bias.

Chapter four introduces the predictive quantile regression and predictive expectile

regression. Predictive regression is a fundamental econometric model and widely discussed

in finance literature. This chapter focuses on the second-order bias reduction for both

regression models, which enable us to obtain a better predictive estimates. An empirical

application to stock return prediction using the dividend yield illustrates the benefit of the

proposed second-order bias reduction method. We show that the bias is larger at the tails

of the stock return distribution.

Chapter five contains the conclusion.
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Chapter 1

Introduction

There has been some significant literature on analytical finite sample properties

of econometric estimators and test statistics over the past 60 years. See Nagar (1959),

Sargan (1974, 1976), Basmann(1974), Rothenberg (1984) for linear models, and Amemiya

(1980), Chesher and Spady (1989), Cordeiro and McCullagh (1991), Newy and Smith (2004),

Rilstone, Srivastava and Ullah (1996), Bao and Ullah (2007), and Ullah (2004) for non-

linear models. It is well known that the large sample theory properties may not imply the

finite sample behavior of econometrics estimators and test statistics. In fact, the use of

first-order asymptotic theory results for small or even moderately large samples may give

misleading results. The finite sample properties has been developing rapidly in the mean

regression models., as well as its applications in improving the inference for finite samples,

determining optimal instruments. The finite sample properties permits us to obtain the

better approximation of the bias and mean squared error (MSE) of a class of estimators. It

also allows us to understand what affects the estimators and allows us to find an approach
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to improve the finite sample behavior of various estimators and test statistics.1 Rilstone,

Srivastava and Ullah (1996) developed the large-N second-order bias and mean squared

error (MSE) of a class of nonlinear estimators in models with i.i.d. samples. Bao and Ullah

(2007) analyzed the results for time series dependent observations.

On the other hand, unlike in the mean regression models for which both asymp-

totic theory and finite sample theory have been fully developed over the past 60 years,

there is limited research on finite sample theory for the quantile regression. The literature

on the quantile regression models has been either the first-order asymptotic, or the only the

order of the second-order representation, see Koenker and Bassett (1978), Bahadur (1966),

Kiefer (1967), Jureckova and Sen (1987, 1996), and He and Shao (1996). Quantile regression

provides useful tools for a more complete view of the statistical landscape and the relation-

ship among stochastic variables. All of recent research in financial economics uses the large

sample theory to study the properties of quantiles (e.g. Value-at-Risk, or VaR) and the vari-

ants of VaR, so called the Expected Shortfalls (ES) in financial risk management. Quantile

regression methods also have been used to study in many economic applications such as

determinants of wages, discrimination effects, and trends in income inequality. There is ex-

tensive literature on the first-order asymptotic properties of the quantile regression, which

can be improved by considering the higher order asymptotic approximations that are better

approximations in finite sample. Phillips (1991) provided the asymptotic theory for LAD

estimators using the delta functions, and developed the higher-order asymptotic expansions

for LAD estimators. In Chapter 2, we develop the second-order bias results for quantile

1We refer the finite sample properties to the higher order asymptotic approximation, in the sense it
provides better approximation in small or even moderately large sample. The finite sample properties in
this paper is not the exact moment or distributional properties. See Ullah (2004).
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estimators, using the higher-order asymptotic expansions for quantile estimators.

The challenge to study the finite sample properties of the quantile estimator in

Chapter 2, is due to the non-differentiability of the indicator function inside of the quantile

objective function. Dealing with the non-differentiable problem is common in mathematics

and physics, this has been rarely explored for the finite sample properties of the quantile

regression. See Elliott, Komunjer, and Timmermann (2005). Using the properties of Dirac

delta function, we were able to obtain the finite sample properties for quantile regression.

The ALS estimation was first interpreted as a maximum likelihood estimator when

the disturbances arise from a normal distribution with unequal weight placed on positive and

negative disturbances by Aigner, Amemiya and Poirier (1976). Newey and Powell (1987)

proposed the term, ALS, and investigated the estimation and hypothesis tests for coefficients

of linear ALS models. The symmetric LS gives the mean regression function while the ALS

gives the ”expectile” regression function, a generalization of the usual regression function.

The ALS model has been used in many economic applications. A lot of recent research

in financial economics uses the large sample theory to study the properties of ALS models

in financial risk management. Kuan, Yeh and Hsu (2009), proposed an expectile based

value-at-risk and extended asymptotic results to allow for stationary and weakly dependent

data using a parametric method. Xie, Zhou and Wan (2014) developed a nonparametric

varing-coefficient apporach for modeling the expectile-based value-at-risk. However, the

literature on the ALS model has been entirely the first-order asymptotic properties. The

first-order asymptotic properties of the ALS model can be improved by considering the

higher order asymptotic approximations which are better approximations. In Chapter 3,
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we filled this unexplored area by developing the analytical results of the second-order bias

and mean squared error (MSE) for the ALS models.

Predictive regression is a fundamental econometric model in finance. It has been

widely discussed in finance literature. Unlike in the mean predictive regression models

for which the bias reduction has been actively developed, there is little studies focused on

the predictive quantile regression or predictive expectile regression. Quantile regression is

capable of modeling the entire conditional distribution. It yields valuable insights of the

entire conditional distribution of interest. Expectile regression is also called asymmetric

least squares (ALS) regression. It also gives us information of the entire distribution of

interest that we would not obtain directly from standard mean regression methods. This is

essential for applications such as financial risk management, where we are more interested

in modeling the tails of the conditional distribution. In this paper, we develop the predictive

quantile and expectile regression models. Since the bias is larger towards the tails of the

conditional density than near the median, then the benefit of the bias correction is greater

when we are interested in the deeper tail quantiles.

There has been extensive literature on the bias reduction problem. Zhu (2013)

proposed a method based on the jackknife technique to reduce the bias for predictive re-

gressions, in order to obtain better predictive estimates. In Chapter 4, we use the finite

sample property results to reduce the second-order bias of predictive regression. Rilstone,

Srivastava and Ullah (RSU, 1996) developed the second-order bias of a class of nonlinear

estimators in models with i.i.d. samples. We analyzed the second-order bias and mean

squared error (MSE) in our previous studies. In Chapter 4, we apply the second-order

4



bias and MSE results on the application of stock returns. We are able to calculate the

second-order bias of the predictive quantile and expectile estimator and the bias reduction

enable us to obtain a better predictive estimates. We illustrate the proposed second-order

bias reduction to predict the stock returns by the lagged dividend yield. The data used

in this application is from Welch and Goyal (2008). We try both short- and long-horizon

regressions for both quantile and expectile models.
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Chapter 2

The Second-order Bias and Mean

Squared Error of Quantile

Estimators

2.1 Introduction

There has been some significant literature on analytical finite sample properties

of econometric estimators and test statistics over the past 60 years. The finite sample

properties permits us to obtain the better approximation of the bias and mean squared

error (MSE) of a class of estimators. It also allows us to understand what affects the

estimators and allows us to find an approach to improve the finite sample behavior of

various estimators and test statistics. Rilstone, Srivastava and Ullah (1996) developed the

large-N second-order bias and mean squared error (MSE) of a class of nonlinear estimators
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in models with i.i.d. samples. Bao and Ullah (2007) analyzed the results for time series

dependent observations. On the other hand, unlike in the mean regression models for which

both asymptotic theory and finite sample theory have been fully developed, there is limited

research on finite sample theory for the quantile regression. The literature on the quantile

regression models has been only the order of the second-order representation. Quantile

regression methods also have been used to study in many economic applications such as

determinants of wages and financial risk management. There is extensive literature on

the first-order asymptotic properties of the quantile regression, which can be improved by

considering the higher order asymptotic approximations that are better approximations in

finite sample. In this paper, we develop the second-order bias results for quantile estimators,

using the higher-order asymptotic expansions for quantile estimators. We discover that

while the median is unbiased for a symmetric distribution and the bias of the other quantiles

is larger at the tails of any distribution. When the independent variable is generated from

symmetric distribution, the bias is zero. When the volatility of the error term is larger,

the quantile estimator has larger bias especially at the tails. The Monte Carlo simulations

results provide improvement of quantile estimators and quantile prediction.

The paper is organized as follows. In Section 2.2, we present the notation, the

moment condition of the quantile regression, the assumptions used in this paper. In Section

2.3, we develop the high-order asymptotic expansion of quantile estimators, and derive the

second-order bias of conditional quantile estimators. In Section 2.4, we derive the second-

order MSE of conditional quantile estimators. Section 2.5 provides illustrations, including

second-order bias and MSE of unconditional and conditional quantile estimators with several

7



different distributions. In Section 3.5, we present Monte Carlo simulations.

2.2 Conditional Quantile Estimators

2.2.1 Check Loss Function

Consider a random variable y from the distribution F (·). Let fi (·) denote the

conditional density, for i = 1, · · · , N, f (j)
i (·) denote the jth order derivative of fi(·) for

j ≥ 1. The jth order partial derivatives of a matrix A(β) is defined as ∇jβA(β). If A(β) is

a k × 1 vector, ∇jβA(β) is a k × kj matrix. For a matrix A, ||A|| denotes the usual norm,

[trace (AA′)]1/2 . If A is a k × 1 vector, according to the Appendix A.1, ||A|| = (A′A)1/2 .

The Kronecker product is defined in the usual way. For an m × n matrix A and a p × q

matrix B, we have A⊗ B as an mp× nq matrix. The X = E(X) denotes the expectation

of a random vector X. Given α ∈ (0, 1), the α-quantile qα of y with distribution function

F (y) is defined as

qα = inf{y : F (y) ≥ α}.

The quantile can be considered as the inverse of the distribution function. The quantile qα

is the value such that α percent of the mass of the distribution is less than qα, which can

be obtained from

qα = arg min
q
E[Lα(y − q)],

where the check loss function is defined as

Lα(y − q) = (α− 1(y − q < 0)) (y − q) .

8



For the random variable (yi, xi) with conditional distribution function F (y|x) the conditional

quantile function qα is

qα = inf{y : F (y|x) ≥ α}.

As a function of xi, the quantile regression function can be nonlinear. We consider a simple

linear model, i.e. qα = x′iβα, where the quantile estimators βα varies across α. Then the

linear quantile regression model is

yi = x′iβα + ui, (2.1)

where yi is a scalar and xi is a k × 1 vector, ui is the error defined to be the difference

between yi and its conditional α-quantile x′iβα. To simplify the notation, we use β to denote

βα hereafter.

The k × 1 vector quantile estimators β̂ can be obtained by solving

min
β
E[Lα(β)] = E[

(
α− 1(yi < x′iβ)

) (
yi − x′iβ

)
]. (2.2)

Following the condition A0 in Komunjer (2005) and Elliott, Komunjer, and Timmermann

(EKT 2005), we restrict the conditional quantile model that x′iβ, the conditional α-quantile

of yi, is identified on Θ, i.e. for any (β1, β2) ∈ Θ2 we have x′iβ1 = x′iβ2 a.s. -P , for all i, if and

only if β1 = β2. The check loss function Lα(β) = (α−1(yi < x′iβ))(yi−x′iβ) is continuously

differentiable on Θ\A, where A = {β ∈ Θ : yi = x′iβ}. Let ∇1
βE[Lα(β)] denote the gradient

of E[Lα(β)] on Θ\A. By the law of iterated expectations, E[Lα(β)] = E{E[Lα(β)]}, so that

∇1
βE[Lα(β)] = E{∇1

βLα(β)E[1(β ∈ Ac)]}+ E{∇1
βLα(β)E[1(β ∈ A)]},

where E[1(β ∈ Ac)] = 1, and E[1(β ∈ A)] = 0. Therefore, E[Lα(β)] is continuously

9



differentiable on Θ. Then can write the population moment condition as

∇1
βE[Lα(β)] = E[−∇1

β1(yi − x′iβ < 0)(yi − x′iβ)] + E[(α− 1(yi < x′iβ))(−xi)]. (2.3)

By the definition of Dirac delta function in Appendix B.1, 1(yi − x′iβ < 0) = 1(x′iβ − yi ≥

0) ≡ φ(x′iβ − yi) is a Heaviside unit step function. Then

∇1
β1(yi − x′iβ < 0) = ∇1

βφ(x′iβ − yi) =
dφ(x′iβ − yi)
d(x′iβ − yi)

d(x′iβ − yi)
dβ

= x′iδ(x
′
iβ − yi).

See Gelfand and Shilov (1964). The first term of the equation (2.3)) can be written as

E[x′iδ(x
′
iβ − yi)(yi − x′iβ)], which equals zero. According to the property of Dirac delta

function in Appendix B.4, we have δ(x′iβ − yi) = δ(yi − x′iβ). According to the property of

Dirac delta function in Appendix B.3, we have

E[x′iδ(x
′
iβ − yi)(yi − x′iβ)] = E[x′iδ(yi − x′iβ)(yi − x′iβ)]

= E
[
x′iE

[
δ(yi − x′iβ)(yi − x′iβ)|xi

]]
= E

[
x′i

∫ +∞

−∞
δ(yi − x′iβ)(yi − x′iβ)fi(yi)dyi

]
= E

[
x′i(x

′
iβ − x′iβ)fi(x

′
iβ)
]

= 0.

where fi(x
′
iβ) ≡ fi(x′iβ|xi) is the conditional density of yi evaluated at yi = x′iβ. Thus, the

moment condition can be written as

∇1
βE[Lα(β)] = E[(α− 1(yi < x′iβ))(−xi)] = E[si(β)],

where the score function si(β) = (α − 1(yi < x′iβ))(−xi). The sample moment condition

can be written as

ΨN (β) =
1

N

N∑
i=1

si(β), (2.4)

10



which satisfies equation (2.1).

2.2.2 Assumptions

Rilstone, Srivastava and Ullah (RSU, 1996) developed the second-order bias and

MSE of a class of estimators. These results apply for both normal and non-normal errors.

A class of estimators β̂ can be written as a solution to a set of moment equations of the

form

ΨN (β̂) =
1

N

N∑
i=1

si(β̂) = 0, (2.5)

where si(β) ≡ s(xi;β) is a known k×1 vector-valued function of the observable k-dimensional

random vectors xi and a parameter vector β ∈ Rk with true value β0 such that E[si(β)] = 0

holds only at β = β0 for all i. The moment equation ΨN (.) can be the first-order condi-

tion of some optimization criteria. The estimators can be maximum likelihood (ML), least

square (LS) and Generalized Method of Moments (GMM) estimators. In RSU (1996), the

Assumption A-C are sufficient for β̂ to have an asymptotically normal distribution. To ob-

tain the stochastic expansion of β̂, the Assumption A-C are assumed to hold along with the

√
N -consistency of β̂. In this section, we give the modified Assumption A-C some remarks

for quantile model.

Assumption A. The jth-order derivative of si(β) exists in a neighborhood of β0 and

is continuous with probability 1, and E
[
||xi||j+1 f

(j−1)
i (0|xi)

]2
< ∞, for j ≥ 1, where

f
(0)
i (0|xi) = fi(0|xi) is the conditional density of ui evaluated at ui = 0.

Assumption B. For some neighborhood of β0,
(
E∇1

βΨN (β)
)−1

= O(1).

Assumption C. For any ε→ 0, rj (β) =
∥∥∥∇j−1

β si(β)−∇j−1
β si(β0)−∇jβsi(β0) (β − β0)

∥∥∥ / ‖β − β0‖ →

11



0 as β → β0, E
[
sup‖β−β0‖<ε rj (β)

]
< ∞, with probability 1, and N−1

∑N
i=1∇

j
βsi(β0)

p→

E
[
∇jβsi(β0)

]
for j ≥ 1, where ∇0

βsi(β) = si(β).

In the following we discuss the assumptions under which Theorems, Corollarys

and Propositions stated below will be true. We argue that these assumptions encompass a

wide variety of conditional quantile models, which means that the analytical results are of

wide interest and applicability. In general, Assumption A-C are related to the conditions in

Komunjer (2005), but include more primitive conditions. See Huber (1976), Pollard (1985),

Pakes and Pollard (1989), Newey and McFadden (1994), Andrews (1994), Chernozhukov

and Hong (2003). The most substantial difference is that the conditions in Komunjer (2005)

are stated to obtain the asymptotic normality of conditional quantile estimators, which only

handles the nonsmoothness of the quantile objective function, while in this paper, to handle

higher order stochastic expansion, the Assumption C requires conditions of the higher order

stochastic equicontinuity.

First, we discuss the Assumption A. We restrict the conditional quantile model

that x′iβ, the conditional α-quantile of yi, is identified on Θ, and E[L(β)] is continuously

differentiable on Θ, then the sample moment conditon ΨN (β) is continuous differentiable on

Θ. In this case, for every β ∈ Θ,∇1
βΨN (β) exists and is continuous with probability 1, so that

the second-order and third-order derivative of ΨN (β) exists and continuous with probability

1. By the definition of Dirac delta function in Appendix B.1, we have ∇1
β1(yi−x′iβ < 0) =

x′iδ(x
′
iβ − yi). Note that β is a k × 1 vector, where xi is a k × 1 vector, si(β) is a k × 1

vector, δ(x′iβ− yi) is a scalar. The derivative of a k× 1 vector si(β) with respect to a k× 1

vector β is a k × k matrix ∇1
βsi(β). Then the first-order derivative of si(β) exists and is

12



continuous with probability 1.

∇1
βsi(β) = ∇1

β[(α− 1(yi < x′iβ))(−xi)]

= xi∇1
βφ(x′iβ − yi)

= xi
dφ(x′iβ − yi)
d(x′iβ − yi)

d(x′iβ − yi)
dβ

= xix
′
iδ(x

′
iβ − yi).

We can show that locally at any β, the difference between the sample mean of first derivative

of score function and its expected value converges in probability to zero, i.e. 1
N

∑N
i=1 xix

′
iδ(x

′
iβ−

yi) − E [xix
′
iδ(x

′
iβ − yi)]

p→ 0. Using the the properties in Appendix A.2, B.3 and B.4, we

obtain

E
∥∥∇1

βsi(β0)
∥∥2

= E
[∥∥xix′i∥∥ δ(x′iβ0 − yi)

]2
= E

[[
tr
(
xix
′
ixix

′
i

)]1/2
δ(yi − x′iβ0)

]2

= E
[[
tr
(
x′ixix

′
ixi
)]1/2

E
[
δ(yi − x′iβ0)|xi

]]2

= E

[(
x′ixix

′
ixi
)1/2 ∫ +∞

−∞
δ(yi − x′iβ0)fi(yi)dyi

]2

= E
[
x′ixifi(x

′
iβ0)

]2
= E

[
||xi||2 fi(x′iβ0)

]2

< ∞.

The second-order derivative of a k × 1 vector si(β) with respect to a k × 1 vector β is a

k × k2 matrix ∇2
βsi(β). The second order derivative of si(β) exists and is continuous with

probability 1.

∇2
βsi(β) = ∇1

β[xix
′
iδ(x

′
iβ − yi)] =

(
xix
′
i

)
⊗∇1

βδ(x
′
iβ − yi),

13



where the derivative of a scalar δ(x′iβ − yi) with respect to a k × 1 vector β is a 1× k row

vector ∇1
βδ(x

′
iβ − yi). We denote

∇1
βδ(x

′
iβ − yi) =

dδ(x′iβ − yi)
d(x′iβ − yi)

d(x′iβ − yi)
dβ

= x′iδ
(1)(x′iβ − yi),

where δ(1)(x′iβ− yi) is a scalar. Then we can rewrite the second-order derivative of si(β) as

∇2
βsi(β) =

(
xix
′
i

)
⊗∇1

βδ(x
′
iβ − yi) =

(
xix
′
i

)
⊗ x′iδ(1)(x′iβ − yi).

We can show that locally at any β, the difference between the sample mean of second

derivative of score function and its expected value converges in probability to zero, i.e.

1
N

∑N
i=1 (xix

′
i)⊗x′iδ(1)(x′iβ−yi)−E

[
(xix

′
i)⊗ x′iδ(1)(x′iβ − yi)

] p→ 0. Using the the properties
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in Appendix A.3, B.5 and B.6, we obtain

E
∥∥∇2

βsi(β0)
∥∥2

= E
∥∥∥(xix

′
i)⊗ x′iδ(1)(x′iβ0 − yi)

∥∥∥2

= E
∥∥∥(xix′i)⊗ x′iE [δ(1)(x′iβ0 − yi)|xi

]∥∥∥2

= E

∥∥∥∥(xix′i)⊗ x′i(∫ +∞

−∞
δ(1)(x′iβ0 − yi)fi(yi)dyi

)∥∥∥∥2

= E

∥∥∥∥(xix′i)⊗ x′i(−∫ +∞

−∞
δ(1)(yi − x′iβ0)fi(yi)dyi

)∥∥∥∥2

= E

∥∥∥∥(xix′i)⊗ x′i(∫ +∞

−∞
δ(yi − x′iβ0)f

(1)
i (yi)dyi

)∥∥∥∥2

= E
[
f

(1)
i (x′iβ0)

∥∥(xix′i)⊗ x′i∥∥]2

= E
[
f

(1)
i (x′iβ0)

{
tr
([(

xix
′
i

)
⊗ x′i

] [(
xix
′
i

)
⊗ xi

])}1/2
]2

= E
[
f

(1)
i (x′iβ0)

[
tr
((
xix
′
ixix

′
i

)
⊗
(
xix
′
i

))]1/2]2

= E
[
f

(1)
i (x′iβ0)

[
tr
(
x′ixix

′
ixix

′
ixi
)]1/2]2

= E
[
f

(1)
i (x′iβ0)

(
x′ixi

)]3

= E
[
f

(1)
i (x′iβ0) ||xi||3

]2

< ∞.

The third-order derivative of a k × 1 vector si(β) with respect to a k × 1 vector β is a

k × k3 matrix ∇3
βsi(β). The third order derivative of si(β) exists and is continuous with

probability 1.

∇3
βsi(β) = ∇2

β[xix
′
iδ(x

′
iβ − yi)] =

(
xix
′
i

)
⊗∇2

βδ(x
′
iβ − yi),

where the derivative of a 1 × k row vector ∇1
βδ(x

′
iβ − yi) with respect to a k × 1 vector β

is a 1× k2 row vector ∇2
βδ(x

′
iβ − yi). We denote

∇2
βδ(x

′
iβ−yi) = ∇1

βx
′
iδ

(1)(x′iβ−yi) = x′i⊗
dδ(1)(x′iβ − yi)

d(x′iβ − yi)
d(x′iβ − yi)

dβ
= x′i⊗x′iδ(2)(x′iβ−yi),

15



where δ(2)(x′iβ − yi) is a scalar. Then we can rewrite the third-order derivative of st(β) as

∇3
βsi(β) =

(
xix
′
i

)
⊗∇2

βδ(x
′
iβ − yi) =

(
xix
′
i

)
⊗ x′i ⊗ x′iδ(2)(x′iβ − yi).

We can show that locally at any β, the difference between the sample mean of second

derivative of score function and its expected value converges in probability to zero, i.e.

1
N

∑N
i=1 (xix

′
i)⊗x′i⊗x′iδ(2)(x′iβ−yi)−E

[
(xix

′
i)⊗ x′i ⊗ x′iδ(2)(x′iβ − yi)

] p→ 0. Using the the

properties in Appendix A.4, B.6 and B.7, we obtain

E
∥∥∇3

βsi(β0)
∥∥2

= E
∥∥∥(xix′i)⊗ x′i ⊗ x′iδ(2)(x′iβ0 − yi)

∥∥∥2

= E
∥∥∥(xix′i)⊗ x′i ⊗ x′iE [δ(2)(x′iβ0 − yi)|xi

]∥∥∥2

= E

∥∥∥∥(xix′i)⊗ x′i ⊗ x′i ∫ +∞

−∞
δ(2)(yi − x′iβ0)fi(yi)dyi

∥∥∥∥2

= E

∥∥∥∥(xix′i)⊗ x′i ⊗ x′i ∫ +∞

−∞
δ(yi − x′iβ0)f

(2)
i (yi)dyi

∥∥∥∥2

= E
{
f

(2)
i (x′iβ0)

∥∥(xix′i)⊗ x′i ⊗ x′i∥∥}2

= E
{
fi

(2)(x′iβ0)tr
([(

xix
′
i

)
⊗ x′i ⊗ x′i

] [(
xix
′
i

)
⊗ xi ⊗ xi

])1/2}2

= E
[
fi

(2)(x′iβ0)tr
[(
xix
′
ixix

′
i

)
⊗
(
x′i ⊗ x′i

)
(xi ⊗ xi)

]1/2]2

= E
[
fi

(2)(x′iβ0)tr
[(
xix
′
ixix

′
i

)
⊗ x′ixi ⊗ x′ixi

]1/2]2

= E
[
fi

(2)(x′iβ0)tr
[(
x′ixix

′
ixi
)
x′ixix

′
ixi
]1/2]2

= E
[
fi

(2)(x′iβ0)
(
x′ixix

′
ixi
)]2

= E
[
fi

(2)(x′iβ0)
(
x′ixi

)2]2

= E
[
fi

(2)(x′iβ0) ‖xi‖4
]2

< ∞.

Since the conditional density of yi given xi evaluated at yi = x′iβ is the same as the

16



conditional density of ui given xi evaluated at ui = 0. If we use fi (0|xi) to denote the

conditional density of ui given xi evaluated at ui = 0, then the conditions we observe above

can be written as

E
∥∥∇1

βsi(β0)
∥∥2

= E
[
||xi||2 fi(0|xi)

]2
<∞,

E
∥∥∇2

βsi(β0)
∥∥2

= E
[
f

(1)
i (0|xi) ||xi||3

]2
<∞,

E
∥∥∇3

βsi(β0)
∥∥2

= E
[
fi

(2)(0|xi) ‖xi‖4
]2
<∞.

Combinning the conditions in one single equation, we have E
[
||xi||j+1 f

(j−1)
i (0|xi)

]2
<∞,

and it is easy to show that this condition applies for j ≥ 1, where f
(0)
i (0|xi) = fi(0|xi).

Next, we discuss the Assumption B. For some neighborhood of β0,
(
E∇1

βΨN (β)
)−1

=

O(1) is required to obtain the stochastic expansion of β̂ − β in Section 3. That is

(
E∇1

βΨN (β)
)−1

=

(
E

1

N

N∑
i=1

xix
′
iδ(x

′
iβ − yi)

)−1

=
(
E
[
xix
′
iδ(x

′
iβ − yi)

])−1

=
(
E
[
xix
′
ifi(x

′
iβ)
])−1

= O(1).

Lastly, we discuss the Assumption C. To derive the second-order bias and MSE of

the quantile estimators, we use the higher order Taylor expansion of the gradient ΨN (β)

around β0, which satisfies ΨN (β̂) = 0. This approach requires ΨN (β) and the derivatives

of ΨN (β) to be sufficient smooth, which is not the case with the quantile regression. In

general, Assumption C is related to the conditions in Komunjer (2005), which applies the

stochastic equicontinuity conditions to handle the expansion of discontinuous and nons-

mooth objective function. The discontinuous and nonsmooth problem has been discussed
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in many literatures, including Huber (1976), Pollard (1985), Newey and McFadden (1994),

and Andrews (1994). The basic insight of these papers is that smoothness of the objective

function can be replaced by smoothness of the limit if certain reminder terms are small.

Therefore, those stochastic equicontinuity conditions do not require differentiablilty of the

criterion function, but require that the reminder term of the expansion can be controlled in

a particular way over a neighborhood of β0, and those conditions are sufficient for β̂ to have

an asymptotically normal distribution. In this paper, to derive the second-order bias and

MSE of β̂, besides of those stochastic conditions discussed in those literatures mentioned

above, we need additional smoothness and dominating conditions for higher moments of

quantile objective function. The Assumption C in this paper extends the conditions in

Theorem 7.3 in Newey and McFadden (1994), gives a version of the stochastic equicontinu-

ity for Lipschitz moment function, and allows for moments of the objective function to be

Lipschitz at β0 and differentiable with probability 1, ranthe ran continuously differentiable.

The Assumption C in this paper restricts the remainder rj (β) to be well behaved uniformly

near the true parameter, and this uniformity property requires that higher moments of the

objective function be Lipschitz at β0 with an integrable Lipschitz constant with probabil-

ity 1. The Assumption C in this paper requires a stronger condition than the conditions

in Pollard (1985) and Andrews (1994), but places no restrictions on the dependence of

the independent variables. Similarily as the Assumption C in RSU (1996), the additional

smoothness and dominating conditions do not require much more from the model. This

means that Assumption C in this paper is of wide applicability.
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2.3 Second-order Bias of Quantile Estimators

To obtain the second-order bias for quantile estimator, we implement the Taylor’s

expansion of ΨN (β̂) = 0 around β0 up to the second order,

0 = ΨN +∇ΨN (β̂ − β0) +
1

2
∇2ΨN

[
(β̂ − β0)⊗ (β̂ − β0)

]
+ op

(
N−1

)
, (2.6)

where ΨN = ΨN (β0) . The ordinary stochastic expansion of β̂ is obtained from equation

(2.6). However, a diffculty arises from the derivatives of the moment condition. Using the

properties of the delta function in the appendix or in Phillips (1991, p. 455), we can rewrite

(2.6) as

0 = ΨN +∇ΨN (β̂ − β0) +
(
∇ΨN −∇ΨN

)
(β̂ − β0)

+
1

2
∇2ΨN

[
(β̂ − β0)⊗ (β̂ − β0)

]
+ op

(
N−1

)
≡ A1 +A2 +A3 +A4 + op

(
N−1

)
, (2.7)

where ∇ΨN
p→ ∇ΨN , and ∇2ΨN

p→ ∇2ΨN , that is

∇ΨN =
1

N

N∑
i=1

xix
′
iδ(x

′
iβ − yi)

p→ 1

N

N∑
i=1

E
[
xix
′
ifi(0|xi)

]
= ∇ΨN ,

∇2ΨN =
1

N

N∑
i=1

(
xix
′
i

)
⊗ x′iδ(1)(x′iβ − yi)

p→ 1

N

N∑
i=1

E
[(
xix
′
i

)
⊗ x′if

(1)
i (0|xi)

]
= ∇2ΨN .

