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EPIGRAPH

If you keep proving stuff that others have done, getting confidence, increasing the

complexities of your solutions - for the fun of it - then one day you’ll turn around and

discover that nobody actually did that one!

—Richard P. Feynman
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ABSTRACT OF THE DISSERTATION

Electrohydrodynamics of Particles and Drops in Strong Electric Fields

by

Debasish Das

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2016

Professor David Saintillan, Chair

The dynamics of dielectric rigid particles and liquid drops suspended in another

liquid medium and subject to a uniform DC electric field, the study of which forms

the field of electrohydrodynamics (EHD), has fascinated scientists for decades. This

phenomenon is described by the much celebrated Melcher-Taylor leaky dielectric model.

The model hypothesises development of interfacial charge on the application of an

electric field and prescribes a balance between transient charge, jump in normal Ohmic

currents due to finite conductivities of the medium and charge convection arising

from interfacial velocity. While there have been numerous studies on the dynamics

xv



of particles and drops more conducting than the surrounding liquid medium, weakly

conducting particles and drops in strong electric fields, known to undergo symmetry-

breaking bifurcations leading to steady rotation known as Quincke electrorotation,

have received much less attention.

Recent experiments have reported a decrease in the effective viscosity of particle

under Quincke rotation, thereby providing a means to tune the rheological properties

of these suspensions. However, existing models based on an isolated particle, valid

for dilute suspensions, have been shown to be inaccurate as the density of particles

increases. Motivated to resolve these discrepancies, we develop a theoretical model to

account for electrohydrodynamic interactions between a pair of spherical particles. We

then turn our attention to many particles free to roll on an electrode due to Quincke

rotation. Using numerical simulations, we show that electrohydrodynamic interactions

between particles give rise to collective motion of these colloidal suspensions. We

find emergence of a polar liquid state with a large vortical structure in circular

confinement. Finally, we address the problem of electrohydrodynamics of deformable

liquid drops, first studied by Taylor in 1966. We develop a transient small deformation

theory for axisymmetric drops while including the nonlinear charge convection term

neglected by previous researchers. We also use numerical simulations based on a novel

three-dimensional boundary element method to capture large deformations. These

simulations are the first to capture Quincke rotation due to inclusion of the nonlinear

charge convection term and show excellent agreement with existing experimental data

and theoretical predictions in the small deformation regime.
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Chapter 1

Introduction

Classical physics deals with the mechanics of the fundamental states of matter

namely solid, fluid, gas and plasma. Fluid mechanics is a branch of mechanics that

deals with its properties and motion when subjected to forces or changes in temperature

[9, 114, 87]. The governing equations for the motion of fluids is the Navier-Stokes

equations that constitutes of mass, momentum and energy conservation equations,

Dρ

Dt
+ ρ∇ · u = 0, (1.1a)

ρ
Du

Dt
= −∇p+∇ · TH + ρF , (1.1b)

ρ
De

Dt
= −p∇ · u+ TH :∇u+∇ · (κ∇Θ), (1.1c)

where, ρ, u, p, κ and e are the fluid density, velocity, pressure, thermal conductivity and

internal energy respectively. TH = µ
(
∇u+∇uT − 2

3 I∇ · u
)

is the hydrodynamic

stress, µ is the fluid viscosity, Θ is the temperature and F is the body force. The body

force can be gravity, forces generated by electric or magnetic fields or internal stresses

generated by swimming or flying organisms like bacteria, fish or birds. Equations of

1



2

state, e = e(p,Θ) and p = ρRT (ideal gas law) provide closure to the Navier-Stokes

equations. Equations (1.1) are strictly valid for Newtonian fluids. The relationship

between hydrodynamic stress and strain for a non-Newtonian fluid is more complex

[13, 14, 15] and will not be considered in this thesis. Further simplifications can be

made to the Navier-Stokes equations for incompressible fluids as the energy equation

decouples from the rest of the Navier-Stokes equation. Using the following scales for

velocity, length, time and pressure,

û = u

U
, x̂ = x

L
, t̂ = t

T
, p̂ = pL

µU
, (1.2)

we can non-dimensionalize the governing equations. To account for gravitational forces

we substitute F = g. The conservation of mass, also called as continuity equation

and momentum then read,

∇ · u = 0, (1.3a)

β
∂û

∂t̂
+Reû · ∇̂û = −∇p̂+ ∇̂û+ Re

Fr2
g

g
. (1.3b)

The relevant dimensionless parameters introduced in equation (1.3b) are,

β = L2

νT
, Re = UL

ν
, Fr = U√

gL
. (1.4)

The first term is the frequency parameter β denoting the ratio of inertial acceleration

to viscous forces, second term is Reynolds number Re that denotes the ratio of inertial

convective to viscous forces and the last term is the Froude’s number Fr that compares

the magnitude of inertial convective to body forces [127, 129].



3

1.1 Low Reynolds number regime: Stokes flow

When Re� 1 and β ∼ 1, we can neglect the effects of convective acceleration

and the Navier-Stokes equations reduce to unsteady Stokes equation,

∇ · u = 0, ∂u

∂t
−∇p+ µ∇2u = 0. (1.5)

Additionally, when Re� 1 and β � 1, we can neglect the unsteady term to obtain

the steady Stokes equation.

∇ · u = 0, −∇p+ µ∇2u = 0. (1.6)

Equations (1.5) and (1.6) are written in dimensional form. Physically, the unsteady

Stokes equation describes flows characterized by sudden acceleration or deceleration.

Few examples include the flow occurring in hydrodynamic braking, during the impact

of a particle on a solid surface, and the initial stages of the flow due to a particle

settling from rest in an ambient fluid [127, 129]. In this work, we only focus on

phenomena occurring at the microscale level that are governed by the steady Stokes

equations. The salient features of Stokes equations are described briefly below [57].

Linearity

Perhaps the most interesting feature of the steady Stokes equation is its linearity

which allows one to obtain solutions using a variety of analytical methods based on

separation of variables and singularity representations, for example, based on boundary

element method for arbitrary geometries. A direct consequence of linearity is that

principle of superposition of solutions may be applied by which adding different
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solutions of the Stokes equations one also obtains a solution of the Stokes equations.

Reversibility

Another important consequence of linearity of Stokes is reversibility. Consider

the motion of a spherical particle settling adjacent to a wall under the action of gravity.

The question that one may ask is whether the sphere drifts away or towards the

wall. This can be answered using principle of reversibility. Let us assume that the

particle drifts towards the wall which means if the direction of gravity is reversed,

the particle must drift away from the wall simply due to linearity of Stokes equation.

However, reflecting this situation about the horizontal axis we get back the former

situation with gravity pointing downwards, however, with the particle now moving

away from the wall. This contradiction can only be resolved if the particle has no

velocity perpendicular to the wall.

Instantaneity

Steady state Stokes equation has no time in it which implies that the motion

is quasi-static. The motion of the fluid or particles in the fluid have no dependence on

the history of the fluid flow. Mathematically, this means that the boundary motion

is communicated to the entire fluid domain instantaneously. Some more important

properties of Stokes flows are,

1. Pressure satisfies Laplace’s equation, ∇2p = 0,

2. Flow velocity satisfies the biharmonic equation ∇4u = 0,

3. Vorticity ω =∇× u satisfies Laplace’s equation ∇2ω = 0.
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Additionally, axisymmetric Stokes flow can be conveniently solved with a Stokes

streamfunction φ that satisfies the governing equation,

E4φ = 0, where, E2 = ∂2

∂r2 + sin θ
r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
(1.7)

Some other important properties of Stokes flow are minimum energy dissipation (also

proves uniqueness) and Lorentz’s reciprocal theorem. The reciprocal theorem is a very

powerful tool that allows one to determine the results for one Stokes flow field from

the solution of another Stokes flow in the same geometry [57]. As an example, let us

consider a solid body that undergoes pure translation without rotation with velocity

U (1), the solution to which is denoted with superscript 1 and the same solid body

that undergoes pure rotation without translation with velocity U (2) = Ωp × x, the

solution to which is denoted with superscript 2.

∫
V
f (1) · u(2) dV +

∫
S
U (2) · T (1) · n dS

=
∫
V
f (2) · u(1) dV +

∫
S
U (1) · T (2) · n dS

(1.8)

To simplify the problem, let us ignore the external forces, f (1) = f (2) = 0. We can

easily see that the knowledge of the translational motion and traction in the first

problem, U (1),T (1) and traction in the second problem, T (2) can give us the rotational

velocity of the particle in the second problem [57]. The reciprocal theorem is also

the basis of boundary integral formulations that enables accurate computation of

Stokes equation around arbitrary shaped objects. Problems in low Reynolds number

regime governed by Stokes’ equation can be solved using flow singularities, asymptotic

solutions or numerical techniques. In the remainder of this chapter, we introduce
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the concept of fundamental singularities to solve problems in Stokes flow and look

at some common examples to illustrate the utility of these methods. This method is

applicable to relatively simple shaped objects like sphere or ellipsoids. For arbitrary

shaped objects, one needs to use a numerical technique like boundary element method,

discussed briefly in section 1.3.

1.2 Fundamental singularities

A Stokeslet is the most fundamental singularity of Stokes flow. It is the free

space Green’s function that represents the flow field due to a point force [82, 129].

Physical examples include translating motion of a small particle sedimenting in a

quiescent fluid or a charged particle translating under the action of an electric field in

a fluid. The Stokes equation with a constant point force b located at x0 called as the

evaluation point is,

−∇p+ µ∇2u+ bδ3(x− x0) = 0, (1.9)

where, δ3 is the three dimensional delta function. The Stokeslet G and the flow field

created by it are,

G(x;x0) = I
r

+ rr

r3 , u = 1
8πµG · b, (1.10)

where, r = x−x0. Taking divergence of the velocity field and integrating the resulting

expression over the domain of interest and using divergence theorem, we obtain an
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important integral property of the Stokeslet,

∇ · G = 0,
∫
S

G(x;x0) · n(x) dS(x) = 0. (1.11)

Here, x is called as integration point and always lies on the boundary by definition.

The identity, equation 1.11 holds true regardless of whether the evaluation point x0

lies on the boundary or not. The Stokeslet also satisfies the symmetry property,

G(x;x0) = G(x0;x). (1.12)

The corresponding vorticity, pressure and stress fields associated with a Stokeslet are,

Wij = 2εijl
rl
r3 , Pj = 2rj

r3 , Tijk = −6rirjrk
r5 . (1.13)

Any irrotational or potential flow field also satisfies the Stokes flow with the associated

constant pressure field set to zero. The most fundamental solution to Laplace’s

equation, the governing equation for potential flow, is a point source. It is not hard

to convince oneself that the derivatives of the point source are also solution to the

Laplace’s equation due to linearity. In the same way, derivatives of the point force

also give rise to a family of fundamental solutions due to linearity of Stokes equation.

Hence, the vorticity, pressure and stress fields constitute fundamental solutions to the

Stokes flow called as rotlet, point-source and stresslet.

For example, a small particle exerting hydrodynamic torque or stress on the

fluid is represented with a rotlet or a stresslet. In other words, any small particle

that is under the influence of an external torque or stress can be represented as a
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rotlet or stresslet respectively. For example, microorganisms such as Escherichia coli

or Chlamydomonas reinhardtii that exert stresses on the surrounding fluid to propel

themselves are represented by a stresslet [138]. Next, we look at some prototypical

examples of particles motions in Stokes flow.

Disturbance flows created by spheres in uniform, rotational and straining

flows

The disturbance flow created by a sphere held fixed in a uniform flow U∞ is

the same as a sphere translating with a velocity U p = −U∞. Applying no slip and

far field boundary conditions we get the desired flow and pressure fields,

ui = −3a
4 U

∞
j

(
δij
r

+ rirj
r3

)
− a3

4 U
∞
j

(
δij
r3 −

3rirj
r5

)
, (1.14a)

p− p∞ = −3µa
2
U∞j rj

r3 . (1.14b)

In equation (1.14a), the first tensor in the right hand side is easily recognized as

the Stokeslet while the second term is a source quadrupole. The pressure field in

expression (1.14b) is generated due to a dipole.

The flow and pressure field induced by a sphere rotating in an ambient flow

u∞ = ω∞ × x or rotating at an angular velocity of ωp in a quiescent fluid are given

by a rotlet,

ui = −a3εijkω
∞
j

rk
r3 or a3εijkω

p
j

rk
r3 , (1.15a)

p = 0. (1.15b)

The most interesting feature of a rotlet is that it doesn’t create any pressure disturbance
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in the fluid.

Finally, a stationary sphere placed in a straining flow induces flow and pressure

field of the form,

ui = −5a3

2
ri(rjE∞jkrk)

r5 − a5

2 E
∞
jk

[
δijxk + δikxj

r5 − 5rirjrk
r7

]
, (1.16a)

p = −5µa3 riE
∞
ij rj

r5 . (1.16b)

Detailed derivations of these flow fields are omitted here for brevity and can be found

in the references Guazzelli & Morris [57], Kim & Karrila [82], Pozrikidis [129].

Faxèn’s laws

The generalized Faxèn’s laws provide us with expressions of force, torque and

stress on a spherical particle in an incident ambient flow. These expressions are very

useful and used extensively in chapter 2 and 3. The hydrodynamic force and force

moments of a spherical particle translating and rotating with velocities U p,Ωp in an

ambient flow u∞,u∞ = ω∞ × x and placed in a straining flow E∞ij are respectively

given as,

F h
i = 6πµa[(1 + 1

6a
2∇2)u∞i (x = 0)− Up

i ], (1.17a)

T hi = 8πµa3[ω∞i (x = 0)− Ωp
i ], (1.17b)

Shij = 20
3 πµa

3(1 + 1
10a

2∇2)E∞ij (x = 0). (1.17c)

It is instructive to note that the isolated stresslet Sh has a linear form in the rate

of strain E∞ and as a consequence contributes to the bulk stress by the particles in

the dilute limit. This was first discovered by Einstein who also derived the effective
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viscosity of a suspension of particles as ueff = µ[1 + 2.5φ], φ being the particle volume

fraction [47]. The Faxèn’s laws discussed above are only valid for spherical particles.

They can be extended to ellipsoidal particles or drops as well. However, for arbitrary

shaped particles or drops in Stokes flow boundary element method is a commonly

used technique discussed briefly in the next section.

1.3 Boundary element method

The boundary element method is a powerful numerical technique used to solve

partial differential equations for which it is possible to compute a Green’s function. This

method is applicable to electromagnetic and potential problems governed by Laplace’s

equation, biomolecular electrostatics problems governed by linear Poisson-Boltzmann

equation, fluid flow problems governed by Stokes equation, problems in acoustics

governed by Helmholtz’s equation and fracture mechanics problems governed by linear

elasticity equation. In this work, we solve the coupled problem of electrohydrodynamics

that requires boundary integral formulation of Laplace’s and Stokes equations.

1.3.1 Laplace’s equation

Let us consider two twice differentiable functions f and ϕ that satisfy Laplace’s

equation. Green’s second identity then states,

f∇2ϕ− ϕ∇2f =∇ · (f∇ϕ− ϕ∇f). (1.18)
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We also note that the free space Green’s function G = 1/(4πr) satisfies the singularly

forced Laplace’s equation,

∇2G(x;x0) + δ3(x− x0) = 0. (1.19)

Replacing f with the Green’s function and using the equations 1.18 and 1.19,

ϕ(x)δ3(x− x0) =∇ · [G(x;x0)∇ϕ(x)− ϕ(x)∇G(x;x0)]. (1.20)

Equation 1.20 can then be integrated over a domain of volume V having boundary

S which yields the desired boundary integral formulation after application of the

divergence theorem,

ϕ(x0) =
∫
S
[ϕ(x){n(x) · ∇G(x;x0)} − G(x;x0){n(x) · ∇ϕ(x)}] dS(x). (1.21)

The first integral on the right hand side represents a distribution of point-sources called

as a single layer potential (SLP) while the second integral represents a distribution of

point-source dipoles called as double layer potential (DLP). The above equation is

valid if the evaluation point is anywhere in the volume except the boundary. If the

evaluation point x0 is on the boundary S, we can use integral identities to obtain,

ϕ(x0) = 2
∫
S
ϕ(x){n(x) · ∇G(x;x0)} dS(x)

− 2
∫ PV

S
G(x;x0){n(x) · ∇ϕ(x)}] dS(x)

(1.22)

where, PV denotes principal value [128].
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1.3.2 Stokes equation

In order to derive a boundary integral formulation of Stokes equation, we need

Lorentz’s reciprocal theorem which is the counterpart of Green’s second identity,

∂

∂xj
(µ′u′iσik − µuiσ′ik) = 0, (1.23)

where, ui, σij and u′i, σ′ij are two different solutions to the Stokes equation. Integrating

over a control volume and applying divergence theorem we get,

∫
S
[µ′u′i(x)σik(x)− µui(x)σ′ik(x)]nk(x) dS(x) = 0. (1.24)

Replacing the solution with prime superscripts with the Stokeslet along with µ = µ′,

we obtain,

∫
S
[Gij(x;x0)σik(x)− µui(x)T ′ijk(x;x0)]nk(x) dS(x) = 0. (1.25)

A small spherical volume of infinitesimally small radius ε is then introduced around

the evaluation point x0. The above integral is then valid over the boundary S and

the small spherical volume Sε. It can be shown that as the spherical volume becomes

smaller ε→ 0, the surface integral over the small spherical volume becomes equal to

8πµuj(x0) [127, 129]. The desired boundary integral equation for Stokes flow is,

uj(x0) = − 1
8πµ

∫
S
Gij(x;x0)fi(x) dS(x)

+ 1
8π

∫
S
ui(x)Tijk(x;x0)nk(x) dS(x).

(1.26)
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The physical interpretation of the integral formulation is the same as that of Laplace’s

equation. The first integral on the right hand side represents a distribution of Stokeslet

on the boundaries and is also called as single layer potential while the second integral

represents a distribution of stresslets and is called as double layer potential. When

the evaluation point x0 is on the boundary, we get,

uj(x0) = − 1
4πµ

∫
S
Gij(x;x0)fi(x) dS(x)

+ 1
4π

∫
S
ui(x)Tijk(x;x0)nk(x) dS(x).

(1.27)

The boundary integral equation obtained for the two cases of Laplace’s and

Stokes equation can be solved numerically on a discretized boundary of interest. The

main advantages of boundary element method over other numerical methods like

finite elements, finite volume or finite differences is the reduction of the solution

space by one dimension when compared to the physical space. For two-dimensional

and axisymmetric domains, the integration is performed on contours while for three-

dimensional domains the integration is performed over surfaces. Since the boundary

integral formulation is an exact solution to the governing equations, the numerical

solution tends to be highly accurate when compared to other numerical methods.

However, the linear systems obtained by boundary element method are dense that can

only be solved by using iterative solvers. As boundary integral equations are formed

using fundamental solutions of the governing equations, they tend to be singular and

these singularities need to be accurately treated numerically or analytically. Detailed

derivations and applications of the boundary element method to potential and Stokes

problems can be found in Pozrikidis [127, 128, 129].
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1.4 Overview of current work

The main goal of this work is to develop theoretical models and numerical

techniques to describe and understand the various electrohydrodynamic (EHD) phe-

nomena observed in solid particles and liquid drops suspended in a fluid medium and

subject to an electric field. All the problems considered in this work involve a complex

interplay between electric and fluid forces at the microscale. The suspending fluid

considered in this work are leaky dielectrics, examples of which include castor, silicone

or vegetable oil. Ion dissociation is negligibly weak in these fluids as a result of which

diffuse Debye layers are absent when compared to aqueous electrolytes. The associated

phenomena in the latter case is called as electrokinetics (EK). While EHD and EK are

very similar phenomena they have developed as independent subjects [145], however,

there have been some attempts to unify the subjects [11, 147]. Electrohydrodynamics

has many industrial application, particularly in designing novel microfluidic devices

like microelectronics cooling pumps [7, 33, 133], jet printing [118], nanofibre fabrication

[135, 175]. Electrohydrodynamic effects like electrophoresis (EP) and dielectrophoresis

(DEP) have been used to manipulate particles [116, 117, 120] and cells [126] and create

electronic displays by manipulating colloidal particles [30, 3, 73, 27].

Weakly conducting dielectric particles suspended in a dielectric liquid of higher

conductivity can undergo a transition to spontaneous sustained rotation when placed in

a sufficiently strong dc electric field. The second chapter deals with this phenomenon of

Quincke rotation that has interesting implications for the rheology of these suspensions,

whose effective viscosity can be controlled and reduced by application of an external

field. While previous models based on the rotation of isolated particles have provided

accurate estimates for this viscosity reduction in dilute suspensions, discrepancies
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have been reported in more concentrated systems where particle-particle interactions

are likely significant. Motivated by this observation, we extend the classic description

of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for

pair electrohydrodynamic interactions between two identical spheres using the method

of reflections.

A coupled system of evolution equations for the dipole moments and angular

velocities of the spheres is derived that accounts for electric dipole-dipole interactions

and hydrodynamic rotlet interactions up to order O(R−5), where R is the separation

distance between the spheres. A linear stability analysis of this system shows that

interactions modify the value of the critical electric field for the onset of Quincke

rotation: both electric and hydrodynamic interactions can either stabilize or destabilize

the system depending on the orientation of the spheres, but the leading effect of

interactions on the onset of rotation is hydrodynamic. We also analyze the dynamics

in the nonlinear regime by performing numerical simulations of the governing equations.