To see the order of each of these terms, we first recall the asymptotic distribution of the

quantile regression estimator when the α-quantile is linear in xi,

√
N(β̂ − β0)

d→ N(0, Vα), (2.8)

where

Vα = α(1− α)

[
1

N

N∑
i=1

E[fi(0|xi)xix′i)

]−1

E(xix
′
i)

[
1

N

N∑
i=1

E(fi(0|xi)xix′i)

]−1

,
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and fi(0|xi) is the density of ui conditional on xi evaluated at ui = 0. See e.g. Koenker

(2005). Since the quantile estimator is
√
N -consitent, we can obtain that the orders of both

A1 = ΨN and A2 = ∇ΨN (β̂ − β0) are Op
(
N−1/2

)
.

We recall the following result. Let

β̂ − β0 = a−1/2 +RN , (2.9)

where a−1/2 is a random sequence of Op
(
N−1/2

)
, and RN is the remainder term of higher

order. Bahadur (1966) and Kiefer (1967) established the celebrated results on the order of

RN , that is

RN = Op

(
n−3/4 (log log n)3/4

)
. (2.10)

See Koenker (2005 pp. 122-123), and also Jureckova and Sen (1987, 1996 pp. 196-202), He

and Shao (1996), and van der Vaart (1998 p. 310). Note that (2.10) implies that

RN = Op

(
N−3/4+ε

)
for some small ε > 0. (2.11)

Below we use this result to obtain Lemma 1(b). In the following Lemma 1 and 2, we discuss

A3 and A4. Our goal is to obtain the expression of the bias term E
(
β̂ − β0

)
up to the

second-order i.e., of order O
(
N−1

)
, which will be disscussed in Lemma 3, 4, and 5.

Lemma 1. Let

A3 =
(
∇ΨN −∇ΨN

)
(β̂ − β0)

=
(
∇ΨN −∇ΨN

)
a−1/2 +

(
∇ΨN −∇ΨN

) [
(β̂ − β0)− a−1/2

]
≡ A31 +A32. (2.12)

Then,
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(a) A31 = Op(N
−7/6),

(b) A32 is smaller than Op(N
−1), i.e. A32 = op

(
N−1

)
.

Proof:

(a) According to Phillips (1991), Kim and Pollard (1990), and Prakasa Rao (1969), the

term VN = ∇ΨN − ∇ΨN = Op
(
N−1/3

)
. We obtain that

√
Na−1/2 = N(0, Vα) is

bounded and has zero mean. The term
√
NA31 will contribute to

√
NA3 through

the variance of
√
Na−1/2, and will produce an adjustment of Op

(
N−2/3

)
. Then we

observe that A31 will be Op
(
N−7/6

)
, and the order of A32 is smaller than A31.

(b) By (2.10), RN is the remainder term of order smaller than a−1/2. Since RN is not

of zero mean, because E (RN ) is the high-order bias of quantile estimators, then

A32 = VNRN = Op
(
N−1/3−3/4+ε

)
is smaller than Op(N

−1), i.e. A32 = op
(
N−1

)
.

Lemma 2. Let

A4 =
1

2
∇2ΨN

[
(β̂ − β0)⊗ (β̂ − β0)

]
=

1

2
∇2ΨN

[
(β̂ − β0)⊗ (β̂ − β0)

]
+

1

2

(
∇2ΨN −∇2ΨN

) [
(β̂ − β0)⊗ (β̂ − β0)

]
≡ A41 +A42. (2.13)

Then,

(a) A41 = Op(N
−1),

(b) A42 is smaller than Op(N
−1), i.e. A42 = op

(
N−1

)
.

21



Proof:

(a) By (2.9), A41 can be written as

A41 =
1

2
∇2ΨN

{[
(β̂ − β0)− a−1/2 + a−1/2

]
⊗
[
(β̂ − β0)− a−1/2 + a−1/2

]}
=

1

2
∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+

1

2
∇2ΨN

(
a−1/2 ⊗

[
(β̂ − β0)− a−1/2

])
+

1

2
∇2ΨN

([
(β̂ − β0)− a−1/2

]
⊗ a−1/2

)
+

1

2
∇2ΨN

([
(β̂ − β0)− a−1/2

]
⊗
[
(β̂ − β0)− a−1/2

])
, (2.14)

where only the frist term in equation (2.14) is 1
2∇2ΨN

(
a−1/2 ⊗ a−1/2

)
= Op

(
N−1

)
,

and the rest three terms in equation (2.14) are smaller than Op
(
N−1

)
.

(b) Since ∇2ΨN −∇2ΨN is smaller than Op (1) , then A42 is smaller than Op(N
−1).

Given the Lemma 1 and 2, the equation (2.7) can be written as

0 = A1 +A2 +A31 +A41 + op
(
N−1

)
= ΨN +∇ΨN (β̂ − β0) +

(
∇ΨN −∇ΨN

)
a−1/2 +

1

2
∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+ op

(
N−1

)
.(2.15)

The term ∇ΨN in an ordinary Taylor expansion, equation (2.6), is not invertible, because

the derivative of moment condition, ∇ΨN = 1
N

∑N
i=1 xix

′
iδ(x

′
iβ−yi), involves delta function

and (∇ΨN )−1 is not bounded. Now in the equation (2.15), the Taylor expansion of quantile

regression, ∇ΨN is invertible, because
(
∇ΨN

)−1
is bounded. In equation (2.15), we keep the

term A31 even though it is Op(N
−7/6) by Lemma 2, because we found that the ”expectation”

of A31 become Op(N
−1), which we will discuss in the following Lemma.
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Solve for β̂ − β0 in equation (2.15) to obtain

β̂ − β0 = −∇ΨN
−1

ΨN −∇ΨN
−1 (∇ΨN −∇ΨN

)
a−1/2

−1

2
∇ΨN

−1∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+ op

(
N−1

)
= −QΨN −QVNa−1/2 −

1

2
QH2

(
a−1/2 ⊗ a−1/2

)
+ op

(
N−1

)
(2.16)

≡ B1 +B2 +B3 + op
(
N−1

)
,

where Hj = ∇jΨN , for j = 1, 2, Q = H1
−1
, VN = H1 −H1. Note that multiplying equation

(2.16) by
√
N gives the same as equation (15) of Phillips (1991, p. 457). In order to

compute the bias of β̂, that is E
(
β̂ − β0

)
, we now examine the expectations of the three

terms B1, B2, B3 in (2.16).

Lemma 3.

(a) B1 ≡ a−1/2 = −QΨN = Op
(
N−1/2

)
, and E (B1) = 0;

(b) B2 ≡ −QVNa−1/2 = Op
(
N−7/6

)
, and E (B2) = O

(
N−1

)
;

(c) B3 ≡ −1
2QH2

(
a−1/2 ⊗ a−1/2

)
= Op

(
N−1

)
, and E (B3) = O

(
N−1

)
.

Proof: Suppose xi and ui are not identically distributed, but independent across i = 1, ..., N.

Suppose yi has conditional density function fi (y|x) . To simplify the notation, we use fi (y)

to denote fi (y|x).

(a) In equation (2.16), only the first term, B1, is Op
(
N−1/2

)
, and it should be that

a−1/2 = B1. Since ΨN is the sample moment condition and Q is bounded, then

E (B1) = E
(
a−1/2

)
= E (−QΨN ) = −QE (ΨN ) = 0.
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(b) By Lemma 1, A31 =
(
∇ΨN −∇ΨN

)
a−1/2 = VNa−1/2 = Op(N

−7/6). Since Q is

bounded, then B2 ≡ −QVNa−1/2 = Op
(
N−7/6

)
. We have

H1 = ∇1
βΨN = ∇1

β

1

N

N∑
i=1

si =
1

N

N∑
i=1

∇1
βsi =

1

N

N∑
i=1

xix
′
iδ(x

′
iβ − yi),

H1 = E∇1
βΨN = E

1

N

N∑
i=1

[
xix
′
iδ(x

′
iβ − yi)

]
=

1

N

N∑
i=1

E
[
xix
′
iδ(x

′
iβ − yi)

]
=

1

N

N∑
i=1

E
[
xix
′
iE
(
δ(x′iβ − yi)|xi

)]
=

1

N

N∑
i=1

E

[
xix
′
i

∫ +∞

−∞
δ(yi − x′iβ0)fi(yi)dyi

]

=
1

N

N∑
i=1

E
[
xix
′
ifi(x

′
iβ)
]
,

Q =
(
H1

)−1
=

(
1

N

N∑
i=1

E[fi(x
′
iβ)xix

′
i]

)−1

,

VN = H1 −H1 =
1

N

N∑
i=1

xix
′
iδ(x

′
iβ − yi)−

1

N

N∑
i=1

E[fi(x
′
iβ)xix

′
i],

ΨN , si and a−1/2 are all k× 1 vectors. H1, H1, Q, and VN are all k× k matrixes, H2,

H2 and WN are all k × k2 matrixes. H3 and H3 are k × k3 matrixes. Using the the
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properties in Appendix B.8, we have

E
(
VNa−1/2

)
= −E

[(
H1 −H1

)
QΨN

]
= −E (H1QΨN )− E (ΨN )

= −E

[
1

N

N∑
i=1

xix
′
iδ(x

′
iβ − yi)QΨN

]

= −E

[
1

N

N∑
i=1

xix
′
iE
(
δ(x′iβ − yi)QΨN |xi

)]

= − 1

N2

N∑
i=1

E

[
xix
′
i

∫ +∞

−∞
δ(x′iβ − yi)Q(α− 1(yi < x′iβ))(−xi)fi(yi)dyi

]

= − 1

N2

N∑
i=1

E

 −xix′iQxiα
∫ +∞
−∞ δ(x′iβ − yi)f(yi)dyi

+xix
′
iQxi

∫ +∞
−∞ δ(x′iβ − yi)φ(x′iβ − yi)fi(yi)dyi


= − 1

N2

N∑
i=1

E

[
−xix′iQxiαfi(x′iβ) +

1

2
xix
′
iQxifi(x

′
iβ)

]

= −
(

1

2
− α

)
1

N2

N∑
i=1

E
[
xix
′
iQxifi(x

′
iβ)
]
.

Then, E (B2) = E
(
−QVNa−1/2

)
= O

(
N−1

)
.

(c) By Lemma 2, A41 = 1
2∇2ΨN

(
a−1/2 ⊗ a−1/2

)
= 1

2H2

(
a−1/2 ⊗ a−1/2

)
= Op

(
N−1

)
.

Since Q and H2 are bounded, then B3 = Op
(
N−1

)
. We have

H2 = ∇2
βΨN =

1

N

N∑
i=1

(
xix
′
i

)
⊗ x′iδ(1)(x′iβ − yi),
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H2 = E∇2
βΨN = E

1

N

N∑
i=1

[(
xix
′
i

)
⊗ x′iδ(1)(x′iβ − yi)

]
=

1

N

N∑
i=1

E
[(
xix
′
i

)
⊗ x′iδ(1)(x′iβ − yi)

]
=

1

N

N∑
i=1

E
[(
xix
′
i

)
⊗ x′iE

(
δ(1)(x′iβ − yi)|xi

)]
=

1

N

N∑
i=1

E

[(
xix
′
i

)
⊗ x′i

∫ +∞

−∞
δ(1)(x′iβ − yi)fi(yi)dyi

]

= − 1

N

N∑
i=1

E

[(
xix
′
i

)
⊗ x′i

∫ +∞

−∞
δ(1)(yi − x′iβ)fi(yi)dyi

]

=
1

N

N∑
i=1

E

[(
xix
′
i

)
⊗ x′i

∫ +∞

−∞
δ(yi − x′iβ)f

(1)
i (yi)dyi

]

=
1

N

N∑
i=1

E
[(
xix
′
i

)
⊗ x′if

(1)
i (x′iβ)

]
,

a−1/2 ⊗ a−1/2 = E [(QΨN ⊗QΨN )] = E [(Q⊗Q) (ΨN ⊗ΨN )]

= (Q⊗Q)E [(ΨN ⊗ΨN )] =
1

N2

N∑
i=1

(Q⊗Q)E [E (si ⊗ si|xi)]

=
1

N2

N∑
i=1

(Q⊗Q)E
[
(xi ⊗ xi)E

(
(α− 1(yi < x′iβ))2|xi

)]
=

1

N2

N∑
i=1

(Q⊗Q)E (xi ⊗ xi)
[
(α− 1)2 α+ α2 (1− α)

]
=

1

N2

N∑
i=1

α(1− α) (Q⊗Q)E (xi ⊗ xi) .

Then, E (B3) = −1
2QH2

(
a−1/2 ⊗ a−1/2

)
= Op

(
N−1

)
.

From equation (2.16), note that the bias of quantile estimators β̂ is

E
(
β̂ − β0

)
= E (B1) + E (B2) + E (B3) + o

(
N−1

)
= E (−QΨN ) + E

(
−QVNa−1/2

)
+ E

(
−1

2
QH2

(
a−1/2 ⊗ a−1/2

))
+ o

(
N−1

)
.(2.17)
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Given the above results in Lemma 3, we define the second-order bias of quantile estimators

as follows.

Definition 1. Let E
(
β̂ − β0

)
= B(β̂) + o

(
N−1

)
. Then

B(β̂) ≡ E (−QΨN ) + E
(
−QVNa−1/2

)
+ E

(
−1

2
QH2

(
a−1/2 ⊗ a−1/2

))
(2.18)

will be called “the second-order bias of quantile estimators β̂ up to O(N−1)”.

Theorem 1. In the quantile regression model, suppose xi and ui are not identically dis-

tributed, but independent across i = 1, ..., N, the second-order bias, up to O(N−1), of the

quantile estimators β̂ is

B(β̂) = E

[
−QVNa−1/2 −

1

2
QH2

(
a−1/2 ⊗ a−1/2

)]
=

(
1

2
− α

)
Q

1

N2

N∑
i=1

E
[
xix
′
iQxifi(0|xi)

]
−α(1− α)

2
Q

1

N

N∑
i=1

E[
(
xix
′
i

)
⊗ x′if

(1)
i (x′iβ)]

1

N2

N∑
i=1

(Q⊗Q)E (xi ⊗ xi) ,(2.19)

where Q =
(

1
N

∑N
i=1E[xix

′
ifi(0|xi)]

)−1
, fi (0|xi) is the conditional density of ui given xi

evaluated at ui = 0.

Proof: By Lemma 3, the second-order bias of quantile estimators β̂ up to O(N−1) is

B(β̂) = Q

[
−VNa−1/2 −

1

2
H2

(
a−1/2 ⊗ a−1/2

)]
=

(
1

2
− α

)
Q

1

N2

N∑
i=1

E
[
xix
′
iQxifi(x

′
iβ)
]

−α(1− α)

2
Q

1

N

N∑
i=1

E[
(
xix
′
i

)
⊗ x′if

(1)
i (x′iβ)]

1

N2

N∑
i=1

(Q⊗Q)E (xi ⊗ xi) ,
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where Q =
(

1
N

∑N
i=1E[xix

′
ifi(x

′
iβ)]

)−1
. Since the conditional density of yi given xi evalu-

ated at yi = x′iβ is the same as the conditional density of ui given xi evaluated at ui = 0.

If we use fi (0|xi) to denote the conditional density of ui given xi evaluated at ui = 0, the

second-order bias of β̂ up to O(N−1) can be rewritten as

B(β̂) =

(
1

2
− α

)
Q

1

N2

N∑
i=1

E
[
xix
′
iQxifi(0|xi)

]
−α(1− α)

2
Q

1

N2

N∑
i=1

E[
(
xix
′
i

)
⊗ x′if

(1)
i (0|xi)] (Q⊗Q)E (xi ⊗ xi) ,

where Q =
(

1
N

∑N
i=1E[xix

′
ifi(0|xi)]

)−1
.

Corollary 1. When xi and ui are i.i.d., the expression of the second-order bias of β̂ up to

O(N−1) can be simplified as

B(β̂) =
1

N
Q

[(
1

2
− α

)
E
(
xix
′
iQxi

)
f(0)− α(1− α)

2
E[
(
xix
′
i

)
⊗ x′i]f (1)(0) (Q⊗Q)E (xi ⊗ xi)

]
,

where Q = (E (xix
′
i) f(0))−1 , and f (0) is the density of ui evaluated at the ui = 0.

Remark: When xi and ui are i.i.d., and k = 1, we observe that xi, ΨN , si, d, H1, H1, Q,

VN , H2, H2, WN , H3, H3 are all scalars, and the second-order bias of β̂ up to O(N−1) can

be rewritten as

B(β̂) =
1

N

(
1

2
− α

)
E
(
x3
i

)[
E
(
x2
i

)]2
f(0)

− 1

N

α(1− α)

2

E
(
x3
i

)
f (1)(0)[

E
(
x2
i

)]2
[f(0)]3

.

The quantile estimator β̂ is unbiased if xi follow a symmetric distribution. If ui

follow a symmetric distribution, the median estimator is unbiased. The second-order bias

of β̂ is larger at the tails of a distribution. The second-order bias of β̂ goes to zero as the

sample size goes to infinity.
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2.4 The MSE of Quantile Estimators

To derive the MSE up to O
(
N−2

)
, we take the high order Taylor’s expansion as

0 = ΨN +∇ΨN (β̂ − β0) +
(
∇ΨN −∇ΨN

)
(β̂ − β0) +

1

2
∇2ΨN

[
(β̂ − β0)⊗ (β̂ − β0)

]
+

1

6
∇3ΨN

[
(β̂ − β0)⊗ (β̂ − β0)⊗ (β̂ − β0)

]
+ op

(
N−3/2

)
≡ A1 +A2 +A3 +A4 +A5 + op

(
N−3/2

)
. (2.20)

Our goal is to obtain the expression of the MSE E
(
β̂ − β0

)2
up to the order O

(
N−2

)
,

therefore, we first need to obtain the stochastic expression of β̂ − β0 up to the order of

O
(
N−3/2

)
. By Lemma 3, β̂ − β0 = B1 + B2 + B3 + op

(
N−1

)
, where B1 = a−1/2 =

Op
(
N−1/2

)
, B2 = Op

(
N−7/6

)
, B3 = Op

(
N−1

)
. Let B3 ≡ a−1, then β̂−β0 = a−1/2 +a−1 +

Op
(
N−7/6

)
. We discuss A3, A4, A5 in equation (2.20) in the following lemmas.

Lemma 4. A32 =
(
∇ΨN −∇ΨN

)
[B2 +B3] + op

(
N−3/2

)
.

Proof: According to Phillips (1991), ∇ΨN − ∇ΨN = Op
(
N−1/3

)
. By Lemma 1, A32 =(

∇ΨN −∇ΨN

) [
(β̂ − β0)− a−1/2

]
. By Lemma 3, β̂−β0 = B1 +B2 +B3 +op

(
N−1

)
. Since

B1 = a−1/2 = Op
(
N−1/2

)
, B2 = Op

(
N−7/6

)
and B3 = a−1 = Op

(
N−1

)
are not of zero

mean, then we have

A32 =
(
∇ΨN −∇ΨN

) [
(β̂ − β0)− a−1/2

]
=

(
∇ΨN −∇ΨN

) [
B2 +B3 + op

(
N−1

)]
=

(
∇ΨN −∇ΨN

)
[B2 +B3] + op

(
N−3/2

)
,

where
(
∇ΨN −∇ΨN

)
B2 = Op

(
N−4/3

)
, and

(
∇ΨN −∇ΨN

)
B3 = Op

(
N−3/2

)
.

Lemma 5.
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(a) A41 = 1
2∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+1

2∇2ΨN

[(
a−1/2 ⊗ a−1

)
+
(
a−1 ⊗ a−1/2

)]
+op

(
N−3/2

)
,

(b) A42 = 1
2

(
∇2ΨN −∇2ΨN

) (
a−1/2 ⊗ a−1/2

)
+ op

(
N−3/2

)
.

Proof:

(a) By Lemma 3, A41 can be written as

A41 =
1

2
∇2ΨN

[
(β̂ − β0)⊗ (β̂ − β0)

]
=

1

2
∇2ΨN

{[
(β̂ − β0)− a−1/2 + a−1/2

]
⊗
[
(β̂ − β0)− a−1/2 + a−1/2

]}
=

1

2
∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+

1

2
∇2ΨN

(
a−1/2 ⊗

[
(β̂ − β0)− a−1/2

])
+

1

2
∇2ΨN

([
(β̂ − β0)− a−1/2

]
⊗ a−1/2

)
+

1

2
∇2ΨN

([
(β̂ − β0)− a−1/2

]
⊗
[
(β̂ − β0)− a−1/2

])
=

1

2
∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+

1

2
∇2ΨN

[
a−1/2 ⊗

(
a−1 +Op

(
N−7/6

))]
+

1

2
∇2ΨN

[(
a−1 +Op

(
N−7/6

))
⊗ a−1/2

]
+Op

(
N−2

)
=

1

2
∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+

1

2
∇2ΨN

[(
a−1/2 ⊗ a−1

)
+
(
a−1 ⊗ a−1/2

)]
+ op

(
N−3/2

)
.

(b)

A42 =
1

2

(
∇2ΨN −∇2ΨN

) [
(β̂ − β0)⊗ (β̂ − β0)

]
=

1

2

(
∇2ΨN −∇2ΨN

) [(
a−1/2 +Op

(
N−1

))
⊗
(
a−1/2 +Op

(
N−1

))]
=

1

2

(
∇2ΨN −∇2ΨN

) (
a−1/2 ⊗ a−1/2

)
+ op

(
N−3/2

)
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Since ∇2ΨN −∇2ΨN is greater than Op
(
N−1/2

)
, then the first term in A42 is greater

than Op(N
−3/2).

Lemma 6. Let

A5 =
1

6
∇3ΨN

[
(β̂ − β0)⊗ (β̂ − β0)⊗ (β̂ − β0)

]
=

1

6
∇3ΨN

[
(β̂ − β0)⊗ (β̂ − β0)⊗ (β̂ − β0)

]
+

1

6

(
∇3ΨN −∇3ΨN

) [
(β̂ − β0)⊗ (β̂ − β0)⊗ (β̂ − β0)

]
=

1

6
∇3ΨN

[
(a−1/2 +Op

(
N−1

)
)⊗ (a−1/2 +Op

(
N−1

)
)⊗ (a−1/2 +Op

(
N−1

)
)
]

+
1

6

(
∇3ΨN −∇3ΨN

) [
(β̂ − β0)⊗ (β̂ − β0)⊗ (β̂ − β0)

]
=

1

6
∇3ΨN

[
a−1/2 ⊗ a−1/2 ⊗ a−1/2

]
+ op

(
N−3/2

)
= A51 + op

(
N−3/2

)
,

Proof: Since ∇3ΨN −∇3ΨN is smaller than Op (1) , then the results in Lemma 6 follows.

In Lemma 4, 5, and 6, we have discusssed each term in equation (2.20). Now the

equation (2.20) can be written as

0 = ΨN +∇ΨN (β̂ − β0) +
(
∇ΨN −∇ΨN

) (
a−1/2 + a−1

)
+

1

2
∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+

1

2
∇2ΨN

[(
a−1/2 ⊗ a−1

)
+
(
a−1 ⊗ a−1/2

)]
+

1

2

(
∇2ΨN −∇2ΨN

) (
a−1/2 ⊗ a−1/2

)
+

1

6
∇3ΨN

[
a−1/2 ⊗ a−1/2 ⊗ a−1/2

]
+ op

(
N−3/2

)
. (2.21)

The equation (2.21) is invertible as a higher-order Taylor expansion of quantile regres-

sion, because
(
∇ΨN

)−1
is bounded. Given the results in Lemma 3(b), we have B2 ≡
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−QVNa−1/2 = Op
(
N−7/6

)
, then B2B

′
2 = Op

(
N−7/3

)
. However, we found that E (B3B

′
3) =

O
(
N−2

)
, which we will discuss in the following Lemma. Solve for β̂−β0 in equation (2.15)

to obtain

β̂ − β0 = −∇ΨN
−1

ΨN −∇ΨN
−1 (∇ΨN −∇ΨN

) (
a−1/2 + a−1

)
−1

2
∇ΨN

−1∇2ΨN

(
a−1/2 ⊗ a−1/2

)
−1

2
∇ΨN

−1∇2ΨN

[(
a−1/2 ⊗ a−1

)
+
(
a−1 ⊗ a−1/2

)]
−1

2
∇ΨN

−1
(
∇2ΨN −∇2ΨN

) (
a−1/2 ⊗ a−1/2

)
−1

6
∇ΨN

−1∇3ΨN

[
a−1/2 ⊗ a−1/2 ⊗ a−1/2

]
+ op

(
N−3/2

)
= {−QΨN}+

{
−1

2
QH2

(
a−1/2 ⊗ a−1/2

)}
+
{
−QVNa−1/2

}
+

{
−QVNa−1 −

1

2
QWN

(
a−1/2 ⊗ a−1/2

)}
+

{
−1

2
QH2

[(
a−1/2 ⊗ a−1

)
+
(
a−1 ⊗ a−1/2

)]
− 1

6
QH3

[
a−1/2 ⊗ a−1/2 ⊗ a−1/2

]}
+op

(
N−3/2

)
,

≡ B1 +B2 +B3 +B4 +B5 + op

(
N−3/2

)
, (2.22)

where Hj = ∇jΨN , for j = 1, 2, 3, Q = H1
−1
, VN = H1 −H1, WN = H2 −H2. Note that

the equation (2.22) is same as the expression in RSU (1996 p. 390 Eq. A.17).

Lemma 7.

(a) B1 = Op
(
N−1/2

)
, B2 = Op

(
N−1

)
, B3 = Op

(
N−7/6

)
, B4 = Op

(
N−4/3

)
, and B5 =

Op
(
N−3/2

)
,

(b) B1B
′
1 = Op

(
N−1

)
, and E (B1B

′
1) = O

(
N−1

)
,

(c) B1B
′
2 = B2B

′
1 = Op

(
N−3/2

)
, and E (B1B

′
2) = E (B2B

′
1) = O

(
N−2

)
,
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(d) B1B
′
3 = B3B

′
1 = Op

(
N−5/3

)
, and E (B1B

′
3) = E (B3B

′
1) = O

(
N−2

)
,

(e) B1B
′
4 = B4B

′
1 = Op

(
N−11/6

)
, and E (B1B

′
4) = E (B4B

′
1) = O

(
N−2

)
,

(f) B2B
′
2 = Op

(
N−2

)
, and E (B2B

′
2) = O

(
N−2

)
,

(g) B1B
′
5 = B5B

′
1 = Op

(
N−2

)
, and E (B1B

′
5) = E (B5B

′
1) = O

(
N−2

)
,

(h) B3B
′
3 = Op

(
N−7/3

)
, and E (B3B

′
3) = O

(
N−2

)
.

Proof: Suppose k = 1, xi and ui are not identically distributed, but independent across

i = 1, ..., N.. Let d = QΨN = 1
N

∑N
i=1 di, di = Qsi, VN = 1

N

∑N
i=1

(
∇1si −∇1si

)
=

1
N

∑N
i=1 Vi, WN = 1

N

∑N
i=1

(
∇2si −∇2si

)
= 1

N

∑N
i=1Wi, then di, Vi, and Wi are not iden-

tically distributed, but independent across i = 1, ..., N. The expected values of Vidj , Widj ,

and ViWj are all zero for i 6= j. Then we have

E
(
B1B

′
1

)
= d2

i ,

E
(
B1B

′
2 +B2B

′
1

)
= QH2d3

i ,

E
(
B1B

′
3 +B3B

′
1

)
= −2QVid2

i ,

E
(
B1B

′
4 +B4B

′
1

)
= 2Q2V 2

i d
2
i + 4Q2ViVjdidj − 9Q2H2Vidid2

j + 3QWidid2
j

= 2Q2V 2
i d

2
i + 4Q2Vidi

2 − 9Q2H2 Vidid2
i + 3QWidid2

i

E
(
B2B

′
2

)
= 2Q2ViVjd1d2 +Q2V 2

i d
2
i = 2Q2Vidi

2
+Q2V 2

i d
2
i ,

E
(
B1B

′
5 +B5B

′
1

)
= 3Q2H2

2
d2
i d

2
j −QH3d2

i d
2
j

= 3Q2H2
2
d2
i

2
−QH3d2

i

2
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E
(
B3B

′
3

)
=

3

4
Q2H2

2
d2
i d

2
j − 3Q2H2Vidid2

j =
3

4
Q2H2

2
d2
i

2
− 3Q2H2 Vidid2

i ,

d2
i = Q2E(Ψ2

N )

=
1

N2

N∑
i=1

Q2E
[
x2
i (α− 1(yi < x′iβ))2

]
=

1

N
Q2
[
(α− 1)2 α+ α2 (1− α)

]
E
(
x2
i

)
=

1

N
α(1− α)Q2E

(
x2
i

)
,

d3
i = Q3E(Ψ3

N )

= − 1

N3

N∑
i=1

Q3E
[
x3
i (α− 1(yi < x′iβ))3

]
= − 1

N2
Q3
[
(α− 1)3 α+ α3(1− α)

]
E
(
x3
i

)
= − 1

N2
α(1− α)(2α− 1)Q3E

(
x3
i

)
,

V 2
i = E

[(
H1 −H1

)2]
= E

[
H2

1 − 2H1H1 +H1
2
]

= E
(
H2

1

)
− 2H1

2
+H1

2

= E
(
H2

1

)
−H1

2

=
1

N2

N∑
i=1

E
[
x4
i

(
δ(x′iβ − yi)

)2]− 1

N2

N∑
i=1

(
E
[
x2
i fi(x

′
iβ)
])2

=
1

N2

N∑
i=1

E

[
x4
i

∫ +∞

−∞

(
δ(x′iβ − yi)

)2
fi(yi)dyi

]
− 1

N2

N∑
i=1

(
E
[
x2
i fi(x

′
iβ)
])2

,

Vidi
2

=
1

N3

N∑
i=1

(
1

2
− α

)2

Q2
(
E
[
x3
i f(x′iβ)

])2
,

Vid2
i = E

[(
H1 −H1

)
Q2Ψ2

N

]
= Q2E

(
H1Ψ2

N

)
−QE

(
Ψ2
N

)
,
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E(H1Ψ2
N ) = E

[(
1

N

N∑
i=1

x2
i δ(x

′
iβ − yi)

)
Ψ2
N

]

=
1

N3

N∑
i=1

E
[
x2
iE
(
δ(x′iβ − yi)s2

i |xi
)]

=
1

N3

N∑
i=1

E

[
x4
i

∫ +∞

−∞
δ(xiβ − yi)(α− 1(yi < x′iβ))2fi(yi)dy

]

=
1

N3

N∑
i=1

E

[
α2x4

i

∫ +∞

−∞
δ(xiβ − yi)fi(yi)dyi

]

+
1

N3

N∑
i=1

E

[
(1− 2α)x4

i

∫ +∞

−∞
δ(xiβ − yi)φ(xiβ − yi)fi(yi)dyi

]

=
1

N3

N∑
i=1

E
[
α2x4

i fi(xiβ)
]

+
1

N2

N∑
i=1

E

[
(1− 2α)

1

2
x4

1fi(xiβ)

]

=
1

N3

N∑
i=1

(
α2 − α+

1

2

)
E
[
x4
i fi(x

′
iβ)
]
.

H3 = ∇3
βΨN =

1

N

N∑
i=1

x4
i δ

(2)(x′iβ − yi),

H3 = E∇3
βΨN = E

1

N

N∑
i=1

[
x4
i δ

(2)(x′iβ − yi)
]

=
1

N

N∑
i=1

E
[
x4
i δ

(2)(x′iβ − yi)
]

=
1

N

N∑
i=1

E
[
x4
iE
(
δ(2)(x′iβ − yi)|xi

)]
=

1

N

N∑
i=1

E

[
x4
i

∫ +∞

−∞
δ(2)(x′iβ − yi)fi(yi)dyi

]

=
1

N

N∑
i=1

E

[
x4
i

∫ +∞

−∞
δ(x′iβ − yi)f

(2)
i (yi)dyi

]

=
1

N

N∑
i=1

E[x4
i f

(2)
i (x′iβ)],

Wi = H2 −H2 =
1

N

N∑
i=1

x3
i δ

(1)(x′iβ − yi)−
1

N

N∑
i=1

E[x3
i f

(1)
i (x′iβ)],
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Widi = E
[(
H2 −H2

)
QΨN

]
= QE (H2ΨN )−QH2E (ΨN )

=
1

N

N∑
i=1

QE
[
x3
i δ

(1)(x′iβ − yi)ΨN

]
=

1

N2

N∑
i=1

QE
[
x3
iE
(
δ(1)(x′iβ − yi)

(
α− 1(yi < x′iβ)

)
(−xi)|xi

)]
= − 1

N2

N∑
i=1

QE
[
x4
iE
(
δ(1)(x′iβ − yi) (α− φ (xiβ − yi)) |xi

)]
= − 1

N2

N∑
i=1

αQE

[
x4
i

∫ +∞

−∞
δ(1)(x′iβ − yi)f(yi)dyi

]

+
1

N2

N∑
i=1

QE

[
x4
i

∫ +∞

−∞
δ(1)(x′iβ − yi)φ (xiβ − yi) f(yi)dyi

]

= − 1

N2

N∑
i=1

αQE
[
x4
i f

(1)(x′iβ)
]

+
1

N2

N∑
i=1

QE

[
−x4

i

∫ +∞

−∞

(
δ(x′iβ − yi)

)2
f(yi)dyi

]

+
1

N2

N∑
i=1

QE

[
x4
i

∫ +∞

−∞
δ(x′iβ − yi)φ (xiβ − yi) f (1)(yi)dyi

]

=
1

N2

N∑
i=1

(
1

2
− α

)
QE

[
x4
i f

(1)(x′iβ)
]
− 1

N2

N∑
i=1

QE

[
x4
i

∫ +∞

−∞

(
δ(x′iβ − yi)

)2
f(yi)dyi

]
.

From equation (2.22), note that the MSE of quantile estimator β̂ is

E
(
β̂ − β0

)2
= E

(
B1B

′
1

)
+ E

(
B1B

′
2 +B2B

′
1

)
+ E

(
B1B

′
3 +B3B

′
1

)
+E

(
B1B

′
4 +B4B

′
1

)
+ E

(
B2B

′
2

)
+ E

(
B1B

′
5 +B5B

′
1

)
+E

(
B3B

′
3

)
+ op

(
N−2

)
. (2.23)

Given the above results in Lemma 7, we define the MSE of quantile estimators as follows.
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Definition 2. Let E
(
β̂ − β0

)2
= M(β̂) + op

(
N−2

)
. Then

M(β̂) = E
(
B1B

′
1

)
+ E

(
B1B

′
2 +B2B

′
1

)
+ E

(
B1B

′
3 +B3B

′
1

)
+E

(
B1B

′
4 +B4B

′
1

)
+ E

(
B2B

′
2

)
+ E

(
B1B

′
5 +B5B

′
1

)
+ E

(
B3B

′
3

)
, (2.24)

will be call “the MSE of quantile estimators β̂ up to O(N−2)”.

Theorem 2. In the quantile regression model, suppose xi and ui are not identically dis-

tributed, but independent across i = 1, ..., N, when k = 1, the MSE up to O(N−2), of the

quantile estimator β̂ is

M(β̂) =
1

N
α(1− α)Q2E

(
x2
i

)
− 2

1

N3

N∑
i=1

Q3

(
α2 − α+

1

2

)
E
[
x4
i fi(0|xi)

]
− 1

N3

N∑
i=1

α(1− α)Q2E
(
x2
i

)
− 1

N3

N∑
i=1

α(1− α)(2α− 1)Q4E
[
x3
i fi

(1)(0|xi)
]
E
(
x3
i

)
+6

1

N3

N∑
i=1

(
1

2
− α

)2

Q4
(
E
[
x3
i fi(0|xi)

])2
+3

1

N3

N∑
i=1

α(1− α)Q4

(
1

2
− α

)
E
[
x4
i fi

(1)(0|xi)
]
E
(
x2
i

)
−12

1

N3

N∑
i=1

(
1

2
− α

)
α(1− α)Q5E[x3

i fi
(1)(0|xi)]E

[
x3
i fi(0|xi)

]
E
(
x2
i

)
+

15

4

1

N3

N∑
i=1

α2(1− α)2Q6
(
E
[
x3
i fi

(1)(0|xi)
])2 (

E
(
x2
i

))2
− 1

N3

N∑
i=1

α2(1− α)2Q5E[x4
i fi

(2)(0|xi)]
(
E
(
x2
i

))2
, (2.25)

where Q =
(

1
N

∑N
i=1E[x2

i fi(0|xi)]
)−1

.

Proof: For simplicity, we derive the MSE of quantile estimator up to O(N−2) for k = 1. It

follows the same procedure obviously to obtain the MSE for k > 1. Suppose xi and ui are
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not identically distributed, but independent across i = 1, ..., N. Then si, di, Vi,and Wi are

all independent across i. By the results of Lemma 9, the MSE of the quantile estimator β̂

up to O
(
N−2

)
can be written as

M(β̂) = d2
i − 2Q

[
Vid2

i −
1

2
H2d3

i

]
+ 6Q2Vidi

2
+ 3Q2V 2

i d
2
i

+3QWidid2
i − 12Q2H2 Vidid2

i +
15

4
Q2H2

2
d2
i

2
−QH3d2

i

2
,

Since the conditional density of yi given xi evaluated at yi = x′iβ is the same as the

conditional density of ui given xi evaluated at ui = 0. We use fi (0|xi) to denote the

conditional density of ui given xi evaluated at ui = 0. The above results complete the proof

of the Theorem 2.

Corollary 2.1. The MSE of the quantile estimator β̂ up to O
(
N−1

)
equals the asymptotic

variance of β̂.

Proof: From Theorem 2, we observe that the MSE of β̂ up to O(N−1) for quantile estimator

for i.i.d. case when k = 1 can be simplified as

MSE(β̂) = d2
i =

1

N
α(1− α)Q2E

(
x2
i

)
.

The asymptotic distribution of the quantile regression estimator when the α-quantile is

linear in xi, is given by equation (2.8). We can prove that Vα, the asymptotic variance of β̂

equals N times the MSE of β̂ up to O(N−1). Since 1(ui < 0) is Bernoulli with mean α and
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variance α(1− α), then we can have

E
[
ΨN (β)ΨN (β)′

]
= E

[(
1

N

N∑
i=1

si

)(
1

N

N∑
i=1

s′i

)]

=
1

N2

N∑
i=1

E
[
sis
′
i

]
=

1

N2

N∑
i=1

E
[
(α− 1(ui < 0))2xix

′
i

]
=

1

N2

N∑
i=1

E
[
xix
′
iE[(α− 1(ui < 0))2|xi]

]
=

α(1− α)

N2

N∑
i=1

E(xix
′
i).

The MSE of β̂ up to O(N−1) can be derived by substituting the result above,

MSE(β̂) = E(a−1/2a
′
−1/2) = E(QΨNΨ′NQ) = QE

[
ΨN (β)ΨN (β)′

]
Q

=

[
1

N

N∑
i=1

E(f(0|xi)xix′i)

]−1
α(1− α)

N
E(xix

′
i)

[
1

N

N∑
i=1

E(f(0|xi)xix′i)−1

]

=
Vα
N
,

The asymptotic variance

Vα = N ×MSE(β̂) = α(1− α)[
1

N

N∑
i=1

E(f(0|xi)xix′i)]−1E(xix
′
i)[

1

N

N∑
i=1

E(f(0|xi)xix′i)]−1.

Corollary 2.1. When xi and ui are i.i.d., and k = 1, the expression of the MSE of β̂ up
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to O(N−2) can be simplified as

M(β̂) =
1

N
α(1− α)Q2E

(
x2
i

)
− 2

1

N2
Q3

(
α2 − α+

1

2

)
E
(
x4
i

)
f(0)− 1

N2
α(1− α)Q2E

(
x2
i

)
+5

1

N2
α(1− α)(2α− 1)Q4f (1)(0)

(
E
(
x3
i

))2
+ 6

1

N2

(
1

2
− α

)2

Q4f(0)2
(
E
(
x3
i

))2
+3

1

N2
α(1− α)Q4

(
1

2
− α

)
E
(
x4
i

)
f (1)(0)E

(
x2
i

)
+

15

4

1

N2
α2(1− α)2Q6f (1)(0)

(
E
(
x3
i

))2 (
E
(
x2
i

))2
− 1

N2
α2(1− α)2Q5f (2)(0)E

(
x4
i

) (
E
(
x2
i

))2
,

where Q =
(
E
(
x2
i

)
f(0)

)−1
. When xi and ui are i.i.d., the asymptotic variance of β̂ is

Vα = N ×MSE(β̂) = α(1− α)E(xix
′
i)/(f(0))2.

2.5 Illustrations

In this section, we consider three special cases of the general results on the condi-

tional quantile regression from the previous section: namely, (i) the unconditional quantile

estimation, (ii) the conditional quantile regression with a binary independent variable, and

(iii) the instrumental variable quantile regression (IVQR). For these cases we illustrate the

second-order bias and MSE with several different distributions to highlight the merits of

using the higher order terms in bias and MSE.

2.5.1 Unconditional Quantile Estimator

We consider a special case of the model with xi = 1, i.e., the model without any

covariate, which gives the unconditional quantile estimator.

Proposition 3. In the quantile regression model with xi = 1, the second-order bias up to
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O(N−1), of the unconditional quantile estimators β̂ is

B(β̂) =
1

N

(
1

2
− α

)
Q− 1

N

α(1− α)

2
Q3f (1)(0), (2.26)

and the MSE up to O(N−2), of the unconditional quantile estimators β̂ is

M(β̂) =
1

N
α(1− α)Q2 − 1

N2

(
α2 − α− 1

2

)
Q2 − 11

1

N2
α(1− α)

(
1

2
− α

)
Q4f (1)(0)

+
15

4

1

N2
α2(1− α)2Q6

(
f (1)(0)

)2
− 1

N2
α2(1− α)2Q5f (2)(0), (2.27)

where Q = [f(0)]−1, f(0) is the unconditional density of ui evaluated at ui = 0, f (1)(0)

and f (2)(0) are the first and second derivative of the unconditional density of ui evaluated

at ui = 0, respectively.

Proof: See appendix C.

Corollary 3.1. In the quantile regression model with xi = 1, and yi follow normal distribu-

tion N(µ, σ2), the second-order bias up to O(N−1), of the unconditional quantile estimators

β̂ is

B(β̂) =
1

N

(
1

2
− α

)
Q− 1

N

α(1− α)

2
Q2

(
−β + µ

σ2

)
, (2.28)

and the MSE up to O(N−2), of the unconditional quantile estimators β̂ is

M(β̂) =
1

N
α(1− α)Q2 − 3

1

N2
α(1− α)Q2 +

1

N2
α(1− α)(2α− 1)Q3−β + µ

σ2

+
15

4

1

N2
α2(1− α)2Q4

(
−β + µ

σ2

)2

− 1

N2
α2(1− α)2Q4 (−β + µ)2 − σ2

σ4
,(2.29)

where Q =
[

1√
2πσ

exp
(
− (β−µ)2

2σ2

)]−1
.

Proof: If yi follow normal distribution N(µ, σ2), then the unconditional density, the first

and second derivatives of the unconditional density are

f(yi) =
1√
2πσ

exp

(
−(yi − µ)2

2σ2

)
,
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f (1)(yi) =
1√
2πσ

(
−y + µ

σ2

)
exp

(
−(yi − µ)2

2σ2

)
=
−yi + µ

σ2
f(yi),

f (2)(yi) =
1√
2πσ

(
(−yi + µ)2 − σ2

σ4

)
exp

(
−(yi − µ)2

2σ2

)
=

(−yi + µ)2 − σ2

σ4
f(yi).

Thus,

Q = [f(β)]−1 =

[
1√
2πσ

exp

(
−(β − µ)2

2σ2

)]−1

.

Based on Proposition 3, the second-order bias of β̂ up to O(N−1) and the MSE up to

O(N−2) can be obtained.

Remark: We discover several other interesting properties from the expression of second-

order bias: (i) when |β−µσ | is high, Q is large; (ii) when σ is high, |B(β̂)| is large; (iii) when

|β − µ| is large, |B(β̂)| is large.

Corollary 3.2. If yi follow a symmetric distribution, then the median estimator is unbiased.

When yi follow normal distribution N(µ, σ2), the MSE up to O(N−2) at the median, of the

unconditional quantile estimators β̂ is

M(β̂) =
πσ2

2N
− 3πσ2

2N2
+
π2σ2

4N2
, (2.30)

and non-negative MSE requires N ≥ 1.

Proof: Since at the median of yi, we have β = µ. It is obvious that the bias is zero at the

median. At the median, we also have f(β) = f (µ) = 1√
2πσ

. Then the MSE at the median

is

M(β̂) =
1

N
α(1− α)Q2 − 1

N2
(α2 − α− 1

2
)Q2 − 1

N2
α2(1− α)2Q4 (−β + µ)2 − σ2

σ4

=
1

N

1

4
2πσ2 − 1

N2

3

4
2πσ2 +

1

N2

1

16
4π2σ4 1

σ2

=
πσ2

2N
− 3πσ2

2N2
+
π2σ2

4N2
.
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Corollary 3.3. In the quantile regression model with xi = 1, and yi follow exponential

distribution with density f(yi) = λ exp (−λyi) , λ > 0, the second-order bias up to O(N−1),

of the unconditional quantile estimators β̂ is

B(β̂) =
1

N

(
1

2
− α

)
Q+

1

N

α(1− α)

2
λQ2, (2.31)

which is always non-positive, and the MSE up to O(N−2), of the unconditional quantile

estimators β̂ is

M(β̂) =
1

N
α(1−α)Q2− 1

N2
(α2−α−1

2
)Q2+11

1

N2
α(1−α)

(
1

2
− α

)
λQ3+

11

4

1

N2
α2(1−α)2λ2Q4.

(2.32)

where Q = [λ exp (−λβ)]−1 .

Proof: If yi follow exponential distribution exp(λ), then the unconditional density, the first

and second derivatives of the unconditional density are

f(yi) = λ exp (−λyi) ,

f (1)(yi) = −λ2 exp (−λyi) = −λf(yi),

f (2)(yi) = λ3 exp (−λyi) = λ2f(yi).

Thus,

Q = [f(β)]−1 = [λ exp (−λβ)]−1 .

Based on Proposition 3, the second-order bias of β̂ up to O(N−1) and the MSE up to

O(N−2) can be obtained.
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Corollary 3.4. When yi follow exponential distribution exp(λ) with λ > 0, at the median,

the second-order bias of the unconditional quantile estimator is

B(β̂) =
1

2Nλ
, (2.33)

and the MSE up to O(N−2), of the unconditional quantile estimators is

M(β̂) =
1

Nλ2
+

3

N2λ2
+

1

4N2λ2
. (2.34)

and non-negative MSE requires N ≥ 1.

Proof: Since at the median of yi, we have β = 1
λ ln(2), f(β) = λ exp(− ln(2)) = λ

2 , then the

second-order bias and the MSE at the median can be obtained

2.5.2 Conditional Quantile Estimator with Binary Independent Variable

We consider the conditional quantile regression in Section 2, but now with xi

following the Bernoulli distribution Bernoulli(p).

Proposition 4. In the quantile regression model with xi follow Bernoulli distribution

Bernoulli(p), the second-order bias up to O(N−1), of the conditional quantile estimator β̂

is

B(β̂) =
1

N

(
1

2
− α

)
Q− 1

N

α(1− α)

2
Q3p2f (1)(0) (2.35)

and the MSE up to O(N−2), of the conditional quantile estimators β̂ is

M(β̂) =
1

N
α(1− α)Q2p− 1

N2

(
α (1− α) (4 + p) +

1

2

)
Q2 − 9

1

N2
α(1− α)

(
1

2
− α

)
Q4p2f (1)(0)

+
15

4

1

N2
α2(1− α)2Q6p4

(
f (1)(0)

)2
− 1

N2
α2(1− α)2Q5p3f (2)(0), (2.36)
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where Q = [pf(0)]−1. f(0) = f (ui|xi = 1) evaluated at ui = 0, f (1)(0) = f (1) (ui|xi = 1)

and f (2)(0) = f (2) (ui|xi = 1) evaluated at ui = 0.

Proof: See appendix C.

Remark: The second-order bias of β̂ is large at tails of a distribution. The second-order

bias of β̂ goes to zero as N → ∞. When p is small, the second-order bias of β̂ is large

at tails of a distribution. If ui follow a symmetric distribution, the median estimator is

unbiased.

Corollary 4.1. In the quantile regression model with xi follow Bernoulli distribution

Bernoulli(p), and yi|xi follow normal distribution N(µ, σ2), the second-order bias up to

O(N−1), of the conditional quantile estimators β̂ is

B(β̂) =
1

N

(
1

2
− α

)
Q− 1

N

α(1− α)

2
Q2p
−β + µ

σ2
(2.37)

and the MSE up to O(N−2), of the unconditional quantile estimators β̂ is

M(β̂) =
1

N
α(1− α)Q2p− 1

N2

(
α (1− α) (4 + p) +

1

2

)
Q2 − 9

1

N2
α(1− α)

(
1

2
− α

)
Q3p
−β + µ

σ2

+
1

N2
α2(1− α)2Q4p2

[
15

4

(
−β + µ

σ2

)2

− (−β + µ)2 − σ2

σ4

]
, (2.38)

where Q =
[

1√
2πσ

p exp
(
− (β−µ)2

2σ2

)]−1
.

Proof : If yi|xi follow normal distribution N(µ, σ2), then

f(yi|xi = 1) =
1√
2πσ

exp

(
−(yi − µ)2

2σ2

)
,

f (1)(yi|xi = 1) =
1√
2πσ

(
−yi + µ

σ2

)
exp

(
−(yi − µ)2

2σ2

)
=
−yi + µ

σ2
f(yi|xi = 1),
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f (2)(yi|xi = 1) =
1√
2πσ

(
(−yi + µ)2 − σ2

σ4

)
exp

(
−(yi − µ)2

2σ2

)
=

(−yi + µ)2 − σ2

σ4
f(yi|xi = 1).

Based on Proposition 4, the second-order bias of β̂ up to O(N−1) and the MSE up to

O(N−2) can be obtained

Remark: We discover several other interesting properties from the expression of second-

order bias: (i) when |β−µσ | is high, Q is large; (ii) when σ is high, |B(β̂)| is large; (iii) when

|β − µ| is large, |B(β̂)| is large; and (iv) when p is small, |B(β̂)| is large.

Corollary 4.2. If yi|xi follow a symmetric distribution, then the median is unbiased.

When yi|xi follow normal distribution N(µ, σ2), the MSE up to O(N−2) at the median, of

the conditional quantile estimators β̂ is

M(β̂) =
πσ2

2Np
− πσ2

2N2p
− 3πσ2

N2p2
+

π2σ2

4N2p4
, (2.39)

and non-negative MSE requires N ≥ 15
2p −

π
2p3
.

Proof: Since at the median of yi, we have f(β) = f (µ) = 1√
2πσ

, then the MSE up to

O(N−2) is

M(β̂) =
1

N
α(1− α)Q2p− 1

N2

(
α (1− α) (4 + p) +

1

2

)
Q2 +

1

N2
α2(1− α)2Q4p2

[
−(−β + µ)2 − σ2

σ4

]

=
1

N

1

4

2πσ2

p
− 1

N2

(
p

4
+

3

2

)
2πσ2

p2
+

1

N2

1

16

4π2σ4

p4

1

σ2

=
πσ2

2Np
− πσ2

2N2p
− 3πσ2

N2p2
+

π2σ2

4N2p4
.

Corollary 4.3. In the quantile regression model with xi follow Bernoulli distribution

Bernoulli(p), and yi|xi follow exponential distribution, f (yi|xi) = λ exp(−λyi) with λ > 0,
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the second-order bias up to O(N−1), of the conditional quantile estimators β̂ is

B(β̂) =
1

N

(
1

2
− α

)
Q+

1

N

α(1− α)

2
λQ2p, (2.40)

which is always non-positive, and the MSE up to O(N−2), of the conditional quantile

estimators β̂ is

M(β̂) =
1

N
α(1− α)Q2p− 1

N2

(
α (1− α) (4 + p) +

1

2

)
Q2 + 9

1

N2
α(1− α)

(
1

2
− α

)
Q3pλ

+
11

4

1

N2
α2(1− α)2Q4p2λ2, (2.41)

where Q = [pλ exp (−λβ)]−1 .

Proof: If yi|xi follow the exponential distribution, then

f(yi|xi = 1) = λ exp (−λyi) ,

f (1)(yi|xi = 1) = −λ2 exp (−λyi) = −λf(yi|xi = 1),

f (2)(yi|xi = 1) = λ3 exp (−λyi) = λ2f(yi|xi = 1).

Q =
(
E[x2

1f(x′1β)]
)−1

= (pE[f(β)])−1 = [pf(β)]−1 = [pλ exp (−λβ)]−1 .

Based on Proposition 4, the second-order bias of β̂ up to O(N−1) and the MSE up to

O(N−2) can obtained

Corollary 4.4. When yi|xi follow the exponential distribution, f (yi|xi) = λ exp(−λyi)

with λ > 0, at the median, the second-order bias of the conditional quantile estimator is

B(β̂) =
1

2Npλ
, (2.42)

and the MSE up to O(N−2) of the unconditional quantile estimators is

M(β̂) =
1

Npλ2
− 1

N2pλ2
− 13

4N2p2λ2
, (2.43)
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and non-negative MSE requires N ≥ 1 + 13
4p .

Proof: Since at the median of yi, we have β = 1
λ ln(2), f(β) = λ exp(−λ ln(2)) = λ

2 ,

Q = [pf(β)]−1 = 2
pλ , then the second-order bias and the MSE at the median of yi can be

obtained.

2.5.3 Instrumental Variable Quantile Regression

Consider the quantile model where the explanatory variable xi is endogenous, and

zi is the instrumental variable.

yi = x′iβ + ui, (2.44)

xi = Γzi + vi. (2.45)

where yi is a scalar, xi is a k × 1 vector, and zi is an l × 1 vector. We consider the case

when l = k below. When l = k = 1, the k × l matrix Γ become a scalar γ.

Proposition 5. In the instrumental variable quantile regression (IVQR) model, suppose xi

and ui are i.i.d., the second-order bias, up to O(N−1), of the quantile estimators β̂ is

B(β̂) =
1

N

[(
1

2
− α

)
QE

[
zix
′
iQzif(x′iβ)

]
− α(1− α)

2
E
[(
zix
′
i

)
⊗ x′if (1)(0)

]
(Q⊗Q)E (zi ⊗ zi)

]
,

(2.46)

where Q = (E[zix
′
if(0)])−1 . When k = 1, the MSE up to O(N−2), of the quantile estimator
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β̂ is

M(β̂) =
1

N
α(1− α)Q2E

(
z2
i

)
− 2

1

N2
Q3

(
α2 − α+

1

2

)
E
[
z3
i xi
]
f(0)− 1

N2
α(1− α)Q2E

(
z2
i

)
+

1

N2
α(1− α)(2α− 1)Q4E

[
zix

2
i

]
E
(
z3
i

)
f (1)(0) + 6

1

N2

(
1

2
− α

)2

Q4
(
E
[
z2
i xi
]
f(0)

)2
+3

1

N2
α(1− α)Q4

(
1

2
− α

)
E
[
z2
i x

2
i

]
E
(
z2
i

)
f (1)(0)

−12
1

N2

(
1

2
− α

)
α(1− α)Q5E[zix

2
i ]E

[
z2
i xi
]
E
(
z2
i

)
f(0)f (1)(0)

+
15

4

1

N2
α2(1− α)2Q6

(
E
[
zix

2
i

]
f (1)(0)

)2 (
E
(
z2
i

))2
− 1

N2
α2(1− α)2Q5E[zix

3
i ]
(
E
(
z2
i

))2
f (2)(0), (2.47)

where Q = (E[zixi]f(0))−1 .

Proof: See appendix C.

Remark: When k = 1, Γ = γ, we observe that xi, ΨN , si, di, H1, H1, Q, Vi, H2, H2, Wi,

H3, H3 are all scalars, and the second-order bias of β̂ up to O(N−1) can be rewritten as

B(β̂) =
1

N

(
1

2
− α

)
γQ2E

[
z3
i f(0)

]
− 1

N

α(1− α)

2
Q3E[zix

2
i f

(1)(0)]E
(
z2
i

)
,

where Q =
(
γE[z2

i f(0)]
)−1

.

The second-order bias of β̂ is larger at the tails of a distribution. When γ is small,

second-order bias of β̂ is larger. If ui follow symmetric distribution, the median estimator

is unbiased. The second-order bias of β̂ goes to zero as the sample size goes to infinity.

Corollary 5. The MSE of the quantile estimator β̂ up to O(N−1) equals the asymptotic

variance of β̂.

Proof: From Theorem 2, we observe that the MSE of β̂ up to O(N−1) for quantile estimator
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for i.i.d. case when k = 1 can be simplified as

M(β̂) =
1

N
d2
i =

1

N
Q2α(1− α)E

(
z2
i

)
.

Under the i.i.d. assumption, the asymptotic distribution of the quantile regression estimator

when the α-quantile is linear in xi, is as follows,

√
N(β̂ − β)

d→ N(0, Vα),

where

Vα = α(1− α)[E(f(0)zix
′
i)]
−1(Eziz

′
i)[E(f(0)zix

′
i)]
−1,

and f(0|xi) is the density of ui conditional on xi evaluated at ui = 0. See Chernozhukov

and Hansen (2006). We can prove that Vα, the asymptotic variance of β̂, equals the N

times the MSE of β̂ up to O(N−1). Since 1(ui < 0) is Bernoulli with mean α and variance

α(1− α), then we can have

E
[
ΨN (β)ΨN (β)′

]
= E

[(
1

N

N∑
i=1

si

)(
1

N

N∑
i=1

s′i

)]

=
1

N2

N∑
i=1

E
[
sis
′
i

]
=

1

N2

N∑
i=1

E
[
(α− 1(ui < 0))2ziz

′
i

]
=

1

N2

N∑
i=1

E
[
ziz
′
iE[(α− 1(ui < 0))2|xi]

]
=

α(1− α)

N2

N∑
i=1

E(ziz
′
i).

Under the i.i.d. assumption, the MSE of β̂ up to O(N−1) can be derived by substituting
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the result above,

MSE(β̂) = E(a−1/2a
′
−1/2) = E(QΨNΨ′NQ) = QE

[
ΨN (β)ΨN (β)′

]
Q

=

[
1

N

N∑
i=1

E(f(0|xi)zix′i)

]−1
α(1− α)

N2

N∑
i=1

E(ziz
′
i)

[
1

N

N∑
i=1

E(f(0|xi)zix′i)−1

]

= [E(f(0)zix
′
i)]
−1α(1− α)

N
E(ziz

′
i)[E(f(0)zix

′
i)]
−1

=
Vα
N
,

where f(0) is the density of ui evaluated at ui = 0. The asymptotic variance Vα = N ×

MSE(β̂) = α(1− α)[E(f(0)ziz
′
i)]
−1E(ziz

′
i)[E(f(0)ziz

′
i)]
−1.