In the case of a pair of spheres that are fixed in space, we find that particle rotations

always synchronize in magnitude at long times, though the directions of rotation

of the spheres need not be the same. The steady-state angular velocity magnitude

depends on the configuration of the spheres and electric field strength and agrees

very well with an asymptotic estimate derived for co-rotating spheres. In the case

of freely-suspended spheres, dipolar interactions are observed to lead to a number of

distinct behaviors depending on the initial relative configuration of the spheres and

on any infinitesimal initial perturbation introduced in the system: in some cases the

spheres slowly separate in space while steadily rotating, while in other cases they pair

up and either co- or counter-rotate depending on their orientation relative to the field.
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The third chapter builds on the ideas presented previously and discusses the

effect of wall on Quincke electrorotation of spherical particles. When we bring a

spherical particle under Quincke electrorotation closer to a wall, its angular velocity

gets coupled to its translational velocity producing propulsion. We show that a single

isolated particle or roller translates with a constant speed without any change in

its direction. The electrohydrodynamic interactions between many such particles or

rollers, however, very interestingly gives rise to collective motion first discovered in the

experiments of Bricard et al. [23]. This relatively simple electrohydrodynamic system

gives an insight into the collective motion of more complicated systems in confinement

involving organisms ranging from the microscale like a colony of bacteria to much

larger organisms like a school of fish or flock of birds. The pioneering work of Vicsek

et al. [166] attempted to develop a simple pair interaction based model to understand

the collective motion exhibited by these systems. Since then there have been numerous

attempts to extend these models, however, many times based on ad hoc interaction

rules. The most attractive feature of the Quincke rollers system is that the interactions

between these rollers based on Stokes and Maxwell’s equations are well defined and

the parameters are easily controllable and measurable. Using a combination of theory,

experiments and simulations, we explain this collective behavior.

The fourth chapter concerns with the deformation of a viscous liquid droplet

suspended in another liquid and subject to an applied electric field. It is a classic

multiphase flow problem best described by the Melcher-Taylor leaky dielectric model.

The main assumption of the model is that any net charge in the system is concentrated

on the interface between the two liquids as a result of the jump in Ohmic currents

from the bulk. Upon application of the field, the drop can either attain a steady
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prolate or oblate shape with toroidal circulating flows both inside and outside arising

from tangential stresses on the interface due to action of the field on the surface

charge distribution. Since the pioneering work of Taylor [159], there have been

numerous computational and theoretical studies to predict the deformations measured

in experiments. Most existing theoretical models, however, have either neglected

transient charge relaxation or nonlinear charge convection by the interfacial flow. In

this work, we develop a novel small-deformation theory accurate to second order in

electric capillary number O(Ca2
E) for the complete Melcher-Taylor model that includes

transient charge relaxation, charge convection by the flow, as well as transient shape

deformation. The main result of the paper is the derivation of coupled evolution

equations for the induced electric multipoles and for the shape functions describing the

deformations on the basis of spherical harmonics. Our results, which are consistent with

previous models in the appropriate limits, show excellent agreement with fully nonlinear

numerical simulations based on an axisymmetric boundary-element formulation and

with existing experimental data in the small-deformation regime.

The fifth chapter describes the formulation of a three-dimensional boundary

element method for the complete leaky dielectric model to systematically study the

deformation and dynamics of liquid drops in electric fields. Most of the numerical

simulations in previous studies that are based on Melcher-Taylor leaky delectric

model have either neglected interfacial charge convection or restricted themselves to

axisymmetric drops. The inclusion of charge convection in our simulation permits us

to investigate drops in the Quincke regime, in which experiments have demonstrated

symmetry breaking bifurcations leading steady electrorotation. Our simulation results

show excellent agreement with existing experimental data and small deformation
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theories.

Finally, we conclude in chapter 6 and discuss potential extensions of the work

presented in this thesis.



Chapter 2

Electrohydrodynamic interaction

of spherical particles under

Quincke rotation

2.1 Introduction

Electrorheological (ER) fluids, or collections of fine dielectric particles sus-

pended in a dielectric liquid [51, 60, 119, 150], are commonly used in a wide range of

technological applications such as hydraulic valves [107] and clutches, brakes [152],

shock absorbers [155], as well as in various microfluidic devices [178, 106, 169]. When

placed in an electric field, the particles in an ER fluid polarize and interact, causing

them in most cases to form chains and larger aggregation patterns in the direction

of the field [51, 61, 86, 116, 117], thereby strongly enhancing the effective viscosity

of the suspension. The formation of these internal structures is reversible and can

be suppressed upon switching off of the field, offering an easy way of controlling the

19
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Figure 2.1: Polarization of a spherical particle in an applied electric field
E0. (Left) If the charge relaxation time τ2 = ε2/σ2 of the particle is less than
that, τ1 = ε1/σ1, of the suspending fluid, the induced dipole P is parallel
to the applied field; (right) if it is greater, the induced dipole is antiparallel.
After Ref. [76].

rheological properties of the fluid in real time. This so-called positive ER effect, by

which chaining in the field direction results in a viscosity increase, is generally observed

when the conductivity σ2 of the suspended particles is larger than that of the carrier

liquid, denoted by σ1. The situation is quite different when σ1 > σ2, where chains

and sheets of particles have been reported to form in directions perpendicular to the

electric field and can result in an effective decrease in the apparent viscosity of the

suspension [18].

Under certain conditions, application of a steady uniform electric field can

also drive the spontaneous rotation of spherical particles. This peculiar phenomenon

was first discovered by Weiler [171] and Quincke [130] in the late nineteenth century,

and has later become known as Quincke rotation. Detailed models for this effect

were subsequently developed by Tsebers [164] and Jones [76], who used Melcher and

Taylor’s leaky dielectric model [103, 145] and identified the following mechanism for

Quincke rotation. As depicted in Fig. 2.1, the sign of the dipole induced in a spherical

particle placed in a uniform electric field depends on the properties of the particle



21

and liquid phases. If the ratio of the dielectric permittivity to the conductivity of

the material is larger in the suspending liquid than inside the particle, the induced

dipole is parallel to the direction of the applied field; if it is less, the induced dipole is

anti-parallel. This ratio τ = ε/σ also corresponds to the characteristic relaxation time

for the surface charge distribution on the surface of the particle upon application of the

field. If the orientation of the sphere is weakly perturbed, a mechanical torque arises

as a result of the Maxwell stress in the fluid, which is restoring in the first case but

destabilizing in the second case. If the electric field is strong enough to overcome the

effect of the viscous torque on the particle, this can result in the steady spontaneous

rotation of the particle with a constant angular velocity around an arbitrary axis

perpendicular to the direction of the applied field. To summarize, Quincke rotation

occurs if
ε2

σ2
>
ε1

σ1
, (2.1)

which is to say that the characteristic charge relaxation time is larger inside the

particle than outside, and if the electric field strength exceeds a critical value Ec whose

expression will be derived in Sec. 2.2.1 in terms of material properties. A full stability

analysis of the dynamical system shows that the onset of Quincke rotation is associated

with a supercritical pitchfork bifurcation. If particle inertia is significant, the dynamics

of the system are formally identical to those of the classic Lorenz oscillator [101], and

further increasing the field strength therefore eventually leads to a second bifurcation

to unsteady chaotic dynamics [94], as has also been observed in experiments [124].

Spontaneous electrorotation followed by complex deformation dynamics has also been

reported in experiments on weakly conducting droplets suspended in a less conducting

fluid when placed in a strong electric field [84, 59, 141].
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Quincke electrorotation in large-scale suspensions has interesting consequences

for the effective rheology of the suspensions [98, 95, 112, 96, 125, 69, 70]. When

an external shear flow is applied (for instance in a Couette device or in pressure-

driven Poiseuille flow) together with a sufficiently strong external electric field in

the flow gradient direction, Quincke rotation arises in the same direction as the

external flow vorticity and thereby effectively decreases the apparent viscosity of

the suspension. This effect, which is easy to interpret theoretically [21, 75, 69], has

been observed in a number of experiments in both Couette and pressure-driven flow

setups [98, 95, 112, 96, 125]. An increase in the effective electric conductivity of the

suspension has also been observed [26, 113]. While experiments show fairly good

agreement with simple dilute theoretical predictions for the change of viscosity in

sufficiently strong flows of dilute suspensions [95], departures from these predictions

have been reported at low shear rates and high concentrations, presumably as a result

of particle-particle electrohydrodynamic interactions, which may cause structuring

of the suspension in the form of chains or other types of aggregates as in previously

studied ER fluids.

Particle-particle interactions in Quincke rotation have only received limited

attention up to now, in part owing to the strongly nonlinear nature of the governing set

of equations, which will be described below. In early work, Wan et al. [168] considered

the electrostatic interaction of a pair of dielectric spheres, and derived the induced

dipoles in both spheres using bispherical coordinates. They then used this result to

evaluate the mean force on a particle when one of the two spheres was rotated at a

constant angular velocity around the other one. Their study, however, did not account

for the change in polarization of the particles as a result of Quincke rotation nor for
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the effect of hydrodynamic interactions. More recently, a significantly more detailed

analysis was proposed by Dolinsky & Elperin [40], who used a somewhat similar

treatment as in the present work. They applied the method of reflections to analyze

Quincke rotation of a pair of spheres in an external field. They derived expressions for

the induced electric dipoles in both spheres that accounted for electric interactions

as well as particle rotations, and used these expressions to draw conclusions on the

effect of interactions on the angular velocity of the spheres and electric forces due

to dipole-dipole interactions. Their study, however, entirely neglected hydrodynamic

interactions due to the rotation and motion of the spheres; these interactions, as

we show below, are as important as electric interactions as they modify the induced

dipoles and resulting angular velocities at the same asymptotic order.

In the present paper, we describe a detailed asymptotic analysis of the effects of

both electric and hydrodynamic interactions on Quincke rotation of a pair of identical

spheres suspended in an unbounded domain when a uniform external electric field is

applied. The details of the model, which is based on the leaky dielectric model of

Melcher and Taylor [103] and extends previous classic studies of Quincke rotation of

isolated particles [164, 76], are presented in Sec. 2.2, where a set of coupled nonlinear

ordinary differential equations for the dipole moments and angular velocities of the

two spheres are derived using the method of reflections [137] and are valid to order

O(R−5), where R denotes the distance between the two spheres. This set of equations

is then used to study the stability of the system in Sec. 2.3, where a linear stability

analysis shows that interactions can either increase or decrease the value of the critical

electric field for onset of rotation depending on the configuration of the spheres.

Finally, we also carry out numerical simulations of both fixed and freely suspended
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Figure 2.2: Isolated sphere undergoing Quincke rotation in a nonuniform
external field Ee(x).

spheres in Sec. 2.4, and show that interactions lead to synchronization of the particle

rotations and either pairing or separation of the two particles depending on their

initial configuration and on the infinitesimal perturbation introduced in the system at

t = 0. We conclude in Sec. 4.6.

2.2 Theoretical model

2.2.1 Single sphere in a nonuniform field

Governing equations and moment equations

We first analyze in detail the case of a single isolated sphere of radius a placed in

an infinite liquid and subject to a nonuniform external electric field Ee(x) = −∇φe(x)

as depicted in Fig. 2.2. Denote by (ε1, σ1) the permittivity and conductivity of the

suspending liquid, and by (ε2, σ2) those of the particle. We adopt a coordinate system

with the origin at the center of the sphere, and we assume that the external potential

φe(x) in the absence of the sphere can be expanded in a Taylor series about the origin

as

φe(x) = φe(0) + x · ∇φe(0) + 1
2xx : ∇∇φe(0) + ..., (2.2)
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where we neglect higher-order terms in this discussion for reasons that will become

clear in Sec. 2.2.2. The presence of the sphere perturbs the external potential as:

φ(x) =


φ+(x) = φe(x) + φ+

d (x) if |x| > a,

φ−(x) = φe(x) + φ−d (x) if |x| < a,
(2.3)

where we wish to determine the disturbance potentials φ+
d (x) and φ−d (x) outside and

inside the sphere, respectively.

Following the classic Taylor-Melcher leaky dielectric model [103, 145], which

was also used in previous studies of Quincke rotation [164, 76], we assume that any

induced charge in the system is concentrated at the interface between the solid and

liquid in the form of a surface charge distribution q(x), which is related to the normal

jump in the electric displacement field across the interface via Gauss’s law [72]:

q(x) = n · JεE(x)K = −n · [ε1∇φ+(x)− ε2∇φ−(x)], (2.4)

where n = x/x is a unit outward normal on the particle surface. Under this assumption,

both disturbance potentials satisfy Laplace’s equation since there is no net charge in

the solid and liquid away from the interface:

∇2φ+
d (x) = ∇2φ−d (x) = 0. (2.5)

This will allow us to seek solutions as expansions in spherical harmonics below.

Boundary conditions on the potentials are as follows. First, the disturbance potential



26

outside the sphere must decay far away from the surface:

φ+
d (x)→ 0 as |x| → ∞. (2.6)

Second, the potential must be continuous across the interface:

φ+
d (x) = φ−d (x) if |x| = a. (2.7)

The third boundary condition expresses charge conservation on the interface as a

result of Ohmic currents from the bulk and charge convection by the moving surface:

∂q

∂t
+ n · JJK +∇s · (qV) = 0 at |x| = a. (2.8)

In Eq. (2.8), n · JJK denotes the normal jump in Ohmic current across the interface:

n · JJ(x)K = n · JσE(x)K = −n · [σ1∇φ+(x)− σ2∇φ−(x)]. (2.9)

Also, ∇s = (I− nn) · ∇ is the surface divergence operator, and V is the velocity of a

point on the sphere surface, which is assumed to be rotating at a yet unknown angular

velocity Ω: V = Ω× an.

Solutions of Eq. (5.1) for the disturbance potentials outside and inside the

sphere can be written as expansions in decaying and growing spherical harmonics,
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respectively:

φ+
d (x) = x ·P

x3 + 1
2

xx : Q
x5 + ..., (2.10)

φ−d (x) = x ·P
a3 + 1

2
xx : Q
a5 + ..., (2.11)

which automatically satisfy the two boundary conditions of Eqs. (2.6)–(2.7). In

Eqs. (2.10)–(2.11), vector P denotes the dipole moment on the sphere, and second-

order tensor Q denotes the quadrupole moment. We do not include any monopole

in the expansions as the sphere is assumed to carry no net charge. Higher-order

multipoles could also be included, though we will not consider them here as these

will be negligible in the study of pair interactions in Sec. 2.2.2. Substituting these

expansions into the charge conservation equation (2.8) allows one to derive evolution

equations for the moments P and Q as

dP
dt

= Ω× [P + a3ε21∇φe(0)]− 1
τMW

[
P + a3σ21∇φe(0)

]
, (2.12)

dQ
dt

= Ω× [Q + a5ε′21∇∇φe(0)]− 1
τ ′MW

[Q + a5σ′21∇∇φe(0)], (2.13)

where τMW and τ ′MW are the first and second Maxwell-Wagner relaxation times:

τMW = ε2 + 2ε1

σ2 + 2σ1
, τ ′MW = 2ε2 + 3ε1

2σ2 + 3σ1
, (2.14)

and where we have introduced the following dimensionless parameters:

ε21 = ε2 − ε1

ε2 + 2ε1
, ε′21 = ε2 − ε1

2ε2 + 3ε1
, σ21 = σ2 − σ1

σ2 + 2σ1
, σ′21 = σ2 − σ1

2σ2 + 3σ1
. (2.15)
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In Eq. (2.13), the notations Ω×Q and Ω×∇∇φe(0) are used to denote the following

two tensors in index notation:

[Ω×Q]ij = εiklΩkQlj, [Ω×∇∇φe(0)]ij = εiklΩk
∂2φe
∂xl∂xj

(0). (2.16)

Equation (2.12) for the dipole moment P differs slightly from the dipole evolution

equation appearing in previous studies of Quincke rotation [69, 70], through the

presence of the term involving Ω × ∇φe(0). This discrepancy is easily resolved by

realizing that the dipole P appearing in Eq. (2.12) is the total dipole moment on

the particle, whereas previous studies have typically focused on the retarding dipole

moment defined as Pr = P − P∞, where P∞ = −a3ε21∇φe(0) is the instantaneous

polarization. From Eq. (2.12), it is straightforward to recover the commonly used

equation for Pr:

dPr

dt
= Ω×Pr −

1
τMW

[Pr − a3(ε21 − σ21)∇φe(0)]. (2.17)

Similarly, an equation can be written for the retarding quadrupole moment Qr =

Q−Q∞ where Q∞ = −a5ε′21∇∇φe(0) as

dQr

dt
= Ω×Qr −

1
τ ′MW

[Qr − a5(ε′21 − σ′21)∇∇φe(0)]. (2.18)

For the purpose of studying Quincke rotation, it is equivalent to use (P,Q) or (Pr,Qr),

as we will see below that the instantaneous dipole and quadrupole moments P∞ and

Q∞ do not contribute to the electric torque on the particle. In this work, we make the

choice of working with the total moments P and Q, which satisfy Eqs. (2.12)–(2.13).
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The physical interpretation of Eqs. (2.12)–(2.13) is straightforward: the retarding

parts of the dipole and quadrupole moments are subject to the rotation of the particle

with angular velocity Ω, while the total dipole and quadrupole simultaneously relax

toward their steady-state values in the absence of rotation. The time scales for these

relaxation processes are given by the Maxwell-Wagner relaxation times of Eq. (2.14).

It is also easy to see how additional equations for higher multipole moments could

also obtained, though we do not include them here.

Balance of angular momentum

In the above discussion, we have assumed that the sphere is rotating at a

given angular velocity Ω, which is still unknown. To determine Ω, we write down

the angular momentum balance for the sphere, which is subject to both viscous and

electric torques:

I
dΩ
dt

= −8πηa3Ω + Te. (2.19)

Here, I = 2ma3/5 is the moment of inertia of a sphere of mass m, η is the viscosity of

the suspending liquid, and Te is the electric torque on the particle. Both the dipole

and quadrupole moments can contribute to the electric torque, which was previously

calculated by Jones and Washizu [77] as

Te = −4πε1[P×∇φe(0) + (Q · ∇)×∇φe(0)], (2.20)

or, in index notation:

T ei = −4πε1

[
εijkPj

∂φe
∂xk

(0) + εijkQjl
∂2φe
∂xl∂xk

(0)
]
. (2.21)
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From this expression, it is easy to see that the instantaneous dipole and quadrupole

moments, which are collinear with ∇φe(0) and ∇∇φe(0), respectively, do not result

in any torque on the particle.

In this paper, we focus on the inertialess limit where the left-hand side in

Eq. (2.19) is negligible. In this case, the angular momentum balance simplifies to the

following relation between angular velocity and multipole moments:

2ηa3Ω + ε1[P×∇φe(0) + (Q · ∇)×∇φe(0)] = 0. (2.22)

Equations (2.12)–(2.13), together with Eq. (2.22), constitute a coupled system of

equations for P, Q, and Ω, which can be analyzed or integrated numerically given an

initial condition.

Steady-state solutions

We first seek steady-state solutions to this system of equations, with the aim

of determining conditions for spontaneous steady rotation to arise. At steady state,

Eqs. (2.12)–(2.13) for the dipole and quadrupole moments reduce to:

Ω×P− 1
τMW

P = a3σ21

τMW
∇φe(0)− a3ε21Ω×∇φe(0), (2.23)

Ω×Q− 1
τ ′MW

Q = a3σ′21
τ ′MW

∇∇φe(0)− a3ε′21Ω×∇∇φe(0). (2.24)

These two equations admit analytical solutions for P and Q:

P = A1[Ω×∇φe(0) + τMW(Ω · ∇φe(0))Ω]− A2∇φe(0), (2.25)

Q = A3[Ω×∇∇φe(0) + τ ′MW(Ω · ∇∇φe(0))Ω]− A4∇∇φe(0), (2.26)
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where the coefficients A1 through A4 are given by

A1 = a3τMW(ε21 − σ21)
1 + Ω2τ 2

MW
, A2 = a3

[
ε21 + σ21 − ε21

1 + Ω2τ 2
MW

]
, (2.27)

A3 = a3τ ′MW(ε′21 − σ′21)
1 + Ω2τ ′2MW

, A4 = a3
[
ε′21 + σ′21 − ε′21

1 + Ω2τ ′2MW

]
. (2.28)

Finally, substituting Eqs. (2.25)–(2.26) into the torque balance Eq. (2.22) yields a

nonlinear equation for the angular velocity Ω.