2.6 Monte Carlo Simulation

2.6.1 Simulation Design

Now we give some numerical calculation to present the second-order bias and

MSE results. In the quantile regression model yi = x′iβ + ui, the error term ui satisfies

E [α− 1(yi < x′iβ)|xi] = 0. The α conditional quantile of ui given xi is zero.

In the first data generating process (DGP 1), the error term ui is normally dis-

tributed with the CDF F (·), standard deviation σu, then the mean equals to −Φ−1(α)σu,
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with Φ (·) denoting the standard normal CDF. We have

F (0) =

∫ 0

−∞
f(u)du =

∫ 0

−∞

1√
2πσu

exp

[
−
{
u−

(
−Φ−1(α)σu

)}2

2σ2
u

]
du

=

∫ Φ−1(α)σu

−∞

1√
2πσu

exp

[
− z2

2σ2
u

]
dz

=

∫ Φ−1(α)

−∞

1√
2π

exp

[
−w

2

2

]
dw

= Φ(Φ−1(α))

= α.

Therefore, we generate the error term ui following normal distribution N(−Φ−1(α)σu, σ
2
u).

In the second DGP (DGP 2), the error term ui is uniformly distributed with the CDF F (·)

on [a, b], then a = α
α−1b. We have

F (0) =

∫ 0

−∞
f(u)du =

∫ 0

a

1

b− a
du = − a

b− a
= α.

Therefore, we generate the error term ui from uniform distribution on [a, b] , where a = −αR,

b = R(1 − α), and the range R = b − a. The results tables for DGP 2 are in the appendix

D.

We simulate xi from several different distributions. Then, yi is simulated from yi =

x′iβ+ui. We try with α = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, σu = 0.5, 0.1, 0.05,

β = 0, N = 50, 60, 100. We use the Matlab package by Roger Koenker to estimate the

models. The results represent the averaged values across 10,000 simulations. Note that

when k = 1, xi, ΨN , si, d, H1, H1, Q, V, H2, H2, W, H3, H3 are all scalars. In all the

results tables, for each α, the first row is for bias and the second row is for the MSE of

the quantile estimator. For each panel, the first column presents the second-order bias and

MSE derived by Theorems, Propositions, and Collaries, the second column presents the
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Monte Carlo simulation bias and MSE of quantile estimators β̂, the third column presents

the Monte Carlo simulation bias and MSE of the bias corrected quantile estimators β̃, where

β̃ ≡ β̂ −B
(
β̂
)

.

Table 1-7 present the results with DGP 1. We use the Matlab package by Roger

Koenker to estimate the model. Table 1 shows the results in Theorem 1 and 2, when there is

hetroskedasticity. Table 2-5 show the results in Corollary 1, when xi and ui are i.i.d.. Table 2

and 3 show the results when σu = 0.5, 0.1, and xi is generated from exponential distribution,

f(xi) = exp(−xi). Table 4 and 5 show the results when σu = 0.5 and when xi is generated

from two different distributions introduced in Marron and Wand (1992). They are mixture

normal distributions: Skewed Unimodal Density 1
5N(0, 1)+ 1

5N(1
2 , (

2
3)2)+ 3

5N(13
12 , (

5
9)2), and

Strongly Skewed Density 7
l=0

1
8N(3[(2

3)l− 1], (2
3)2l). Table 6 shows the results in Proposition

3, with unconditional quantile regression. Table 7 shows the results in Proposition 4, with

binary independent variable with p = 0.3. Note that the unconditional quantile regression

is a special case of conditional quantile regression with binary independent variable with

p = 1. Table 8 presents the results for IVQR. We use the Matlab package by Chernozhukov

and Hansen (2006) to estimate the model. In the simulation of IVQR, ui is generated the

same as DGP 1; vi is simulated from vi = wi + cui, where wi is from N(0, 0.25), c = 0.5, 1;

zi is from exponential distribution, f(xi) = exp(−xi);.xi is simulated from xi = z′iγ + vi,

where γ = 0.5, 0.9; yi is simulated from yi = x′iβ + ui, where β = 0.

2.6.2 Simulation Results

From all the results Tables, we find that the derived second-order bias are nu-

merically close to the the Monte Carlo simulation bias, the second-order bias corrected
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estimators are numerically close to the true estimator zero of the data generation.

The Monte Carlo Simulation results provide improvement of quantile estimators.

We find that the second-order bias corrected estimator has better behaviors than the un-

corrected ones. From comparing the simulation results, our conclusion are as follows. (i)

When xi is generated from standard normal distribution, the bias are close to zero. That’s

because the expressions of the second-order bias contain the third-moment of xi. If the

distribution of xi is symmetric, the bias will goes to zero. Since exponential and the three

mixture normal distributions are all asymmetric, bias corrected estimator are more close to

the true β. (ii) The bias is larger at the extreme low and high quantiles. The first and sec-

ond column for each sample size section show that the bias is zero at the median, negative

when α < 0.5, and positive when α > 0.5. There are upward bias at lower quantiles and

downward bias at upper quantiles. (iii) When the sample size is increasing, the quantile

estimators become closer to the true β, and the bias become smaller. The quantile estima-

tors are asymptotically unbiased. (iv) When σu is larger, the quantile estimator has larger

bias especially at the tails. (v) In the IVQR, the bias is larger for weak instruments.

2.7 Appendix

2.7.1 Appendix A

This appendix provides a review on a vector norm and the Dirac delta function.a).

A.1 Property of norm, if A is a k × 1 vector,

||A|| =
[
tr
(
AA′

)]1/2
=
(
A′A

)1/2
.
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A.2

∣∣∣∣AA′∣∣∣∣ =
[
tr
(
AA′AA′

)]1/2
=
[
tr
(
A′AA′A

)]1/2
=
(
A′AA′A

)1/2
= A′A = ||A||2 .

A.3

∣∣∣∣(AA′)⊗A′∣∣∣∣ =
{
tr
([(

AA′
)
⊗A′

] [(
AA′

)
⊗A

])}1/2

=
[
tr
((
AA′AA′

)
⊗
(
A′A

))]1/2
=

[
tr
(
A′AA′AA′A

)]1/2
=

(
A′A

)3/2
= ||A||3 .

A.4

∣∣∣∣(AA′)⊗A′ ⊗A′∣∣∣∣ = tr
([(

AA′
)
⊗A′ ⊗A′

] [(
AA′

)
⊗A⊗A

])1/2
= tr

[(
AA′AA′

)
⊗
(
A′ ⊗A′

)
(A⊗A)

]1/2
= tr

[(
AA′AA′

)
⊗A′A⊗A′A

]1/2
= tr

[(
A′AA′A

)
A′AA′A

]1/2
=

(
A′AA′A

)
=

(
A′A

)2
= ‖A‖4

2.7.2 Appendix B

This appendix provides a review on the Dirac delta function.
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B.1 The Heaviside unit step function is defined as φ(z) = 0 for z < 0, φ(z) = 1 for z ≥ 0.

The Dirac delta function is defined as δ(z) =dφ(z)/dz, where δ(z) = 0 for z < 0, δ(z) =∞

for z = 0, δ(z) = 0 for z > 0.

B.2 Property of Dirac delta function
∫ +∞
−∞ δ(z)dz = 1.

B.3
∫ +∞
−∞ δ(z − a)f(z)dz = f(a), where f : R → R is a real function differentiable around

a ∈ R.

B.4 δ(z) = δ(−z).

B.5
∫ +∞
−∞ δ(1)(z − a)f(z)dz = −

∫ +∞
−∞ δ(z − a)f (1)(z)dz = −f (1)(a).

B.6 δ(1)(−z) = −δ(1)(z), δ(2)(−z) = δ(2)(z).

B.7
∫ +∞
−∞ δ(n)(z − a)f(z)dz = (−1)n

∫ +∞
−∞ δ(z − a)f (n)(z)dz = (−1)nf (n)(a).

B.8 φ(z)δ(z) = 1
2δ(z).a).

B.9 φ(z)δ(1)(z) = 1
2δ

(1)(z)− (δ(z))2 .

2.7.3 Appendix C

This appendix provides proofs for some propositions and corollaries.

C.1 Proof of Proposition 3: If the linear quantile regression model is yi = β+ui, where yi is

a scalar, ui is the error defined to be the difference between yi and its α-quantile β, we call

β̂ as the unconditional quantile estimators. Given the definition of the check loss function,

the quantile estimators β̂ can be obtained by solving

min
β
E[Lα(β)] = E[(α− 1(yi < β))(yi − β)].

We can show that E[L(β)] is continuously differentiable on Θ. Then can write the population
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moment condition as

∇1
βE[Lα(β)] = E[−∇1

β1(yi − β < 0)(yi − β)]− E[α− 1(yi < β)].

By the definition of Dirac delta function in Appendix B.1,we have 1(yi−β < 0) = 1(β−yi ≥

0) = φ(β − yi). Then

∇1
β1(yi − β < 0) = δ(β − yi).

According to the property of Dirac delta function in Appendix B.4, we have δ(β − yi) =

δ(yi − β). According to the property of Dirac delta function in Appendix B.3, we have

E[δ(β − yi)(yi − β)] = E[δ(yi − β)(yi − β)]

=

∫ +∞

−∞
δ(yi − β)(yi − β)f(yi)dyi

= (βα − β)f(β)

= 0.

Thus, the moment condition can be written as

∇1
βE[Lα(β)] = −E[α− 1(yi < β)] = E[si(β)],

where si(β) = − (α− 1(yi < β)) . The sample moment condition can be written as

ΨN (β) =
1

N

N∑
i=1

si(β). (2.48)

The second-order bias up to O(N−1) is

B(β̂) =
1

N
Q

[
Vidi −

1

2
H2

(
di ⊗ di

)]
,

where

H1 = ∇1
βsi = ∇1

β(1(yi < β)) = δ(β − yi),
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H2 = ∇2
βsi = −δ(1)(β − yi),

H3 = ∇3
βsi = δ(2)(β − yi),

H1 = E∇1
βsi = E [δ(β − yi)] =

∫ +∞

−∞
δ(yi − β)f(yi)dyi = f (β) ,

H2 = E∇2
βsi = −E

[
δ(1)(β − yi)

]
= −f (1) (β) ,

H3 = E∇3
βsi = E

[
δ(2)(β − yi)

]
= f (2) (β) ,

Q =
(
H1

)−1
= [f(β)]−1,

V = H1 −H1 = δ(β − yi)− f(β),

W = H2 −H2 = −δ(1)(β − yi) + f (1)(β),

di = Qsi = −[f(β)]−1(α− 1(yi < β)).

f(β) is the unconditional density of yi evaluated at yi = β. f (1)(β) and f (2)(β) are the first

and second derivative of the unconditional density of yi evaluated at yi = β, respectively.

Since ΨN , si, di, H1, H1, Q, Vi, H2, H2, Wi, H3, H3 are all scalars, then

Vidi = E
[(
H1 −H1

)
Qsi
]

= QE (H1si)− E (si)

= Q

[
−
∫ +∞

−∞
δ(β − yi)(α− 1(yi < β))f(yi)dyi

]
= Q

[
−
∫ +∞

−∞
δ(β − yi)αf(yi)dyi +

∫ +∞

−∞
δ(β − yi)1(yi < β)f(yi)dyi

]
=

(
1

2
− α

)
Q [f(β)] .

d1 ⊗ d1 = Q2E
[
s2
i

]
= Q2

[
(α− 1)2 α+ α2 (1− α)

]
= α(1− α)Q2.
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Therefore, the second-order bias of β̂ up to O(N−1),of the unconditional quantile estimators

β̂ can be written as

B(β̂) =
1

N
Q

[
Vidi −

1

2
H2

(
di ⊗ di

)]
=

1

N

(
1

2
− α

)
Q2 [f(β)]− 1

N

α(1− α)

2
Q3f (1)(β)

=
1

N

(
1

2
− α

)
Q− 1

N

α(1− α)

2
Q3f (1)(β),

where Q = [f(β)]−1. Since the unconditional density of yi evaluated at yi = β is the

same as the unconditional density of ui evaluated at ui = 0. If we use f (0) to denote the

unconditional density of ui evaluated at ui = 0, the second-order bias of β̂ up to O(N−1),of

the unconditional quantile estimators β̂ can be written as

B(β̂) =
1

N

(
1

2
− α

)
Q− 1

N

α(1− α)

2
Q3f (1)(0),

where Q = [f(0)]−1.

If xi = 1, the MSE up to O(N−2) of the unconditional quantile estimators β̂ can
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be simplified as

M(β̂) =
1

N
α(1− α)Q2 − 2

1

N2

(
α2 − α+

1

2

)
Q3f(β) + 2

1

N2
α(1− α)Q2

+
1

N2
α(1− α)(2α− 1)Q4f (1)(β) + 6

1

N2

(
1

2
− α

)2

Q4 (f(β))2

+3
1

N2
α(1− α)Q4

((
1

2
− α

)
f (1)(β)− (f(β))2

)
− 12

1

N2

(
1

2
− α

)
α(1− α)Q5f (1)(β)f(β)

+
15

4

1

N2
α2(1− α)2Q6

(
f (1)(β)

)2
− 1

N2
α2(1− α)2Q5f (2)(β)

=
1

N
α(1− α)Q2 − 2

1

N2

(
α2 − α+

1

2

)
Q2 + 2

1

N2
α(1− α)Q2 +

1

N2
α(1− α)

(
1

2
− α

)
Q4f (1)(β)

+3
1

N2

(
α2 − α+

1

2

)
Q2 − 12

1

N2

(
1

2
− α

)
α(1− α)Q4f (1)(β)

+
15

4

1

N2
α2(1− α)2Q6

(
f (1)(β)

)2
− 1

N2
α2(1− α)2Q5f (2)(β)

=
1

N
α(1− α)Q2 − 1

N2

(
α2 − α− 1

2

)
Q2 − 11

1

N2
α(1− α)

(
1

2
− α

)
Q4f (1)(β)

+
15

4

1

N2
α2(1− α)2Q6

(
f (1)(β)

)2
− 1

N2
α2(1− α)2Q5f (2)(β),

where Q = [f(β)]−1. Since the unconditional density of yi evaluated at yi = β is the

same as the unconditional density of ui evaluated at ui = 0. If we use f (0) to denote

the unconditional density of ui evaluated at ui = 0, then we observe the MSE with the

expression in Proposition 3.

C.2 Proof of Proposition 4: If xi follows the Bernoulli distribution Bernoulli(p), then

E(xi) = E(xix
′
i) = E(xix

′
ixi) = E ((xix

′
i)⊗ x′i) = p,where j = 1, 2, 3, · · · . Thus,

Q =
(
E[xix

′
if(x′iβ)]

)−1
= (pE[f(β)])−1 = [pf(β)]−1,

E[xix
′
ixif(x′iβ)] = pE[f(β)] = pf(β),

E[
(
xix
′
i

)
⊗ x′if (1)(x′iβ)] = pE[f (1)(β)] = pf (1)(β).
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Based on Theorem 1, the second-order bias up to O(N−1), of the conditional quantile

estimators β̂ is

B(β̂) =
1

N

(
1

2
− α

)
Q2E

[
xix
′
ixif(x′iβ)

]
− 1

N

α(1− α)

2
Q3E[

(
xix
′
i

)
⊗ x′if (1)(x′iβ)]E

(
x2
i

)
=

1

N

(
1

2
− α

)
Q− 1

N

α(1− α)

2
Q3p2f (1)(β),

where Q = [pf(β)]−1. Based on Theorem 2, the MSE up to O(N−2), of the conditional

quantile estimators β̂ is

M(β̂) =
1

N
α(1− α)Q2p− 2

1

N2
Q3

(
α2 − α+

1

2

)
pf(β) + 2

1

N2
α(1− α)Q2p

+
1

N2
α(1− α)(2α− 1)Q4p2f (1)(β) + 6

1

N2

(
1

2
− α

)2

Q4 (pf(β))2

+3
1

N2
α(1− α)Q4

((
1

2
− α

)
p2f (1)(β)− p3 (f(β))2

)
−12

1

N2

(
1

2
− α

)
α(1− α)Q5p3f (1)(β)f(β)

+
15

4

1

N2
α2(1− α)2Q6p4

(
f (1)(β)

)2
− 1

N2
α2(1− α)2Q5p3f (2)(β)

=
1

N
α(1− α)Q2p− 2

1

N2
Q

(
2α2 − α+

1

2

)
+ 2

1

N2
α(1− α)Q2p

+
1

N2
α(1− α)(2α− 1)Q4p2f (1)(β) + 6

1

N2

(
1

2
− α

)2

Q2

+3
1

N2
α(1− α)Q4

(
1

2
− α

)
p2f (1)(β)− 3

1

N2
α(1− α)Q2p

−12
1

N2

(
1

2
− α

)
α(1− α)Q4p2f (1)(β)

+
15

4

1

N2
α2(1− α)2Q6p4

(
f (1)(β)

)2
− 1

N2
α2(1− α)2Q5p3f (2)(β)

=
1

N
α(1− α)Q2p− 1

N2

(
α (1− α) (4 + p) +

1

2

)
Q2 − 9

1

N2
α(1− α)

(
1

2
− α

)
Q4p2f (1)(β)

+
15

4

1

N2
α2(1− α)2Q6p4

(
f (1)(β)

)2
− 1

N2
α2(1− α)2Q5p3f (2)(β),

where Q = [pf(β)]−1. Since the conditional density of yi given xi evaluated at yi = x′iβ is

the same as the conditional density of ui given xi evaluated at ui = 0. If we use f (0|xi)
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to denote the conditional density of ui given xi evaluated at ui = 0, then we observe the

second-order bias and MSE with the expression in Proposition 4.

C.3 Proof of Proposition 5: The moment condition is

ΨN (β) =
1

N

N∑
i=1

si(β) (2.49)

where si(β) = (α− 1(yi < x′iβ))(−zi). Since xi are assumed to be i.i.d., then si and di are

i.i.d. as well. Similarly, Vi and Wi are i.i.d. matrices. We have

H1 = ∇1
βsi = ∇1

β[(α− 1(yi < x′iβ))(−zi)] = zix
′
iδ(x

′
iβ − yi),

H2 = ∇2
βsi = −

(
zix
′
i

)
⊗ x′iδ(1)(x′iβ − yi),

H3 = ∇3
βsi =

(
zix
′
i

)
⊗ x′i ⊗ x′iδ(2)(x′iβ − yi),

H1 = E∇1
βsi = E

[
zix
′
iδ(x

′
iβ − yi)

]
= E

[
zix
′
iE
(
δ(x′iβ − yi)|xi, zi

)]
= E

[
zix
′
i

∫ +∞

−∞
δ(yi − x′iβ)f(yi)dy

]
= E

[
zix
′
if(x′iβ)

]
,

H2 = E∇2
βsi = −E

[(
zix
′
i

)
⊗ x′iδ(1)(x′iβ − yi)

]
= E

[(
zix
′
i

)
⊗ x′if (1)(x′iβ)

]
,

H3 = E∇3
βsi = E

[(
zix
′
i

)
⊗ x′i ⊗ x′iδ(2)(x′iβ − yi)

]
= E[

(
zix
′
i

)
⊗ x′i ⊗ x′if (2)(x′iβ)],

Q =
(
H1

)−1
=
(
E[zix

′
if(x′iβ)]

)−1
,

V1 = H1 −H1 = zix
′
iδ(x

′
iβ − yi)− E[f(x′iβ)zix

′
i],

Wi = H2 −H2 = −
(
zix
′
i

)
⊗ x′iδ(1)(x′iβ − yi) + E[

(
zix
′
i

)
⊗ x′if (1)(x′iβ)],

di = Qsi = Q(α− 1(yi < x′iβ))(−zi),
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where f(x′1β) is the density of y|x, at the point y1 = x′1β. We observe that ΨN , si and di

are all k× 1 vectors. H1, H1, Q, and Vi are all k×k matrices, H2, H2 and Wi are all k×k2

matrices. H3 and H3 are k × k3 matrices. Then we have

Vidi = E
[(
H1 −H1

)
Qsi
]

= E (H1Qsi)− E (si)

= E
[
zix
′
iδ(x

′
iβ − yi)Qsi

]
= E

[
zix
′
iE
(
δ(x′iβ − yi)Qsi|xi

)]
= E

[
zix
′
i

∫ +∞

−∞
δ(x′iβ − yi)Q(α− 1(yi < x′iβ))(−zi)f(yi)dyi

]
= E

[
−zix′iQziα

∫ +∞

−∞
δ(x′iβ − yi)f(yi)dyi + zix

′
iQzi

∫ +∞

−∞
δ(x′iβ − yi)φ(x′iβ − yi)f(yi)dyi

]
= E

[
−zix′iQziαf(x′iβ) +

1

2
zix
′
iQzif(x′iβ)

]
=

(
1

2
− α

)
E
[
zix
′
iQzif(x′iβ)

]
.

di ⊗ di = E [(Qsi ⊗Qsi)]

= E [(Q⊗Q) (si ⊗ si)]

= (Q⊗Q)E [(si ⊗ si)]

= (Q⊗Q)E [E (si ⊗ si|xi)]

= (Q⊗Q)E
[
(zi ⊗ zi)E

(
(α− 1(yi < x′iβ))2|xi

)]
= (Q⊗Q)E (zi ⊗ zi)

[
(α− 1)2 α+ α2 (1− α)

]
= α(1− α) (Q⊗Q)E (zi ⊗ zi) .
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Therefore, the second-order bias of β̂ up to O(N−1) can be rewritten as

B(β̂) =
1

N
Q

[
Vidi −

1

2
H2

(
di ⊗ di

)]
=

1

N
Q

[(
1

2
− α

)
E
[
zix
′
iQzif(x′iβ)

]
− α(1− α)

2
E
[(
zix
′
i

)
⊗ x′if (1)(x′iβ)

]
(Q⊗Q)E (zi ⊗ zi)

]
,

where Q = (E[zix
′
if(x′iβ)])−1 . When xi and ui are i.i.d., f(0|xi) = f (0) . Since the density

of yi evaluated at yi = x′iβ is the same as the density of ui evaluated at ui = 0. If we use

f (0) to denote the conditional density of ui evaluated at ui = 0, the second-order bias of β̂

up to O(N−1) can be rewritten as

B(β̂) =
1

N
Q

[(
1

2
− α

)
E
[
zix
′
iQzif(0)

]
− α(1− α)

2
E
[(
zix
′
i

)
⊗ x′if (1)(0)

]
(Q⊗Q)E (zi ⊗ zi)

]
,

where Q = (E[zix
′
if(0)])−1 .

When l = k = 1, the MSE up to O(N−2) can be written as

M(β̂) =
1

N
d2
i − 2

1

N2
Q

[
Vid2

i −
1

2
H2d3

i

]
+ 6

1

N2
Q2Vidi

2
+ 3

1

N2
Q2V 2

i d
2
i

+3
1

N2
QWidid2

i − 12
1

N2
Q2H2Vidid2

i +
15

4

1

N2
Q2H2

2
d2
i

2
− 1

N2
QH3d2

i

2
,

where we have

Vid2
i = E

[(
H1 −H1

)
Q2s2

i

]
= Q2E

(
H1s

2
i

)
−QE

(
s2
i

)
,

E(H1s
2
i ) = E

[
zixiδ(x

′
iβ − yi)s2

i

]
= E

[
zixiE

(
δ(x′iβ − yi)s2

i |xi
)]

= E

[
z3
i xi

∫ +∞

−∞
δ(xiβ − yi)(α− 1(yi < x′iβ))2f(yi)dyi

]
= E

[
α2z3

i xi

∫ +∞

−∞
δ(xiβ − yi)f(yi)dyi + (1− 2α)z3

i xi

∫ +∞

−∞
δ(xiβ − yi)φ(xiβ − yi)f(yi)dyi

]
= E

[
α2z3

i xif(xiβ)
]

+ E

[
(1− 2α)

1

2
z3
i xif(xiβ)

]
=

(
α2 − α+

1

2

)
E
[
z3
i xif(x′iβ)

]
.
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d2
i = Q2E(s2

i )

= Q2E
[
z2
i (α− 1(yi < x′iβ))2

]
= Q2

[
(α− 1)2 α+ α2 (1− α)

]
E
(
z2
i

)
= α(1− α)Q2E

(
z2
i

)
,

d3
i = Q3E(s3

i )

= Q3E
[
z3
i (α− 1(yi < x′iβ))3

]
= Q3

[
(α− 1)3 α+ α3(1− α)

]
E
(
z3
i

)
= α(1− α)(2α− 1)Q3E

(
z3
i

)
,

Vidi
2

=

(
1

2
− α

)2

Q2
(
E
[
z2
i xif(x′iβ)

])2

V 2
i = E

[(
H1 −H1

)2]
= E

[
H2

1 − 2H1H1 +H1
2
]

= E
(
H2

1

)
− 2H1

2
+H1

2

= E
(
H2

1

)
−H1

2

= E
[
z2
i x

2
i

(
δ(x′iβ − yi)

)2]− (E [zixif(x′iβ)
])2

= E

[
z2
i x

2
i

∫ +∞

−∞

(
δ(x′iβ − yi)

)2
f(yi)dyi

]
−
(
E
[
zixif(x′iβ)

])2
,
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Widi = E
[(
H2 −H2

)
Qsi
]

= QE (H2si)−QH2E (si)

= QE
[
zix

2
i δ

(1)(x′iβ − yi)si
]

= QE
[
zix

2
iE
(
δ(1)(x′iβ − yi)

(
α− 1(yi < x′iβ)

)
(−zi)|xi

)]
= −QE

[
z2
i x

2
iE
(
δ(1)(x′iβ − yi) (α− φ (xiβ − yi)) |xi

)]
= −αQE

[
z2
i x

2
i

∫ +∞

−∞
δ(1)(x′iβ − yi)f(yi)dyi

]
+QE

[
z2
i x

2
i

∫ +∞

−∞
δ(1)(x′iβ − yi)φ (xiβ − yi) f(yi)dyi

]
= −αQE

[
z2
i x

2
i f

(1)(x′iβ)
]

+QE

[
−z2

i x
2
i

∫ +∞

−∞

(
δ(x′iβ − yi)

)2
f(yi)dyi

]
+QE

[
z2
i x

2
i

∫ +∞

−∞
δ(x′iβ − yi)φ (xiβ − yi) f (1)(yi)dyi

]
=

(
1

2
− α

)
QE

[
z2
i x

2
i f

(1)(x′iβ)
]
−QE

[
z2
i x

2
i

∫ +∞

−∞

(
δ(x′iβ − yi)

)2
f(yi)dyi

]
.

Therefore, the MSE up to O(N−2) can be written as

M(β̂) =
1

N
α(1− α)Q2E

(
z2
i

)
− 2

1

N2
Q3

(
α2 − α+

1

2

)
E
[
z3
i xi
]
f(x′iβ)− 1

N2
α(1− α)Q2E

(
z2
i

)
+

1

N2
α(1− α)(2α− 1)Q4E

[
zix

2
i

]
E
(
z3
i

)
f (1)(x′iβ) + 6

1

N2

(
1

2
− α

)2

Q4
(
E
[
z2
i xi
]
f(x′iβ)

)2
+3

1

N2
α(1− α)Q4
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where Q = (E (zixi) f(x′iβ))−1 . Since the density of yi evaluated at yi = x′iβ is the same as

the density of ui evaluated at ui = 0. If we use f (0) to denote the density of ui evaluated

at ui = 0, then we observe the MSE with the expression in Proposition 5.
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2.7.4 Appendix D

This appendix provides the results tables with the second data generating process

DGP (DGP 2). In DGP 2, the error term ui is uniformly distributed with the CDF F (·)

on [a, b], then a = α
α−1b. We have

F (0) =

∫ 0

−∞
f(u)du =

∫ 0

a

1

b− a
du = − a

b− a
= α.

Therefore, we generate the error term ui from uniform distribution on [a, b] , where a = −αR,

b = R(1− α), and the range R = b− a.

Table 8 and Table 9 shows the results when R = 4, 10, and xi is generated from

exponential distribution, f(xi) = exp(−xi). Table 10 and Table 11 show the results when

R = 4, and when xi is generated from two different mixture normal distributions in Marron

and Wand (1992).

67



2.8 References

Amemiya, T., 1980. The n2-order mean squared errors of the maximum likelihood and the

minimum logit chi-square estimators. Annals of Mathematical Statistics 8, 488-505.

Andrews, D.W.K., 1994. Empirical process methods in econometrics. In: Engle, R.F.,

McFadden, D.L. (Eds.), Handbook of Econometrics Vol. 4. Elsevier Science, Amster-

dam, pp. 2247-2294.

Bahadur, R.R., 1966. A note on quantiles in large samples. Ann. Math. Statist. 37,

577-581.

Bao, Y., Ullah, A., 2007. The second-order bias and mean squared error of estimators in

time-series models. Journal of Econometrics 140, 650-669.

Basmann, R.L., 1974. Exact finite sample distribution for some econometric estimators

and test statistics: a survey and appraisal. In: Intriligator, M.D., Kendrick, D.A.

(Eds.), Frontiers of Quantitative Economics, Vol. 2. North-Holland, Amsterdam, pp.

209-288.

Chernozhukov, V., Hansen, C., 2006. Instrumental quantile regression inference for struc-

tural and treatment effect models. Journal of Econometrics 132, 491-525.

Chernozhukov, V., Hong, H., 2003. An MCMC approach to classical estimation. Journal

of Econometrics 115, 293-346.

68



Chesher, A.D., Spady, R., 1989. Asymptotic expansions of the information matrix test

statistic. Econometrica 59, 787-816.

Cordeiro, G.M., McCullagh, P., 1991. Bias correction in generalized linear models. Journal

of the Royal Statistical Society B 53, 629-643.

Elliott, G., Komunjer, I., Timmermann, A., 2005. Estimation and testing of forecast

rationality under flexible loss. Review of Economic Studies 72(4): 1107-1125.

Gelfand, I.M., Shilov, G.E., 1964. Generalized Functions, Vol.1. New York: Academic

Press.

He, X., Shao, Q., 1996. A general Bahadur representation of M-estimators and its appli-

cation to linear regression with nonstochastic designs. The Annals of Statistics 24(6):

2608-2630.

Huber, P.J., 1967. The behavior of maximum likelihood estimates under nonstandard con-

ditions. In: Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics

and Probability, vol.1. University of California Press, Berkeley.

Jureckova, J., Sen, P.K., 1987. A second-order asymptotic distributional representation

of M-estimators with discontinuous score functions. The Annals of Probability 15(2):

814-823.

Jureckova, J., Sen, P.K., 1996. Robust Statistical Procedures: Asymptotics and Interrela-

tions. New York : Wiley.

Kiefer, J., 1967. On Bahadur representation of sample quantiles. Ann. Math. Statist. 38,

69



1323-1342.

Kim, J., Pollard, D., 1990. Cube root asymptotics. Annals of Statistics. 18, 191-219.

Koenker, R., Bassett, G.S., 1978. Regression quantiles. Econometrica 46, 33–50.

Koenker, R., 2005. Quantile regression. Cambridge university press.

Komunjer, I., 2005. Quasi-maximum likelihood estimation for conditional quantiles. Jour-

nal of Econometrics 128, 137-164.

Marron, J. S., Wand, M. P., 1992. Exact mean integrated squared error. The Annals of

Statistics, 20, 712-736.

Nagar, A.L., 1959. The bias and moment matrix of the general k-class estimators of the

parameters in simultaneous equations. Econometrica 27, 575-595.

Newey, W.K., McFadden, D.L., 1994. Large sample estimation and hypothesie testing.

In: Engle, R.F., McFadden, D.L. (Eds.), Handbook of Econometrics vol. 4. Elsevier

Science, Amsterdam, pp. 2113-2247.

Newey, W.K., Smith, R.J., 2004. Higher order properties of GMM and generalized empir-

ical likelihood estimators. Econometrica 72, 219-255.

Pakes, A., Pollard, D., 1989. Simulation and the asymptotics of optimization estimators.

Econometrica 57, 1027-1057.

Phillips, P.C.B., 1991. A shortcut to LAD estimator asymptotics. Econometric Theorey

7, 450-463.

70



Pollard, D., 1985. New ways to prove central limit theorems. Econometric Theorey 1,

295-314.

Prakasa Rao, B.L.S., 1969. Estimation of a unimodal density. Sankhya Series A 31, 23-36.

Raju, C. K., 1982. Products and compositions with the Dirac delta function. Journal of

Physics A: Mathematical and General 15, 381-396.

Rilstone, P., Srivastava, V. K., Ullah, A., 1996. The second-order bias and mean squared

error of nonlinear estimators. Journal of Econometrics 75, 369-395.

Rothenberg, T.J., 1984. Approximating the distribution of econometric estimators and

test statistics. In: Intriligator, M.L., Griliches, A. (Eds.), Handbook of Econometrics,

Vol.2. North-Holland, Amsterdam, pp. 881-935.

Sargan, J.D., 1974. The validity of Nagar’s expansion for the moments of econometric

estimators. Econometrica 42, 169-176.

Sargan, J.D., 1976. Econometric estimators and the Edgeworth approximation. Econo-

metrica 44, 421-448.

Ullah, A., 2004. Finite sample econometrics. United Kingdom: Oxford University Press.

van der Vaart, A.W., 1998. Asymptotic Statistics. New York: Cambridge University Press.

71



Table 2.1: Bias correction and MSE with xi generated from exponential distribution, DGP
1, allowing hetroskedasticity

σui = 0.1xi, N = 50 σui = 0.5xi, N = 50

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0027 0.0023 -0.0004 0.0135 0.0203 0.0067
0.0000 0.0018 0.0018 0.0002 0.0447 0.0443

0.1 0.0016 0.0018 0.0002 0.0080 0.0087 0.0008
0.0006 0.0012 0.0012 0.0155 0.0291 0.0290

0.2 0.0008 0.0013 0.0005 0.0042 0.0081 0.0039
0.0006 0.0008 0.0008 0.0162 0.0205 0.0204

0.3 0.0005 0.0002 -0.0003 0.0023 0.0025 0.0002
0.0006 0.0007 0.0007 0.0151 0.0169 0.0169

0.4 0.0002 0.0003 0.0001 0.0011 0.0014 0.0003
0.0006 0.0007 0.0007 0.0145 0.0159 0.0159

0.5 0.0000 -0.0001 -0.0001 0.0000 0.0005 0.0005
0.0006 0.0006 0.0006 0.0143 0.0155 0.0155

0.6 -0.0002 -0.0001 0.0001 -0.0011 0.0002 0.0013
0.0006 0.0006 0.0006 0.0145 0.0160 0.0160

0.7 -0.0005 -0.0005 -0.0001 -0.0023 -0.0018 0.0006
0.0006 0.0007 0.0007 0.0151 0.0174 0.0174

0.8 -0.0008 -0.0012 -0.0003 -0.0042 -0.0038 0.0003
0.0006 0.0008 0.0008 0.0162 0.0207 0.0207

0.9 -0.0016 -0.0017 -0.0001 -0.0080 -0.0093 -0.0014
0.0006 0.0012 0.0012 0.0155 0.0302 0.0301

0.95 -0.0027 -0.0034 -0.0007 -0.0135 -0.0208 -0.0072
0.0000 0.0017 0.0017 0.0002 0.0434 0.0430

Notes: This table present the simulation results, when ui is generated from normal

distribution, xi is generated form exponential distribution, when allowing hetroskedasticity.

For each level of α, the first row is for bias and the second row is for the MSE of the quantile

estimator. For each panel, the first column presents the second-order bias and MSE derived

by Theorem 1 and 2, the second column presents the Monte Carlo simulation bias and MSE

of quantile estimators β̂, the third column presents the Monte Carlo simulation bias and
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MSE of the bias corrected quantile estimators β̃ where β̃ = β̂ − B(β̂). We set β = 0 and

N = 50, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.2: Bias correction and MSE with xi generated from exponential distribution, DGP
1, σu = 0.5

σu = 0.5, N = 60 σu = 0.5, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0086 0.0092 0.0005 0.0052 0.0060 0.0009
0.0038 0.0102 0.0101 0.0036 0.0059 0.0059

0.1 0.0051 0.0051 0.0000 0.0031 0.0032 0.0002
0.0044 0.0067 0.0067 0.0030 0.0038 0.0038

0.2 0.0027 0.0039 0.0013 0.0016 0.0023 0.0007
0.0037 0.0046 0.0045 0.0024 0.0026 0.0026

0.3 0.0015 0.0009 -0.0006 0.0009 0.0017 0.0008
0.0033 0.0039 0.0039 0.0021 0.0023 0.0023

0.4 0.0007 0.0000 -0.0007 0.0004 0.0010 0.0006
0.0031 0.0036 0.0036 0.0019 0.0021 0.0021

0.5 0.0000 0.0000 0.0000 0.0000 -0.0002 -0.0002
0.0031 0.0035 0.0035 0.0019 0.0020 0.0020

0.6 -0.0007 0.0002 0.0009 -0.0004 0.0006 0.0010
0.0031 0.0036 0.0036 0.0019 0.0021 0.0021

0.7 -0.0015 -0.0012 0.0003 -0.0009 -0.0002 0.0007
0.0033 0.0040 0.0040 0.0021 0.0023 0.0023

0.8 -0.0027 -0.0025 0.0001 -0.0016 -0.0021 -0.0005
0.0037 0.0045 0.0045 0.0024 0.0027 0.0027

0.9 -0.0051 -0.0051 0.0000 -0.0031 -0.0040 -0.0009
0.0044 0.0065 0.0065 0.0030 0.0038 0.0038

0.95 -0.0086 -0.0094 -0.0008 -0.0052 -0.0063 -0.0011
0.0038 0.0101 0.0100 0.0036 0.0059 0.0058

Notes: This table present the simulation results, when ui is generated from normal

distribution with σu = 0.5, xi is generated form exponential distribution, ui and xi are i.i.d..

For each level of α, the first row is for bias and the second row is for the MSE of the quantile

estimator. For each panel, the first column presents the second-order bias and MSE derived

by by Corollary 1 and 2.2, the second column presents the Monte Carlo simulation bias and

MSE of quantile estimators β̂, the third column presents the Monte Carlo simulation bias

and MSE of the bias corrected quantile estimators β̃ where β̃ = β̂ − B(β̂). We set β = 0

and N = 60, 100, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.3: Bias correction and MSE with xi generated from exponential distribution, DGP
1, σu = 0.1

σu = 0.1, N = 60 σu = 0.1, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0017 0.0021 0.0004 0.0010 0.0009 -0.0002
0.0002 0.0004 0.0004 0.0001 0.0002 0.0002

0.1 0.0010 0.0011 0.0001 0.0006 0.0008 0.0002
0.0002 0.0003 0.0003 0.0001 0.0002 0.0002

0.2 0.0005 0.0007 0.0002 0.0003 0.0004 0.0001
0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

0.3 0.0003 0.0003 0.0000 0.0002 0.0002 0.0001
0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

0.4 0.0001 0.0001 0.0000 0.0001 0.0003 0.0002
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.5 0.0000 -0.0002 -0.0002 0.0000 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.6 -0.0001 0.0000 0.0002 -0.0001 0.0000 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.7 -0.0003 -0.0003 0.0000 -0.0002 -0.0002 0.0000
0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

0.8 -0.0005 -0.0005 0.0001 -0.0003 -0.0003 0.0000
0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

0.9 -0.0010 -0.0010 0.0000 -0.0006 -0.0007 -0.0001
0.0002 0.0003 0.0003 0.0001 0.0002 0.0002

0.95 -0.0017 -0.0020 -0.0003 -0.0010 -0.0010 0.0000
0.0002 0.0004 0.0004 0.0001 0.0002 0.0002

Notes: This table present the simulation results, when ui is generated from normal

distribution with σu = 0.1, xi is generated form exponential distribution, ui and xi are i.i.d..

For each level of α, the first row is for bias and the second row is for the MSE of the quantile

estimator. For each panel, the first column presents the second-order bias and MSE derived

by by Corollary 1 and 2.2, the second column presents the Monte Carlo simulation bias and

MSE of quantile estimators β̂, the third column presents the Monte Carlo simulation bias

and MSE of the bias corrected quantile estimators β̃ where β̃ = β̂ − B(β̂). We set β = 0

and N = 60, 100, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.4: Bias correction and MSE with xi generated from mixture normal distribution
(skewed unimodal), DGP 1, σu = 0.5

σu = 0.5, N = 60 σu = 0.5, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0058 0.0046 -0.0012 0.0035 0.0027 -0.0007
0.0119 0.0174 0.0173 0.0079 0.0105 0.0104

0.1 0.0034 0.0018 -0.0016 0.0021 0.0014 -0.0006
0.0089 0.0111 0.0111 0.0055 0.0065 0.0065

0.2 0.0018 0.0018 0.0000 0.0011 0.0017 0.0006
0.0065 0.0077 0.0077 0.0040 0.0047 0.0047

0.3 0.0010 0.0013 0.0003 0.0006 0.0000 -0.0006
0.0057 0.0067 0.0067 0.0034 0.0039 0.0039

0.4 0.0005 0.0015 0.0011 0.0003 0.0010 0.0007
0.0053 0.0061 0.0061 0.0032 0.0036 0.0036

0.5 0.0000 -0.0014 -0.0014 0.0000 -0.0006 -0.0006
0.0052 0.0060 0.0060 0.0031 0.0035 0.0035

0.6 -0.0005 -0.0013 -0.0008 -0.0003 -0.0002 0.0001
0.0053 0.0061 0.0061 0.0032 0.0036 0.0036

0.7 -0.0010 -0.0005 0.0005 -0.0006 -0.0004 0.0002
0.0057 0.0067 0.0067 0.0034 0.0040 0.0040

0.8 -0.0018 -0.0020 -0.0002 -0.0011 -0.0016 -0.0005
0.0065 0.0077 0.0077 0.0040 0.0047 0.0047

0.9 -0.0034 -0.0032 0.0003 -0.0021 -0.0018 0.0002
0.0089 0.0113 0.0113 0.0055 0.0067 0.0067

0.95 -0.0058 -0.0055 0.0003 -0.0035 -0.0029 0.0006
0.0119 0.0175 0.0174 0.0079 0.0103 0.0102

Notes: This table present the simulation results, when ui is generated from normal

distribution with σu = 0.5, xi is generated form mixture normal distribution, ui and xi are

i.i.d.. For each level of α, the first row is for bias and the second row is for the MSE of the

quantile estimator. For each panel, the first column presents the second-order bias and MSE

derived by Corollary 1 and 2.2, the second column presents the Monte Carlo simulation bias

and MSE of quantile estimators β̂, the third column presents the Monte Carlo simulation

bias and MSE of the bias corrected quantile estimators β̃ where β̃ = β̂−B(β̂). We set β = 0

and N = 60, 100, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.5: Bias correction and MSE with xi generated from mixture normal distribution
(strongly skewed), DGP 1, σu = 0.5

σu = 0.5, N = 60 σu = 0.5, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 -0.0030 -0.0023 0.0006 -0.0018 -0.0027 -0.0009
0.0033 0.0070 0.0070 0.0021 0.0040 0.0040

0.1 -0.0017 -0.0012 0.0005 -0.0010 -0.0010 0.0000
0.0024 0.0043 0.0043 0.0015 0.0026 0.0026

0.2 -0.0009 -0.0008 0.0002 -0.0005 0.0001 0.0007
0.0017 0.0030 0.0030 0.0010 0.0018 0.0018

0.3 -0.0005 -0.0013 -0.0008 -0.0003 0.0000 0.0003
0.0015 0.0025 0.0025 0.0009 0.0016 0.0016

0.4 -0.0002 -0.0002 0.0001 -0.0001 -0.0005 -0.0003
0.0014 0.0024 0.0024 0.0008 0.0014 0.0014

0.5 0.0000 0.0003 0.0003 0.0000 0.0001 0.0001
0.0013 0.0023 0.0023 0.0008 0.0014 0.0014

0.6 0.0002 0.0010 0.0008 0.0001 0.0000 -0.0001
0.0014 0.0024 0.0024 0.0008 0.0014 0.0014

0.7 0.0005 0.0001 -0.0004 0.0003 0.0011 0.0008
0.0015 0.0026 0.0026 0.0009 0.0016 0.0016

0.8 0.0009 0.0003 -0.0006 0.0005 -0.0001 -0.0007
0.0017 0.0030 0.0030 0.0010 0.0019 0.0019

0.9 0.0017 0.0021 0.0004 0.0010 0.0005 -0.0005
0.0024 0.0044 0.0043 0.0015 0.0027 0.0027

0.95 0.0030 0.0010 -0.0020 0.0018 0.0015 -0.0003
0.0033 0.0069 0.0069 0.0021 0.0040 0.0040

Notes: This table present the simulation results, when ui is generated from normal

distribution with σu = 0.5, xi is generated form exponential distribution, ui and xi are i.i.d..

For each level of α, the first row is for bias and the second row is for the MSE of the quantile

estimator. For each panel, the first column presents the second-order bias and MSE derived

by Corollary 1 and 2.2, the second column presents the Monte Carlo simulation bias and

MSE of quantile estimators β̂, the third column presents the Monte Carlo simulation bias

and MSE of the bias corrected quantile estimators β̃ where β̃ = β̂ − B(β̂). We set β = 0

and N = 60, 100, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.6: Bias correction and MSE in unconditional quantile model, DGP 1, σu = 0.5

σu = 0.5, N = 60 σu = 0.5, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0058 -0.0166 -0.0223 0.0035 -0.0149 -0.0183
0.0183 0.0177 0.0179 0.0110 0.0114 0.0115

0.1 0.0034 0.0117 0.0083 0.0020 0.0039 0.0019
0.0126 0.0105 0.0104 0.0075 0.0068 0.0068

0.2 0.0018 0.0141 0.0124 0.0011 0.0080 0.0070
0.0090 0.0082 0.0081 0.0053 0.0050 0.0050

0.3 0.0010 0.0104 0.0094 0.0006 0.0054 0.0048
0.0078 0.0070 0.0070 0.0045 0.0043 0.0043

0.4 0.0005 0.0073 0.0069 0.0003 0.0053 0.0050
0.0072 0.0066 0.0066 0.0042 0.0040 0.0040

0.5 0.0000 0.0002 0.0002 0.0000 0.0006 0.0006
0.0070 0.0060 0.0060 0.0041 0.0036 0.0036

0.6 -0.0005 -0.0087 -0.0083 -0.0003 -0.0045 -0.0042
0.0072 0.0067 0.0066 0.0042 0.0040 0.0039

0.7 -0.0010 -0.0083 -0.0073 -0.0006 -0.0064 -0.0058
0.0078 0.0070 0.0070 0.0045 0.0043 0.0043

0.8 -0.0018 -0.0148 -0.0130 -0.0011 -0.0087 -0.0077
0.0090 0.0083 0.0083 0.0053 0.0050 0.0050

0.9 -0.0034 -0.0100 -0.0066 -0.0020 -0.0045 -0.0024
0.0126 0.0108 0.0108 0.0075 0.0066 0.0066

0.95 -0.0058 0.0147 0.0205 -0.0035 0.0133 0.0167
0.0183 0.0177 0.0179 0.0110 0.0112 0.0113

Notes: This table present the simulation results for unconditional quantile regres-

sion with xi = 1, when ui is generated from normal distribution with σu = 0.5, ui is i.i.d..

For each level of α, the first row is for bias and the second row is for the MSE of the quantile

estimator. For each panel, the first column presents the second-order bias and MSE derived

by Proposition 3, the second column presents the Monte Carlo simulation bias and MSE

of quantile estimators β̂, the third column presents the Monte Carlo simulation bias and

MSE of the bias corrected quantile estimators β̃ where β̃ = β̂ − B(β̂). We set β = 0 and

N = 60, 100, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.7: Bias correction and MSE with binary independent variable, DGP 1, p = 0.3,
σu = 0.5

σu = 0.5, N = 60 σu = 0.5, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0192 -0.0138 -0.0330 0.0115 0.0169 0.0054
0.0402 0.0656 0.0665 0.0294 0.0364 0.0362

0.1 0.0113 0.0116 0.0003 0.0068 0.0099 0.0031
0.0337 0.0414 0.0413 0.0219 0.0246 0.0246

0.2 0.0059 0.0115 0.0056 0.0035 0.0075 0.0040
0.0260 0.0286 0.0285 0.0162 0.0168 0.0168

0.3 0.0033 0.0058 0.0025 0.0020 0.0036 0.0016
0.0228 0.0253 0.0253 0.0140 0.0150 0.0150

0.4 0.0015 0.0064 0.0048 0.0009 0.0033 0.0024
0.0214 0.0233 0.0232 0.0130 0.0136 0.0136

0.5 0.0000 0.0012 0.0012 0.0000 0.0003 0.0003
0.0209 0.0204 0.0204 0.0128 0.0124 0.0124

0.6 -0.0015 -0.0091 -0.0076 -0.0009 -0.0028 -0.0019
0.0214 0.0229 0.0228 0.0130 0.0136 0.0136

0.7 -0.0033 -0.0052 -0.0019 -0.0020 -0.0051 -0.0031
0.0228 0.0248 0.0247 0.0140 0.0146 0.0146

0.8 -0.0059 -0.0109 -0.0050 -0.0035 -0.0096 -0.0060
0.0260 0.0291 0.0290 0.0162 0.0174 0.0174

0.9 -0.0113 -0.0146 -0.0033 -0.0068 -0.0090 -0.0022
0.0337 0.0405 0.0403 0.0219 0.0250 0.0249

0.95 -0.0192 0.0140 0.0332 -0.0115 -0.0160 -0.0045
0.0402 0.0668 0.0677 0.0294 0.0366 0.0364

Notes: This table present the simulation results when ui is generated from normal

distribution with σu = 0.5, xi is binary and xi=1 with probability 0.3, ui is i.i.d.. For

each level of α, the first row is for bias and the second row is for the MSE of the quantile

estimator. For each panel, the first column presents the second-order bias and MSE derived

by Proposition 4, the second column presents the Monte Carlo simulation bias and MSE

of quantile estimators β̂, the third column presents the Monte Carlo simulation bias and

MSE of the bias corrected quantile estimators β̃ where β̃ = β̂ − B(β̂). We set β = 0 and

N = 60, 100, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.8: Bias correction for IVQR, σu = 0.5, N=60

γ = 0.5 γ = 0.9

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0155 0.1260 0.1105 0.0094 0.0215 0.0121
0.1 0.0093 0.0700 0.0607 0.0055 0.0070 0.0015
0.2 0.0050 0.0355 0.0305 0.0029 0.0025 -0.0004
0.3 0.0029 0.0235 0.0206 0.0017 0.0015 -0.0002
0.4 0.0014 0.0220 0.0206 0.0008 0.0020 0.0012
0.5 0.0000 0.0255 0.0255 0.0000 0.0005 0.0005
0.6 -0.0014 -0.0176 -0.0162 -0.0008 -0.0041 -0.0033
0.7 -0.0029 -0.0084 -0.0055 -0.0016 -0.0107 -0.0091
0.8 -0.0043 -0.0425 -0.0383 -0.0028 -0.0102 -0.0074
0.9 -0.0014 -0.0499 -0.0485 -0.0046 -0.0177 -0.0131

0.95 -0.0255 -0.0859 -0.0604 -0.0052 -0.0380 -0.0328

Notes: This table present the simulation results for IVQR, when ui is generated

from normal distribution with σu = 0.5; vi is generated by vi = wi + cui, where wi is from

N(0,0.25), c=0.5; zi is from exponential distribution with mean 1; xi is generated from

xi = ziγ + ui, where γ = 0.5, 0.9; yi is generated from yi = xiβ + ui, where β = 0. For

each level of α, the numbers are bias of IVQR estimator. For each panel, the first column

presents the second-order bias derived by Proposition 5, the second column presents the

Monte Carlo simulation bias IVQR estimators β̂, the third column presents the Monte Carlo

simulation bias of the bias corrected IVQR estimators β̃ where β̃ = β̂−B(β̂). We set N=60,

100, and the results are computed from 1,000 Monte Carlo replications.
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Appendix D

Table 2.9: Bias correction and MSE with xi generated from exponential distribution, DGP
2, R = 4

R = 4, N = 60 R = 4, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0450 0.0369 -0.0081 0.0270 0.0243 -0.0027
0.0063 0.0014 0.0098 0.0038 0.0014 0.0051

0.1 0.0400 0.0359 -0.0041 0.0240 0.0200 -0.0040
0.0105 0.0013 0.0148 0.0066 0.0013 0.0079

0.2 0.0300 0.0267 -0.0033 0.0180 0.0190 0.0010
0.0173 0.0010 0.0221 0.0114 0.0010 0.0131

0.3 0.0200 0.0145 -0.0055 0.0120 0.0096 -0.0024
0.0222 0.0008 0.0271 0.0147 0.0008 0.0160

0.4 0.0100 0.0093 -0.0007 0.0060 0.0076 0.0016
0.0251 0.0006 0.0312 0.0167 0.0006 0.0187

0.5 0.0000 0.0039 0.0039 0.0000 -0.0005 -0.0005
0.0261 0.0004 0.0318 0.0174 0.0004 0.0195

0.6 -0.0100 -0.0115 -0.0015 -0.0060 -0.0085 -0.0025
0.0251 0.0003 0.0313 0.0167 0.0003 0.0184

0.7 -0.0200 -0.0154 0.0046 -0.0120 -0.0102 0.0018
0.0222 0.0001 0.0275 0.0147 0.0001 0.0165

0.8 -0.0300 -0.0264 0.0036 -0.0180 -0.0161 0.0019
0.0173 0.0001 0.0222 0.0114 0.0001 0.0130

0.9 -0.0400 -0.0352 0.0048 -0.0240 -0.0214 0.0026
0.0105 0.0000 0.0145 0.0066 0.0000 0.0081

0.95 -0.0450 -0.0393 0.0057 -0.0270 -0.0235 0.0035
0.0063 0.0000 0.0100 0.0038 0.0000 0.0054

Notes: This table present the simulation results, when ui is generated from uniform

distribution with the range R = 4, xi is generated form exponential distribution, ui and xi

are i.i.d.. For each level of α, the first row is for bias and the second row is for the MSE of the

quantile estimator. For each panel, the first column presents the second-order bias and MSE

derived by Corollary 1 and 2.2, the second column presents the Monte Carlo simulation bias

and MSE of quantile estimators β̂, the third column presents the Monte Carlo simulation

bias and MSE of the bias corrected quantile estimators β̃ where β̃ = β̂−B(β̂). We set β = 0
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and N = 60, 100, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.10: Bias correction and MSE with xi generated from exponential distribution, DGP
2, R = 10

R = 10, N = 60 R = 10, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.1125 0.0945 -0.0180 0.0675 0.0576 -0.0099
0.0394 0.0090 0.0627 0.0237 0.0090 0.0311

0.1 0.1000 0.0842 -0.0158 0.0600 0.0585 -0.0015
0.0654 0.0081 0.0915 0.0416 0.0081 0.0518

0.2 0.0750 0.0656 -0.0094 0.0450 0.0427 -0.0023
0.1082 0.0064 0.1418 0.0710 0.0064 0.0815

0.3 0.0500 0.0453 -0.0047 0.0300 0.0323 0.0023
0.1388 0.0049 0.1726 0.0920 0.0049 0.1051

0.4 0.0250 0.0201 -0.0049 0.0150 0.0148 -0.0002
0.1571 0.0036 0.1944 0.1046 0.0036 0.1163

0.5 0.0000 -0.0026 -0.0026 0.0000 -0.0034 -0.0034
0.1632 0.0025 0.1995 0.1088 0.0025 0.1208

0.6 -0.0250 -0.0191 0.0059 -0.0150 -0.0079 0.0071
0.1571 0.0016 0.1915 0.1046 0.0016 0.1147

0.7 -0.0500 -0.0427 0.0073 -0.0300 -0.0266 0.0034
0.1388 0.0009 0.1773 0.0920 0.0009 0.1039

0.8 -0.0750 -0.0709 0.0041 -0.0450 -0.0427 0.0023
0.1082 0.0004 0.1382 0.0710 0.0004 0.0798

0.9 -0.1000 -0.0863 0.0137 -0.0600 -0.0534 0.0066
0.0654 0.0001 0.0912 0.0416 0.0001 0.0506

0.95 -0.1125 -0.0951 0.0174 -0.0675 -0.0588 0.0087
0.0394 0.0000 0.0618 0.0237 0.0000 0.0321

Notes: This table present the simulation results, when ui is generated from uniform

distribution with the range R = 10, xi is generated form exponential distribution, ui and xi

are i.i.d.. For each level of α, the first row is for bias and the second row is for the MSE of the

quantile estimator. For each panel, the first column presents the second-order bias and MSE

derived by Corollary 1 and 2.2, the second column presents the Monte Carlo simulation bias

and MSE of quantile estimators β̂, the third column presents the Monte Carlo simulation

bias and MSE of the bias corrected quantile estimators β̃ where β̃ = β̂−B(β̂). We set β = 0

and N = 60, 100, and the results are computed from 10,000 Monte Carlo replications.
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Table 2.11: Bias correction and MSE with xi generated from mixture normal distribution
(skewed unimodal), DGP 2, R = 4

R = 4, N = 60 R = 4, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 0.0304 0.0246 -0.0059 0.0182 0.0157 -0.0025
0.0088 0.0014 0.0142 0.0056 0.0014 0.0079

0.1 0.0271 0.0252 -0.0019 0.0162 0.0156 -0.0006
0.0174 0.0013 0.0228 0.0109 0.0013 0.0139

0.2 0.0203 0.0203 0.0000 0.0121 0.0092 -0.0029
0.0314 0.0010 0.0379 0.0196 0.0010 0.0219

0.3 0.0135 0.0103 -0.0033 0.0081 0.0055 -0.0026
0.0415 0.0008 0.0472 0.0258 0.0008 0.0293

0.4 0.0068 0.0085 0.0017 0.0040 0.0033 -0.0008
0.0475 0.0006 0.0543 0.0296 0.0006 0.0333

0.5 0.0000 0.0005 0.0005 0.0000 -0.0010 -0.0010
0.0495 0.0004 0.0569 0.0308 0.0004 0.0339

0.6 -0.0068 -0.0069 -0.0001 -0.0040 -0.0029 0.0012
0.0475 0.0003 0.0545 0.0296 0.0003 0.0343

0.7 -0.0135 -0.0131 0.0004 -0.0081 -0.0087 -0.0006
0.0415 0.0001 0.0499 0.0258 0.0001 0.0291

0.8 -0.0203 -0.0174 0.0029 -0.0121 -0.0124 -0.0003
0.0314 0.0001 0.0366 0.0196 0.0001 0.0227

0.9 -0.0271 -0.0252 0.0018 -0.0162 -0.0165 -0.0003
0.0174 0.0000 0.0224 0.0109 0.0000 0.0132

0.95 -0.0304 -0.0266 0.0039 -0.0182 -0.0179 0.0003
0.0088 0.0000 0.0146 0.0056 0.0000 0.0079

Notes: This table present the simulation results, when ui is generated from uniform

distribution with the range R = 4, xi is generated form mixture normal distribution, ui

and xi are i.i.d.. For each level of α, the first row is for bias and the second row is for

the MSE of the quantile estimator. For each panel, the first column presents the second-

order bias and MSE derived by Corollary 1 and 2.2, the second column presents the Monte

Carlo simulation bias and MSE of quantile estimators β̂, the third column presents the

Monte Carlo simulation bias and MSE of the bias corrected quantile estimators β̃ where

β̃ = β̂ − B(β̂). We set β = 0 and N = 60, 100, and the results are computed from 10,000
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Monte Carlo replications.
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Table 2.12: Bias correction and MSE with xi generated from mixture normal distribution
(strongly skewed), DGP 2, R = 4

R = 4, N = 60 R = 4, N = 100

α β̂formula β̂ β̃ β̂formula β̂ β̃

0.05 -0.0154 -0.0142 0.0012 -0.0092 -0.0086 0.0006
0.0029 0.0014 0.0062 0.0017 0.0014 0.0030

0.1 -0.0137 -0.0109 0.0028 -0.0082 -0.0077 0.0005
0.0050 0.0013 0.0089 0.0030 0.0013 0.0055

0.2 -0.0103 -0.0124 -0.0021 -0.0062 -0.0078 -0.0016
0.0086 0.0010 0.0150 0.0052 0.0010 0.0094

0.3 -0.0068 -0.0064 0.0004 -0.0041 -0.0032 0.0009
0.0111 0.0008 0.0184 0.0068 0.0008 0.0116

0.4 -0.0034 -0.0016 0.0019 -0.0021 -0.0040 -0.0019
0.0126 0.0006 0.0223 0.0078 0.0006 0.0135

0.5 0.0000 0.0000 0.0000 0.0000 -0.0002 -0.0002
0.0131 0.0004 0.0226 0.0081 0.0004 0.0139

0.6 0.0034 0.0028 -0.0006 0.0021 0.0032 0.0011
0.0126 0.0003 0.0220 0.0078 0.0003 0.0131

0.7 0.0068 0.0097 0.0028 0.0041 0.0053 0.0012
0.0111 0.0001 0.0192 0.0068 0.0001 0.0115

0.8 0.0103 0.0079 -0.0024 0.0062 0.0061 0.0000
0.0086 0.0001 0.0148 0.0052 0.0001 0.0091

0.9 0.0137 0.0126 -0.0011 0.0082 0.0081 -0.0001
0.0050 0.0000 0.0088 0.0030 0.0000 0.0051

0.95 0.0154 0.0139 -0.0015 0.0092 0.0076 -0.0016
0.0029 0.0000 0.0062 0.0017 0.0000 0.0030

Notes: This table present the simulation results, when ui is generated from uniform

distribution with the range R = 4, xi is generated form mixture normal distribution, ui

and xi are i.i.d.. For each level of α, the first row is for bias and the second row is for

the MSE of the quantile estimator. For each panel, the first column presents the second-

order bias and MSE derived by Corollary 1 and 2.2, the second column presents the Monte

Carlo simulation bias and MSE of quantile estimators β̂, the third column presents the

Monte Carlo simulation bias and MSE of the bias corrected quantile estimators β̃ where

β̃ = β̂ − B(β̂). We set β = 0 and N = 60, 100, and the results are computed from 10,000
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Monte Carlo replications.
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Chapter 3

The Second-order Asymptotic

Properties of Asymmetric Least

Squares Estimation

3.1 Introduction

The higher-order asymptotic properties permit us to obtain better approximation

of the bias of estimators, and allow us to find an approach to improve the behavior of

estimators and test statistics. In this paper, we extend the second-order asymptotic re-

sults for the symmetric least squares (LS) estimators to asymmetric least squares (ALS)

estimators. Newey and Powell (1987) proposed the term, ALS, and investigated the esti-

mation and hypothesis tests for coefficients of linear ALS models. The symmetric LS gives

the mean regression function while the ALS gives the ”expectile” regression function, a
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generalization of the usual regression function. The ALS model has been used in many

financial applications. However, the literature on the ALS model has been entirely the first-

order asymptotic properties. The first-order asymptotic properties of the ALS model can

be improved by considering the higher order asymptotic approximations which are better

approximations. In this paper, we filled this unexplored area by developing the analytical

results of the second-order bias and mean squared error (MSE) for the ALS models. We

show that the second-order bias is much larger as the asymmetry is stronger, and therefore

the benefit of the second-order bias correction is greater when we are interested in extreme

expectiles. The higher order MSE result for the ALS estimation enables us to better under-

stand the sources of estimation uncertainty. The Monte Carlo simulations results present

that the second-order bias corrected estimator has better behavior than the uncorrected

one.