Obtaining an exact analytical expression for Ω or its norm when the electric

field is nonuniform (i.e., when ∇∇φe(0) 6= 0) is not straightforward, though Eq. (2.22)

could still be used in numerical simulations. However, the case of a uniform field can

be further analyzed. If ∇∇φe(0) = 0 and Q = 0, the equation for Ω simplifies to

2ηa3Ω + ε1A1[Ω×∇φe + τMW(Ω · ∇φe)Ω]×∇φe = 0. (2.29)

Taking the dot product of Eq. (2.29) with the local potential gradient ∇φe immediately

yields

Ω · ∇φe = 0, (2.30)

i.e., any particle rotation will have an angular velocity Ω normal to the direction of

the external field. The exact direction of rotation is however indeterminate. The

magnitude of the angular velocity can be obtained by taking the dot product of

Eq. (2.29) with Ω:

2ηa3Ω2 − ε1A1Ω2E2
e = 0, (2.31)

where we have introduced the magnitude of the external electric field Ee = −∇φe.

Using Eq. (2.27) for A1, which is itself a function of Ω2, we obtain a biquadratic
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equation for Ω = |Ω|:

Ω2
[
Ω2τ 2

MW + 1− ε1τMW(ε21 − σ21)
2η E2

e

]
= 0. (2.32)

The solution Ω = 0 always exists and corresponds to the absence of rotation. However,

another solution is also given by

Ω = ± 1
τMW

√√√√(Ee
Ec

)2
− 1, with Ec =

√
2η

ε1τMW(ε21 − σ21) . (2.33)

This solution, which is the same as that obtained in previous studies of Quincke

rotation [76], only arises when the value of the external field Ee exceeds the critical

value Ec. The solutions are plotted in Fig. 2.3, where we see that the steady solution

with Ω = 0 bifurcates at Ee = Ec. From the definition of Ec, it is clear that Quincke

rotation can only occur if ε21 > σ21, which is easily shown to be equivalent to

ε2

σ2
>
ε1

σ1
, (2.34)

in agreement with the physical interpretation provided in Sec. 2.1.

A linear stability analysis of the dynamical system shows that the onset of

Quincke rotation corresponds to a supercritical pitchfork bifurcation, and that the

steady solution loses its stability when Ee > Ec. In experiments, spontaneous rotation

is expected to take place in this case, around an arbitrary direction perpendicular to

the field direction and with an angular velocity magnitude given by Eq. (2.33). In

the absence of particle inertia, the two branches defined by Eq. (2.33) are stable for

any field strength satisfying Ee > Ec. If inertia is retained in the angular momentum
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Figure 2.3: Stability diagram for the angular velocity magnitude of a single
sphere. A supercritical pitchfork bifurcation occurs at Ee = Ec; above this
value, the solution Ω = 0 becomes unstable and spontaneous rotation occurs
with an angular velocity given by Eq. (2.33).
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Figure 2.4: Interaction of two identical spheres undergoing Quincke rotation
in a uniform field E0.

balance of Eq. (2.19), previous studies have shown that the governing equations for P

and Ω can be reduced to the Lorenz oscillator equations [101], and that a transition

to chaos therefore occurs in very strong fields [94, 124].
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2.2.2 Two spheres in a uniform field

Electric problem

We now consider the case of two identical spheres separated by a vector

R = x2 − x1 and placed in a uniform electric field E0 as depicted in Fig. 2.4. We also

define the notations R = |R| and R̂ = R/R. We wish to analyze the leading-order

effect of electric and hydrodynamic interactions between the spheres based on the

single-particle results derived in Sec. 2.2.1 and using the method of reflections. Note

that because the spheres perturb the electric field around them, they really experience

a non-uniform field as a result of interactions. First, each sphere polarizes under the

field, and develops a dipole moment Pα (with α = 1, 2) obtained by a generalization

of the dipole relaxation equation (2.12). For sphere 1:

dP1

dt
= Ω1 × [P1 + a3ε21∇φ1

e(x1)]− 1
τMW

[P1 + a3σ21∇φ1
e(x1)], (2.35)

and a similar equation can also be written for the dipole moment P2 of the second

sphere. A relaxation equation based on Eq. (2.13) can also be written for the

quadrupole moment Qα induced in each sphere, though we will show below that it

can be neglected to leading order. In Eq. (2.35), ∇φ1
e(x1) denotes the external electric

field (up to a minus sign) experienced by sphere 1. This electric field includes the

applied uniform field E0, as well as a correction arising from the potential disturbance

φ+2
d (x) induced by the various multipoles generated inside sphere 2. To leading order,

according to Eq. (2.10):

φ+2
d (x) = (x− x2) ·P2

|x− x2|3
+ ... (2.36)
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which can be expanded on the basis of growing spherical harmonics near the center

of sphere 1 to obtain the correction to the applied field. All calculations done, the

potential gradient ∇φ1
e(x1) appearing in Eq. (2.35) can be shown to be of the form

∇φ1
e(x1) = −E0 + 1

R3 Π ·P2 +O(R−8), (2.37)

where we have introduced the second-order tensorial operator Π = I − 3R̂R̂. The

error in Eq. (2.37), which arises from neglecting the contributions of the quadrupole

moment and higher multipoles to the disturbance potential, can be estimated to

be of order O(R−8). Indeed, because the applied field is uniform, the leading-order

quadrupole moment induced inside the spheres arises from the second gradient of the

disturbance potential φ+
d resulting from the dipole moments and is therefore of order

|Qα| = O(R−4) as can be seen from Eq. (2.36). The quadrupole moment then adds

an O(R−7) correction to the disturbance potential [see Eq. (2.10)], corresponding to

an O(R−8) correction to the potential gradient in Eq. (2.37).

Torque balance

To determine the angular velocity Ω1 appearing in Eq. (2.35), we consider the

torque balance on sphere 1 in the inertialess limit, where the angular velocity of sphere

1 is modified by the hydrodynamic velocity u2(x) induced by the motion of sphere 2

[82]:

Te
1 − 8πηa3

[
Ω1 −

1
2∇× u2(x1)

]
= 0. (2.38)
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Here, Te
1 is the electric torque on sphere 1:

Te
1 = −4πε1P1 ×∇φ1

e(x1) +O(R−8), (2.39)

where ∇φ1
e(x1) is given in Eq. (2.37), and where we have neglected the torque induced

by the quadrupole moment [77]. To leading order, u2(x) is given by the rotlet flow

driven be the rotation of sphere 2 with angular velocity Ω2 [82]:

u2(x) = a3Ω2 ×
(x− x2)
|x− x2|3

+O(R−5), (2.40)

with vorticity at the location of sphere 1 given by:

∇× u2(x1) = − a
3

R3 Π ·Ω2 +O(R−6). (2.41)

The order of the error in Eqs. (2.40)–(2.41) can be understood as follows: the rotlet flow

u1 generated by sphere 1, which scales like O(R−2) at the center of sphere 2, induces

a stresslet on sphere 2, whose magnitude scales with the gradient of u1 as O(R−3)

and adds a contribution to u2 in Eq. (2.40) that decays like O(R−5). Substituting

Eqs. (2.39) and (2.41) into the torque balance Eq. (2.38) yields

Ω1 + a3

2R3 Π ·Ω2 = − ε1

2ηa3 P1 ×∇φ1
e(x1) +O(R−6), (2.42)

and a similar equation can be written for the torque balance on sphere 2. These two

coupled linear equations for Ω1 and Ω2 are easily solved analytically to leading order
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as:

Ω1 = ε1

2ηa3

{
P1 ×

(
E0 −

1
R3 Π ·P2

)
− a3

2R3 Π ·
[
P2 ×

(
E0 −

1
R3 Π ·P1

)]}
, (2.43)

Ω2 = ε1

2ηa3

{
P2 ×

(
E0 −

1
R3 Π ·P1

)
− a3

2R3 Π ·
[
P1 ×

(
E0 −

1
R3 Π ·P2

)]}
, (2.44)

where the error in both equations is of order O(R−6). Note that the last term in

Eqs. (2.43)–(2.44) is itself of order O(R−6); we retain it nonetheless as it is required

for Ω1 = Ω2 = 0 to be an exact steady solution of the equations derived here.

Force balance

In the case of two freely suspended particles, translational motion is also

expected to occur as a result of dielectrophoretic forces on the particles. Such forces

were previously analyzed in detail using the method of reflections [170, 77, 137], and

can be expressed as

F1 = −4πε1

[
P1 · ∇∇φ1

e(x1) + 1
6Q1 : ∇∇∇φ1

e(x1) + ...
]
, (2.45)

with a similar expression for F2. To leading order, this expression simplifies to

F1 = −12πε1

R4 [(P1 · R̂)P2 + (P2 · R̂)P1 + (P1 ·P2)R̂

− 5(P1 · R̂)(P2 · R̂)R̂] +O(R−9),
(2.46)
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and by symmetry F2 = −F1. This dielectrophoretic force then enters the force balance

on the sphere. Neglecting inertia, the force balance on sphere 1 is written

6πηa
[
U1 − u2(x1)− a2

6 ∇
2u2(x1)

]
= F1. (2.47)

where the translational velocity U1 of the sphere is also modified by the flow field u2

induced by sphere 2 according to Faxén’s law [82]. Noting that ∇2u2(x1) = O(R−7),

this yields the following expression for the particle velocities:

U1 = − a
3

R2 Ω2 × R̂ + F1

6πηa +O(R−5), (2.48)

U2 = a3

R2 Ω1 × R̂ + F2

6πηa +O(R−5). (2.49)

In these equations, the leading-order error arises due to the Stokeslet flows driven

by forces F1 and F2, which modify the velocities to order O(R−5) and could easily

be included for higher accuracy. The translational motion arises from two different

processes: first, the spheres are advected by the rotlet flows they generate, which

can lead to orbiting motions as we will see in numerical simulations in Sec. 2.4.2;

second, dielectrophoretic forces cause relative motions that can be either attractive or

repulsive depending on the orientation of the electric dipoles on the spheres.

Non-dimensionalization and summary of the governing equations

In the remainder of the paper, we scale all variables using the particle radius

a, Maxwell-Wagner relaxation time τMW, and applied electric field strength E0 as

characteristic scales for length, time, and electric field, respectively. Under these

scalings, one dimensionless group appears in the equations, which is the electric Mason
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number Ma characterizing the ratio of viscous to polarization forces:

Ma = η

τMWε1E2
0
. (2.50)

The Mason number is directly related to the ratio of the applied field strength to the

critical electric field E0
c for the onset of Quincke rotation of a single particle in the

absence of interactions as

Ma = ε21 − σ21

2

(
E0
c

E0

)2

. (2.51)

After non-dimensionalization, the governing equations can be summarized as

follows. The electric dipoles P1 and P2 satisfy the two coupled ordinary differential

equations:

dP1

dt
= Ω1 ×

[
P1 + ε21

(
−ẑ + 1

R3 Π ·P2

)]
−
[
P1 + σ21

(
−ẑ + 1

R3 Π ·P2

)]
, (2.52)

dP2

dt
= Ω2 ×

[
P2 + ε21

(
−ẑ + 1

R3 Π ·P1

)]
−
[
P2 + σ21

(
−ẑ + 1

R3 Π ·P1

)]
. (2.53)

The angular velocities Ω1 and Ω2 can also be expressed in terms of the dipole moments

through the torque balance on each sphere as

Ω1 = 1
2Ma

{
P1 ×

(
ẑ− 1

R3 Π ·P2

)
− 1

2R3 Π ·
[
P2 ×

(
ẑ− 1

R3 Π ·P1

)]}
, (2.54)

Ω2 = 1
2Ma

{
P2 ×

(
ẑ− 1

R3 Π ·P1

)
− 1

2R3 Π ·
[
P1 ×

(
ẑ− 1

R3 Π ·P2

)]}
. (2.55)
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Finally, if the spheres are freely suspended, their translational velocities are given by

U1 =− 1
R2 Ω2 × R̂ − 4

2MaR4 [(P1 · R̂)P2 + (P2 · R̂)P1

+ (P1 ·P2)R̂ − 5(P1 · R̂)(P2 · R̂)R̂]
(2.56)

U2 = 1
R2 Ω1 × R̂ + 4

2MaR4 [(P1 · R̂)P2 + (P2 · R̂)P1

+ (P1 ·P2)R̂ − 5(P1 · R̂)(P2 · R̂)R̂].
(2.57)

Equations (2.52)–(2.53) form a system of coupled nonlinear ordinary differential

equations for the dipole moments, that are also coupled to Eqs. (2.54)–(2.57) for

the angular and translational motions of the spheres. This system of equations can

analyzed theoretically as we do next in Sec. 2.3, or integrated numerically as will be

discussed in Sec. 2.4.

2.3 Linear stability analysis

We first analyze the effects of electrohydrodynamic interactions on the onset of

Quincke rotation by performing a linear stability analysis on the equations of Sec. 4.4

in the case where the two spheres are held fixed in space, so that the separation vector

R does not change in time and the spheres only undergo rotational motion. In this

case, the system of equations reduces to Eqs. (2.52)–(2.55). A steady base state exists

in the absence of rotation: Ω1 = Ω2 = 0, in which case both dipole moments assume
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the same steady value P0 obtained by solution of Eqs. (2.52)–(2.53):

P1 = P2 = P0 = σ21

1 + σ21

R3

(
I + 3σ21

R3 − 2σ21
R̂R̂

)
· ẑ. (2.58)

In this equation, we see that electric interactions modify the steady dipole with a

correction scaling as O(R−3) that can have a non-zero component perpendicular to the

field depending on the orientation of the spheres. Next, we perturb the steady-state

dipole by a small amount:

P1(t) = P0 + εp1(t), P2(t) = P0 + εp2(t), (2.59)

which induces weak rotations:

Ω1(t) = εω1(t), Ω2(t) = εω2(t). (2.60)

Linearization of the governing equations easily yields a homogeneous system of coupled

linear ordinary differential equations for the perturbation dipoles:

dp1

dt
=
(

1− ε21

σ21

)
ω1 ×P0 − p1 −

σ21

R3 Π · p2, (2.61)

with a similar equation for p2(t). In Eq. (2.61), the linearized angular velocity ω1 is

expressed as

ω1 = 1
2Ma

{ 1
σ21

p1 ×P0 −
1
R3 P0 × (Π · p2)

− 1
2R3 Π ·

[ 1
σ21

p2 ×P0 −
1
R3 P0 × (Π · p1)

]}
.

(2.62)
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with a similar expression for ω2. Eqs. (2.61)–(2.62), together with equivalent expres-

sions for p2 and ω2, can be written in the form

d

dt

 p1

p2

 = J(Ma, ε21, σ21,R) ·

 p1

p2

 , (2.63)

where the 6 × 6 Jacobian matrix J is a function of the Mason number Ma (or

equivalently of E0/E
0
c ), of the dimensionless material parameters ε21 and σ21, and of

the dimensionless separation vector R between the two spheres. Note that while the

matrix J depends on the separation vector R, its eigenvalues really only depend on the

dimensionless distance R between the sphere centers and on the angle Θ = cos−1(R̂ · ẑ)

defining the orientation of the sphere pair with respect to the external field direction.

The explicit form of J, which is quite cumbersome, is omitted here for brevity.

The eigenvalues λ of the Jacobian J, which can be calculated numerically,

determine the stability of the base state with no rotation. Their real parts are the

actual growth rates, and a positive growth rate indicates the exponential growth of

any small perturbation of the base-state dipole moment of Eq. (2.58), subsequently

leading to Quincke rotation of the particles. A numerical solution of the eigenvalue

problem shows that the Jacobian has six real eigenvalues, which are all negative when

there is no electric field. As the field strength is increased, some of them become

positive indicating the onset of Quincke rotation. The critical field value Ec above

which instability occurs is plotted as a function of the orientation Θ of the spheres in

Fig. 2.5(a), where it is normalized by the critical field E0
c obtained in Eq. (2.33) in

the absence of interactions. The effect of interactions is subtle and can either increase

or decrease the value of the critical electric field depending on Θ: for spheres that are
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Figure 2.5: Results of the linear stability analysis. (a) Critical electric field
Ec in the presence of interactions (normalized by the critical field E0

c for onset
of Quincke rotation of an isolated particle) as a function of the orientation
angle Θ between the pair of spheres and the field direction, for various values of
the separation distance R. (b) Critical electric field Ec/E0

c as a function of Θ
for R = 2.5, when either electric interactions (EI), hydrodynamic interactions
(HI), or both are taken into account. In this figure, the materials parameters
ε21 and σ21 were chosen as in the recent experiments of Lemaire and coworkers
[98, 95, 112, 96] to be ε21 = −0.1097 and σ21 = −0.5.

nearly aligned with the field (Θ close to 0 or π), the critical electric field increases,

corresponding to a stabilizing effect of interactions, whereas it decreases when the pair

of spheres is aligned in a direction perpendicular to the applied field (Θ close to π/2),

corresponding to a destabilizing effect. These effects are clearest when the particles

are close to one another, and as the distance R increases, the critical electric field

asymptotically tends to the critical field E0
c for an isolated sphere. The dependence of

Ec on R can also be probed and shows that Ec/E0
c − 1 = O(R−3) for R� 1, as could

have been anticipated from the form of the governing equations.

The respective roles of electric and hydrodynamic interactions on the stability

can be further analyzed by solving two additional eigenvalue problems in which either

type of interaction is turned off. The results for the critical field in these various

cases are plotted in Fig. 2.5(b), for a fixed distance of R = 2.5. When only electric

interactions are taken into account, the critical electric field shows a similar dependence
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Figure 2.6: Angular velocities in a simulation of two fixed interacting spheres
separated by a distance R = 10 undergoing Quincke rotation in an applied
electric field of magnitude E0 = 1.5E0

c : (a) angular velocity Ω1 of the first
sphere as a function of time; (b) angular velocity Ω2 of the second sphere; (c)
angular velocity magnitudes.

on Θ as when both types of interactions are included, indicating a stabilizing effect

of electric interactions for a pair of spheres aligned with the field but a destabilizing

effect for spheres aligned perpendicular to the field; however, the critical value of

the electric field is always larger than when hydrodynamic interactions are included,

suggesting that hydrodynamic interactions play a more important role in the onset of

rotation than electric interactions. This is indeed confirmed when electric interactions

are turned off, in which case the critical electric field Ec is the same as for the full

system of equations: this curious observation suggests that hydrodynamic modes are

the ones that govern the modification of the onset of instability by interactions.

2.4 Numerical simulations

While the linear stability analysis of Sec. 2.3 provided results on the onset

of rotation in the presence of interactions, nonlinear dynamics can only be studied
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numerically. In this section, we present results from numerical simulations of the

unsteady governing equations, which were integrated using a fourth-order Runge-Kutta

time-marching scheme. We first consider the case of two spheres that are fixed in space

but free to rotate in Sec. 2.4.1, and then turn to the case of freely suspended spheres

in Sec. 2.4.2. In all simulations, the initial dipole moments are given by Eq. (2.58) but

are weakly perturbed by infinitesimal random vectors with components of magnitude

of the order of 10−3. For both fixed and freely suspended spheres, we note a very

strong sensitivity of the solution on the infinitesimal initial perturbation introduced in

the system. Therefore, we focus the discussion on a few representative cases as well as

on the statistics for the steady states obtained over many realizations with different

random initial perturbations. In all of this section, the two dimensional material

constants ε21 and σ21 are set to ε21 = −0.1097 and σ21 = −0.5, which correspond to

the experiments of Lemaire and coworkers [98, 95, 112, 96] and were also the values

used by Huang et al. [69].

2.4.1 Fixed spheres

A typical simulation in the case of two fixed spheres in a field of magnitude

E0 = 1.5E0
c is shown in Fig. 2.6, where both the components and magnitude of the

angular velocities are plotted as functions of time. The infinitesimal perturbation

introduced to the system at t = 0 is found to amplify with time and lead to the

growth of the angular velocities, which briefly oscillate and reach steady values. The

steady-state angular velocities are always found to have zero components in the field

direction as in the single-sphere case. Quite interestingly, the magnitudes Ω1 and

Ω2 of the angular velocities are found to converge to the same value, even though
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Figure 2.7: Angular velocities as functions of time in two simulations with
R = 10 at different field strengths: (a) E0/E

0
c = 3.0, (b) E0/E

0
c = 6.0.

the directions of rotation are not the same. This peculiar result, which we cannot

explain theoretically, is observed systematically in all simulations. The final direction

of rotation in the x-y plane depends sensitively on the initial perturbation, but the

steady magnitude of the angular velocity varies only weakly between simulations at

fixed values of R, Θ, and E0. The effect of further increasing the electric field is shown

in Fig. 2.7, where Ω1 and Ω2 for two simulations with E0/E
0
c = 3.0 and 6.0. We find

that stronger fields result in stronger and faster oscillations during the initial transient,

but these oscillations always subside and give way to synchronization of the angular

velocity magnitudes.

Next, we analyze statistics on the steady angular velocity reached after the

initial transient oscillations. We report averages over larger numbers (≥ 200) of

simulations with different small random initial perturbations. Throughout this section,

we also compare these statistics to an asymptotic estimate of the steady-state angular

velocity derived in Appendix A.1 in the case of co-rotating spheres in the limit of

R� 1:
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analysis of Sec. 2.3.

〈Ω2〉 = Ω2
0 + 1 + 3 cos 2Θ

R3

ε21

(
E0

E0
c

)2

+ (σ21 − ε21)
 , (2.64)

where Ω2
0 = (E0/E

0
c )2 − 1 denotes to the steady-state angular velocity of an isolated

sphere.

The onset of Quincke rotation in the case of two interacting spheres is illustrated

in Fig. 2.8, where the steady-state angular velocity magnitude is plotted as a function

of the applied field and is seen to undergo a pitchfork bifurcation at a critical electric

field. The plot shows the average steady-state angular velocity as a function of the

applied electric field E0 for two spheres separated by a distance R = 4.0 and for various

orientations Θ. The vertical dashed lines show the critical electric field strengths

Ec/E
0
c for onset of rotation predicted by the linear stability analysis of Sec. 2.3. In

excellent agreement with the results of the linear stability analysis of Sec. 2.3, the

value of the critical electric field depends on the orientation Θ of the spheres, with

Θ = 0 as the most stable orientation and Θ = π/2 as the most unstable one. As the

distance R between the two spheres increases, the value of Ω converges towards the
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single-sphere solution Ω0 with a bifurcation at E0 = E0
c .

The precise dependence of the steady-state angular velocity on R and Θ is

shown in Fig. 2.9. The deviation Ω2−Ω2
0 between the angular velocity in the presence

of interactions and that of an isolated sphere is plotted in Fig. 2.9(a) and is observed

to decay rapidly as 1/R3, as could have easily been anticipated from the form of the

governing equations and in agreement with the asymptotic estimate of Eq. (2.64). The

sign of this deviation depends again on the orientation of the spheres: interactions tend

to decrease the rate of rotation for spheres aligned with the field direction and increase

it for spheres aligned in a perpendicular direction. The functional dependence on Θ is

plotted in Fig. 2.9(b) and agrees quite well with Eq. (2.64) as soon as R & 10. Both

plots were obtained for E0/E
0
c = 1.5. In 2.9(b), the simulation results are compared

to the asymptotic result of Eq. (2.64).
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Figure 2.10 shows the effect of field strength E0 on the angular velocity above

the bifurcation. Increasing field strength increases the effect of interactions with a

quadratic dependence on E0/E
0
c , and all the results for different values of Θ and R are

found to collapse remarkably well onto the asymptotic approximation of Eq. (2.64),

which provides an excellent prediction for the angular velocity regardless of the

directions of rotation when R is sufficiently large.

2.4.2 Freely-suspended spheres

We now turn our attention to the dynamics of freely suspended spheres, whose

relative motion results from the combination of the rotlet flows generated by the

sphere rotations and of the dielectrophoretic forces (dipole-dipole interactions) as

discussed in Sec. 2.2.2. As we show below, dielectrophoretic forces can result in the

pairing of the particles, in which case we implement a contact algorithm to prevent

particle overlap. The algorithm assumes rolling without slipping between the two

sphere surfaces and is explained in more detail in Appendix A.2. It should be kept in
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Figure 2.11: Dynamics of freely suspended spheres: (a) typical particle
trajectories (where the two dots mark the initial position of the particles), (b)
magnitude of the angular velocities vs time, and (c) separation distance vs
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initial perturbation introduced in the system, four different types of motions
are observed, as illustrated in cases 1 to 4. In this plot, E0/E

0
c = 4.0,

ε21 = −0.1097 and σ21 = −0.5.
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mind that the calculation of electrohydrodynamic interactions used here is based on

the assumption of widely separated spheres, and is therefore likely inaccurate when

the two particles are near contact. This should be borne in mind when analyzing

the simulations presented here, though we do not anticipate the results to change

qualitatively if a more accurate calculation of interactions were used (for instance

based on a boundary integral formulation).

As in the case of fixed spheres, we observe a strong sensitivity of the dynamics

to the initial perturbation introduced in the system at t = 0. Using numerical

experiments, we have identified four different types of qualitatively different behaviors,

which are illustrated in Fig. 2.11. Depending on the relative position of the spheres

and on the infinitesimal initial perturbation introduced in the system, four different

types of motions are observed, as illustrated in cases 1 to 4. In this plot, E0/E
0
c = 4.0,

ε21 = −0.1097 and σ21 = −0.5. Case 1 corresponds to the somewhat artificial situation

where no perturbation is introduced in the system. In this case, the motion of the

two spheres as a result of dielectrophoresis is sufficient to destabilize the system and

induce rotation. The dynamics of the sphere pair is perfectly two-dimensional, and

the particles are observed to undergo a spiraling motion during which their separation

distance decreases leading to pairing up. The spiraling motion, which is observed in

many trajectories (including in cases 2 and 3), is a consequence of the rotlet flows

generated by the spinning spheres. Upon pairing, the spheres in case 1 continue to

orbit around one another ad infinitum. In a physical system, small perturbations are

expected to occur leading to cases 2, 3 and 4. In cases 2 and 3, the particles are also

observed to pair up, though their motion is three-dimensional. In case 2, pairing up

eventually leads to alignment of the two spheres in the direction of the applied field
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Figure 2.12: Probability of the two spheres pairing up (cases 1, 2, and 3)
vs separating (case 4) as a function of R0 = |R0| and Θ0 = cos−1(R0 · ẑ/R0),
where R0 = R(t = 0) is the initial separation vector between the spheres: (a)
E0/E

0
c = 4.0, and (b) E0/E

0
c = 6.0. The black quarter disk centered at the

origin corresponds to the region of excluded volume.

and counter-rotation in a normal direction, which causes them to translate as a pair

in a horizontal direction at a constant velocity once steady state has been reached. In

case 3, which is found to occur most rarely, pairing of the spheres leads to orbiting

motions that eventually stabilize to a steady configuration in which the spheres are

aligned in a direction perpendicular to the electric field and co-rotate around their

axis of centers while remaining stationary in space. Finally, in case 4 the two spheres

do not pair up but rather slowly separate in space as a result of dipolar interactions

while steadily rotating.
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The outcome of a particular simulation is difficult to predict based solely on

the initial configuration of the spheres, as different infinitesimal perturbations can lead

to any of cases 2 to 4. To quantify this subtle dependence, we show in Fig. 2.12(a) the

probability of pairing (cases 1, 2, and 3) vs separation (case 4) as a function of the

initial distance R0 between the spheres and of their initial orientation Θ0 with respect

to the field direction, for the same electric field strength as in Fig. 2.11 (E0/E
0
c = 0.4).

We observe that initial configurations in which the spheres are initially nearly aligned

with the electric field are more likely to lead to particle pairing, which could have been

anticipated based on the form of the dielectrophoretic forces which are attractive for

such configurations [137, 115, 116]. However, many initial values of R0 and Θ0 are seen

to equally lead to either pairing or separation. The effect of increasing field strength

is shown in Fig. 2.12(b), where the pairing probability is plotted for E0/E
0
c = 6.0. In

this stronger field, we find that the region of high pairing probability extends further

away from the field axis, indicating a stronger likelihood of pairing events at high

values of E0. The black quarter disk centered at the origin in these plots corresponds

to the region of excluded volume. Typical trajectories for the value of E0/E
0
c = 6.0

are shown in Fig. 2.13. These trajectories, which correspond to cases 2 and 3, show

similar characteristics as in Fig. 2.11 but exhibit stronger orbiting motions, which we

find to be a feature of all simulations in strong fields.

2.5 Conclusion

In summary, we have developed an analytical model for the Quincke rotation

of a pair of identical spherical particles that are interacting both electrically and

hydrodynamically. The modeling of Quincke rotation is based on the classic Taylor-
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Figure 2.13: Typical particle trajectories for E0/E
0
c = 6.0, ε21 = −0.1097

and σ21 = −0.5: plots (a) and (b) show two different types of trajectories
corresponding, respectively, to cases 2 and 3 of Fig. 2.11. In this plot, the
two dots mark the initial positions of the particles.

Melcher leaky dielectric model and on an asymptotic description of interactions using

the method of reflections, which is valid for widely separated particles. We have

only retained leading-order electric and hydrodynamic effects, which result from

electric dipole-dipole interactions and from hydrodynamic rotlet interactions due to

the spinning of the spheres, respectively, and we note that both types of interactions

modify the dipoles and angular velocities of the spheres to order O(R−3). Using a

linear stability analysis in the case where the two spheres are fixed in space, we have

shown that interactions can either have a stabilizing or destabilizing effect on the onset

for rotation depending on the orientation of the sphere pair with respect to the field

direction, and that the leading effect of interactions on this onset is of hydrodynamic

origin.

Numerical simulations of the governing equations have also been performed

for both fixed spheres and freely suspended spheres. In all of these simulations, we

always observed synchronization of the angular velocity magnitudes, though the axes
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of rotation of the two spheres are not the same in general. In the case of spheres

that are held fixed in space, Quincke rotation of the spheres only occurs above a

critical electric field that matches the prediction of the stability analysis, and the time

dynamics in the unstable regime are characterized by transient oscillations leading

to synchronization at a steady angular velocity. The steady-state angular velocity

magnitude and direction depend sensitively upon the configuration of the spheres

and initial perturbation to the system, though we find that the statistics of the mean

angular velocity magnitude 〈Ω2〉 are well described by a theoretical estimate derived

for co-rotating spheres.

In the case of freely suspended spheres, relative motion of the particles also

occurs as a result of the hydrodynamic flow driven by particle rotations and of

the dielectrophoretic forces on the particles due to multipolar electric interactions.

Numerical experiments have shown that these interactions can lead to complex particle

trajectories, which we categorized into four cases: (1) two-dimensional spiraling motion

leading to pairing and spinning of the particle pair about the point of contact (only

observed in the absence of any initial perturbation), (2) spiraling motion leading to

pairing in the field direction with counter-rotation of the spheres and translation as a

pair in a direction perpendicular to the field, (3) spiraling motion leading to pairing

and alignment in a direction perpendicular to the field with co-rotation of the spheres

about their axis of center, and (4) slow separation of the spheres accompanied with

spiraling trajectories. The outcome of a particular simulation depends on both the

orientation of the spheres and the initial perturbation to the system. Increasing field

strength is observed to increase the probability of trajectories leading to pairing, as

well as cause more pronounced spiraling motions. It should be kept in mind, however,
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that the model solved is accurate for widely separated particles and that near-field

interactions may lead to different dynamics in a physical experiment, in particular

in cases where pairing occurs. A more accurate treatment of near-contact motions

would require a different numerical model, for instance based on the boundary element

method.

One important conclusion of this work is the important role of hydrodynamic

interactions, which had been neglected in previous studies [168, 40]. In fact, our

asymptotic model demonstrated that, perhaps surprisingly, hydrodynamic interactions

modify the dipole relaxation equations at the same asymptotic order as electric

dipole-dipole interactions. It was also noted that the onset of instability for two

interacting spheres is primarily affected by hydrodynamic interactions, and that the

spatial dynamics in simulations of freely suspended spheres show a strong influence of

rotlet interactions which cause orbiting and spiraling motions.

The present study has cast new light on the effects of electrohydrodynamic

interactions on Quincke rotation in the simplest case of two identical spherical particles,

and demonstrated a wide variety of dynamical behaviors resulting from the strongly

nonlinear nature of the system. The effects of such complex pair interactions in

large-scale suspensions of many interacting particles remain, however, difficult to

anticipate, and may include structure formation on multiple scales and complex

chaotic or correlated motions. We also expect these dynamics and patterns to be

modified by an external flow, a situation of interest for the modeling of rheological

experiments [98, 95, 112, 96, 125]. Some of these effects will be addressed in future work

using numerical simulations by extending efficient algorithms previously developed

by Park and Saintillan [115, 116] for nonlinear electrokinetic interactions in colloidal
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suspensions.
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Chapter 3

Collective motion of Quincke

rollers

3.1 Introduction

Nonequilibrium condensed systems composed of self-propelled units or active

particles that consume stored or ambient energy to move or exert mechanical forces

are called as soft active matter [161, 102]. These self-propelled units interact with each

other and the surrounding medium that gives rise to large scale correlated collective

motion. A suspension swimming microorganisms is a prototypical example of active

matter. Other examples of biological systems include motor proteins and biological

filaments like microtubules [143, 80, 38] and actin [146], bacterial suspensions of

self-propelled microorganisms such as motile bacteria and microscopic algae [138, 139,

140, 46, 173, 93], cell layers [83, 174]. Nonliving active matter arises in layers of

vibrated granular rods or discs [85, 39], colloidal particles that are self-propelled due

to catalytic activity at their surface [54, 55, 66, 12], and collections of robots [52]. In

58
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these systems, the energy input that drives the system out of equilibrium is local.

One of the first experimental realizations of self-propelled colloids was the use

of asymmetric catalytic reactions to power the motion of nano-micro scale objects

[121]. While there have been many attempts since then to device new experiments

to produce self propelling particles as a realization of active matter, we will review

only a handful here. Palacci et al. [111] devised light activated self-propelled colloids

that lead to two dimensional living crystals. These spherical particles contain a

canted antiferromagnetic hematite cube inside them. The fact that one can switch

on and off the self propulsion of these particles using visible light and steer them

with magnetic fields gives great control and manoeuvrability in these experiments.

In a similar setup but using a different mechanism Buttinoni et al. [24] showed that

Janus particles suspended in a critical binary liquid mixture perform active Brownian

motion when illuminated by light. The illumination-borne heating induces a local

asymmetric demixing of the binary mixture, generating a spatial chemical concentration

gradient which is responsible for the particle’s self-diffusiophoretic motion. While

hydrodynamics plays an important role in most of these experiments, there have been

dry experiments of self-propelled bristle-bots that are confined to a limited arena

with a soft boundary. Increasing the density of these objects drives a transition from

a disordered and uncoordinated motion to organized collective motion either as a

swirling cluster or a collective dynamical stasis [52].

In many of these colloidal systems, the local alignment rules are difficult to

control or measure that makes it difficult to develop an accurate theoretical description.

Recent experiments have been able to exploit the phenomena of Quincke electro-

rotation to make self-propelled colloidal rollers, henceforth referred to as Quincke
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Figure 3.1: Experimental Setup: (a) Sketch of the setup. (b)Superimposed
fluorescence pictures of a dilute ensemble of rollers. The colloids propel only
inside a circular disc of radius Rc = 1mm and follow persistent random walks.

rollers [23]. The mechanism of propulsion is based on well known Maxwell and Stokes

equations. The experiments make use of the electrohydrodynamic interactions between

many Quincke rollers to understand the emergence of macroscopic motion in active

matter. In this work we focus on the effect of confinement on these rollers. The

experiments reveal self-organization of motile colloids into a macroscopic steadily

rotating vortex that lives on the verge of a phase separation.

3.2 Experimental Setup

The experiments are performed in the Laboratoire de Physique, Ecole Normale

Supérieure de Lyon, Université de Lyon. Fluorescent PMMA colloids (Thermo scientific

G0500, 2.4 µm radius), dispersed in a 0.15 mol l−1 AOT/hexadecane solution are

used, see figure 3.1. The suspension is injected in a wide microfluidic chamber made



61

of double-sided scotch tapes. The tape is sandwiched between two ITO-coated glass

slides (Solems, ITOSOL30, 80 nm thick). An additional layer of scotch tape including

a hole having the desired confinement geometry is added to the upper ITO-coated

slide. The holes are made with a precision plotting cutter (Graphtec robo CE 6,000).

The gap between the two ITO electrodes is constant over the entire chamber H = 220

mm. The electric field is applied by means of a voltage amplifier (Stanford Research

Systems, PS350/5000 V-25 W). All the measurements were performed 5 min after the

beginning of the rolling motion, when a steady state was reached for all the observables.

The colloids are observed with a ×4 microscope objective for particle tracking, particle

imaging velocimetry (PIV) and number-density measurements. High speed movies are

recorded with a CMOS camera (Basler ACE) at a frame rate of 190 fps. All images

are 2,000 × 2,000 8-bit pictures. The particles are detected to sub-pixel accuracy and

the particle trajectories are reconstructed using a MATLAB version of a conventional

tracking code [32]. The PIV analysis was performed with the mpiv MATLAB code. A

block size of 44 µm was used. More details on the experimental setup can be found in

Bricard et al. [23, 22].

3.3 An isolated Quincke roller

We first turn our attention to the dynamics of a single isolated sphere under

Quincke rotation on an electrode. The sphere’s considered here are perfect insulators

so that they have zero conductivity, σ2 = 0 and σ21 = −1/2. The dipole moment

relaxation equation of a Quincke roller then reads (see chapter 2, section 2.2.1 for
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Figure 3.2: Single spherical particle placed on an electrode and its image
flow singularities

derivation of a single spherical particle under Quincke rotation),

dP

dt
+ 1
τMW

P = − 1
τMW

2πε0a3E0 + Ω×
(
P − 4πε0a3ε21E0

)
(3.1)

The dipole moment is non-dimensionalised with 4πε0a3E0. The torque acting on the

sphere is T e = (εl/ε0)P ×E0 and the DEP force acting on it is F e = (εl/ε0)(P ·∇)E0.

In the remainder of the chapter, we only consider the retarding part of the dipole

moment i.e. P = P∞ + P r. The electric field around the sphere is not uniform and

is perturbed by the presence of the image dipole, E = E0 + δEw. However, we shall

consider it to be small and neglect it in the dipole moment equation. Hence, the role

of the electrode is solely to propel the sphere by coupling its angular velocity to its

translational velocity. The dipole moment relaxation equation for the retarding part

is,
dP r

dt
+ 1
τMW

P r = − 1
τMW

4πε0a3E0

(
ε21 + 1

2

)
ẑ + Ω× P r. (3.2)
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The electric torque acting on the roller is,

T ||e = εl
ε0
E0 (P × ẑ) . (3.3)

It is clear from the above equation that T ze = 0 and therefore, Ωz = 0, implying a

Quincke roller does not rotate in the direction of the applied field. The angular and

translational velocity are then given as,

Ω|| = µrT
||
e = µr

εl
ε0
E0 (P r × ẑ) , (3.4a)

v0

a
= µ̃t
µr

Ω|| × ẑ. (3.4b)

The coefficients µr, µ̃t are found by asymptotic lubrication theory [53]. Substituting

the angular velocity in the retarding dipole moment equation, we get,

dP r

dt
+ 1
τMW

P r = − 1
τMW

4πε0a3E0

(
ε21 + 1

2

)
ẑ + µr

εl
ε0
E0 (P r × ẑ)× P r. (3.5)

The dipole moment equation in z-direction and x-y plane are:

dP z
r

dt
+ 1
τMW

P z
r = − 1

τMW

4πε0a3E0

(
ε21 + 1

2

)
+ εl
ε0
µrE0

[
(P r · P r)− (P z

r )2
]
, (3.6a)

dP ||r
dt

+ 1
τMW

P ||r = − εl
ε0
µrE0P

z
rP

||
r . (3.6b)

Denoting the in-plane dipole moment as P ||r = P ||r p̂, where p̂ is a unit vector in the

direction of P ||, we obtain an evolution equation for the roller’s orientation,

p̂
dP ||r
dt

+ P ||r
dp̂

dt
+ 1
τMW

P ||r p̂ = − εl
ε0
µrE0P

z
r P
||
r p̂. (3.7)
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Denoting p̂ = (cos θ, sin θ), the above vector equation yields two scalar equations,

dP ||r
dt

+ 1
τMW

P ||r = − εl
ε0
µrE0P

z
r P
||
r , (3.8a)

dθ

dt
= 0 (3.8b)

We can find that a steady state solution for the above equation,

P z
r = − ε0

εlτMWµrE0
. (3.9)

Substituting this expression in equation (3.8a), and using the expression for critical

velocity Ec =
[
4πεla3

(
ε21 + 1

2

)
µrτMW

]− 1
2 , we can find the steady state translational

velocity of the roller,

P ||r = ε0
εl

1
τMWµrE0

√√√√(E0

Ec

)2
− 1, (3.10a)

v0

a
= µ̃tT

||
e × ẑ = −µ̃t

εl
ε0
E0P

||
r . (3.10b)

The translational velocity of the sphere is in the opposite direction as that of the

in-plane dipole moment and its magnitude is,

v0 = aµ̃t
τMWµr

√√√√(E0

Ec

)2
− 1. (3.11)

The main result of this section is that a single Quincke roller propels at a

velocity of v0 without changing its orientation. In the next section, we will see how a

roller undergoes slow orientational dynamics due to the effect of electrohydrodynamic

interactions with other rollers.
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(a) (b)

Figure 3.3: An isolated Quincke roller: (a) Coupling between rotational and
translational velocity of the Quincke roller (b) In the plane of the surface, the
direction of the translation velocity is defined by the angle θ. Reproduced
from [23]

Figure 3.4: Electrohydrodynamic interactions between two Quincke rollers
and their image flow singularities.