The paper is organized as follows. In Section 3.2, we review Newey and Powell

(1987) to introduce the ALS estimator, and present the moment condition of the ALS

regression and the assumptions used in this paper. In Section 3.3, we derive the second-order

bias and MSE of the conditional ALS regression estimators. In Section 3.4, a special case of

the ALS regression model without a covariate is considered, which gives the unconditional

ALS estimator. In Section 3.5, we present Monte Carlo simulations.

In this paper, fi(·) ≡ fi (·|xi) denotes the density of yi conditional on xi, and

f
(j)
i (·) denote the jth order derivative of fi(·) for j ≥ 1. The jth-order partial derivative

of a matrix A(β) is defined as ∇jβA(β). For a matrix A, ‖A‖ denotes the usual norm,

[trace (AA′)]1/2 . If A is a k × 1 vector, then ||A|| = (A′A)1/2 . The Kronecker product is
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defined in the usual way. For an m× n matrix A and a p× q matrix B, we have A⊗B as

an mp× nq matrix. The X = E(X) denotes the expectation of a random vector X.

3.2 Asymmetric Least Squares Estimation

3.2.1 Loss Functions

Consider a random variable y from distribution F (·). Then the linear regression

model is

yi = x′iβ + ui, (3.1)

where yi is a scalar, xi is a k × 1 vector, and ui is a scalar, i = 1, . . . , N .

Given θ ∈ (0, 1), the quantile regression estimators β̂ (θ) proposed by Koenker and

Bassett (1987), are obtained by minimizing

QN (β; θ) =
N∑
i=1

rθ
(
yi − x′iβ

)
, (3.2)

where rθ (·) is the check loss function,

rθ (λ) ≡ |θ − 1 (λ < 0)| · |λ| . (3.3)

Newey and Powell (1987) considered a similar class of estimators. Given τ ∈ (0, 1),

the asymmetric least squares (ALS) estimators β̂ (τ) can be obtained by minimizing

RN (β; τ) =

N∑
i=1

ρτ
(
yi − x′iβ

)
, (3.4)

where it replaces the check loss function by the following asymmetric least squares loss

function,

ρτ (λ) ≡ |τ − 1 (λ < 0)| · λ2. (3.5)
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ALS gives weight of τ and (1− τ) to the squared errors depending upon the sign of errors ui.

A value of τ = 0.5 reproduces ordinary least squares (OLS) estimation. Newey and Powell

(1987) showed that ALS estimators can be computed by iterated weighted least squares,

β̂ (τ) =

[
N∑
i=1

∣∣∣τ − 1(yi < x′iβ̂ (τ))
∣∣∣xix′i

]−1 N∑
i=1

∣∣∣τ − 1(yi < x′iβ̂ (τ))
∣∣∣xiyi. (3.6)

We follow Newey and Powell (1987) and refer to µ (τ) = x′iβ as the τ -conditional

expectile of yi. There is an extensive literature on the relationship and difference of quantile

and expectile. In general, an expectile µ (τ) is related to a quantile q (θ). Yao and Tong

(1996) showed that for any θ ∈ (0, 1), there is a relationship that µ (τ (θ)) = q (θ) . Kuan et

al. (2009) showed that an expectile with a given τ corresponds to quantiles with different θ

under distinct distributios, for example, for a given θ < 0.5, τ(θ) is larger for the distribution

with thicker tails. The quantile depends only on the probability of tails but not their

magnitude. Therefore, quantile is insensitive to the magnitude of extreme tails. Unlike

quantile, the expectile is sensitive to magnitude of extreme tails.

Unlike the check loss function rθ (λ) , which is not continuously differentiable, the

advantage of ALS regression is that the asymmetric least squares loss function ρτ (λ) is

differentiable in λ, so that ρτ (yi−x′iβ) is differentiable in β. See Pagan and Ullah (1999, pp.

240-241). Newey and Powell (1987) investigated the moment conditions and asymptotic

distribution of the ALS estimators. In this paper, we use an alternative approach with

the use of delta (generalized) function to derive moment conditions. Our approach gives

the idential results for the moment conditions and their derivatives to those in Newey and

Powell (1987). Given the asymmetric least squares loss function, the k× 1 vector expectile
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estimators β̂ (τ) can be obtained by solving

min
β
E[ρτ (yi − x′iβ)] = E

[∣∣τ − 1(yi < x′iβ)
∣∣ · (yi − x′iβ)2] . (3.7)

Equation (3.7) reduces to the standard least squares objective function when τ = 0.5.

Newey and Powell (1987) indicated that ρτ (yi−x′iβ) is continuously differentiable

in β. Then the population moment condition is

∇1
βE
[
ρτ (yi − x′iβ)

]
= E

[
∇1
βρτ (yi − x′iβ)

]
= E

[
∇1
β

∣∣τ − 1(yi < x′iβ)
∣∣ · (yi − x′iβ)2

]
+ 2E[|τ − 1(yi < x′iβ)|(yi − x′iβ)(−xi)].(3.8)

By the definition of delta function in Appendix B.1, we have 1(yi−x′iβ < 0) = 1(x′iβ−yi ≥

0) = φ(x′iβ − yi). See Gelfand and Shilov (1964). Then

∇1
β1(yi − x′iβ < 0) = ∇1

βφ(x′iβ − yi) =
dφ(x′iβ − yi)
d(x′iβ − yi)

d(x′iβ − yi)
dβ

= x′iδ(x
′
iβ − yi).

The first term of the Equation (3.8) can be written as E[x′iδ(x
′
iβ − yi)(yi − x′iβ)2], which

equals zero, because according to the property of Dirac delta function in Appendix B.3 and

B.4, we have

E[x′iδ(x
′
iβ − yi)(yi − x′iβ)2] = E[x′iδ(yi − x′iβ)(yi − x′iβ)2]

= E
[
x′iE

[
δ(yi − x′iβ)(yi − x′iβ)2|xi

]]
= E

[
x′i

∫ +∞

−∞
δ(yi − x′iβ)(yi − x′iβ)2fi(yi)dyi

]
= E

[
x′i(x

′
iβ − x′iβ)2fi(x

′
iβ)
]

= 0,
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where fi(x
′
iβ) ≡ fi(x

′
iβ|xi) is the conditional density of yi evaluated at yi = x′iβ, which

equals to the conditional density of the error evaluated at zero, i.e. fi(0|xi). Under the

assumptions that we will state shortly, the moment condition can be written as

∇1
βE
[
ρτ (yi − x′iβ)

]
= 2E[|τ − 1(yi < x′iβ)|(yi − x′iβ)(−xi)] (3.9)

≡ E [si(β)] ,

where si(β) ≡ −2|τ − 1(yi < x′iβ)|(yi − x′iβ)xi is the score function. This is the same as

gi(β) in Newey and Powell (1987, p. 844, line 2).

To get rid of the absolute value in (3.9), we first rewrite the score function as

si(β) = 2|τ − 1(yi < x′iβ)|(yi − x′iβ)(−xi)

= 2
(
1(yi < x′iβ)− τ

)
xi
∣∣yi − x′iβ∣∣ .

Since 1(yi ≥ x′iβ) = 1− 1(yi < x′iβ), we then have

∣∣yi − x′iβ∣∣ = 1(yi ≥ x′iβ)
(
yi − x′iβ

)
+ 1(yi < x′iβ)

(
yi − x′iβ

)
=

[
1− 1(yi < x′iβ)

] (
yi − x′iβ

)
+ 1(yi < x′iβ)

(
yi − x′iβ

)
=

(
yi − x′iβ

) [
1− 2 · 1(yi < x′iβ)

]
.

Thus, the score function can be rewritten as

si(β) = 2
(
1(yi < x′iβ)− τ

)
xi
∣∣yi − x′iβ∣∣

= 2
(
1(yi < x′iβ)− τ

)
xi
(
yi − x′iβ

) [
1− 2 · 1(yi < x′iβ)

]
= 2xi

(
yi − x′iβ

) [
(2τ − 1) 1(yi < x′iβ)− τ

]
.

The sample moment condition for (3.9) is denoted as

ΨN (β) =
1

N

N∑
i=1

si(β). (3.10)
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3.2.2 Assumptions

Now we discuss the assumptions under which theorems and corollaries stated below

will be true. We argue that these assumptions encompass a wide variety of ALS models,

which means that the analytical results are of wide interest and applicability. The first-

order asymptotic properties of the ALS model has been investigated by Newey and Powell

(1987). To develop the higher-order asymptotic properties of the ALS model, we follow

Assumptions A-C in RSU (1996), which are similar to some of the assumptions in Newey

and Powell (1987). Assumptions A-C of RSU (1996) is stated as follows.

Assumption A. The jth-order derivative of score function si(β) exists in a neighborhood

of β0, i = 1, 2, . . . , and E
∥∥∥∇jβsi(β0)

∥∥∥2
<∞.

Assumption B. For some neighborhood of β0, (∇ΨN (β))−1 = Op(1).

Assumption C. ||∇jqi(β) − ∇jqi(β0)||||β − β0||Mi for some neighborhood of β0, where

E|Mi|C∞, i = 1, 2, . . . .

Assumption A implies that for the ALS mode, the jth-order derivative of si(β)

exists in a neighborhood of β0, and E ||xi||4 < ∞, E
[
||xi||j+2 f

(j−1)
i (0|xi)

]2
< ∞, for

j ≥ 1, 2, where f
(0)
i (0|xi) = fi(0|xi) is the conditional density of ui given xi evaluated at

zero. Assumption A for ALS model requires that the conditional density of yi given xi is

continuous, and slightly higher than fouth moments of xi are bounded, which are the same

as Assumptions 2 and 3 in Newey and Powell (1987). In the following, we present how we

derive the specific exprecession in Assumption A for the ALS model. Note that β is a k× 1

vector, where xi is a k × 1 vector, si(β) is a k × 1 vector, δ(x′iβ − yi) is a scalar.
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The derivative of a k × 1 vector si(β) with respect to a k × 1 vector β is a k × k

matrix ∇1
βsi(β). Then the first-order derivative of si(β) exists,

∇1
βsi(β) = ∇1

β

[
2xi
(
yi − x′iβ

) [
(2τ − 1) 1(yi < x′iβ)− τ

]]
= −2xix

′
i

[
(2τ − 1) 1(yi < x′iβ)− τ

]
+ 2 (2τ − 1)xix

′
i

(
yi − x′iβ

)
δ(x′iβ − yi)

= −2 (2τ − 1)xix
′
i1(yi < x′iβ) + 2τxix

′
i + 2 (2τ − 1)xix

′
i

(
yi − x′iβ

)
δ(x′iβ − yi).

Using the the properties in Appendix A.2, B.3 and B.4, we obtain

E
∥∥∇1

βsi(β0)
∥∥ = E

[∥∥xix′i∥∥ [−2 (2τ − 1) 1(yi < x′iβ) + 2τ + 2 (2τ − 1)
(
yi − x′iβ

)
δ(x′iβ − yi)

]]
= E

[∥∥xix′i∥∥ [−2 (2τ − 1) 1(yi < x′iβ) + 2τ + 0
]]

= E
[∥∥xix′i∥∥E [(−2 (2τ − 1) 1(yi < x′iβ) + 2τ

)
|xi
]]

= E
[∥∥xix′i∥∥E [(−2 (2τ − 1) + 2τ) τ + 2τ (1− τ)]

]
= 4τ(1− τ)E ‖xi‖2

< ∞.

which is the same results as the derivative ∇2
βR (β; τ) in Newey and Powell (1987, p. 844

equation A.11). The second-order derivative of a k× 1 vector si(β) with respect to a k× 1

vector β is a k × k2 matrix ∇2
βsi(β).

The second order derivative of si(β) exists,

∇2
βsi(β) = ∇1

β

[
−2 (2τ − 1)xix

′
i1(yi < x′iβ) + 2τxix

′
i + 2 (2τ − 1)xix

′
i

(
yi − x′iβ

)
δ(x′iβ − yi)

]
= −2 (2τ − 1)

(
xix
′
i

)
⊗ x′iδ(x′iβ − yi) + 2 (2τ − 1)

(
xix
′
i

)
⊗
(
−x′i

)
δ(x′iβ − yi)

+2 (2τ − 1)
(
xix
′
i

)
⊗ x′i

(
yi − x′iβ

)
δ(1)(x′iβ − yi)

= −4 (2τ − 1)
(
xix
′
i

)
⊗ x′iδ(x′iβ − yi) + 2 (2τ − 1)

(
xix
′
i

)
⊗ x′i

(
yi − x′iβ

)
δ(1)(x′iβ − yi),
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where the derivative of a scalar δ(x′iβ − yi) with respect to a k × 1 vector β is a 1× k row

vector ∇1
βδ(x

′
iβ − yi). We denote

∇1
βδ(x

′
iβ − yi) =

dδ(x′iβ − yi)
d(x′iβ − yi)

d(x′iβ − yi)
dβ

= x′iδ
(1)(x′iβ − yi),

where δ(1)(x′iβ− yi) is a scalar. Using the the properties in Appendix A.3, B.5 and B.6, we

obtain

E
∥∥∇2

βsi(β0)
∥∥2

= (2τ − 1)E
∥∥∥(xix′i)⊗ x′i [2 (yi − x′iβ) δ(1)(x′iβ − yi)− 4δ(x′iβ − yi)

]∥∥∥
= (2τ − 1)E

∥∥∥(xix′i)⊗ x′i [2E [(yi − x′iβ) δ(1)(x′iβ − yi)|xi
]
− 4E

[
δ(x′iβ − yi)|xi

]]∥∥∥
= (2τ − 1)E||

(
xix
′
i

)
⊗ x′i[−2

∫
δ(1)(yi − x′iβ)

(
yi − x′iβ

)
fi(yi)dyi

−4

∫
δ(yi − x′iβ)fi(yi)dyi]||

= (2τ − 1)E||
(
xix
′
i

)
⊗ x′i[2

∫
δ(yi − x′iβ)

(
fi(yi) + (yi − x′iβ)f

(1)
i (yi)

)
dyi

−4fi(x
′
iβ)]||

= (2τ − 1)E

∥∥∥∥(xix′i)⊗ x′i [2 ∫ δ(yi − x′iβ)fi(yi)dyi + 0− 4fi(x
′
iβ)

]∥∥∥∥
= (2τ − 1)E

∥∥(xix′i)⊗ x′i [2fi(x′iβ) + 0− 4fi(x
′
iβ)
]∥∥

= −2 (2τ − 1)E
[
fi(x

′
iβ) ‖xi‖3

]
< ∞.

The third-order derivative of a k× 1 vector si(β) with respect to a k× 1 vector β
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is a k × k3 matrix ∇3
βsi(β). The third order derivative of si(β) exists,

∇3
βst(γ) = ∇1

β

[
−4 (2τ − 1)

(
xix
′
i

)
⊗ x′iδ(x′iβ − yi) + 2 (2τ − 1)

(
xix
′
i

)
⊗ x′i

(
yi − x′iβ

)
δ(1)(x′iβ − yi)

]
= −4 (2τ − 1)

(
xix
′
i

)
⊗ x′i ⊗ x′iδ(1)(x′iβ − yi) + 2 (2τ − 1)

(
xix
′
i

)
⊗
(
−x′i

)
⊗ x′iδ(1)(x′iβ − yi)

+2 (2τ − 1)
(
xix
′
i

)
⊗ x′i ⊗ x′i

(
yi − x′iβ

)
δ(2)(x′iβ − yi)

=
(
xix
′
i

)
⊗ x′i ⊗ x′i

[
−6 (2τ − 1) δ(1)(x′iβ − yi) + 2 (2τ − 1)

(
yi − x′iβ

)
δ(2)(x′iβ − yi)

]
,

where the derivative of a 1 × k row vector ∇1
βδ(x

′
iβ − yi) with respect to a k × 1 vector β

is a 1× k2 row vector ∇2
βδ(x

′
iβ − yi). We denote

∇2
βδ(x

′
iβ−yi) = ∇1

βx
′
iδ

(1)(x′iβ−yi) = x′i⊗
dδ(1)(x′iβ − yi)

d(x′iβ − yi)
d(x′iβ − yi)

dβ
= x′i⊗x′iδ(2)(x′iβ−yi),

where δ(2)(x′iβ− yi) is a scalar. Using the the properties in Appendix A.4, B.6 and B.7, we

obtain

E
∥∥∇3

βsi(β0)
∥∥ = (2τ − 1)E

∥∥∥(xix′i)⊗ x′i ⊗ x′i [−6δ(1)(x′iβ − yi) + 2δ(2)(x′iβ − yi)(yi − x′iβ)
]∥∥∥

= (2τ − 1)E||
(
xix
′
i

)
⊗ x′i ⊗ x′i[−6E

[
δ(1)(x′iβ − yi)|xi

]
+2E

[
δ(2)(x′iβ − yi)(yi − x′iβ)|xi

]
]||

= (2τ − 1)E||
(
xix
′
i

)
⊗ x′i ⊗ x′i[6

∫
δ(1)(yi − x′iβ)fi(yi)dyi

+2

∫
δ(2)(x′iβ − yi)(yi − x′iβ)fi(yi)dyi]||

= (2τ − 1)E||
(
xix
′
i

)
⊗ x′i ⊗ x′i[−6

∫
δ(yi − x′iβ)fi

(1)(yi)dyi

+2

∫
δ(yi − x′iβ)

[
2fi

(1)(yi) + (yi − x′iβ)f
(2)
i (yi)

]
dyi]||

= (2τ − 1)E
∥∥∥(xix′i)⊗ x′i ⊗ x′i [−6f

(1)
i (x′iβ) + 4f

(1)
i (x′iβ) + 0

]∥∥∥
= −2 (2τ − 1)E

[
fi

(1)(x′iβ) ‖xi‖4
]

< ∞
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Next, we discuss Assumption B. For ALS models, Assumption B requires p lim
N→∞

(
∇1
βΨN (β)

)−1
=(

lim
N→∞

E∇1
βΨN (β)

)−1

=

(
lim
N→∞

4τ(1− τ)E (xix
′
i)

)−1

= O(1), that implies E (xix
′
i) is non-

singular, which is the same as Assumption 4 of Newey and Powell (1987).

3.3 Second-order Bias and MSE of the ALS Estimators

The assumptions in RSU (1996) are necessary to obtain the stochastic expansion

of β̂, based on which we derive the second-order bias of the ALS esitmator. For the bias

results in Theorems 1 and 3 we allow that xi and ui are not identically distributed but

independent across i = 1, ..., N. For independent and identically distributed (i.i.d.) xi and

ui, the second-order bias and MSE can be further simplified since most of the cross-terms

in the matrix multiplications drop out, which will be stated in corresponding Corollaries 1

and 3.

3.3.1 Bias

Theorem 1. Under Assumptions A-C, the second-orer bias of the ALS estimators β̂ (τ)

up to O(N−1) is

B
(
β̂ (τ)

)
=

1

N2

N∑
i=1

4Q
{

(2τ − 1)E
[
xix
′
iQxiui1(ui < 0)

]
− τ2E

[
xix
′
iQxiui

]}
+

1

N

N∑
i=1

(2τ − 1)QE
[(
xix
′
i

)
⊗ x′ifi(0|xi)

]

× 1

N2

N∑
i=1

4 (Q⊗Q)


− (2τ − 1)E

[
(xi ⊗ xi)u2

i1(ui < 0)
]

+τ2E
[
(xi ⊗ xi)u2

i

]
 , (3.11)

where Q =
(

4τ(1− τ) 1
N

∑N
i=1E [xix

′
i]
)−1

.
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Proof: Suppose xi and ui are not identically distributed, but independent across i = 1, ..., N.

Suppose yi has conditional density function fi (y|x) . To simplify the notation, we use fi (y)

to denote fi (y|x). As in Bao and Ullah (2007), the second-order bias of the ALS estimators

β̂ (τ) up to O(N−1) is

B(β̂) = Q

[
V d− 1

2
H2

(
d⊗ d

)]
.

We have

ΨN (β) =
1

N

N∑
i=1

si(β),

si(β) = 2xi
(
yi − x′iβ

) [
(2τ − 1) 1(yi < x′iβ)− τ

]
,

H1 = ∇1
βΨN = ∇1

β

1

N

N∑
i=1

si =
1

N

N∑
i=1

∇1
βsi

=
1

N

N∑
i=1

[
−2 (2τ − 1)xix

′
i1(yi < x′iβ) + 2τxix

′
i + 2 (2τ − 1)xix

′
i

(
yi − x′iβ

)
δ(x′iβ − yi)

]
,

H2 = ∇2
βΨN = ∇2

β

1

N

N∑
i=1

si =
1

N

N∑
i=1

∇2
βsi

=
1

N

N∑
i=1

[
(2τ − 1)

(
xix
′
i

)
⊗ x′i

[
−4δ(x′iβ − yi) + 2

(
yi − x′iβ

)
δ(1)(x′iβ − yi)

]]
,

H3 = ∇3
βΨN = ∇3

β

1

N

N∑
i=1

si =
1

N

N∑
i=1

∇3
βsi

=
1

N

N∑
i=1

[
(2τ − 1)

(
xix
′
i

)
⊗ x′i ⊗ x′i

[
−6δ(1)(x′iβ − yi) + 2

(
yi − x′iβ

)
δ(2)(x′iβ − yi)

]]
,

H1 = E∇1
βΨN = 4τ(1− τ)

1

N

N∑
i=1

E
(
xix
′
i

)
,

H2 = E∇2
βΨN = −2(2τ − 1)

1

N

N∑
i=1

E
[(
xix
′
i

)
⊗ x′ifi(x′iβ)

]
,
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H3 = E∇3
βΨN = −2(2τ − 1)

1

N

N∑
i=1

E
[(
xix
′
i

)
⊗ x′i ⊗ x′i)fi(1)(x′iβ)

]
,

Q =
(
H1

)−1
=

(
4τ(1− τ)

1

N

N∑
i=1

E
[
xix
′
i

])−1

,

V = H1 −H1,

W = H2 −H2,

and

d = QΨN ,

where ΨN , si and d are all k × 1 vectors. H1, H1, Q, and V are all k × k matrixes, H2, H2

and W are all k × k2 matrixes. H3 and H3 are k × k3 matrixes. Using the the properties

in Appendix B.8,

V d = E
[(
H1 −H1

)
QΨN

]
= E (H1QΨN )− E (ΨN )

= E

[
1

N

N∑
i=1

[
−2 (2τ − 1)xix

′
i1(yi < x′iβ) + 2τxix

′
i + 2 (2τ − 1)xix

′
i

(
yi − x′iβ

)
δ(x′iβ − yi)

]
QΨN

]

=
1

N2

N∑
i=1

E[−4(2τ − 1)2xix
′
iQxi(yi − x′iβ)1(yi < x′iβ)

+4τ (2τ − 1)xix
′
iQxi(yi − x′iβ)1

(
yi < x′iβ

)
+4τ (2τ − 1)xix

′
iQxi(yi − x′iβ)1

(
yi < x′iβ

)
−4τ2xix

′
iQxi(yi − x′iβ)

+4τ (2τ − 1)2 xix
′
iQxi(yi − x′iβ)2δ(x′iβ − yi)1

(
yi < x′iβ

)
−4τ (2τ − 1)xix

′
iQxi(yi − x′iβ)2δ

(
yi − x′iβ

)
]

=
1

N2

N∑
i=1

{
4 (2τ − 1)E

[
xix
′
iQxi(yi − x′iβ)1(yi < x′iβ)

]
− 4τ2E

[
xix
′
iQxi(yi − x′iβ)

]}
,
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and

d⊗ d = E [(QΨN ⊗QΨN )] = E [(Q⊗Q) (ΨN ⊗ΨN )]

= (Q⊗Q)E [(ΨN ⊗ΨN )] =
1

N2

N∑
i=1

(Q⊗Q)E (si ⊗ si)

=
1

N2

N∑
i=1

(Q⊗Q)E
[
4 (xi ⊗ xi) (yi − x′iβ)2

[
(2τ − 1) 1(yi < x′iβ)− τ

]2]

=
1

N2

N∑
i=1

4 (Q⊗Q)


τ2E

[
(xi ⊗ xi) (yi − x′iγ)2

]
− (2τ − 1)E

[
(xi ⊗ xi) (yi − x′iβ)21(yi < x′iβ)

]
 .

Therefore, the second-order bias of β̂ up to O(N−1) can be rewriten as

B
(
β̂ (τ)

)
= Q

[
V d− 1

2
H2

(
d⊗ d

)]
=

1

N2

N∑
i=1

4Q
{

(2τ − 1)E
[
xix
′
iQxi(yi − x′iβ)1(yi < x′iβ)

]
− 4τ2QE

[
xix
′
iQxi(yi − x′iβ)

]}
+

1

N

N∑
i=1

(2τ − 1)QE
[(
xix
′
i

)
⊗ x′ifi(x′iβ)

]

× 1

N2

N∑
i=1

4 (Q⊗Q)


− (2τ − 1)E

[
(xi ⊗ xi) (yi − x′iβ)21(yi < x′iβ)

]
+τ2E

[
(xi ⊗ xi) (yi − x′iβ)2

]
 ,

where Q =
(

4τ(1− τ) 1
N

∑N
i=1E [xix

′
i]
)−1

. Since the conditional density of yi given xi

evaluated at yi = x′iβ is the same as the conditional density of ui given xi evaluated at

ui = 0. We use fi (0|xi) to denote the conditional density of ui given xi evaluated at ui = 0,

which completes the proof of Theorem 1.

Corollary 1. Under Assumptions A-C, when xi and ui are i.i.d., the second-order bias of
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β̂ (τ) up to O(N−1) is

B
(
β̂ (τ)

)
=

1

N
4Q
{

(2τ − 1)E
[
xix
′
iQxiui1(ui < 0)

]
− τ2E

[
xix
′
iQxiui

]}
+

1

N
4 (2τ − 1)QE

[(
xix
′
i

)
⊗ x′if(0)

]
(Q⊗Q)


− (2τ − 1)E

[
(xi ⊗ xi)u2

i1(ui < 0)
]

+τ2E
[
(xi ⊗ xi)u2

i

]
 ,

where Q = (4τ(1− τ)E [xix
′
i])
−1 .