3.4 Electrohydrodynamic interactions of Quincke

rollers

In this section, we analyze the electrohydrodynamic interaction between two

spheres rolling on the electrode. The electric field perturbed around sphere 1 due to

the sphere 2 is denoted as δE.
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The retarding dipole moment equation is,

dP r

dt
+ 1
τMW

P r = − 1
τMW

4πε0a3
(
ε21 + 1

2

)
(E0ẑ + δE) + Ω× P r. (3.12)

The mobility matrix of the Quincke roller is,



v0
a

Ω||

Ωz

 =


µtI µ̃tΛ 0

−µ̃rΛ µrI 0

0 0 µ⊥

 ·

aF ||e

T ||e

T ze

+


µs∂zv

||
0|z=0

µ̃sẑ × ∂zv||0|z=0

0

 . (3.13)

The hydrodynamic effect of a Quincke roller next to a wall is captured by

placing a rotlet next to a wall with no-slip boundary conditions. This flow field

was computed by Blake and Chwang [17] using image singularity method and takes

into account hydrodynamic interactions. In the experiments it is observed that the

translational speed of the rollers does not alter greatly due to interactions. This

observation leads us to simplify the model further and assume that a particle i moves

at a constant velocity v0 on the surface and undergoes a slow orientational dynamics

due to electrohydrodynamic interactions. The expressions for electric force, torque

and velocity field experienced by a single roller due to interactions are given in [23]

and omitted here for brevity. These interactions can be conveniently expressed as an

effective potential that governs the dynamics of these rollers. The simplified equations
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of motions are:

ṙi = v0p̂i (3.14)

θ̇ = 1
τ

∂

∂θi

∑
j 6=i
Heff(ri − rj, p̂i, p̂j) + ξi, (3.15)

where, Heff = A(r)p̂i · p̂j +B(r)r̂ · p̂i + C(r)p̂j · (2r̂r̂ − I) · p̂i (3.16)

In the orientation flux equation (3.15) Heff is the global interaction potential and ξ

accounts for the rotational diffusion of the particles. They are uncorrelated white

noise variables with zero mean and variance 〈ξi(t)ξj(t′)〉 = 2Dδ(t− t′)δij. the various

interactions terms contained in the interaction potential are:

A(r) = 3µ̃s
a3

r3 + 9
(
µ⊥
µr
− 1

)(
ε21 + 1

2

)(
1− E2

c

E2
0

)
a5

r5 , (3.17a)

B(r) = 6
(
µ⊥
µr
− 1

)√
E0

E2
c

− 1
[(
ε21 + 1

2

)
E2
c

E2
0
− ε21

]
a4

r4 , (3.17b)

C(r) = 3µ̃s
a3

r3 + 15
(
µ⊥
µr
− 1

)(
ε21 + 1

2

)(
1− E2

c

E2
0

)
a5

r5 . (3.17c)

The exact derivation of these terms can be found in the supplmentary material

of [23] and omitted here for brevity. The first term A(r) stems from hydrodynamic

interactions and promotes alignment between particles. The second term B(r) arises

from electrostatic interactions and gives rise to repulsive torques causing the particles

to point away from each other. The last term C(r) arises from both hydrodynamic

and electrostatic interactions and can cause both alignment or repulsion based on the

separation vector r and has a less intuitive meaning. Particle positions and rolling

directions are initialized randomly inside a circular domain. Integration is done using

an Euler scheme with an adaptive time step. A torque is applied near the circular
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boundary to capture the bouncing off of particles as seen in experiments. The particles

that do reach the circular boundary are reflected back into the domain. With the

diffusion coefficient of the particles fixed, there is only free parameter b which is the

range of repulsive forces between particles due to steric interactions.

The simulations are performed by numerically integrating the equations of

motion, (3.14) and (3.15). Particle positions and rolling directions are initialized

randomly inside a circular domain. Integration is done using an Euler scheme with

an adaptive time step dt, and the diffusive term in the equation for the rotational

dynamics is modelled as a Gaussian variable with zero mean and with variance 2D/dt.

Steric exclusion between particles is captured by correcting particle positions after

each time step so as to prevent overlaps. Bouncing off of particles at the confining

boundary is captured using a phenomenological torque that reorients the particles

towards the centre of the disc; the form of the torque was chosen so at the reproduce

the bouncing trajectories observed in the experiments.

3.5 Results

As a test of our simulation method, we numerically integrate these equations

of motion in a ring and square confinement for qualitative comparison with the

experiments of Bricard et al. [23], see Fig. 3.5. The particle density in these simulations

are set at φ0 = 0.1. In the case of ring, we find the formation of bands that eventually

merge to form a single band and propagate along the ring in qualitative agreement

with experiments of Bricard et al. [23] in racetrack confinement. On confining these

particles in a square box geometry, we find correlated motion on the length scale of

the box in the transient state while in the steady state there is a steady vortex of
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(a) (b) (c)

(d) (e) (f )

Figure 3.5: Collective dynamics of Quincke rollers confined in a ring and
square confinement (φ0 = 0.1): (a) Initial particle positions in ring confine-
ment, (b) transient particle positions arranged in two bands, (c) steady state
particle positions with on band propagating along the ring, (d) Initial parti-
cle positions in a square confinement, (e) transient state in which particles
show density fluctuations, (f) steady vortex rotating in a counterclockwise
direction.
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(a) (b) (c)

Figure 3.6: Collective dynamics experiments: (a) Snapshot of a vortex
of rollers. The dark dots show the position of one half of the ensemble of
rollers. The blue vectors represent their instantaneous speed (Rc = 1.35mm,
φ0 = 5× 10−2) (b) Average polarization plotted versus the average packing
fraction for different confinement radii. Open symbols: experiments. Full
line: best fit from the theory. Filled circles: numerical simulations (b = 3a,
Rc = 1mm), (c) Fraction of the disc where Πϕ > 0.5 versus the average packing
fraction. Open symbols: experiments. Full line: theoretical prediction with
no free fitting parameter. Filled circles: numerical simulations (b = 3a,
Rc = 1mm).

particles rotating around the box center.

In order to quantify the effect of confinement on Quincke rollers, we perform a

thorough comparison of theory, experiments and simulations in a circular geometry.

As the area fraction is increased above φ∗ in this circular confinement, collective

motion emerges spontaneously at the entire population level. When the electric field is

applied, large groups of rollers akin to the band-shaped swarms reported in [23] form

and collide. However, unlike what was observed in periodic geometries, the colloidal

swarms are merely transient and ultimately self-organize into a single vortex pattern

spanning the entire confining disc as shown in Fig. 3.6(a). Once formed, the vortex is

very robust, rotates steadily and retains an axisymmetric shape. To go beyond this

qualitative picture, we measured the local colloid velocity field v(r, t) and use it to

define the polarization field Π(r, t) = v/v0 which quantifies local orientational ordering.

The spatial average of Π(r, t) vanishes when a coherent vortex forms, therefore we use
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its projection Π(r, t)ϕ = 〈Π · êϕ〉 along the azimuthal direction as a macroscopic order

parameter to probe the transition from an isotropic gas to a polar-vortex state. As

illustrated in Fig. 3.6(b), Π(r, t)ϕ(φ0) displays a sharp bifurcation from an isotropic

state with Π(r, t)ϕ = 0 to a globally ordered state with equal probability for left- and

right-handed vortices above φ = φ∗ Furthermore, Fig. 3.6(b) demonstrates that this

bifurcation curve does not depend on the confinement radius Rc. Open symbols denotes

experiments, full line denote theoretical prediction with no free fitting parameter and

filled circles denote numerical simulations (b = 3a, Rc = 1 mm). We define Aring as

the area of the region where the order parameter exceeds 0.5, and none of the results

reported below depend on this arbitrary choice for the definition of the outer-ring

region. Aring also bifurcates as φ0 exceeds φ∗, and increases with Rc. Remarkably, all

the bifurcation curves collapse on a single master curve when Aring is rescaled by the

overall confinement area πR2
c , Fig. 3.6(c).

Simulations of Quincke rollers revealed a richer phenomenology than the

experiments, as captured by the phase diagram in Fig. 3.7(a). By systematically

varying the range of the repulsive forces and the particle concentration, we found that

the (φ0, b) plane is typically divided into three regions, swarm coexisting with a gaseous

phase, and vortex state. At small packing fractions, the particles hardly interact

and form an isotropic gaseous phase. At high fractions, after a transient dynamics

strikingly similar to that observed in the experiments, the rollers self-organize into

a macroscopic vortex pattern, Fig. 3.7(b). However, at intermediate densities, we

found that collective motion emerges in the form of a macroscopic swarm cruising

around the circular box through an ensemble of randomly moving particles, Fig. 3.7(c).

These swarms are akin to the band patterns consistently reported for polar active
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Figure 3.7: Collective dynamics simulations: (a) The numerical phase
diagram of the confined population is composed of three regions: isotropic gas
(low φ0, small b), swarm coexisting with a gaseous phase (intermediate φ0 and
b) and vortex state (high φ0 and b). Rc = 0.5mm, (b) Snapshot of a vortex
state, (c) Snapshot of a vortex state. Numerical simulation for φ0 = 0.1 and
b = 5a, (d) Variation of the density correlation length as a function of Rc.
Above Rc = 1mm, ξ plateaus and a vortex is reached (φ0 = 3× 10−2, b = 3a),
(e) Four numerical snapshots of rollers interacting via: alignment interactions
only (A), alignment interactions and repulsive torques (A + B, where the
magnitude of B is five times the experimental value), alignment and excluded
volume interactions (A+ b, where the repulsion distance is b = 5a), alignment
and the C-term in equation 3 (A+C). Polarized vortices emerge solely when
repulsive couplings exist (A+B and A+ b).

particles at the onset of collective motion in periodic domains [56, 23]. This seeming

conflict between our experimental and numerical findings is solved by looking at

the variations of the swarm length ξs with the confinement radius Rc in Fig. 3.7(d).

We define ξs as the correlation length of the density fluctuations in the azimuthal

direction. The angular extension of the swarms ξs/Rc increases linearly with the

box radius. Therefore, for a given value of the interaction parameters, there exists

a critical box size above which the population undergoes a direct transition from a

gaseous to an axisymmetric vortex state. For b = 3a, which was measured to be the

typical interparticle distance in the polar liquid state [23], this critical confinement is

Rc = 1 mm. This value is close to the smallest radius accessible in our experiments

where localized swarms were never observed, thereby solving the apparent discrepancy

with the experimental phenomenology.
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More quantitatively, we systematically compare our numerical and experimental

measurements in Fig. 3.6(b, c) for Rc = 1 mm. Even though a number of simplifications

were needed to establish equations (3.14) and (3.15), the simulations account very

well for the sharp bifurcation yielding the vortex patterns as well as their self-similar

structure. This last point is proven quantitatively in Fig. 3.6(c), which demonstrates

that the concentration increases away from the vortex core, where φ(r = 0) = φ∗ over

a scale that is solely set by the confinement radius (Above Rc = 1 mm, ξ plateaus and

a vortex is reached (φ0 = 3× 10−2 , b = 3a). We shall note however that the numerical

simulations underestimate the critical packing fraction φ∗ at which collective motion

occurs, which is not really surprising given the number of approximations required

to establish the interaction parameters in the equations of motion, (3.14) and (3.15).

We unambiguously conclude from this set of results that equations (3.14) and (3.15)

include all the physical ingredients that chiefly dictate the collective dynamics of the

colloidal rollers.

We now exploit the opportunity offered by the numerics to turn on and off

the four roller-roller interactions one at a time, namely the alignment torque, A, the

repulsion torque B and force b, and the dipolar coupling C. Snapshots of the resulting

particle distributions are reported in Fig. 3.7(e). None of these four interactions alone

yields a coherent macroscopic vortex. We stress that when the particles solely interact

via pairwise-additive alignment torques, B = C = b = 0, the population condenses

into a single compact polarized swarm. Potential velocity-alignment interactions are

not sufficient to yield macroscopic vortical motion. We evidence in Fig. Fig. 3.7(e)

(top-right and bottom-left panels) that the combination of alignment (A 6= 0) and

of repulsive interactions (B 6= 0 and b 6= 0) is necessary and sufficient to observe
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spontaneously flowing vortices. The different interaction terms in Fig. 3.7(e) are :

alignment interactions only (A), alignment interactions and repulsive torques (A + B,

where the magnitude of B is 5 times the experimental value), alignment and excluded

volume interactions (A + b, where the repulsion distance is b = 5a), alignment and

the C-term in Eq. (3.16) (A + C). Polarized vortices emerge solely when repulsive

couplings exist (A + B and A + b). The details of the coarse grain theory have not

been discussed in this thesis and can be found in [22].

3.6 Conclusion

In this work, we took advantage of the Quincke electrotation phenomena in

which a particle can undergo sustained spontaneous rotation in an infinite fluid medium.

The mechanism of spontaneous rotation was intertwined with spontaneous translation

by hydrodynamic coupling with a wall (in this case an electrode). Using this simple

idea, we devised a model experimental system where ensembles of self-propelled

colloids with well-established interactions self-organize into macrosopic vortices when

confined by circular geometric boundaries. We identify the physical mechanism that

chiefly dictates this emergent behaviour. Thanks to a combination of numerical

simulations and analytical theory, we demonstrate that orientational couplings alone

cannot account for collective circular motion. Repulsion between the motile individuals

is necessary to balance the centrifugal flow intrinsic to any ordered active fluid and

to stabilize heterogeneous yet monophasic states in a broad class of active fluids.

A natural challenge is to extend this description to the compact vortices observed

in the wild, for example, in shoals of fish. In the absence of confining boundaries,

the centrifugal force has to be balanced by additional density-regulation mechanisms
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[31, 122]. A structural investigation akin to the one introduced here for roller vortices

could be a powerful tool to shed light on density regulation in natural flocks, which

remains to be elucidated. One of the present challenges in the active matter research

is to develop a robust system of self-propelled particles in three-dimensions. Due to

the ease of manipulation and control offered by electric (or magnetic) fields, electro

(or magneto) hydrodynamic systems hold tremendous potential in devising these kind

of desired self-propelled colloids.
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Chapter 4

Electrohydrodynamics of

axisymmetric drops

4.1 Introduction

Electric fields, when applied to weakly conducting dielectric liquids, can give

rise to fluid motions, the study of which forms the field of electrohydrodynamics

[103, 145]. In contrast with aqueous electrolytes, ion dissociation in the presence

of electric fields is typically negligible in dielectric liquids, so that diffuse Debye

layers are absent and fluid motions instead result from the coupling of electric and

hydrodynamic stresses acting on interfaces. Electrohydrodynamic phenomena find

widespread industrial applications, such as: inkjet printing [8, 118], electrospraying

and atomization of liquids [158, 160, 25], solvent extraction [148], electrohydrodynamic

pumps [92], and fiber electrospinning [71], among others.

We focus here on the simple problem of electrohydrodynamic deformations of

an uncharged leaky dielectric drop suspended in an infinite weakly conducting fluid

77



78

medium and subject to a steady uniform electric field. This problem, first studied by

Wilson & Taylor [172], was originally analyzed under the premise that normal electric

stresses acting on an uncharged interface are responsible for deformations [108, 62].

Normal stresses, however, can only result in prolate deformations, while experiments

have been known to show both prolate and oblate shapes depending on material

properties [4]. This paradox was resolved in the pioneering work of Taylor [159], who

recognized that dielectric liquids, while poor conductors, still carry some free charges,

which upon application of the field accumulate at the liquid-liquid interface in the

form of a surface charge distribution due to the mismatch in electrical properties.

Taylor realized that the existence of this surface charge can then give rise to tangential

stresses that drive circulatory toroidal currents inside the drop, now known as Taylor

vortices. Taylor’s theory was able to predict both oblate and prolate shapes and

showed good agreement with experiments in weak fields.

Having discovered the importance of surface charge and its contribution to

tangential stresses on the interface, Melcher & Taylor [103] developed a complete

framework for studying the electrohydrodynamics of leaky dielectric drops. The central

result of their model is a surface charge conservation equation that prescribes a balance

between transient charge relaxation, the jump in normal Ohmic currents arising from

the weak but finite conductivities of the two media, and charge convection on the

drop surface by the interfacial fluid velocity. The original model of [159], however,

neglected transient effects and charge convection and only accounted for first-order

deformations in the limit of vanishing electric capillary number CaE, which compares

the magnitude of electric stresses to surface tension. As a result, agreement with

experiments was limited to very small deformations, and a number of more detailed
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theories have been proposed over the years to improve upon this. First, Ajayi [2]

extended Taylor’s theory by retaining terms to second order in capillary number, but

also neglected transients and charge convection. His results, quite surprisingly, showed

worse agreement with experiments than the simpler model of Taylor in the case of

oblate drops, which is a consequence of the latter approximation.

Including charge convection, however, is quite challenging as it couples the

charge distribution to the resulting fluid flow in a nonlinear fashion. A few compu-

tational studies considered its effects [49, 156, 100, 90] and showed that convection

tends to increase deformation in the case of prolate drops but decrease it for oblate

drops. The complete Melcher-Taylor model was also used in finite-element simulations

to study the closely related phenomenon of electrohydrodynamic tip streaming and

disintegration of electrified drops [28, 29]. On the theoretical side, Shutov [154] and

Shkadov & Shutov [153] attempted to include charge convection in a small-deformation

theory; however, these authors neglected it at first order and only included it at second

order, which as we will show below is incorrect. Very recently, Bandopadhyay et al.

[6] studied the dynamics of a drop sedimenting under gravity while subject to an

electric field using double asymptotic expansions in electric capillary number CaE

and electric Reynolds number ReE, which compares electric to viscous stresses. Their

theory included linearized charge convection and was limited to small ReE.

Transient dynamics were also addressed in a few models by including temporal

derivatives of shape modes, first by Moriya et al. [105] for perfectly conducting drops,

followed by Esmaeeli & Sharifi [48] for weakly conducting drops. The latter theory

predicted a monotonic drop deformation leading to the steady drop shape predicted

by Taylor [159]. Yet, both experiments [90] and numerical simulations [63, 156] show
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non-monotonic deformations in cases leading to steady oblate shapes, suggesting

an inconsistency in the model. This discrepancy was recently resolved by Lanauze

et al. [89], who showed using a small-deformation theory that either transient charge

relaxation or fluid acceleration, combined with transient shape deformations, needs to

be included in the model to capture the correct behavior.

In this work, we present an extension to previous small-deformation theories

valid to order O(Ca2
E) that captures unsteady dynamics. The novelty of our model lies

in the theoretical formulation for the complete Melcher-Taylor leaky dielectric model,

in which we include transient shape deformation, transient charge relaxation and

nonlinear charge convection. As we demonstrate by comparison with boundary element

simulations and existing experiments, including both transient phenomena is critical

in order to capture the correct shape evolution, and accounting for charge convection

leads to improved accuracy in the model predictions as the electric field strength

increases. We present the governing equations in §4.2. Details of the asymptotic

theory are provided in §4.3 and summarized in §4.4, and results of the theory are

discussed in §5.4, where we compare them to experiments as well as boundary element

simulations based on an algorithm outlined in appendix B.3. We conclude and discuss

potential extensions of this work in §4.6.

4.2 Problem formulation

We analyze the deformation of a neutrally buoyant liquid drop suspended in

another liquid and subject to a uniform electric field E0 = E0êz as shown in figure 4.1.

Streamlines show the direction of the flow at steady state in the case of an oblately

deformed drop. The drop, with undeformed radius a, is assumed to carry no net
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Figure 1: (colour online) (a) Problem definition. (b) Drop shape expanded on the basis of
spherical harmonics. Black line corresponds to the spherical shape while dashed-red and
dotted-blue lines correspond to 2nd order (f02, f12) and 4th order (f14) perturbations
respectively.

2. Problem formulation

We analyze the deformation of a neutrally buoyant liquid drop suspended in another
liquid and subject to a uniform electric field E0 = E0êz as shown in figure 1. The
drop, with undeformed radius a, is assumed to carry no net charge; we denote by S its
surface, which has unit outward normal n. Both liquids are Newtonian and are treated as
leaky dielectrics with constant material properties. The dielectric permittivity, electric
conductivity, and dynamic viscosity of the carrying liquid are denoted by (✏, �, µ),
whereas those of the drop are denoted by (✏̄, �̄, µ̄). The interface between the two liquids
has uniform surface tension �.

Following the Melcher-Taylor leaky dielectric model (?), we assume that any net
charge in the system is concentrated at the interface between the two liquids. Under
this condition, the electric potentials ' and '̄ outside and inside both satisfy Laplace’s
equation:

r2' = 0, r2'̄ = 0. (2.1)

The potential is continuous across the interface:

'(x) = '̄(x) for x 2 S, (2.2)

and approaches the externally applied potential far away from the drop:

'(x) ! 'e(x) = �E0 · x as |x| ! 1. (2.3)

Due to the mismatch in material properties, a surface charge density q(x) develops at
the interface between the two liquids as the drop polarizes and is given by Gauss’s law:

q(x) = n · J✏E(x)K = ✏En(x) � ✏̄Ēn(x), (2.4)

where E = �r' is the local electric field and En = n · E its normal component.
The charge density q evolves due to two distinct mechanisms: Ohmic currents j = �E
from the bulk, and surface charge convection by the fluid flow with velocity v along the
interface. Accordingly, it satisfies the conservation equation

@tq + n · JjK + rs · (qv) = 0, (2.5)

Figure 4.1: Problem definition: a liquid drop is placed in a uniform electric
field E0. (a) Spherical coordinates (r, θ) used in axisymmetric geometry.
Streamlines show the direction of the flow at steady state in the case of an
oblately deformed drop. (b) Drop shape expanded on the basis of spherical
harmonics. The full line corresponds to the spherical shape, while the dashed
line and dash-dotted line correspond to second-order L2 and fourth-order L4
deformation modes, respectively.

charge. Both liquids are Newtonian and are treated as leaky dielectrics with constant

material properties. The dielectric permittivity, electric conductivity, and dynamic

viscosity of the carrying liquid are denoted by (ε, σ, µ), respectively, whereas those

of the drop are denoted by (ε̄, σ̄, µ̄). The interface S between the two liquids has

uniform surface tension γ and outward unit normal n.