Since fi(0|xi) denotes the conditional density of ui evaluated at the ui = 0. When

xi and ui are i.i.d, these fi(·)s are identical, and we use f(·) to denote the conditional density

of ui. When xi and ui are i.i.d., the conditional density of ui is the same as unconditional

density, f(0|xi) = f (0) .

Remark 1.1. When xi and ui are i.i.d., and k = 1, we observe that xi, ΨN , si, d, H1, H1,

Q, V, H2, H2, W, H3, H3 are all scalars, and the second-order bias of β̂ (τ) up to O(N−1)

can be rewritten as

B
(
β̂ (τ)

)
=

1

N

{
(2τ − 1)E

[
x3
iui1(ui < 0)

]
4τ2(1− τ)2

[
E
(
x2
i

)]2 −
E
[
x3
iui
]

4(1− τ)2
[
E
(
x2
i

)]2
}

+
1

N

{
(2τ − 1)E

(
x3
i

)
f(0)E

[
x2
iu

2
i

]
16τ(1− τ)3

[
E
(
x2
i

)]3 −
(2τ − 1)2E

(
x3
i

)
f(0)E

[
x2
iu

2
i1(ui < 0)

]
16τ3(1− τ)3

[
E
(
x2
i

)]3
}
.

Remark 1.2. The second-order bias of β̂ (τ) is larger at the extreme expectiles a distribu-

tion, because at the extreme expectiles Q is larger, and the second term in (3.11) dominant

the other terms. The second-order bias of β̂ (τ) goes to zero as the sample size goes to

infinity.

Remark 1.3. The objective function of ALS model reduces to the standard least-squares

objective function when τ = 0.5. In this case, the second-order bias of β̂ (τ) up to O(N−1)
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equals the second-order bias of OLS estimator. The OLS estimator is unbiased because

E (ui|xi) = 0.

Now, we derive the MSE of the ALS estimator of order up to O
(
N−2

)
in Theorem

2. For simplicity, we make an additional assumption that xi and ui are not only identially

distributed but also independent and k = 1. The MSE result when xi and ui are independent

but not identically distributed as we did for the bias result in Theorem 1 can be easily

obtained using the same method but not presented here for simplicity.

3.3.2 MSE

Theorem 2. Under Assumptions A-C, in the ASL regression model, suppose xi and ui are

i.i.d. and k=1, the MSE of the ALS estimator β̂ (τ) up to O(N−2) is

M
(
β̂ (τ)

)
=

1

N
4Q2C1 −

1

N2
16Q3C3 +

1

N2
8Q4C1 −

1

N2
Q416(2τ − 1)E

[
x3
i f(0)

]
C4

+
1

N2
96Q4C2

2 +
1

N2
48Q4

{
τ (1− τ)E

(
x4
i

)
− 4τ2(1− τ)2

[
E
(
x2
i

)]2}
C1

+
1

N2
384Q5(2τ − 1)E

[
x3
i f(0)

]
C1C2 +

1

N2
240Q6(2τ − 1)2

[
E
[
x3
i f(0)

]]2
C2

1

+
1

N2
32Q5(2τ − 1)E

[
x4
i f

(1)(0)
]
C2

1 , (3.12)

where

Q =
(
4τ(1− τ)E

[
x2
i

])−1
,

C1 = E
[
− (2τ − 1)x2

iu
2
i1(ui < 0)

]
+ E

(
τ2x2

iu
2
i

)
,

C2 = E
[
(2τ − 1)x3

iui1(ui < 0)
]
− E

(
τ2x3

iui
)
,

C3 = E
[
− (2τ − 1)

(
τ2 − τ + 1

)
x4
iu

2
i1(ui < 0)

]
+ E

(
τ3x4

iu
2
i

)
,

C4 = E
[
(2τ − 1)

(
τ2 − τ + 1

)
x3
iu

3
i1(ui < 0)

]
− E

(
τ3x3

iu
3
i

)
,
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and f(0) is the density of ui evaluated at ui = 0, f (1)(0) is the first derivative of the density

of ui evaluated at ui = 0.

Proof: Following RSU (1996), the MSE of the ALS estimator β̂ (τ) up to O
(
N−2

)
is

M(β̂) =
1

N
A1 +

1

N2

(
A2 + A′2

)
+

1

N2

(
A3 + A4 + A′4

)
where 1

NA1 = E(a−1/2a
′
−1/2), 1

N2 (A2 + A′2) = E(a−1a
′
−1/2+a−1/2a

′
−1), 1

N2 (A3 + A4 + A′4) =

E(a−1a
′
−1 + a−3/2a

′
−1/2 + a−1/2a

′
−3/2).

Suppose xi and ui are i.i.d.. For ALS estimators when k = 1, i = 1, . . . , N, and

j = 1, . . . , N, we have

A1 = d2
i ,

A2 = −QVid2
i +

1

2
QH2d3

i ,

A3 = 2Q2ViVjdidj +Q2V 2
i d

2
i +

3

4
Q2H2

2
d2
i d

2
j − 3Q2H2Vidid2

j ,

A4 = Q2V 2
i d

2
i + 2Q2ViVjdidj −

9

2
Q2H2Vidid2

j +
3

2
QWidid2

j +
3

2
Q2H2

2
d2
i d

2
j −

1

2
QH3d2

i d
2
j ,

where H1 = ∇1
βsi, H1 = ∇1

βsi, H2 = ∇2
βsi, H2 = ∇2

βsi, H3 = ∇3
βsi, H3 = ∇3

βsi, Q =(
H1

)−1
, and

d = QΨN =
1

N

N∑
i=1

di =
1

N

N∑
i=1

Qsi,

V = ∇1
βΨN −∇1

βΨN =
1

N

N∑
i=1

Vi =
1

N

N∑
i=1

(
∇1
βsi −∇1

βsi

)
,

W = ∇2
βΨN −∇2

βΨN =
1

N

N∑
i=1

Wi =
1

N

N∑
i=1

(
∇2
βsi −∇2

βsi

)
.

If xi and ui are i.i.d., then si, di, Vi,and Wi are all i.i.d.. Since ViVjdidj = Vidi
2
, Vidid2

j =

Vidid2
i , and d2

i d
2
j = d2

i

2
, then A3 and A4 can be simplified as

A3 = 2Q2Vidi
2

+Q2V 2
i d

2
i +

3

4
Q2H2

2
d2
i

2
− 3Q2H2 Vidid2

i ,
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A4 = Q2V 2
i d

2
i + 2Q2Vidi

2 − 9

2
Q2H2 Vidid2

i +
3

2
QWidid2

i +
3

2
Q2H2

2
d2
i

2
− 1

2
QH3d2

i

2
.

Then the MSE up to O(N−2) can be written as

M(β̂) =
1

N
d2
i −

1

N2
2Q

[
Vid2

i −
1

2
H2d3

i

]
+

1

N2
6Q2Vidi

2
+

1

N2
3Q2V 2

i d
2
i

+
1

N2
3QWidid2

i −
1

N2
12Q2H2 Vidid2

i +
1

N2

15

4
Q2H2

2
d2
i

2
− 1

N2
QH3d2

i

2
,

where we have

Vid2
i = E

[(
H1 −H1

)
Q2s2

i

]
= E

(
H1Q

2s2
i

)
−QE

(
s2
i

)
,

E
(
H1Q

2s2
i

)
= E

[([
−2 (2τ − 1)x2

i1(yi < x′iβ) + 2τx2
i + 2 (2τ − 1)x2

i

(
yi − x′iβ

)
δ(x′iβ − yi)

])
Q2s2

i

]

= Q2E



8 (2τ − 1)2 x4
iu

2
i1(ui < 0)− 8τ2 (2τ − 1)x4

iu
2
i1(ui < 0)

−8τ (2τ − 1)x4
iu

2
i1(ui < 0) + 8τ2x4

iu
2
i

−8 (2τ − 1)2 x4
iu

3
i δ(x

′
iβ − yi)1(ui < 0)

+8τ2 (2τ − 1)x4
iu

3
i δ(x

′
iβ − yi)


= Q2E

[
8 (2τ − 1)

(
−τ2 + τ − 1

)
x4
iu

2
i1(ui < 0)

]
+Q2E

(
8τ3x4

iu
2
i

)
.

We also observe

d2
i = Q2E(s2

i )

= Q2E
[
4x2

i (yi − x′iβ)2
[
(2τ − 1) 1(yi < x′iβ)− τ

]2]
= Q2E

[
−4 (2τ − 1)x2

iu
2
i1(ui < 0)

]
+Q2E

(
4τ2x2

iu
2
i

)
,

d3
i = Q3E(s2

i )

= Q3E
[
8x3

i (yi − x′iβ)2
[
(2τ − 1) 1(yi < x′iβ)− τ

]3]
= Q3E

[
8 (2τ − 1)

(
τ2 − τ + 1

)
x3
iu

3
i1(ui < 0)

]
−Q3E

(
8τ3x3

iu
3
i

)
,
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Vidi
2

= 16Q2
{

(2τ − 1)E
[
x3
iui1(ui < 0)

]
− τ2E

[
x3
iui
]}2

,

V 2
i = E

[(
H1 −H1

)2]
= E

[
H2

1 − 2H1H1 +H1
2
]

= E
[
H2

1

]
− 2H1

2
+H1

2

= E
[
H2

1

]
−H1

2

= E
[[
−2 (2τ − 1)x2

i1(yi < x′iβ) + 2τx2
i + 2 (2τ − 1)x2

i

(
yi − x′iβ

)
δ(x′iβ − yi)

]2]
−
[
4τ(1− τ)E

(
x2
i

)]2

= E



4 (2τ − 1)2 x4
i1(yi < x′iβ) + 4τ2x4

i − 8τ (2τ − 1)x4
i1(yi < x′iβ)

+4 (2τ − 1)2 x4
i (yi − x′iβ)2 (δ(x′iβ − yi))

2

−8 (2τ − 1)2 x4
i (yi − x′iβ) 1(yi < x′iβ)δ(x′iβ − yi)

+8τ (2τ − 1)x4
i (yi − x′iβ) δ(x′iβ − yi)


−16τ2(1− τ)2

[
E
(
x2
i

)]2
= 4τ (1− τ)E

(
x4
i

)
+ E

[
4 (2τ − 1)2 x4

i

∫ (
yi − x′iβ

)2 (
δ(x′iβ − yi)

)2
f(yi)dyi

]
−16τ2(1− τ)2

[
E
(
x2
i

)]2
,
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Widi = E
[(
H2 −H2

)
Qsi
]

= E (H2Qsi)−QH2E (si)

= E
{[

(2τ − 1)x3
i

[
−4δ(x′iβ − yi) + 2

(
yi − x′iβ

)
δ(1)(x′iβ − yi)

]]
Qsi

}

= 2 (2τ − 1)QE



−4 (2τ − 1)x4
i (yi − x′iβ) δ(x′iβ − yi)1(yi < x′iβ)

+4τx4
i (yi − x′iβ) δ(x′iβ − yi)

+2 (2τ − 1)x4
i (yi − x′iβ)2 δ(1)(x′iβ − yi)1(yi < x′iβ)

−2τx4
i (yi − x′iβ)2 δ(1)(x′iβ − yi)


= 2 (2τ − 1)QE


(2τ − 1)x4

i (yi − x′iβ)2 δ(1)(x′iβ − yi)−2 (2τ − 1)x4
i (yi − x′iβ)2 (δ(x′iβ − yi))

2

−2τx4
i (yi − x′iβ)2 δ(1)(x′iβ − yi)


= 2 (2τ − 1)QE

{
−x4

i

(
yi − x′iβ

)2
δ(1)(x′iβ − yi)− 2 (2τ − 1)x4

i

(
yi − x′iβ

)2 (
δ(x′iβ − yi)

)2}

= 2 (2τ − 1)QE


x4
i

∫
(yi − x′iβ)2 δ(1)(yi − x′iβ)f(yi)dyi

−2 (2τ − 1)x4
i

∫
(yi − x′iβ)2 (δ(x′iβ − yi))

2 f(yi)dyi


= 2 (2τ − 1)QE


x4
i

∫
(yi − x′iβ)2 δ(yi − x′iβ)

[
−2xi (yi − x′iβ) f(yi) + (yi − x′iβ)2 f (1)(yi)

]
dyi

−2 (2τ − 1)x4
i

∫
(yi − x′iβ)2 (δ(x′iβ − yi))

2 f(yi)dyi


= −4 (2τ − 1)2QE

[
x4
i

∫ (
yi − x′iβ

)2 (
δ(x′iβ − yi)

)2
f(yi)dyi

]
.

Since the conditional density of yi given xi evaluated at yi = x′iβ is the same as the

conditional density of ui given xi evaluated at ui = 0. Then the MSE up to O(N−2) can be
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written as

M
(
β̂ (τ)

)
=

1

N
d2
i −

1

N2
2Q

[
Vid2

i −
1

2
H2d3

i

]
+

1

N2
6Q2Vidi

2
+

1

N2
3Q2V 2

i d
2
i

+
1

N2
3QWidid2

i −
1

N2
12Q2H2 Vidid2

i +
1

N2

15

4
Q2H2

2
d2
i

2
− 1

N2
QH3d2

i

2

=
1

N
Q2E

[
−4 (2τ − 1)x2

iu
2
i1(ui < 0)

]
+

1

N
Q2E

(
4τ2x2

iu
2
i

)
− 1

N2
2Q


Q2E

[
8 (2τ − 1)

(
−τ2 + τ − 1

)
x4
iu

2
i1(ui < 0)

]
+Q2E

(
8τ3x4

iu
2
i

)
−QE

[
−4 (2τ − 1)x2

iu
2
i1(ui < 0)

]
−QE

(
4τ2x2

iu
2
i

)


− 1

N2
2Q(2τ − 1)E

[
x3
i f(0)

] {
Q3E

[
8 (2τ − 1)

(
τ2 − τ + 1

)
x3
iu

3
i1(ui < 0)

]
−Q3E

(
8τ3x3

iu
3
i

)}
+

1

N2
6Q216Q2

{
(2τ − 1)E

[
x3
iui1(ui < 0)

]
− τ2E

[
x3
iui
]}2

+
1

N2
3Q2


4τ (1− τ)E

(
x4
i

)
+ E

[
4 (2τ − 1)2 x4

i

∫
(yi − x′iβ)2 (δ(x′iβ − yi))

2 f(yi)dyi

]
−16τ2(1− τ)2

[
E
(
x2
i

)]2


×
[
Q2E

[
−4 (2τ − 1)x2

iu
2
i1(ui < 0)

]
+Q2E

(
4τ2x2

iu
2
i

)]
− 1

N2
12Q (2τ − 1)2QE

[
x4
i

∫ (
yi − x′iβ

)2 (
δ(x′iβ − yi)

)2
f(yi)dyi

]
×
[
Q2E

[
−4 (2τ − 1)x2

iu
2
i1(ui < 0)

]
+Q2E

(
4τ2x2

iu
2
i

)]
+

1

N2
12Q22(2τ − 1)E

[
x3
i f(0)

] {
4 (2τ − 1)QE

[
x3
iui1(ui < 0)

]
− 4τ2QE

[
x3
iui
]}

×
[
Q2E

[
−4 (2τ − 1)x2

iu
2
i1(ui < 0)

]
+Q2E

(
4τ2x2

iu
2
i

)]
+

1

N2

15

4
Q24(2τ − 1)2

[
E
[
x3
i f(0)

]]2 [
Q2E

[
−4 (2τ − 1)x2

iu
2
i1(ui < 0)

]
+Q2E

(
4τ2x2

iu
2
i

)]2
+

1

N2
Q2(2τ − 1)E

[
x4
i f

(1)(0)
] [
Q2E

[
−4 (2τ − 1)x2

iu
2
i1(ui < 0)

]
+Q2E

(
4τ2x2

iu
2
i

)]2
.

This is as stated in Theorem 2.

Corollary 2. The asymptotic variance of β̂ (τ) of Newey and Powell (1987) is the N times

the first-order term of M
(
β̂ (τ)

)
in (??) in Theorem 2.
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Proof: By the MSE expression in (??) of Theorem 2, the first-order term of M
(
β̂ (τ)

)
is

d2
i . Then we have

N × d2
i = 4Q2E

[
− (2τ − 1)x2

iu
2
i1(ui < 0)

]
+Q2E

(
τ2x2

iu
2
i

)
+O

(
N−1

)
.

Newey and Powell (1987) derived the first-order asymptotic distribution of the ALS esti-

mator as follows

√
N(β̂ − β0)

d→ N(0,W−1VW−1),

where wi (τ) = |τ − 1(ui < 0)| , W = E
[
wi (τ)x2

i

]
, V = E

[
w2
i x

2
iu

2
i

]
.

We want to show that the asymptotic variance of β̂ (τ) equals N times the MSE

of β̂ (τ) up to O(N−1). We have

W = E
[
wi (τ)x2

i

]
= E

[
x2
iE (wi (τ) |xi)

]
= E

[
x2
iE (|τ − 1(ui < 0)| |xi)

]
= E

[
x2
i [(1− τ) τ + τ (1− τ)]

]
= 2τ (1− τ)E

(
x2
i

)
=

1

2
Q−1,

and

V = E
[
w2
i x

2
iu

2
i

]
= E

[
|τ − 1(ui < 0)|x2

iu
2
i

]
= E

[
− (2τ − 1)x2

iu
2
i1(ui < 0)

]
+ E

(
τ2x2

iu
2
i

)
.

Therefore, the asymptotic variance W−1VW−1 = N × d2
i .

109



3.4 Special Case: Unconditional ALS Model

In this section, we consider a special case of the ALS regression model with xi = 1,

i.e., the ALS model without any covariate, which gives the unconditional ALS estimator.

Consider a random variable y from distribution F (·). Then the unconditional ALS model is

yi = β + ui, (3.13)

where yi is a scalar and ui is a scalar, i = 1, . . . , N . Given τ ∈ (0, 1), ALS estimators β̂ (τ)

can be obtained by minimizing

RN (β; τ) =
N∑
i=1

ρτ (yi − β) ,

where the asymmetric least squares loss function is

ρτ (λ) ≡ |τ − 1 (λ < 0)| · λ2.

For this simpler case, we now present the bias result in Theorem 3 and the MSE result in

Theorem 4.

3.4.1 Bias

Theorem 3. Under Assumptions A-C, suppose that ui is independent but not identically

distributed, the second-order bias of the unconditional ALS estimator β̂ (τ) up to O(N−1)

is

B
(
β̂ (τ)

)
=

1

N2

N∑
i=1

4Q2
{

(2τ − 1)E [ui1(ui < 0)]− τ2E (ui)
}

+
1

N

N∑
i=1

4 (2τ − 1)Q3fi(0)
1

N2

N∑
i=1

{
− (2τ − 1)E

[
u2
i1(ui < 0)

]
+ τ2E

(
u2
i

)}
,(3.14)
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where Q = [4τ (1− τ)]−1, f(0) is the density of ui evaluated at ui = 0.

Proof: Consider the linear ALS regression model yi = β + ui, where yi is a scalar, ui is

the error defined to be the difference between yi and its τ -expectile β, we call β̂ (τ) as the

unconditional ALS estimator. Given the asymmetric least squares loss function, the ALS

estimators β̂ (τ) can be obtained by solving

min
β
E[ρτ (yi − β)] = E

[
|τ − 1(yi < β)| · (yi − β)2

]
.

Then the population moment condition is

∇1
βE [ρτ (yi − β)] = E

[
∇1
βρτ (yi − β)

]
= E

[
∇1
β |τ − 1(yi < β)| · (yi − β)2

]
− 2E[|τ − 1(yi < β)|(yi − β)].

By the definition of Dirac delta function in Appendix B.1, we have 1(yi−β < 0) = 1(β−yi ≥

0) = φ(β − yi). Then

∇1
β1(yi − β < 0) = δ(β − yi).

According to the property of Dirac delta function in Appendix B.4, we have δ(β − yi) =

δ(yi − β). According to the property of Dirac delta function in Appendix B.3, we have

E[δ(β − yi)(yi − β)] = E[δ(yi − β)(yi − β)]

=

∫ +∞

−∞
δ(yi − β)(yi − β)f(yi)dyi

= (β − β)f(β)

= 0.

Thus, the moment condition can be written as

∇1
βE[ρτ (yi − β)] = −2E[|τ − 1(yi < β)|(yi − β)] ≡ E[si(β)],
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where si(β) is the score function. To get rid of the absolute value, first, we can rewrite the

score function as

si(β) = −2|τ − 1(yi < β)|(yi − β)

= 2 (1(yi < β)− τ) |yi − β| .

Since 1(yi ≥ x′iβ) = 1− 1(yi < x′iβ), we have

|yi − β| = 1(yi ≥ β) (yi − β) + 1(yi < β) (yi − β)

= [1− 1(yi < β)] (yi − β) + 1(yi < β) (yi − β)

= (yi − β) [1− 2 · 1(yi < β)] .

Then, the score function can be written as

si(β) = 2 (1(yi < β)− τ) |yi − β|

= 2 (1(yi < β)− τ) (yi − β) [1− 2 · 1(yi < β)]

= 2 (yi − β) [(2τ − 1) 1(yi < β)− τ ] .

Therefore, the sample moment condition can be written as

ΨN (β) =
1

N

N∑
i=1

si(β), (3.15)

where si(β) = 2 (yi − β) [(2τ − 1) 1(yi < β)− τ ].

The second-order bias up to O(N−1) is

B(β̂) = Q

[
V d− 1

2
H2

(
d⊗ d

)]
,
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where

H1 = ∇1
βΨN

=
1

N

N∑
i=1

∇1
β [2 (yi − β) [(2τ − 1) 1(yi < β)− τ ]]

=
1

N

N∑
i=1

[−2 (2τ − 1) 1(yi < β) + 2τ + 2 (2τ − 1) (yi − β) δ(β − yi)] ,

H2 = ∇2
βΨN

=
1

N

N∑
i=1

∇1
β [−2 (2τ − 1) 1(yi < β) + 2τ + 2 (2τ − 1) (yi − β) δ(β − yi)]

=
1

N

N∑
i=1

[
−4 (2τ − 1) δ(β − yi) + 2 (2τ − 1) (yi − β) δ(1)(β − yi)

]
,

H3 = ∇3
βΨN

=
1

N

N∑
i=1

∇3
β

[
−4 (2τ − 1) δ(β − yi) + 2 (2τ − 1) (yi − β) δ(1)(β − yi)

]
=

1

N

N∑
i=1

[
−6 (2τ − 1) δ(1)(β − yi) + 2 (2τ − 1) (yi − β) δ(2)(β − yi)

]
,

H1 = E∇1
βΨN

=
1

N

N∑
i=1

E [−2 (2τ − 1) 1(yi < β) + 2τ + 2 (2τ − 1) (yi − β) δ(β − yi]

=
1

N

N∑
i=1

E [−2 (2τ − 1) 1(yi < β) + 2τ + 0]

= (−2 (2τ − 1) + 2τ) τ + 2τ (1− τ)

= 4τ (1− τ) ,
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H2 = E∇2
βΨN

=
1

N

N∑
i=1

E
[
−4 (2τ − 1) δ(β − yi) + 2 (2τ − 1) (yi − β) δ(1)(β − yi)

]
=

1

N

N∑
i=1

[
−4 (2τ − 1)

∫
δ(yi − β)fi(yi)dyi − 2 (2τ − 1)

∫
δ(1)(yi − β) (yi − β) fi(yi)dyi

]

=
1

N

N∑
i=1

[
−4 (2τ − 1) fi(β) + 2 (2τ − 1)

∫
δ(yi − β)

(
fi(yi) + (yi − β)f

(1)
i (yi)

)
dyi

]

=
1

N

N∑
i=1

[−4 (2τ − 1) fi(β) + 2 (2τ − 1) fi(β) + 0]

= −2 (2τ − 1)
1

N

N∑
i=1

fi(β),

H3 = E∇3
βΨN

=
1

N

N∑
i=1

E
[
−6 (2τ − 1) δ(1)(β − yi) + 2 (2τ − 1) (yi − β) δ(2)(β − yi)

]

=
1

N

N∑
i=1

 6 (2τ − 1)
∫
δ(1)(yi − β)fi(yi)dyi

+2 (2τ − 1)
∫
δ(2)(yi − β) (yi − β) fi(yi)dyi



=
1

N

N∑
i=1

 −6 (2τ − 1)
∫
δ(yi − β)f

(1)
i (yi)dyi

+2 (2τ − 1)
∫
δ(yi − β)

(
2f

(1)
i (yi) + (yi − β)f

(2)
i (yi)

)
dyi


=

1

N

[
N∑
i=1

−6 (2τ − 1) f
(1)
i (β) + 2 (2τ − 1)

[
2f

(1)
i (β) + 0

]]

= −2 (2τ − 1)
1

N

N∑
i=1

f
(1)
i (β),

Q =
(
H1

)−1
= [4τ (1− τ)]−1,

V = H1 −H1,

W = H2 −H2,
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and

d = QΨN .

fi(β) is the density of yi evaluated at yi = β. f
(1)
i (β) and f

(2)
i (β) are the first and second

derivative of the density of yi evaluated at yi = β, respectively. Since ΨN , si, d, H1, H1, Q,

V, H2, H2, W, H3, H3 are all scalars, then

V d = E
[(
H1 −H1

)
QΨN

]
= E (H1QΨN )− E (ΨN )

= E

[
1

N

N∑
i=1

[−2 (2τ − 1) 1(yi < β) + 2τ + 2 (2τ − 1) (yi − β) δ(β − yi)]QΨN

]

=
1

N2

N∑
i=1

E[−4(2τ − 1)2Q(yi − x′iβ)1(yi < β) + 4τ (2τ − 1)Q(yi − β)1 (yi < β)

+4τ (2τ − 1)Q(yi − β)1 (yi < β)− 4τ2Q(yi − β)

+4τ (2τ − 1)2Q(yi − β)2δ(β − yi)1 (yi < β)− 4τ (2τ − 1)Q(yi − β)2δ (yi − β)]

=
1

N2

N∑
i=1

{
4 (2τ − 1)QE [(yi − β)1(yi < β)]− 4τ2QE(yi − β)

}
,

d⊗ d =
1

N2

N∑
i=1

Q2E
[
s2
i

]
=

1

N2

N∑
i=1

Q2E
[
4(yi − β)2 [(2τ − 1) 1(yi < β)− τ ]2

]
=

1

N2

N∑
i=1

4Q2
{
τ2E

[
(yi − β)2

]
− (2τ − 1)E

[
(yi − β)21(yi < β)

]}
.

Therefore, the second-order bias of β̂ up to O(N−1),of the unconditional ALS estimators β̂
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can be written as

B
(
β̂ (τ)

)
= Q

[
V d− 1

2
H2

(
d⊗ d

)]
=

1

N2

N∑
i=1

4Q2
{

(2τ − 1)E [ui1(ui < 0)]− τ2E(ui)
}

+
1

N

N∑
i=1

(2τ − 1)Qfi(β)
1

N2

N∑
i=1

4Q2
{
− (2τ − 1)E

[
u2
i1(ui < 0)

]
+ τ2E

(
u2
i

)}
,

where Q = [4τ (1− τ)]−1. Since the unconditional density of yi evaluated at yi = β is the

same as the unconditional density of ui evaluated at ui = 0. We use fi (0) to denote the

unconditional density of ui evaluated at ui = 0, which completes the proof of Theorem 3.

Corollary 3. Under Assumptions A-C, when ui are i.i.d., the second-order bias of the

unconditional ALS estimator β̂ (τ) up to O(N−1) is

B
(
β̂ (τ)

)
=

1

N

{
(2τ − 1)E [ui1(ui < 0)]

4τ2(1− τ)2
− E (ui)

4(1− τ)2

}
+

1

N

{
(2τ − 1) f(0)E

(
u2
i

)
16τ(1− τ)3

−
(2τ − 1)2 f(0)E

[
u2
i1(ui < 0)

]
16τ3(1− τ)3

}
.

Since fi(0) denotes the unconditional density of ui evaluated at the ui = 0. When

ui are i.i.d, these fi(·)s are identical, and we use f(·) to denote the unconditional density

of ui.

Remark 3.1. The second-order bias of β̂ (τ) is larger at extreme expectiles of a distribution,

because at the extreme expectiles Q is larger, and the second term in (3.14) dominant the

other terms. The second-order bias of β̂ (τ) goes to zero as the sample size goes to infinity.

Remark 3.2. The objective function of ALS model reduces to the standard least-squares

objective function when τ = 0.5. In this case, the second-order bias of β̂ (τ) up to O(N−1)
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equals the second-order bias of OLS estimator. The OLS estimator is unbiased because

E (ui) = 0.

3.4.2 MSE

Theorem 4. Under Assumptions A-C, suppose ui is i.i.d., the MSE of the unconditional

ALS estimators β̂ (τ) up to O(N−2) is

M
(
β̂ (τ)

)
=

1

N
4Q2C1 −

1

N2
16Q3C3 +

1

N2
8Q2C1 −

1

N2
Q416(2τ − 1)E [fi(0)]C4

+
1

N2
96Q4C2

2 +
1

N2
48Q4

{
τ (1− τ)

(
4τ2 − 4τ + 1

)}
C1

+
1

N2
384Q5(2τ − 1)E [f(0)]C1C2

+
1

N2
240Q6(2τ − 1)2 [E [f(0)]]2C2

1 +
1

N2
32Q5(2τ − 1)E

[
f (1)(0)

]
C2

1 .

where

Q = [4τ (1− τ)]−1,

C1 = E
[
− (2τ − 1)u2

i1(ui < 0)
]

+ E
(
τ2u2

i

)
,

C2 = E [(2τ − 1)ui1(ui < 0)]− E
(
τ2ui

)
,

C3 = E
[
− (2τ − 1)

(
τ2 − τ + 1

)
u2
i1(ui < 0)

]
+ E

(
τ3u2

i

)
,

C4 = E
[
(2τ − 1)

(
τ2 − τ + 1

)
u3
i1(ui < 0)

]
− E

(
τ3u3

i

)
,

and f(0) is the density of ui evaluated at ui = 0, f (1)(0) is the first derivative of the density

of ui evaluated at ui = 0.