Following the Melcher-Taylor leaky dielectric model [103], we assume that any

net charge in the system is concentrated at the interface between the two liquids.

Under this condition, the electric potentials ϕ and ϕ̄ outside and inside the drop both

satisfy Laplace’s equation:

∇2ϕ = 0, ∇2ϕ̄ = 0. (4.1)
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The potential is continuous across the interface:

ϕ(x) = ϕ̄(x) for x ∈ S, (4.2)

and approaches the externally applied potential far away from the drop:

ϕ(x)→ ϕe(x) = −E0 · x as |x| → ∞. (4.3)

Due to the mismatch in material properties, a surface charge density q(x) develops at

the interface between the two liquids as the drop polarizes and is given by Gauss’s

law:

q(x) = n · JεE(x)K = εEn(x)− ε̄Ēn(x), (4.4)

where E = −∇ϕ is the local electric field and En = n ·E its normal component. The

charge density q evolves due to two distinct mechanisms: Ohmic currents j = σE

from the bulk, and surface charge convection by the fluid flow with velocity v along

the interface. Accordingly, it satisfies the conservation equation

∂tq + n · JjK +∇s · (qv) = 0, (4.5)

where ∇s ≡ (I − nn) · ∇ is the surface gradient operator. The flow velocity, which

is driven by electric stresses on the interface, satisfies the Stokes equations in both

liquids:

− µ∇2v +∇pH = 0, ∇ · v = 0, (4.6a)

− µ̄∇2v̄ +∇p̄H = 0, ∇ · v̄ = 0, (4.6b)
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and is continuous across the interface. Here, pH denotes the hydrodynamic pressure in

the fluid. In the absence of Marangoni effects, the jumps in electric and hydrodynamic

tractions balance interfacial tension forces:

JfEK + JfHK = γ(∇s · n)n for x ∈ S, (4.7)

where ∇s · n is the total surface curvature. The jumps in tractions are expressed in

terms of the Maxwell stress tensor TE and hydrodynamic stress tensor TH as

JfEK = n · JTEK = n · Jε(EE − 1
2E

2I)K, (4.8a)

JfHK = n · JTHK = n · J−pH I + µ
(
∇v +∇vT

)
K. (4.8b)

The jump in electric tractions can be further simplified as

JfEK = [εEn − ε̄Ēn]Et + 1
2 [ε(En2 − Et2)− ε̄(Ēn2 − Et2)]n

= qEt + JpEKn.
(4.9)

Here, Et = (I −nn) ·E is the tangential electric field, which is continuous across the

interface. The first term on the right hand side captures the tangential electric force

arising from the action of the tangential field on the interfacial charge. The second

term captures normal electric stresses and can be interpreted as a jump in an electric

pressure pE [88].

In the remainder of the paper, we scale all lengths by the radius a and times

by the Maxwell-Wagner relaxation time τMW , which is the characteristic time scale
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for polarization of the drop:

τMW = ε̄+ 2ε
σ̄ + 2σ . (4.10)

Electric and hydrodynamic stresses are non-dimensionalized by εE2
0 and µ/τMW ,

respectively. Upon scaling of the governing equations, five dimensionless parameters

emerge, three of which are ratios of material properties:

Q = ε̄

ε
, R = σ

σ̄
, λ = µ̄

µ
. (4.11)

The product RQ, which sets the type of deformation and direction of the flow at

steady state [88], can also be interpreted as the ratio of the inner and outer charge

relaxation times:

RQ = τ̄

τ
where τ = ε

σ
, τ̄ = ε̄

σ̄
. (4.12)

The two remaining dimensionless parameters are chosen as the electric capillary

number CaE denoting the ratio of electric to capillary forces, and the Mason number

Ma denoting the ratio of viscous to electric stresses:

CaE = aεE2
0

γ
, Ma = µ

ετMWE2
0
. (4.13)

The Mason number is directly related to the electric Reynolds number ReE [103, 141,

90] as:

ReE = 1
Ma

1 + 2R
R(Q+ 2) . (4.14)

It is instructive to note that the definition of the Mason number is based on the

suspending fluid viscosity. In most cases the strength of charge convection is inversely

proportional to the Mason number; however, for drop-fluid systems with high viscosity
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ratios (λ� 1), the strength of charge convection can be weak even for small values of

Ma.

4.3 Problem solution by domain perturbation

We solve the governing equations for axisymmetric shapes in the limit of small

deformations [159, 2, 131], which occurs when surface tension is strong enough to

overcome deformations due to electric stresses. This corresponds to the limit of

CaE → 0, and allows us to use an asymptotic approach in which we expand the

drop deformation about the spherical shape and all the field variables in a small

shape parameter δ whose relation with CaE we explain later. We employ the domain

perturbation technique pioneered by Joseph [78], which was also used in a number of

previous models for the dynamics of charged drops [163, 123].

4.3.1 Shape parametrization and expansion

In axisymmetric geometry, we parametrize the drop shape as a curve ξ(r, η) = 0,

where r = |x| is the distance from the drop center and η = cos θ is the cosine of the

polar angle θ ∈ [0, π] measured from the field direction. For small deviations from

sphericity, the drop shape is expanded on the basis of spherical harmonics as

ξ(r, η) = r − (1 + δf1 + δ2f2) +O(δ3). (4.15)

The first- and second-order shape functions are linear combinations of Legendre

polynomials Ln of order n:
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f1 = f12L2(η), (4.16a)

f2 = f20 + f22L2(η) + f24L4(η), (4.16b)

where the deformations corresponding to L2 and L4 are illustrated in figure 4.1(b). The

full line corresponds to the spherical shape, while the dashed line and dash-dotted line

correspond to second-order L2 and fourth-order L4 deformation modes, respectively.

We note the orthogonality condition

∫ π

0
Li(η)Lj(η) sin θ dθ = 2

2i+ 1δij, (4.17)

which will become useful later. The choice of Legendre functions in equations (4.16a)–

(4.16b) is a consequence of the quadratic nature of the Maxwell electric stresses acting

on the fluid-drop interface, which in a uniform electric field only excite shape modes

of order 2n (n ∈ Z+). In equations (4.16a)–(4.16b) and in the rest of the paper, pairs

of indices in coefficients of the form fij refer to the order i in the small deformation

expansion and to the order j of the Legendre polynomial they multiply, respectively.

In equation (4.16b), the constant term f20 is added to the second-order shape function

f2 to negate the perturbation in the drop volume due to the first-order shape function

f1:

2π
∫ π

0

∫ r

0
ρ2 sin θ dρ dθ = 4π

3 + 4πδ2
(
f 2

12
5 + f20

)
+O(δ3). (4.18)

Requiring terms of order δ2 to vanish, we get f20 = −f 2
12/5. The outward unit normal,

tangent vector and curvature of the interface are also obtained as [2]
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n = êr − δ ∂θf1 êθ +O(δ2), t = êθ + δ ∂θf1 êr +O(δ2), (4.19a)

∇s · n = 2− δL[f1]− δ2{L[f2]− 2f1(L[f1]− f1)}+O(δ3), (4.19b)

where the differential operator L is defined as L[f ] = ∂η{(1− η2)∂ηf}+ 2f .

Using the above parametrization, the normal and tangential components of

any vector v and second-order tensor T on the drop surface are related to their

components in spherical coordinates by

vn = vr0 + δ(vr1 + f1∂rv
r
0 − ∂θf1v

θ
0) +O(δ2), (4.20a)

vt = vθ0 + δ(vθ1 + f1∂rv
θ
0 + ∂θf1v

r
0) +O(δ2), (4.20b)

T nn = T rr0 + δ(T rr1 + f1∂rT
rr
0 − 2∂θf1T

rθ
0 ) +O(δ2), (4.20c)

T nt = T rθ0 + δ[T rθ1 + f1∂rT
rθ
0 + ∂θf1(T rr0 − T θθ0 )] +O(δ2), (4.20d)

where the terms on the right-hand side are to be evaluated at r = 1. These expres-

sions will be useful below in determining the electric field, fluid velocity and stress

distributions on the drop surface.

4.3.2 Electric problem

Spherical harmonic expansion

We first present the solution to the electric problem, which consists in solving

equations (5.1)–(4.3) asymptotically. The electric potential outside and inside the

drop can be expanded in powers of δ as
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ϕ = ϕe(r, θ) + ϕ0(r, θ) + δϕ1(r, θ) +O(δ2), (4.21a)

ϕ̄ = ϕe(r, θ) + ϕ̄0(r, θ) + δϕ̄1(r, θ) +O(δ2), (4.21b)

which automatically satisfies the far-field boundary condition (4.3). We have yet to

enforce continuity of the potential across the interface. To this end, we employ a

domain perturbation approach in which all the boundary conditions are enforced

approximately on the undeformed spherical surface r = 1. The potential on the

interface is first expanded in the neighborhood of r = 1 using Taylor series:

ϕ = ϕe + ϕ0 + δ [ϕ1 + f1∂r(ϕe + ϕ0)] +O(δ2), (4.22a)

ϕ̄ = ϕ̄e + ϕ̄0 + δ [ϕ̄1 + f1∂r(ϕe + ϕ̄0)] +O(δ2). (4.22b)

Applying continuity (4.2) and matching terms of zeroth- and first-order in δ provides

two boundary conditions at r = 1:

ϕ0 = ϕ̄0, (4.23a)

ϕ1 + f1∂r(ϕe + ϕ0) = ϕ̄1 + f1∂r(ϕe + ϕ̄0). (4.23b)

The zeroth-order problem, which is identical to the case of a sphere, is easily solved

using decaying and growing spherical harmonics in terms of electric dipoles P01, P̄01:

ϕ0 = P01r
−2L1(η), (4.24a)

ϕ̄0 = P̄01rL1(η), (4.24b)
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and we require that P̄01 = P01 to satisfy (4.23a); solving for P01 will require application

of the charge conservation equation (5.4) as detailed below. After substitution into

equation (4.23b), we obtain a new first-order boundary condition:

ϕ1 − ϕ̄1 = 3f1P01L1(η) = 3f12P01L1(η)L2(η) = 3
5f12P01[2L1(η) + 3L3(η)]. (4.25)

The order of the polynomials appearing on the right-hand side suggests representing

the first-order potentials in terms of both dipoles P11, P̄11 and octupoles P13, P̄13:

ϕ1 = P11r
−2L1(η) + P13r

−4L3(η), (4.26a)

ϕ̄1 = P̄11rL1(η) + P̄13r
3L3(η), (4.26b)

and application of the boundary condition (4.25) yields the relations

P̄11 = P11 − 6
5f12P01, P̄13 = P13 − 9

5f12P01. (4.27)

Having determined the electric potential, we can also obtain asymptotic expres-

sions for the normal and tangential electric fields En = −n · ∇ϕ and Et = −t · ∇ϕ

on the drop surface. Applying equation (4.20a), we find

En = En
0 + δEn

1 +O(δ2) = En
01L1(η) + δ[En

11L1(η) + En
13L3(η)] +O(δ2), (4.28)

with a similar expansion for Ēn. Finally, the expansion for the tangential electric field,

which is continuous across the interface, is obtained using equation (4.20b) as

Et = Et
0 + δEt

1 +O(δ2) = Et
00 sin θ + δ[Et

10 + Et
12L2(η)] sin θ +O(δ2), (4.29)
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The detailed expressions for the coefficients appearing in equations (4.28)–(4.29) are

provided in appendix B.1.

Charge conservation and moment equations

To complete the solution of the electric problem, equations must be derived

for the moments P01, P11 and P13, which are time-dependent. These can be obtained

as ordinary differential equations by application of the charge conservation equation

(5.4). First, we expand the charge density in powers of δ as

q = q0 + δq1 +O(δ2) = q01L1(η) + δ[q11L1(η) + q13L3(η)] +O(δ2). (4.30)

Similarly, we expand the jump in Ohmic currents n · JjK = JjKn, scaled here by σ̄E0,

as

JjKn = JjKn0 +δJjKn1 +O(δ2) = JjKn01L1(η)+δ{JjKn11L1(η)+JjKn13L3(η)}+O(δ2). (4.31)

Expansion coefficients for both q and JjKn are provided in appendix B.1. Finally, we

formally expand the charge convection term in equation (5.4) as

∇s · (qv) = [∇s · (qv)]0 + δ[∇s · (qv)]1 +O(δ2),

= [∇s · (qv)]01L1(η) + δ{[∇s · (qv)]11L1(η) + [∇s · (qv)]13L3(η)}+O(δ2)

(4.32)

where we have introduced the Legendre coefficients

[∇s · (qv)]ij = 2j + 1
2

∫ π

0
[∇s · (qv)]iLj(η) sin θ dθ. (4.33)
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Detailed expressions for these coefficients require knowledge of the interfacial velocity v,

whose calculation is presented in §5.3.2. Note that the zeroth-order charge convection

term arising from the nonlinear product of the charge density q0 and interfacial

velocity v0 also involves an additional term of the form [∇s · (qv)]03L3(η), which has

been neglected here. To consider its effect, one would need to include a zeroth-order

octupole P03 in equation (4.24), which in turn would generate charge convection terms

of orders 1, 3, 5, 7, ... thus requiring additional higher-order odd multipoles. These

multipoles becomes stronger with increasing electric Reynolds number or decreasing

Mason number. Our theory is therefore valid in the limit of high Mason number,

i.e. for drop-fluid systems in which charge convection is relatively weak.

Substituting the expansions (4.30), (4.31) and (4.32) into the charge conserva-

tion equation (5.4), matching powers of δ, and applying orthogonality of Legendre

polynomials leads to a set of relaxation equations for the charge coefficients. In

dimensionless form, these read

q̇ij + Q+ 2
1 + 2R JjKnij + [∇s · (qv)]ij = 0, (4.34)

where the dot in the first term denotes differentiation with respect to time. If we

further express qij and JjKnij in terms of P01, P11 and P13 using (B.3) and (B.4),

we arrive at a set of hierarchical differential equations for the dipole and octupole

moments:
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Ṗ01 + P01 = 1−R
1 + 2R −

1
Q+ 2[∇s · (qv)]01, (4.35)

Ṗ11 + P11 = d
dt

[
6
5f12

(
P01

1 + 2Q
2 +Q

+ 1−Q
2 +Q

)]
+ 6

5f12

(
P01

R + 2
2R + 1 −

1−R
2R + 1

)

− 1
Q+ 2[∇s · (qv)]11,

(4.36)

Ṗ13 + Q+ 2
3Q+ 4

4R + 3
2R + 1P13 = d

dt

[
6
5f12

(
P01

8 + 7Q
8 + 6Q −

1−Q
4 + 3Q

)]

+ 6
5f12

Q+ 2
3Q+ 4

(
P01

8R + 7
4R + 2 + 1−R

2R + 1

)
− 1

3Q+ 4[∇s · (qv)]13.

(4.37)

These coupled ordinary differential equations constitute the main result of this section.

The external forcing in these equations is encapsulated in the first term on the

right-hand side of (4.35), which describes the effect of the applied electric field on

the leading-order dipole moment. It is also clear from equation (4.35) that charge

convection cannot be neglected even at zeroth order as was previously done in the

theories of Shutov [154] and Shkadov & Shutov [153]. Solving (4.35)–(4.37) requires

the Legendre coefficients of the charge convection term as well as the first-order shape

coefficient f12. These unknowns will be determined below after we solve for the fluid

flow, which affects both interfacial charge convection and droplet deformation.

4.3.3 Flow problem: streamfunction formulation

We now turn to the calculation of the fluid flow outside and inside the drop.

Upon application of the field, electric stresses develop at the interface leading to

deformations and flow. Since the flow is axisymmetric, we use a Stokes streamfunction
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Ψ(r, θ) to determine the fluid velocity, which has components

vr = 1
r2 sin θ∂θΨ, vθ = − 1

r sin θ∂rΨ, (4.38)

in spherical coordinates. The streamfunction satisfies the biharmonic equation ∇4Ψ =

0, the general solutions to which outside and inside the drop are [82]:

Ψ =
∞∑
n=2

(Anr−n+1 +Bnr
−n+3)Gn(η), Ψ̄ =

∞∑
n=2

(Ānrn + B̄nr
n+2)Gn(η), (4.39)

where Gn(η) are Gegenbauer functions of degree −1/2 of the first kind [1]. They are

related to Legendre polynomials and are regular everywhere in −1 ≤ η ≤ 1:

Gn(η) = Ln−2(η)− Ln(η)
2n− 1 , n ≥ 2. (4.40)

The first two functions are defined as G0(η) = 1 and G1(η) = −η, and we also note the

property: G ′n(η) = −Ln−1(η).

Following the same methodology as for the electric problem, we seek solutions

as expansions in powers of δ. As will become evident in §4.3.5 when performing the

stress balance on the interface, the zeroth- and first-order electric stresses acting on

the interface at most induce fluid motions of the form

Ψ = Ψ03G3(η) + δ[Ψ13G3(η) + Ψ15G5(η)] +O(δ2), (4.41a)

Ψ̄ = Ψ̄03G3(η) + δ[Ψ̄13G3(η) + Ψ̄15G5(η)] +O(δ2), (4.41b)
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where

Ψ03 = A03r
−2 +B03, Ψ̄03 = Ā03r

3 + B̄03r
5, (4.42a)

Ψ13 = A13r
−2 +B13, Ψ̄13 = Ā13r

3 + B̄13r
5, (4.42b)

Ψ15 = A15r
−4 +B15r

−2, Ψ̄15 = Ā15r
5 + B̄15r

7. (4.42c)

In particular, the flow is entirely determined by twelve coefficients that are functions

of time and that we proceed to solve for by application of the boundary conditions.

4.3.4 Kinematic boundary condition

The kinematic boundary condition relates the shape deformation to the fluid

velocity so as to satisfy the no-slip and no-penetration boundary conditions at the

interface. The streamfunction Ψ can be used to determine the normal and tangential

components of the fluid velocity on the drop surface, which are obtained by combining

equations (4.20a)–(4.20b) and (4.38) as

vn = vn02L2(η) + δ[vn10 + vn12L2(η) + vn14L4(η)] +O(δ2), (4.43a)

v̄n = v̄n02L2(η) + δ[v̄n10 + v̄n12L2(η) + v̄n14L4(η)] +O(δ2), (4.43b)

vt = vt01L1(η) sin θ + δ[vt11L1(η) + vt13L3(η)] sin θ +O(δ2), (4.43c)

v̄t = v̄t01L1(η) sin θ + δ[v̄t11L1(η) + v̄t13L3(η)] sin θ +O(δ2). (4.43d)

The detailed expressions of the velocity coefficients are provided in appendix B.2. The

no-penetration boundary condition is expressed as vn = v̄n = −ξ̇, which yields the
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eight relations

vn02 = v̄n02 = δḟ12, vn10 = v̄n10 = δḟ20, (4.44a, b)

vn12 = v̄n12 = δḟ22, vn14 = v̄n14 = δḟ24. (4.44c, d)

Similarly, the no-slip boundary condition vt = v̄t dictates that

vt01 = v̄t01, vt11 = v̄t11, vt13 = v̄t13 (4.45a, b, c).

The matching of orders in equation (4.44) might seem surprising at first due to

the presence of terms involving δ on the right-hand side. However, it is the only

possible solution as the leading-order term in ξ̇ involves δ. This implies that temporal

derivatives of the shape functions in fact scale as δ−1, suggesting that the characteristic

time scale for the shape transient is not the Maxwell-Wagner relaxation time used

here for non-dimensionalization. This point will be made clearer in §4.4.2.

4.3.5 Dynamic boundary condition

We now proceed to enforce the dynamic boundary condition of equation (4.7),

which in dimensionless form reads

n · (JT EK +Ma JTHK) = 1
CaE

(∇s · n)n, (4.46)

and requires us to evaluate electric and hydrodynamic stresses on the interface.
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Electric and hydrodynamic stresses

As previously shown in equation (4.9), the jump in electric tractions can be

decomposed into tangential and normal components, both of which involve quadratic

products of expansions derived above. The tangential component qEt = qEtt is

continuous and is expanded as

qEt = [qEt]01L1(η) sin θ + δ{[qEt]11L1(η) + [qEt]13L3(η)} sin θ +O(δ2). (4.47)

Similarly, the expansion for the jump in electric pressure in equation (4.9) is found to

be

JpEK = JpEK00 +JpEK02L2(η)+δ{JpEK10 +JpEK12L2(η)+JpEK14L4(η)}+O(δ2). (4.48)

The expressions for the coefficients are provided in appendix B.1.