Proof: By Theorem 2, when xi = 1, the MSE of the unconditional ALS estimator β̂ (τ) up
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to O
(
N−2

)
is

M
(
β̂ (τ)

)
=

1

N
4Q2

{
E
[
− (2τ − 1)u2

i1(ui < 0)
]

+ E
(
τ2u2

i

)}
− 1

N2
16Q3

{
E
[
− (2τ − 1)

(
τ2 − τ + 1

)
u2
i1(ui < 0)

]
+ E

(
τ3u2

i

)}
+

1

N2
8Q2

{
E
[
− (2τ − 1)u2

i1(ui < 0)
]

+ E
(
τ2u2

i

)}
− 1

N2
Q416(2τ − 1)E [fi(0)]

{
E
[
(2τ − 1)

(
τ2 − τ + 1

)
u3
i1(ui < 0)

]
− E

(
τ3u3

i

)}
+

1

N2
96Q4

{
E [(2τ − 1)ui1(ui < 0)]− E

[
τ2ui

]}2

+
1

N2
48Q4

{
τ (1− τ)

(
4τ2 − 4τ + 1

)} {
E
[
− (2τ − 1)u2

i1(ui < 0)
]

+ E
(
τ2u2

i

)}
− 1

N2
48Q4 (2τ − 1)2 {E [− (2τ − 1)u2

i1(ui < 0)
]

+ E
(
τ2u2

i

)}
+

1

N2
384Q5(2τ − 1)E [f(0)]

{
E [(2τ − 1)ui1(ui < 0)]− E

[
τ2ui

]}
×
{
E
[
− (2τ − 1)u2

i1(ui < 0)
]

+ E
(
τ2u2

i

)}
+

1

N2
240Q6(2τ − 1)2 [E [f(0)]]2

{
E
[
− (2τ − 1)u2

i1(ui < 0)
]

+ E
(
τ2u2

i

)}2

+
1

N2
32Q5(2τ − 1)E

[
f (1)(0)

] {
E
[
− (2τ − 1)u2

i1(ui < 0)
]

+ E
(
τ2u2

i

)}2
.

This is as stated in Theorem 4.

3.5 Monte Carlo Simulation

Now we give some numerical calculations to present the second-order bias results

by Sections 3 and 4. The goal of the data generating process (DGP) is to let the error term

ui, in the ALS regression model yi = x′iβ+ui, satisfies that the τ -conditional expectile of ui

given xi is zero. Newey and Powell (1987, p. 823) and Kuan, Yeh, and Hsu (2009) showed
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that the first order condition of minimizing RN (β; τ) is

τ

∫ ∞
µ(τ)

(y − µ (τ)) dF (y) + (τ − 1)

∫ µ(τ)

−∞
(µ (τ)− y) dF (y) = 0, (3.16)

so that the expectile µ (τ) = x′iβ (τ) satisfies

τ

1− τ
=

∫ µ(τ)
−∞ (µ (τ)− y) dF (y)∫∞
µ(τ) (y − µ (τ)) dF (y)

. (3.17)

If we set the true β to be zero, then yi have the same distribution as ui. To generate

ui from uniform distribution on [a, b] and µ (τ) = 0, we have
∫ µ(τ)
−∞ (µ (τ)− y)dF (y) =∫ 0

−∞ (−y)dF (y) =
∫ 0
a (−y) 1

b−ady = a2

2(b−a) , and
∫∞
µ(τ) (y − µ (τ))dF (y) =

∫∞
0 ydF (y) =∫ b

0 y
1
b−ady = b2

2(b−a) . Then we can get the relationship between a and b, i.e. a = −
√

τ
1−τ b.

In the DGP, we generate the error term ui from uniform distribution on [a, b] , where a =

−
√

τ
1−τR

1+
√

τ
1−τ

, b = R
1+
√

τ
1−τ

, and the range R = b−a. For example, R = 4, τ = 0.1, implies that

ui is generated from U [−1, 3] , the mean of ui is 1, variance of ui is 4
3 , and µ (0.1) = 0. The

DGP of ui guarantees that the 0.1 conditional expectile of ui given xi is zero. In addition,

we can verify the relationship of quantile and expectile, that is if ui follows U [−1, 3] , then

µ (0.1) = q (0.25) = 0. We simulate xi from exponential distribution, f(xi) = exp(−xi).

Then, yi is simulated from yi = x′iβ+ui. In this setup, k = 1, β = 0, R = 4, N ∈ {100, 300} .

Following Newey and Powell (1987) and Kuan et al. (2009), we use the iterated

weighted least squares algorithm to compute the ALS estimator, in equation (3.6). We use

the OLS estimates as the initial value of β̂ for the terated weighted least squares estimates

and iterate until the estimates converge. The convergence was quick and did not depend

on the choice of initial value of β̂. We repeat the Monte Carlo simulations 10,000 times and

take the average.
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Table 1 presents the simulation results when xi is generated form exponential

distribution. Table 2 presents the simulation results when xi = 1. For each τ , the first

row is for bias and the second row is for the mean squared error of the ALS estimator. For

each panel, the first column presents the Monte Carlo (MC) simulation bias and MSE of

ALS estimators β̂, the second column presents the second-order bias and MSE derived by

Theorems (Thm), the third column presents the Monte Carlo (MC) simulation bias and

MSE of the bias-corrected ALS estimators β̃, where β̃ ≡ β̂ − B
(
β̂
)

. The Monte Carlo

results are summarized as follows: (i) β̃ is numerically closer to the true value β = 0 than

β̂, as the bias in β̂ has been substantially corrected; (ii) the magnitude of bias and MSE is

larger in extreme expectiles; (iii) the estimator is unbiased when τ = 0.5, because the ALS

model reduces to the OLS model; and (iv) there are upward bias at lower expectiles and

downward bias at upper expectiles.
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3.6 Appendix

3.6.1 Properties of a norm

A.1 If A is a k × 1 vector,

||A|| =
[
tr
(
AA′

)]1/2
=
(
A′A

)1/2
.

A.2

∣∣∣∣AA′∣∣∣∣ =
[
tr
(
AA′AA′

)]1/2
=
[
tr
(
A′AA′A

)]1/2
=
(
A′AA′A

)1/2
= A′A = ||A||2 .

A.3

∣∣∣∣(AA′)⊗A′∣∣∣∣ =
{
tr
([(

AA′
)
⊗A′

] [(
AA′

)
⊗A

])}1/2

=
[
tr
((
AA′AA′

)
⊗
(
A′A

))]1/2
=

[
tr
(
A′AA′AA′A

)]1/2
=

(
A′A

)3/2
= ||A||3 .
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A.4

∣∣∣∣(AA′)⊗A′ ⊗A′∣∣∣∣ = tr
([(

AA′
)
⊗A′ ⊗A′

] [(
AA′

)
⊗A⊗A

])1/2
= tr

[(
AA′AA′

)
⊗
(
A′ ⊗A′

)
(A⊗A)

]1/2
= tr

[(
AA′AA′

)
⊗A′A⊗A′A

]1/2
= tr

[(
A′AA′A

)
A′AA′A

]1/2
=

(
A′AA′A

)
=

(
A′A

)2
= ‖A‖4

3.6.2 Properties of the Dirac delta function

B.1 The Heaviside unit step function is defined as φ(z) = 0 for z < 0, φ(z) = 1 for z ≥ 0.

The Dirac delta function is defined as δ(z) =dφ(z)/dz, where δ(z) = 0 for z < 0, δ(z) =∞

for z = 0, δ(z) = 0 for z > 0.

B.2
∫ +∞
−∞ δ(z)dz = 1.

B.3
∫ +∞
−∞ δ(z − a)f(z)dz = f(a), where f : R → R is a real function differentiable around

a ∈ R.

B.4 δ(z) = δ(−z).

B.5
∫ +∞
−∞ δ(1)(z − a)f(z)dz = −

∫ +∞
−∞ δ(z − a)f (1)(z)dz = −f (1)(a).

B.6 δ(1)(−z) = −δ(1)(z), δ(2)(−z) = δ(2)(z).

B.7
∫ +∞
−∞ δ(n)(z − a)f(z)dz = (−1)n

∫ +∞
−∞ δ(z − a)f (n)(z)dz = (−1)nf (n)(a).

B.8 φ(z)δ(z) = 1
2δ(z).

B.9 φ(z)δ(1)(z) = 1
2δ

(1)(z)− (δ(z))2 .
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Table 3.1: Conditional ALS regression

N = 100 N = 300

τ β̂MC β̂Thm β̃MC β̂MC β̂Thm β̃MC

0.1 bias 0.0100 0.0185 -0.0085 0.0031 0.0062 -0.0031
MSE 0.0057 0.0192 0.0057 0.0018 0.0052 0.0018

0.2 bias 0.0076 0.0091 -0.0015 0.0022 0.0030 -0.0008
MSE 0.0064 0.0106 0.0063 0.0020 0.0032 0.0020

0.3 bias 0.0048 0.0047 0.0001 0.0002 0.0016 -0.0014
MSE 0.0068 0.0082 0.0068 0.0022 0.0026 0.0022

0.4 bias 0.0028 0.0021 0.0007 0.0013 0.0007 0.0006
MSE 0.0073 0.0073 0.0073 0.0023 0.0023 0.0023

0.5 bias -0.0005 0.0000 -0.0005 0.0006 0.0000 0.0006
MSE 0.0070 0.0070 0.0070 0.0023 0.0023 0.0023

0.6 bias -0.0007 -0.0021 0.0013 -0.0007 -0.0007 0.0000
MSE 0.0072 0.0073 0.0072 0.0022 0.0023 0.0022

0.7 bias -0.0036 -0.0047 0.0012 -0.0006 -0.0016 0.0010
MSE 0.0068 0.0082 0.0068 0.0022 0.0026 0.0022

0.8 bias -0.0057 -0.0091 0.0034 -0.0029 -0.0030 0.0001
MSE 0.0064 0.0106 0.0064 0.0020 0.0032 0.0020

0.9 bias -0.0099 -0.0185 0.0086 -0.0037 -0.0062 0.0025
MSE 0.0058 0.0192 0.0058 0.0018 0.0052 0.0018

Notes: Table 1 presents the simulation results when xi is generated form exponential dis-

tribution. Table 2 presents the simulation results when xi = 1. For each τ , the first row is

for bias and the second row is for the mean squared error of the ALS estimator. The results

are presented in the following manner in each corresponding cell.
Monte Carlo (MC) from theorems (Thm) Monte Carlo (MC)

τ bias 1
J

∑J
j=1

(
β̂j (τ)− β (τ)

)
B
(
β̂ (τ)

)
1
J

∑J
j=1

(
β̃j (τ)− β (τ)

)
MSE 1

J

∑J
j=1

(
β̂j (τ)− β (τ)

)2
M
(
β̂ (τ)

)
1
J

∑J
j=1

(
β̃j (τ)− β (τ)

)2

where the true value β (τ) = 0 for all τ. The bias-corrected estimate is β̃ (τ) = β̂ (τ) −

B
(
β̂ (τ)

)
. The subscript j denotes the jth Monte Carlo replication (j = 1, . . . , J). We

replicate J = 10, 000 times in the Monte Carlo.
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Table 3.2: Unconditional ALS regression

N = 100 N = 300

τ β̂MC β̂Thm β̃MC β̂MC β̂Thm β̃MC

0.1 bias 0.0064 0.0123 -0.0059 0.0027 0.0041 -0.0014
MSE 0.0102 0.0099 0.0102 0.0034 0.0073 0.0034

0.2 bias 0.0055 0.0061 -0.0005 0.0010 0.0020 -0.0010
MSE 0.0120 0.0165 0.0120 0.0039 0.0059 0.0039

0.3 bias 0.0023 0.0032 -0.0009 0.0000 0.0011 -0.0010
MSE 0.0130 0.0148 0.0130 0.0044 0.0050 0.0044

0.4 bias 0.0018 0.0014 0.0004 0.0009 0.0005 0.0005
MSE 0.0134 0.0137 0.0134 0.0044 0.0046 0.0044

0.5 bias -0.0016 0.0000 -0.0016 -0.0005 0.0000 -0.0005
MSE 0.0134 0.0133 0.0134 0.0044 0.0044 0.0044

0.6 bias -0.0026 -0.0014 -0.0012 -0.0007 -0.0005 -0.0003
MSE 0.0133 0.0137 0.0133 0.0044 0.0046 0.0044

0.7 bias -0.0026 -0.0032 0.0006 -0.0014 -0.0011 -0.0004
MSE 0.0126 0.0148 0.0126 0.0043 0.0050 0.0043

0.8 bias -0.0050 -0.0061 0.0011 -0.0013 -0.0020 0.0008
MSE 0.0119 0.0165 0.0119 0.0039 0.0059 0.0039

0.9 bias -0.0090 -0.0123 0.0033 -0.0026 -0.0041 0.0016
MSE 0.0101 0.0099 0.0101 0.0034 0.0073 0.0034
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Chapter 4

Second-order Bias Reduction in

Predictive Quantile and Exprctile

Regressions

4.1 Introduction

Predictive regression is a fundamental econometric model in finance. It has been

widely discussed in finance literature. Unlike in the mean predictive regression models for

which the bias reduction has been actively developed, there is little studies focused on the

predictive quantile regression or predictive expectile regression. In this paper, we develop

the predictive quantile and expectile regression models. We apply the second-order bias and

MSE results on the application of stock returns. We are able to calculate the second-order

bias of the predictive quantile and expectile estimator and the bias reduction enable us to
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obtain a better predictive estimates. We illustrate the proposed second-order bias reduction

to predict the stock returns by the lagged dividend yield. The data used in this application

is from Welch and Goyal (2008). We try both short- and long-horizon regressions for both

quantile and expectile models. We discover that the bias is larger at the tails of the stock

return distribution.

The paper is organized as follows. In Section 4.2, we introduce the predictive

quantile and expectile regression model. In Section 4.3, we present the second-order bias

and MSE up to O(N−2) of both quantile and expectile estimators. In Section 4.4, we

present the application of stock returns.

4.2 Predictive Quantile and Expectile Regressions

Consider a simple predictive regression model for stock or portfolio returns using

a lagged predictor variable.

yt+h = x′tβ + ut+1, (4.1)

where yt is returns, and xt is a k× 1 vector of predictor variables, such as dividend yield or

the T-bill rate, which is a first-order autoregressive process, t = 1, . . . , T.

Given α ∈ (0, 1), the predictive quantile regression estimator β̂ (α) is obtained by

minimizing

QT (β;α) =

T∑
t=1

rα
(
yt+h − x′tβ

)
, (4.2)

where rα (·) is the check loss function,

rα (λ) ≡ |α− 1 (λ < 0)| · |λ| . (4.3)
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The k × 1 vector quantile estimators β̂ (α) can be obtained by minimizing the expected

check loss. The sample moment condition of the predictive quantile regression is

ΨT (β (α)) =
1

T

T∑
i=1

st(β (α)). (4.4)

where

st(β (α)) = (α− 1(yt+h < x′tβ))(−xt) (4.5)

Given τ ∈ (0, 1), the predictive asymmetric least squares (ALS) or predictive

expectile regression estimator β̂ (τ) is obtained by minimizing

RT (β; τ) =
T∑
t=1

ρτ
(
yt+h − x′tβ

)
, (4.6)

where ρτ (·) is the asymmetric least squares loss function,

ρτ (λ) ≡ |τ − 1 (λ < 0)| · λ2. (4.7)

The k × 1 vector expectile estimators β̂ (τ) can be obtained by minimizing the asymmetric

least squares loss. The sample moment condition of the predictive expectile regression is

ΨT (β (τ)) =
1

T

T∑
t=1

st(β (τ)). (4.8)

where

st(β (α)) = 2xt
(
yt+h − x′tβ

) [
(2τ − 1) 1(yt+h < x′tβ)− τ

]
. (4.9)

4.3 Second-order Bias and MSE for Quantile and Expectile

Estimators

In the quantile regression model, suppose xt and ut+h are not identically dis-

tributed, but independent across t = 1, ..., T, when k = 1, the second-order bias of the
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quantile estimators β̂ (α) up to O(N−1) is

B
(
β̂ (α)

)
=

(
1

2
− α

)
Q2 1

T 2

T∑
t=1

E
[
x3
t ft(0|xt)

]
−α(1− α)

2
Q

1

T

T∑
t=1

E[x3
t f

(1)
t (x′tβ)]× 1

T 2

T∑
t=1

Q2E
(
x2
t

)
, (4.10)

and the MSE up to O(N−2), of the quantile estimator β̂ is

M
(
β̂
)

=
1

T 2

T∑
t=1

α(1− α)Q2E
(
x2
t

)
− 2

1

T 3

T∑
t=1

Q3

(
α2 − α+

1

2

)
E
[
x4
t ft(0|xt)

]
− 1

T 3

T∑
t=1

α(1− α)Q2E
(
x2
t

)
− 1

T 3

T∑
t=1

α(1− α)(2α− 1)Q4E
[
x3
t ft

(1)(0|xt)
]
E
(
x3
t

)
+ 6

1
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, (4.11)

where Q =
(

1
T

∑T
t=1E[x2

t ft(0|xt)]
)−1

, ft (0|xt) is the conditional density of ut+h given xt

evaluated at ui = 0, f
(1)
t (0|xt) and f

(2)
t (0|xt) are the first and second derivative of the

conditional density of ut+h given xt evaluated at ui+h = 0.

In the expectile regression model, suppose xt and ut+h are not identically dis-

tributed, but independent across t = 1, ..., T, when k = 1, the second-orer bias of the

expectile estimators β̂ (τ) up to O(N−1) is

B
(
β̂ (τ)

)
=

1

T 2

T∑
t=1

4Q2C2 +
1

T

T∑
t=1

(2τ − 1)QE
[
x3
t ft(0|xt)

]
× 1

T 2

T∑
t=1

4Q2C1, (4.12)
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and the MSE of the ALS estimator β̂ (τ) up to O(N−2) is

M
(
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)

=
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where

Q =

(
4τ(1− τ)

1

T
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])−1

,

C1 =
1

T
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E
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2
t+h1(ut+h < 0)

]
+ E

(
τ2x2

tu
2
t+h

)]
,

C2 =
1

T

T∑
t=1

[
E
[
(2τ − 1)x3

tut+h1(ut+h < 0)
]
− E

(
τ2x3

tut+h
)]
,

C3 =
1

T

T∑
t=1

[
E
[
− (2τ − 1)

(
τ2 − τ + 1

)
x4
tu

2
t+h1(ui < 0)

]
+ E

(
τ3x4

tu
2
t+h

)]
,

C4 =
1

T

T∑
t=1

[
E
[
(2τ − 1)

(
τ2 − τ + 1

)
x3
tu

3
t+h1(ut+h < 0)

]
− E

(
τ3x3
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3
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,

and ft (0|xt) is the conditional density of ut+h given xt evaluated at ui = 0, f
(1)
t (0|xt) is

the first derivative of the conditional density of ut+h given xt evaluated at ui+h = 0.

4.4 Empirical Application

As an empirical application, our second-order bias reduction approach is illustrated

through a predictive model in finance. We predict the stock returns by the lagged dividend

yielde. There is extensive literature on the stock return prediction. See Lewellen (2004)
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and Zhu (2013). In the empirical application, we aim to illustrate the proposed method

and show the effect of bias reduction. The data are monthly return series of the S&P 500

Index from Amit Goyal’s website. Welch and Goyal (2008) provide detailed descriptions

of the data. The dividend yield is the ratio of the previous 12-month sum of dividends

paid on the S&P 500 Index. According to Ang and Bekaert (2007), Paye and Timmermann

(2006) and Goyal and Welch (2003), the interested rate data are hard to interpret before the

1951 Treasury Accord, and the dividend yield predictability is not robust with the 1990s.

Therefore, we use the period from 01/1952 to 12/1989 (total 450 months), which is the post-

Accord period. The application uses a rolling window sample of T = 100 observations. We

construct a predictive quantile regression and a predictive expectile regression. We predict

future h-period returns onto dividend yield. In the equation (4.1), we try with different

horizon, that is h = 1, 3, and 12. Table 1, Table 2 and Table 3 present the predictive

quantile results based on 344 replietitions for each value of horizon h. Table 4, Table 5 and

Table 6 present the predictive expectile results based on 344 replietitions for each value of

horizon h. For each level of α or τ , the first column presents the quantile estimator of β̂. The

second column presents the second-order bias B
(
β̂
)

derived in equation (4.10) for Table 1

to 3, and equation (4.12) for Table 4 to 6. The third column presents the second-order bias

corrected quantile estimators β̃ = β̂ − B
(
β̂
)

. The fourth column presents the the mean

squared error M
(
β̂
)

up to O(N−1) obtained by the first term in equation (4.11) for Table

1 to 3, and equation (4.13) for Table 4 to 6. The last column presents the the mean squared

error M
(
β̂
)

up to O(N−2) derived in equation (4.11) for Table 1 to 3, and equation (4.13)

for Table 4 to 6.
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The summary statistics of the stock return and dividend yield are presented in

the Table 6 in Zhu (2013). Zhu (2013) pointed out that the stock return distribution has

fat tails as evidenced by the large excess kurtosis. In our results tables below, we find that

(i) the magnitude of the second-order bias and MSE is larger towards the tails of the stock

return distribution; (ii) there are upward bias at lower quantiles and downward bias at

upper quantiles; (iii) the MSE up to O(N−1) is smaller than the MSE up to O(N−2).
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Table 4.1: Second-order bias reduction in predictive quantile regression, h=1

α β̂ B(β̂) β̃ AsyMSE MSE(β̂)

0.05 21.4330 0.0418 21.3912 0.0806 0.6401
0.1 22.6019 0.0254 22.5765 0.0652 0.3325
0.2 24.2561 0.0133 24.2428 0.0550 0.2426
0.3 25.4255 0.0075 25.4180 0.0529 0.2550
0.4 26.4911 0.0033 26.4878 0.0499 0.2494
0.5 27.4588 -0.0001 27.4589 0.0497 0.2756
0.6 28.4041 -0.0037 28.4078 0.0498 0.2975
0.7 29.5814 -0.0078 29.5891 0.0557 0.4831
0.8 30.7923 -0.0139 30.8062 0.0585 0.9343
0.9 32.4173 -0.0239 32.4412 0.0667 2.7309

0.95 33.4169 -0.0363 33.4532 0.0648 3.1295

Notes: For each level of α, the first column presents the quantile estimators β̂.

The second column presents the second-order bias B
(
β̂
)

derived in equation (4.10). The

third column presents the second-order bias corrected quantile estimators β̃ ≡ β̂ − B
(
β̂
)

.

The fourth column presents the MSE up to . The last column presents the MSE up to

derived in equation equation (4.11).
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Table 4.2: Second-order bias reduction in predictive quantile regression, h=3

α β̂ B(β̂) β̃ AsyMSE MSE(β̂)

0.05 21.6167 0.0421 21.5746 0.0796 0.5784
0.1 22.7921 0.0257 22.7665 0.0656 0.3275
0.2 24.4771 0.0136 24.4636 0.0558 0.2485
0.3 25.6484 0.0076 25.6408 0.0539 0.2628
0.4 26.7110 0.0034 26.7076 0.0512 0.2596
0.5 27.6863 -0.0002 27.6865 0.0510 0.2873
0.6 28.6523 -0.0038 28.6562 0.0510 0.3198
0.7 29.8833 -0.0079 29.8912 0.0567 0.5243
0.8 31.1202 -0.0139 31.1341 0.0597 0.9344
0.9 32.6784 -0.0240 32.7024 0.0663 2.6087

0.95 33.7131 -0.0367 33.7499 0.0665 3.1980

Notes: See notes for Table 1.
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Table 4.3: Second-order bias reduction in predictive quantile regression, h=12

α β̂ B(β̂) β̃ AsyMSE MSE(β̂)

0.05 22.5823 0.0443 22.5380 0.0847 0.5048
0.1 23.9541 0.0254 23.9287 0.0684 0.3481
0.2 25.6044 0.0137 25.5907 0.0559 0.2746
0.3 26.7643 0.0078 26.7565 0.0534 0.2974
0.4 27.7779 0.0035 27.7744 0.0522 0.3282
0.5 28.7469 -0.0003 28.7472 0.0522 0.3738
0.6 29.7894 -0.0039 29.7932 0.0526 0.4567
0.7 30.9788 -0.0079 30.9868 0.0560 0.6295
0.8 32.3023 -0.0141 32.3164 0.0666 1.1107
0.9 33.9143 -0.0247 33.9390 0.0676 2.5825

0.95 34.9662 -0.0375 35.0037 0.0677 3.0623

Notes: See notes for Table 1.
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Table 4.4: Second-order bias reduction in predictive expectile regression, h=1

α β̂ B(β̂) β̃ AsyMSE MSE(β̂)

0.05 23.3676 -0.2223 23.5899 0.6815 1.7870
0.1 24.3002 -0.0454 24.3456 0.3831 0.4348
0.2 25.3977 -0.0041 25.4018 0.2238 0.2203
0.3 26.1668 0.0007 26.1662 0.1733 0.1696
0.4 26.8118 0.0014 26.8104 0.1530 0.1498
0.5 27.4116 0.0015 27.4101 0.1478 0.1448
0.6 28.0142 0.0017 28.0125 0.1542 0.1514
0.7 28.6678 0.0031 28.6648 0.1755 0.1729
0.8 29.4468 0.0090 29.4377 0.2266 0.2270
0.9 30.5533 0.0490 30.5043 0.3827 0.4595

0.95 31.4819 0.2143 31.2676 0.6545 1.9325

Notes: For each level of τ , the first column presents the expectile estimators β̂.

The second column presents the second-order bias B
(
β̂
)

derived in equation (4.12). The

third column presents the second-order bias corrected quantile estimators β̃ ≡ β̂ − B
(
β̂
)

.

The fourth column presents the MSE up to . The last column presents the MSE up to

derived in equation equation (4.13).
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Table 4.5: Second-order bias reduction in predictive expectile regression, h=3

α β̂ B(β̂) β̃ AsyMSE MSE(β̂)

0.05 23.5536 -0.2231 23.7767 0.6918 1.8158
0.1 24.5021 -0.0465 24.5486 0.3907 0.4449
0.2 25.6157 -0.0044 25.6201 0.2286 0.2252
0.3 26.3939 0.0006 26.3933 0.1770 0.1733
0.4 27.0470 0.0014 27.0456 0.1564 0.1532
0.5 27.6550 0.0015 27.6535 0.1511 0.1481
0.6 28.2660 0.0017 28.2643 0.1577 0.1548
0.7 28.9291 0.0031 28.9260 0.1795 0.1768
0.8 29.7183 0.0093 29.7090 0.2321 0.2324
0.9 30.8399 0.0515 30.7885 0.3948 0.4743

0.95 31.7838 0.2265 31.5574 0.6841 2.0507

Notes: See notes for Table 4.

140



Table 4.6: Second-order bias reduction in predictive expectile regression, h=12

α β̂ B(β̂) β̃ AsyMSE MSE(β̂)

0.05 24.5971 -0.2331 24.8303 0.7443 2.0015
0.1 25.6018 -0.0551 25.6568 0.4170 0.4936
0.2 26.7453 -0.0076 26.7529 0.2389 0.2376
0.3 27.5324 -0.0008 27.5332 0.1832 0.1798
0.4 28.1934 0.0006 28.1928 0.1613 0.1580
0.5 28.8095 0.0009 28.8086 0.1555 0.1524
0.6 29.4297 0.0012 29.4285 0.1621 0.1590
0.7 30.1027 0.0026 30.1002 0.1846 0.1813
0.8 30.9069 0.0085 30.8984 0.2391 0.2372
0.9 32.0596 0.0476 32.0119 0.4068 0.4592

0.95 33.0362 0.2088 32.8274 0.6965 1.7265

Notes: See notes for Table 4.
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Chapter 5

Conclusions

Chapter two developed analytical results on the finite sample properties of quan-

tile estimators. We have provided the general results on the second-order bias and MSE of

quantile estimators. We discover that while the median is unbiased for a symmetric distri-

bution, and the bias of the other quantiles is larger at the tails of any distribution. The

Monte Carlo simulations results indicate the improvement of quantile estimators and quan-

tile prediction. The theoretical results are illustrated in quantile estimation of the impact of

schooling on earnings, and the effect of smoking and prenatal care on birthweight. We find

that the second-order bias corrected estimator has better behaviors than the uncorrected

ones, and the bias is larger at the extreme low and high earning and birthweight quantiles.

The prediction error becomes smaller with the second order bias correction, which implies

that the bias correction improves the accuracy of estimation and prediction of quantile

regressions.

Chapter three provides the results on the second-order bias and MSE of ALS
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regression models. The second-order bias result enables an improved bias correction and

thus to obtain improved ALS estimations. We show that the second-order bias is much

larger as the asymmetry is stronger, and therefore the benefit of the second-order bias

correction is greater when we are interested in extreme expectiles. The higher order MSE

result for the ALS estimation also enables us to better understand the sources of estimation

uncertainty. The Monte Carlo simulation indicates that the second-order bias corrected

ALS estimator has better behaviou than the uncorrected ones.

Chapter four illustrates the second-order bias reduction in the predictive quan-

tile and expectile regressions, which enables an improved predictive quantile and expectile

estimates. We show that the second-order bias are much larger towards the tails of the

conditional density than near the median, and therefore the benefit of the second-order

bias reduction is greater when we are interested in the deeper tail quantiles. The empirical

application of stock returns highlights the benefit of the proposed approach.
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