The jump in hydrodynamic tractions is evaluated using equations (4.20c)–

(4.20d), in which the requisite components of the stress tensor in spherical coordinates

are obtained from the velocity components as

TH,rr = −pH + 2∂rvr, T̄H,rr = −p̄H + 2λ∂rv̄r, (4.49a)

TH,rθ = r−1∂θv
r + r∂r(vθr−1), T̄H,rθ = λ[r−1∂θv̄

r + r∂r(v̄θr−1)], (4.49b)

TH,θθ = −pH + 2r−1(∂θvθ + vr), T̄H,θθ = −p̄H + 2r−1λ(∂θv̄θ + v̄r). (4.49c)

The diagonal stress components TH,rr and TH,θθ involve the fluid pressure pH , which

can be obtained from the velocity by integration of the momentum equation. After

some algebra, the jumps in hydrodynamic stresses induced by the zeroth- and first-order
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streamfunctions Ψ0, Ψ1, scaled with µ/τMW , are found as

JTHKnn = JTHKnn0 + δJTHKnn1 +O(δ2)

= JTHKnn00 + JTHKnn02L2(η)

+ δ{JTHKnn10 + JTHKnn12L2(η) + JTHKnn14L4(η)}+O(δ2),

(4.50a)

JTHKnt = JTHKnt0 + δJTHKnt1 +O(δ2)

= JTHKnt01L1(η) sin θ + δ{JTHKnt11L1(η) + JTHKnt13L3(η)} sin θ +O(δ2),

(4.50b)

where the various coefficients can all be expressed in terms of B03, B13, B15 as detailted

in appendix B.2.

Stress balance

The electric and hydrodynamic traction jumps can now be substituted into

the stress balance (5.8) to satisfy the dynamic boundary condition. In the normal

direction, the stress balance requires:

JpEK00 +Ma JTHKnn00 = 2
CaE

, (4.51a)

JpEK02 +Ma JTHKnn02 = 4
CaE

δf12, (4.51b)

JpEK10 +Ma JTHKnn10 = − 2
CaE

δf 2
12, (4.51c)

JpEK12 +Ma JTHKnn12 = 4
CaE

δ(f22 − 5
7f

2
12), (4.51d)

JpEK14 +Ma JTHKnn14 = 18
CaE

δ(f24 − 2
7f

2
12). (4.51e)
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In the tangential direction, it yields

[qEt]01 +Ma JTHKnt01 = 0, (4.52a)

[qEt]11 +Ma JTHKnt11 = 0, (4.52b)

[qEt]13 +Ma JTHKnt13 = 0. (4.52c)

The above balances now allow us to define more explicitly the value of the small

deformation parameter δ. The driving force for the flow is the tangential electric

stress qEt, which according to equations (4.52) induces hydrodynamic tractions

scaling with O(Ma−1). The magnitude of the resulting flow therefore is such that

all normal tractions, both electric and hydrodynamic, in equation (4.51) are of order

O(1). Balancing these tractions with surface tension forces thus requires us to choose

δ ∝ CaE. For consistency with previous small deformation theories, we define δ

explicitly as

δ = 3CaE
4(1 + 2R)2 . (4.53)

In particular, the assumption of small deformation yields no restriction on the magni-

tude of the Mason number, which is only constrained by the approximation discussed

in §4.3.2.

4.3.6 Nonlinear charge convection

As a final calculation, we determine the Legendre coefficients of the nonlinear

convection term in the charge convection equation (5.4). The convection term is
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straightforward to calculate after applying the identity

∇s · (qv) = qvn(∇s · n) +∇s · (qvt), (4.54)

in which the expansions for q, vn, vt = vtt, and ∇s · n can be substituted together

with

∇s = [I − êrêr + δ(êrêθ + êθêr)] · ∇+O(δ2). (4.55)

All calculations done, the relevant Legendre coefficients appearing in equations (4.35)–

(4.37) for the dipole and octupole moments are found to be

[∇s · (qv)]01 = −2
5q01B03 + 6

5q01δḟ12, (4.56a)

[∇s · (qv)]11 = 2
5q01A13 + 2

5q11A03 − 6
35q13A03 − 54

35q01A03f12

+ 4
5q01δḟ22 + 4

5q11δḟ12 + 18
35q13δḟ12 + 38

35q01δf12ḟ12,

(4.56b)

[∇s · (qv)]13 = 8
5q01A13 + 4

3q01A15 + 2
3q01B15 + 8

5q11A03

+ 4
15q13A03 − 104

15 q01A03f12 + 6
5q01δḟ22 + 8

9q01δḟ24

+ 6
5q11δḟ12 + 8

15q13δḟ12 − 4
5q01δf12ḟ12.

(4.56c)

4.4 Summary of the small-deformation theory

The set of asymptotic expansions obtained in §4.3 provides a closed system of

equations for all unknown coefficients. We summarize here the results of the theory

and outline the solution procedure at first and second order. We also compare and

contrast our predictions with the existing theories of Taylor [159], Ajayi [2], Esmaeeli

& Sharifi [48] and Lanauze et al. [89].
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4.4.1 Taylor deformation parameter

For easy comparison with previous theories and experiments, we introduce

Taylor’s deformation parameter D, defined as

D = r‖ − r⊥

r‖ + r⊥
, (4.57)

where r‖ and r⊥ denote the length of the drop in directions parallel and perpendicular

to the electric field, respectively. The sign of D distinguishes between oblate (D < 0)

and prolate (D > 0) shapes. For an axisymmetric drop, r‖ and r⊥ are reached at

θ = 0 and π/2, respectively:

r‖ = r(0) = 1 + δf12 + δ2 (f20 + f22 + f24) +O(δ3), (4.58a)

r⊥ = r(π/2) = 1− 1
2δf12 + δ2

(
f20 − 1

2f22 + 3
8f24

)
+O(δ3), (4.58b)

from which we find

D = 3
4

[
δf12 + δ2

(
f22 + 5

12f24 − 1
4f

2
12

)]
+O(δ3). (4.59)

4.4.2 First-order theory

We first summarize the first-order theory, which allows us to compare our

results with those of Taylor [159], Esmaeeli & Sharifi [48] and Lanauze et al. [89]. The

zeroth-order stress balance equations (4.51b) and (4.52a), together with the dipole

relaxation equation (4.35), provide three coupled equations for the three unknowns

B03, f12 and P01. We first eliminate B03 by combining (4.51b) and (4.52a), and
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after manipulations we arrive at a coupled system of first-order ordinary differential

equations of the form

d
dt

 P01

f12

 = F1(P01, f12;CaE,Ma,R,Q, λ), (4.60)

where F1 is a nonlinear function whose explicit form is cumbersome and is omitted

here for brevity. These equations can be integrated numerically in time subject to

initial conditions. In all of the results shown below, we assume that the drop surface

is initially spherical and does not carry any charge at t = 0, which provides the initial

conditions:

P01(0) = Q− 1
Q+ 2 , f12(0) = 0. (4.61)

Equations (4.60) can easily be compared to previous first-order theories. First,

neglecting charge convection decouples the dipole evolution equation from the fluid

problem, yielding the simple relaxation equation

Ṗ01 + P01 = 1−R
1 + 2R, (4.62)

the solution to which is:

P01 = 1−R
1 + 2R +

(
Q− 1
Q+ 2 −

1−R
1 + 2R

)
e−t. (4.63)

Substituting (4.63) into equation (4.60) then yields a simplified model which is similar

to that of Lanauze et al. [89] when the effect of fluid inertia is negligible. If we further

neglect charge relaxation, we can easily solve for the transient deformation parameter
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as

D(t) = DT (1− e−t/τd) where τd = aµ

γ

(19λ+ 16)(2λ+ 3)
40(λ+ 1) , (4.64)

which matches the result of Esmaeeli & Sharifi [48]. In particular, the viscous-capillary

time scale τd emerges as the characteristic time scale for shape deformations, which

also rationalizes the seeming contradiction in the matching of terms in the kinematic

boundary of equation (4.44). Here, DT is the steady first-order deformation parameter

first obtained by Taylor [159] as

DT = 9
16

ΦT

(1 + 2R)2CaE (4.65)

in terms of Taylor’s discriminating function ΦT :

ΦT = (1−R)2 +R(1−RQ)
[
2 + 3

5
2 + 3λ
1 + λ

]
. (4.66)

Note that equation (4.64) predicts an exponential relaxation towards the steady drop

shape and therefore fails to capture the non-monotonic transient deformation observed

in experiments and simulations [90] and also predicted by the full solution of equations

(4.60) as we discuss in §5.4.

4.4.3 Second-order theory

The first-order theory can then be improved by solution of the second-order

equations, which involve the additional unknowns B13, B15, f22, f24, P11, and P13.

These are provided by the first-order normal and tangential stress balances of equations
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(4.51c), (4.51e), (4.52b) and (4.52c), together with the moment evolution equations

(4.36)–(4.37). The flow unknowns B13 and B15 can be eliminated by manipulating

equations (4.51c) and (4.52b) for B13, and equations (4.51e) and (4.52c) for B15. When

combined with the moment evolution equations, this yields a system a differential

equations of the form

d
dt



P11

P13

f22

f24


= F2(P11, P13, f22, f24;P01, f12;CaE,Ma,R,Q, λ), (4.67)

where F2 is another nonlinear function. Once again, these equations can be integrated

in time numerically to obtain the multipole moments as well as shape functions

entering Taylor’s deformation parameter of equation (4.59). The initial conditions for

these variables in the case of an initially spherical and uncharged drop are

P11(0) = P13(0) = f22(0) = f24(0) = 0. (4.68)

If charge convection is neglected, equations (4.36)–(4.37) for the moments become

uncoupled from the flow problem and only involve electric parameters. At steady

state, the first-order multipole moments are then obtained as

P11 = 6
5f12

( 1−R
1 + 2R

)2
, P13 = 9

5f12
1−R
1 + 2R, (4.69)

which matches equations (25) and (26) in the work of Ajayi [2]. The numerical codes

solving systems (4.60) and (4.67) are available upon request.
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Table 4.1: Material properties: systems 1, 2 and 3 correspond to the
experiments of Lanauze et al. [90], Salipante & Vlahovska [141] and Tsukada
et al. [165], respectively. ε0 = 8.8542× 10−12 F.m−1 denotes the permittivity
of vacuum.

System ε/ε0 ε̄/ε0 σ σ̄ µ µ̄ γ
(S.m−1) (S.m−1) (Pa.s) (Pa.s) (mN.m−1)

1a 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5
1b 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5
1c 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5
2a 5.3 3.0 4.5× 10−11 0.12× 10−11 0.69 0.97 4.5
2b 5.3 3.0 4.5× 10−11 0.12× 10−11 0.69 0.97 4.5
3 2.5 4.3 2.7× 10−12 1.7× 10−10 0.017 0.254 3.0

Table 4.2: Material properties: systems 1, 2 and 3 with drop radius and
electric field strength.

System a E0
(mm) (kV.cm−1)

1a 2.0 1.6
1b 2.0 2.1
1c 2.0 6.1
2a 0.7 0.45–2.0
2b 2.1 0.26–1.2
3 2.5 2.0–9.2

4.5 Results and discussion

We now compare our theoretical results with existing experimental data, previ-

ous small-deformation theories, as well as fully nonlinear numerical simulations using

an axisymmetric boundary element method described in appendix B.3. The material

properties, drop sizes and electric field strengths are chosen as in table 4.1 to match

the experimental values of Lanauze et al. [90] (system 1), who measured transient drop

dynamics, and of Salipante & Vlahovska [141] (system 2) for steady deformations,

and corresponding dimensionless parameter values are provided in table 4.3. Both
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Table 4.3: Dimensionless parameters corresponding to the material prop-
erties of table 4.1: systems 1, 2, 3 and 4 correspond to the experiments of
Lanauze et al. [90], Salipante & Vlahovska [141], Tsukada et al. [165] and
Ha & Yang [58], respectively.

System R Q λ CaE Ma
1a 29.0 0.57 0.074 0.49 0.65
1b 29.0 0.57 0.074 0.85 0.375
1c 29.0 0.57 0.074 7.18 0.045
2a 36.6 0.57 1.41 0.03–0.6 0.27–5.4
2b 36.6 0.57 1.41 0.03–0.6 0.8–16
3 0.016 1.72 14.7 0.0075–0.155 0.2–4.1
4 0.1 1.37 1 0.3 0.5

of these studies considered oblate drops. We also present a few results on prolate

drops using the experimental values of Tsukada et al. [165] (system 3) and Ha & Yang

[58] (system 4). The latter study, however, did not report all the material properties

required to construct all five dimensionless parameters in our model; we choose to

set the values of the electric capillary number and Mason number to CaE = 0.3 and

Ma = 0.5 in this case.

4.5.1 Effect of transient charge relaxation and shape defor-

mation

In this section, we first neglect nonlinear charge convection and focus on the

effects of transient charge relaxation and transient shape deformation alone. Here

we adopt the experimental values of system 1b. The drop deformation is plotted

as a function of time in figure 4.2 for three distinct cases. In figure 4.2(a), both

nonlinear charge convection and transient charge relaxation are neglected. In this

case, the only time dependence enters through the temporal derivatives of the shape

functions. We find that the drop shape becomes oblate (D < 0), and our theoretical
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results asymptote at long times towards the steady-state predictions of Taylor [159]

and Ajayi [2] at first- and second-order, respectively. Both steady states, however,

overpredict the drop deformation, and it is found, rather curiously, that the theory

performs more poorly at second order than at first order; this was already noted by

Ajayi [2] and is a consequence of neglecting charge convection as further discussed

below. The transient is also poorly captured: the model predicts a monotonic increase

of the drop deformation towards the oblate steady state and fails to capture the

initial dynamics seen in experiments, where the drop first adopts a prolate shape

before becoming oblate. Figure 4.2(b) shows the opposite situation in which transient

shape deformation is neglected but transient charge relaxation is included. In this

case, the shape instantaneously adjusts to the charge distribution, which explains the

immediate deformation to a prolate shape at t = 0 as a result of the instantaneous

polarization of the drop according to equation (4.61). The deformation subsequently

relaxes monotonically towards its steady oblate value. However, accounting for both

transient phenomena in figure 4.2(c) captures the transient dynamics correctly while

still evolving towards the steady deformation values of Taylor [159] and Ajayi [2] in the

absence of charge convection. These results underscore the importance of including

all transient effects if one wants to capture the correct shape dynamics.

4.5.2 Effect of nonlinear charge convection

We now turn to the full theoretical model, which includes transient charge

and shape relaxation as well as nonlinear charge convection. As we show here, the

main effect of charge convection is to reduce the strength of the interfacial velocity,

thereby causing oblate drops to deform less but prolate drops to deform more in
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Figure 4.2: Deformation parameter D as a function of time for the parame-
ters of system 1b in the absence of charge convection: (a) effect of transient
shape relaxation only (no transient charge relaxation), (b) effect of transient
charge relaxation only (no transient shape relaxation), and (c) effect of both
transient shape and charge relaxation. Symbols show experimental data
of Lanauze et al. [90]. Boundary element simulation results using the full
nonlinear model and the algorithm of appendix B.3 are also shown.
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Figure 4.3: (a) Deformation parameter D as a function of time for the
parameters of system 1a. (b) Steady interfacial charge profile. The plots show
experimental results of Lanauze et al. [90], fully nonlinear boundary element
simulations, first- and second-order small-deformation theory (with nonlinear
charge convection), and the steady results of Taylor [159] and Ajayi [2] that
neglected charge convection.

agreement with computational studies [49, 90]. We first consider the dynamics in a

relatively weak electric field using the parameters of system 1a in figure 4.3 (the plots

show experimental results of Lanauze et al. [90], fully nonlinear boundary element

simulations, first- and second-order small-deformation theory (with nonlinear charge

convection), and the steady results of Taylor [159] and Ajayi [2] that neglected charge

convection). First, we note in figure 4.3(a) that the boundary element simulations

perform best and capture both the transient and the steady state with very good

accuracy. Our small deformation theory with charge convection also captures the

transient very well but still slightly overpredicts the steady deformation parameter,

albeit not as much as the models of Taylor [159] and Ajayi [2]. Interestingly, we find

that while the second-order theory of Ajayi is worse than the first-order theory of

Taylor in the absence of charge convection, such is not the case in our model where

including second-order terms is seen to improve the solution. The poor performance

of Ajayi’s model is a direct consequence of the neglect of charge convection, which
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Figure 4.4: (a) Deformation parameter D as a function of time for the
parameters of system 1b. (b) Steady interfacial charge profile. For these
parameter values, the charge distribution predicted by the boundary element
simulation develops a discontinuity at the equator.

results in a stronger dipole moment and in turn leads to larger deformations. Charge

convection by the flow, on the other hand, causes the transport of positive and negative

charges from the poles towards the equator, thus effectively reducing the induced

dipole. This point is evident in figure 4.3(b) showing the steady charge distribution on

the drop surface, where we see that the second-order theory with charge convection best

approximates the charge profile from boundary element simulations. This numerical

charge profile, however, exhibits a sharper transition from negative to positive values

at the equator.

The effect of increasing field strength is shown in figure 4.4 corresponding to

system 1b. Unsurprisingly, stronger fields cause larger drop deformations, which are

not as easily captured by the theory. While the boundary element simulation matches

the experimental data quite well, our nonlinear small-deformation theory captures

the transient well but shows a significant departure at steady state. Nevertheless, the

second-order theory still outperforms all previous theoretical models. The difficulty in

capturing the steady state accurately can be understood by considering the charge
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Figure 4.5: (a) Deformation parameter D as a function of time for the
parameters of system 1c. (b) Steady interfacial charge profile. The steady
deformation values predicted by the models of [159] and Ajayi [2] in this case
are −0.75 and −1.40, respectively, and out of the frame of figure (a). For
these parameter values, the charge discontinuity at the equator is so severe
that the boundary element simulations blow up before reaching steady state;
in this case, the charge profile shown in (b) corresponds to a time before the
instability develops.

profile in figure 4.4(b), where a sharp gradient is observed across the equator in the

numerical data from boundary element simulations. This sharp gradient cannot be

captured using only two Legendre functions as in the expansion of equation (4.30),

which explains the discrepancy. The problem becomes yet more severe in stronger

fields, as shown in figure 4.5 in the case of system 1c. There, an actual discontinuity

appears in the charge profile, leading to the very poor performance of small-deformation

theories and to numerical instabilities in the boundary element simulation, which

blows up before reaching steady state. The formation of a charge shock in strong

fields was first observed in the simulations of Lanauze et al. [90], who also were not

able to resolve it numerically using their boundary element algorithm based on spline

interpolation. The boundary element method used here and described in appendix

B.3 solves the charge conservation equation using finite volumes and yet is still unable
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Figure 4.6: (a) Deformation parameter D as a function of time for the
parameters of system 4, which correspond to a steady prolate shape. (b)
Steady interfacial charge profile.

to capture the discontinuity, suggesting that higher-order non-oscillating numerical

schemes should be employed towards this purpose [97].

The case of prolate deformations is illustrated in figure 4.6 using the parameters

of system 4. In this case, the drop deformation increases monotonically with time. The

steady deformation parameter obtained by simulations with Ma = 0.5 is D = 0.27,

which slightly exceeds the value of D = 0.22 found by Lac & Homsy [88], who neglected

charge convection (Ma → ∞); the experiments of Ha & Yang [58], for which the

value of Ma is unknown, reported a deformation of D = 0.25. Our small deformation

theory only provides a modest improvement at steady state over the predictions of

Taylor [159] and Ajayi [2], again confirming that nonlinear charge convection has a

weaker effect for prolate drops. This again can be rationalized by considering the

interfacial charge profile in figure 4.6(b): convection by the flow is seen to cause charge

accumulation at the drop poles, and thus does not cause any discontinuity as in the

oblate case. Instead, the charge profile remains relatively smooth and therefore can

be reasonably well approximated using Legendre polynomials.
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Figure 4.7: Steady drop deformation D as a function of electric capillary
number CaE for the parameters of: (a) system 2a, (b) system 2b, and (c)
system 3. The various models are compared to the experimental measurements
of Salipante & Vlahovska [141] and Tsukada et al. [165].
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As a final test, we compare our theoretical and numerical predictions for the

steady drop shapes with the experimental results of Salipante & Vlahovska [141]

for systems 2a and 2b with oblate drops and Tsukada et al. [165] for system 3 with

prolate drops in figure 4.7. The experimental system 2 used two different drop sizes

but identical material properties. At a given value of the electric capillary number

CaE, increasing drop size is equivalent to decreasing the electric field or increasing the

Mason number Ma, which reduces the effect of charge convection. Charge convection

is therefore more significant in figure 4.7(a) for the smaller drop size, and indeed

departures of our numerical and theoretical results from the small-deformation theories

of Taylor [159] and Ajayi [2] are more significant in this case. In both cases, our

theoretical model performs quite well at predicting the steady drop shape, but still

slightly overpredicts the experimental values especially as CaE increases; nonetheless

the agreement is noticeably better than in previous models. The effect of charge

convection is extremely weak in the case of prolate drops in system 3 as shown in

figure 4.7(c). As a consequence, our first and second order theories are indistinguishable

from Taylor’s and Ajayi’s results, and the deformations predicted by our axisymmetric

boundary element method only slightly exceed the finite element simulation values of

Tsukada et al. [165] who neglected charge convection.

4.6 Conclusion

In summary, we have developed a small-deformation theory for the complete

Melcher-Taylor leaky dielectric model including the non-linear charge convection term.

The theory is most relevant for small-sized drops or drops with high surface tension but

non-negligible charge convection. A domain perturbation method based on spherical
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harmonics valid for small deviations from sphericity was employed to represent the

drop shape up to second order in electric capillary number O(Ca2
E). The zeroth- and

first-order electric and flow fields were solved for using multipole expansions. On

making the appropriate assumptions, we were able to recover the previous theoretical

models [159, 2, 48, 89]. The discrepancy of Ajayi’s second-order theory predicting drop

deformation more inaccurately than Taylor’s first-order theory in the case of oblate

drops was resolved by including charge convection in the theoretical model. Retention

of transient charge relaxation and shape deformation was also shown to be critical

in order to accurately capture the transient non-monotonic drop deformation, as we

validated by comparison with both numerical simulations and existing experimental

data.

While our second-order theory showed good agreement with simulations and

experiments, departures become significant with increasing electric field strength

as deformations become larger. While possible in principle, extending the theory

to include higher-order corrections in CaE is exceedingly difficult due to the non-

linearities in the governing equations. The problem of capturing large deformations

in a theoretical model would likely be better addressed using spheroidal coordinates

as in the previous work of Zhang et al. [179], though this method has yet to be

adapted to include charge convection. One should also note that the present study is

limited to axisymmetric drop deformations. In strong electric fields, experiments have

demonstrated the existence of a symmetry-breaking bifurcation leading to Quincke

electrorotation [141, 142, 64], which is characterized by non-axisymmetric shapes

and a primarily rotational flow. Such effects cannot be captured by the theory and

simulations presented herein. From a theoretical standpoint, a fully three-dimensional
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model would preclude the simple use of a Stokes streamfunction as done in §5.3.2

for the solution of the flow problem, which could instead by obtained using Lamb’s

general solution of the Stokes equations [82]. Such a model would also be useful

for the description of pair interactions between widely separated drops using the

method of reflections, in a similar manner as in the previous work of Anderson [5] for

thermocapillary motion of drops, or as in our previous theory for electrohydrodynamic

interactions between rigid spheres [35]; the understanding of such interactions could

then pave the way for dilute suspension theories for electrohydrodynamics of multiple

drops. Lastly, three-dimensional boundary element simulations would be of great use

to describe large deformations and electrorotation in strong fields and are the subject

of our current work.
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Chapter 5

Electrohydrodynamics of drops

under Quincke rotation: Numerical

simulations

5.1 Introduction

The subject of electrohydrodynamics of drops was introduced in chapter 4.

Chapter 5 extends the numerical technique employed in the previous chapter for

axisymmetric drops to drops in three dimensions for the full Melcher-Taylor leaky

dielectric model. Most of the early experiments on electrohydrodynamics of drops

were confined to weak electric fields [4, 167, 58]; henceforth referred to as Taylor’s

regime characterized by prolate or oblate shapes with circulatory toroidal flow fields.

Lanauze et al. [90] measured the transient drop deformations in the Taylor regime

accurately providing a benchmark for comparisons with simulations and theory. Recent

experiments in strong fields have reported existence of a symmetry breaking bifurcation

116
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Table 5.1: Summary of existing studies on an uncharged neutrally buoyant
drop subject to uniform DC electric field. EHS/EHD - ElectrohydroStat-
ics/Dynamics

Experimental work:
Allan & Mason [4], Torza et al. [162], Vizika & Saville [167];

Krause & Chandratreya [84], Ha & Yang [58, 59], Sato et al. [144];
Salipante & Vlahovska [141, 142], Karyappa et al. [79], Lanauze et al. [90].

Theoretical modelling (EHS):
O’Konski & Thacher [108], Harris & O’Konski [62];

Allan & Mason [4], Taylor [158].
Numerical simulation (EHS):

Brazier-Smith [19], Brazier-Smith et al. [20], Miksis [104];
Haywood et al. [63], Dubash & Mestel [44, 45].

Theoretical modelling (EHD):
Taylor [159], Torza et al. [162], Ajayi [2], Esmaeeli & Sharifi [48];

Zhang et al. [179], Lanauze et al. [89], He et al. [64], Yariv & Frankel [176];
Das & Saintillan [37].

Numerical simulation (EHD):
Sherwood [151], Feng & Scott [50], Baygents et al. [10], Feng [49];

Hirata et al. [65], Lac & Homsy [88], Supeene et al. [156], Bjorklund [16];
López-Herrera et al. [100], Karyappa et al. [79], Hu et al. [68], Lanauze et al. [90].

Reviews:
Melcher & Taylor [103], Saville [145].

leading to spontaneous electrorotation of drops less conductive than the suspending

fluid [84, 59, 144, 141]; henceforth referred to as Quincke regime [130], characterized

by titled drop configurations with rotational flow fields.

While there have been numerous numerical studies investigating drop dynamics

in Taylor regime, no simulations exist for drops in the Quincke regime to the best of the

authors’ knowledge. Brazier-Smith [19], Brazier-Smith et al. [20] and Miksis [104] used

boundary element method to solve electrohydrostatics of drop wherein the shape of the

drop is evolved as necessary to balance the normal stresses on the interface. In a more
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comprehensive work, Sherwood [151] solved the coupled electrohydrodynamic problem

assuming creeping flow conditions that allowed him to use boundary element method

for both the electric and flow problem. His pioneering work was extended by Baygents

et al. [10] to study axisymmetric drop pair interactions and Lac & Homsy [88] to

investigate a much wider range of electric and fluid parameters. Very recently, Lanauze

et al. [90] extended these previous work by formulating a boundary element method

for the complete Melcher-Taylor leaky dielectric model. Other methods based on finite

elements [50, 49, 65, 156], level-sets [16], immersed boundary [68] and finite volumes

[100] have also been employed to investigate drop dynamics in the Taylor regime. All

these previous work have neglected charge convection or restricted the simulations

to axisymmetric drops. The latter assumption is justifiable in Taylor regime since

the drop assumes an axisymmetric shape at all times. A notable exception is the

work of López-Herrera et al. [100], however, they did not investigate drop dynamics in

the Quincke regime. A closely related problem of EHD tip streaming was analysed

using finite element method to solve the full Melcher-Taylor leaky dielectric model

[28]. Table 5.1 summarizes the existing experimental, theoretical and numerical work

on subject of electrohydrodynamics of drops.

The novelty of our work lies in the formulation of a boundary element method

in three-dimensions for electrohydrodynamics of drop using the complete Melcher-

Taylor leaky dielectric model that enables us to investigate Quincke regime as well.

Our numerical method shows excellent agreement with existing experimental data

and small deformation theories. We define the problem and present the governing

equations in section §5.2. Details of the boundary integral formulation for the electric

and flow problem and their numerical implementation are described in §5.3. Results
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Figure 5.1: Problem definition: A liquid droplet with surface S and outward
pointing unit normal n in an unbounded domain is placed in a uniform
electric field E0 pointing in the vertical direction. (a) V ± denote the exterior
and interior domains, and (ε±,σ±,µ±) are the corresponding permittivity,
conductivity and dynamic viscosity, (b) the drop’s major and minor axis
length are denoted by L and B and the major axis is tilted at an angle α
with the horizontal direction.

of the boundary element method and comparisons with experiments and theory are

discussed in §5.4. We conclude and discuss possible extensions of our work in §5.5.

Details of the boundary element method like surface parametrisation, regularisation of

singular integrals and Wielandt’s deflation technique for the flow problem are provided

in the appendix.

5.2 Problem definition

5.2.1 Governing equations

We consider an uncharged neutrally buoyant liquid droplet with undeformed

radius a occupying volume V − in an infinite fluid medium V + and subject to a uniform
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electric field E0 as depicted in figure 5.1. The drop surface is denoted as S and has

an outward unit normal n. Let (ε±,σ±,µ±) be the permittivity, conductivity, and

dynamic viscosity of the fluid and drop phase, respectively. In the Melcher-Taylor

leaky dielectric model [103], all charges in the system are concentrated on the drop

surface, so that the electric potential in both fluid domains is harmonic:

∇2ϕ±(x) = 0 for x ∈ V ±. (5.1)

On the drop surface, the electric potential is continuous, as is the tangential component

of the electric field:

ϕ+(x) = ϕ−(x) and E+
t (x) = E−t (x), for x ∈ S, (5.2)

where E±t = (I − nn) ·E± and E± = −∇ϕ±. The normal component of the electric

field, however, undergoes a jump across the interface due to mismatch in electrical

properties between the two media [91], which results in a surface charge distribution

q(x) related to the normal electric field by Gauss’s law:

q(x) = n · JεE(x)K = ε+E+
n (x)− ε−E−n (x), for x ∈ S, (5.3)

where E±n = n ·E± is the normal electric field on the interface. The charge density q

evolves due to two distinct mechanisms: Ohmic currents from the bulk and advection

by the fluid flow with velocity u(x) on the drop surface. Accordingly, it satisfies the
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conservation equation:

∂tq + n · JσEK +∇s · (qu) = 0, for x ∈ S, (5.4)

where∇s ≡ (I−nn)·∇ is the surface gradient operator. On neglecting unsteady terms

and surface charge convection, equation (5.4) simplifies to the boundary condition

used in previous studies [151, 10, 88]:

σ+E+
n − σ−E−n = 0, for x ∈ S. (5.5)

The fluid velocity field u±(x) and corresponding pressure field p±(x) satisfy

Stokes equations in both fluid domains:

−µ±∇2u± +∇p± = 0 and ∇ · u± = 0, for x ∈ V ±. (5.6)

The velocity is continuous on the drop surface providing the kinematic boundary

condition:

∂tx = u+ = u−, for x ∈ S, (5.7)

and in the absence of Marangoni effects the dynamic boundary condition expresses the

balance of the jump in electric and hydrodynamic tractions with interfacial tension

forces:

∆fE + ∆fH = γ(∇s · n)n, for x ∈ S. (5.8)

Here, γ is the constant surface tension and ∇s · n = 2κm is twice the mean surface

curvature. The jumps in tractions are expressed in terms of the Maxwell stress tensor
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TE and hydrodynamic stress tensor TH as

∆fE = n · JTEK = n · Jε(EE − 1
2E

2I)K, (5.9)

∆fH = n · JTHK = n · J−pH I + µ
(
∇u+∇uT

)
K. (5.10)

The jump in electric tractions can be further simplified as

∆fE = [ε+E+
n − ε−E−n ]Et + 1

2 [ε+(E2+
n − E2

t )− ε−(E2−
n − E2

t )]n

= qEt + JpEKn.
(5.11)

The first term on the right hand side captures the tangential electric force on the

interface arising from the action of the tangential field on the interfacial charge

distribution. The second term captures normal electric stresses and can be interpreted

as an electric pressure jump [88].

5.2.2 Non-dimensionalization

Non-dimensionalization of the governing equations yields five dimensionless

groups, three of which are ratios of material properties typically defined as:

R = σ+

σ−
, Q = ε−

ε+ , λ = µ−

µ+ . (5.12)

The low-drop-viscosity limit λ→ 0 describes a bubble, whereas λ→∞ describes a

rigid particle. The product RQ can also be interpreted as the ratio of inner to outer
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charge relaxation time.

RQ = τ−

τ+ where τ+ = ε+

σ+ , τ− = ε−

σ−
. (5.13)

The Quincke regime of interest to us is such that RQ > 1 or τ+ > τ−. A possible

choice for the two remaining dimensionless number consists of the electric capillary

number CaE and electric Mason number Ma defined as

CaE = aε+E2
0

γ
and Ma = µ+

ε+τMWE2
0
. (5.14)

The electric capillary number CaE compares the characteristic time τγ for a deformed

drop to relax to its equilibrium shape as a result of surface tension to the electro-viscous

timescale τEHD [141], where

τγ = µ+(1 + λ)a
γ

, τEHD = µ+(1 + λ)
ε+E2

0
. (5.15)

On the other hand, the Mason number is the ratio of τEHD multiplied by a factor of

2
1+λ to the Maxwell-Wagner relaxation time:

τMW = ε− + 2ε+

σ− + 2σ+ , (5.16)

which is the characteristic timescale for charging and polarization of the drop surface

upon application of the field [35]. It is also directly related to the ratio of the electric

field magnitude to the critical electric field Ec for onset of Quincke rotation of a rigid
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sphere as

Ma = ε− σ

2

(
Ec
E0

)2
, (5.17)

where

ε = ε− − ε+

ε− + 2ε+ , σ = σ− − σ+

σ− + 2σ+ , Ec =
√

2µ+

ε+τMW (ε− σ) . (5.18)

Quincke rotation therefore occurs when Ma < ε−σ necessitating application of strong

electric fields. Additionally, the condition ε > σ or equivalently, RQ > 1 needs to be

satisfied for existence of real values of the critical electric field for a given drop-fluid

system, indicating that the drop should be less conducting than the suspending fluid.

There is also a direct correspondence between Ma and the electric Reynolds number

ReE defined by other authors [90, 147] as

Ma = τ+/τMW

ReE
where ReE = ε2+E2

0
σ+µ+ . (5.19)

Finally, an additional dimensionless group can be constructed by taking the ratio of

the capillary time and Maxwell-Wagner relaxation time, and is independent of field

strength [141]:

CaMW = τγ

τMW

= µ+(1 + λ)a
γτMW

= (1 + λ)CaEMa. (5.20)

For a fixed set of material properties, varying CaMW is equivalent to varying drop

size a. In the remainder of the paper, we exclusively use dimensionless variables by

scaling lengths with a, electric fields with E0, and times with τMW . In addition to

R, Q and λ, we primarily use CaE and Ma as dimensionless groups, though some of

results in §5.4 will also be shown in terms of E0/Ec and CaMW .
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5.3 Boundary integral formulation

5.3.1 Electric problem

The solution of Laplace’s equation (5.1) is best formulated using boundary

integral equations [74, 157]. In general it is possible to express the electric potential

in both fluid phases either as a single layer potential representing the surface as a

distribution of sources or as a double-layer potential involving a distribution of dipoles

[128]. We follow previous studies in the field [151, 10, 88, 90] and elect to use the

single layer potential, yielding the integral equation

ϕ(x0) = −x0 ·E0 +
∫
S
JEn(x)KG(x0;x) dS(x), for x0 ∈ V ±, S. (5.21)

Here, x0 is the evaluation point for the potential and can be anywhere in space,

whereas x denotes the integration point which is located on the drop surface. The

Green’s function or fundamental solution of Laplace’s equation in an infinite domain

is given by

G(x0;x) = 1
4πr where r = |x0 − x|. (5.22)

Note that equation (5.21) is valid in both fluid phases as well as on the interface since

the Green’s function is continuous across S. The equation is weakly singular, however,

when x = x0, though the singularity can be removed analytically by introducing plane

polar coordinates in the parametric plane defining the local surface [128]. Knowledge

of the single-layer potential density JEn(x)K on the interface therefore allows one

to determine the electric potential anywhere in space by simple integration, which

prompts us to seek an equation for JEn(x)K in terms of the surface charge density q.
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We first take the gradient of equation (5.21) to obtain an integral equation for the

electric field in the fluid:

E±(x0) = E0 −
∫
S
JEn(x)K∇0G(x0;x) dS(x), for x0 ∈ V ±. (5.23)

The derivative of the Green’s function undergoes a discontinuity at the interface, which

needs to be accounted for when the evaluation point is on the boundary [129]:

E±(x0) = E0 −
∫
S
JEn(x)K∇0G(x0;x) dS(x)± 1

2JEn(x0)Kn(x0), for x0 ∈ S.

(5.24)

The integral equation for the electric field is strongly singular. However, taking dot

product of equation (5.24) with the unit normal vector n(x0) reduces the singularity

by an order. We then add the normal components of electric field outside and inside

to obtain their average:

E+
n (x0) + E−n (x0)

2 = En0 −
∫
S
JEn(x)K[n(x0) · ∇0G(x0;x)] dS(x), for x0 ∈ S.

(5.25)

The weak singularity in integral equation (5.25) can be removed by subtracting

JEn(x0)K from its kernel to obtain the regular integral [149]:

E+
n (x0) + E−n (x0)

2 + JEn(x0)KLn(x0)

= En0 −
∫
S
{JEn(x)K− JEn(x0)K}{n(x0) · ∇0G(x0;x)} dS(x), for x0 ∈ S,

(5.26)

where Ln = n · L is an integral equation containing geometrical quantities whose

exact form is given in the appendix. Using Gauss’s law, we can eliminate E+
n and E−n
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to obtain the desired regular integral equation for JEnK:

JEn(x0)K
(
Ln(x0)− 1 +Q

2(1−Q)

)
+
∫
S
{JEn(x)K− JEn(x0)K}{n(x0) · ∇0G(x0;x)} dS(x)

= En0 −
q(x0)
1−Q, for x0 ∈ S.

(5.27)

The jump in normal component of the electric field can be computed from (5.27) for

a given surface charge distribution numerically by solving a linear system using a

standard iterative solver GMRES [136]. The first term in the right hand side is the

forcing term arising from the applied electric field. Knowledge of JEnK and application

of Gauss’s law, provides the values of E+
n and E−n :

E+
n = q −QJEnK

1−Q , E−n = q − JEnK
1−Q . (5.28a, b)

The tangential component of the electric field can be evaluated using (5.24) directly,

however, care must be taken to remove the strong singularity in the kernel [149]. Here,

we adopt an indirect method that requires computation of the electric potential ϕ

using equation (5.21) and differentiating it numerically along the surface to obtain Et,

see appendix for details. Once the normal and tangential components of the electric

field are known, we can determine the jump in normal component of Ohmic current

JσEnK and electric traction ∆fE using equation (5.11).

5.3.2 Flow problem

The applied electric field induces fluid motion inside and outside the drop.

The need to solve the flow problem are twofold; determination of the interfacial fluid
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velocity for solving the charge conservation equation (5.4) and advection of the drop’s

shape to satisfy the kinematic boundary condition (5.7). The flow problem is solved

after application of the dynamic boundary condition (5.8) to obtain the hydrodynamic

traction ∆fH on the drop-fluid interface. Assuming creeping flow, we use Stokes’

boundary integral equation to determine fluid velocity in the domain [132, 128].

u(x0) =− 1
4πµ(1 + λ)

∫
S

∆fH(x) · G(x0;x) dS(x)

+ κ

4π

∫
S
u(x) · T (x0;x) · n(x) dS(x), for x0 ∈ V ±, S,

(5.29)

where, G = I
r

+ rr

r3 , T = 6rrr
r5 , (5.30a, b)

are the Stokeslet and stresslet respectively and κ = (1−λ)/(1+λ). The usual negative

sign in the stresslet term appears if r is defined as |x − x0|. Note that κ = ±1

corresponds to the case of a bubble (λ → 0) and solid (λ → ∞) respectively. The

interfacial velocity appearing in the double layer potential is yet unknown and an

integral equation for the same can be obtained by moving the evaluation point x0 to

the boundary S. In dimensionless form it reads:

u(x0)+λ− 1
8π

∫
S
{u(x)− u(x0)} · T (x0;x) · n(x) dS(x)

=− 1
8πMa

∫
S

∆fH(x) · G(x0;x) dS(x), for x0 ∈ S.
(5.31)

The forcing term in this equation is contained in the hydrodynamic traction ∆fH .

The above equation forms a linear system A · u = b that is solved numerically using

GMRES. The weak singularity appearing in the double layer potential in the original

equation (5.29) has been removed by using appropriate integral identities (5.31). The
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(a) (b) (c)

Figure 5.2: Discretized mesh: N4 = 1280 curved elements with 6 nodes (a)
An initially spherical mesh at time t = 0, (b) a deformed mesh of a tilted
drop in Quincke regime corresponding to the case of figures 5.7c and 5.7f, (c)
a deformed mesh of a prolate drop in Taylor regime, with mesh relaxation
algorithm of Loewenberg & Hinch [99], corresponding to the steady state of
system 3.

weak singularity appearing in the single layer potential disappears after introducing

plane polar coordinates [127]. It is well known that the integral equation (5.31) admits

arbitrary rigid body motion and uniform expansion eigensolutions that results in the

matrix A becoming ill-conditioned for λ� 1 or λ� 1 leading to poor convergence of

the solution [181]. We employ Wielandt’s deflation technique to eliminate κ = ±1 from

the spectrum of the integral equation to cure the ill-conditioning [82], see appendix for

details. Once the interfacial velocity is known, the nodes are advected in the normal

direction of the fluid flow and tangential direction with a heuristic mesh relaxation

velocity um for a uniform spacial node distribution [99].

5.3.3 Numerical implementation

We solve the integral equations (5.21), (5.27) and (5.31) numerically using

boundary element method on the discretized drop’s surface [128]. The main advantages
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of using boundary element method are accuracy and decreased computational time as

the solution space is one degree lower than the physical space. In all the simulations, we

consider an initially spherical uncharged drop. The initial drop’s surface is generated

from an icosahedron by successive subdivision of the 20 original triangular elements

into four new elements by projecting the new nodes onto the sphere. The discretized

surface comprises of 6 nodes curved elements that allows for computation of curvature.

While most of our results in the present work are on a surface with N4 = 320 elements

and 642 nodes obtained after two successive subdivisions Nd = 2, we present a few

results with N4 = 1280 elements and 2562 nodes after Nd = 3 subdivisions. The

computation of geometrical properties of the discretized surface like normal vector

and curvature are outlined in the appendix. The charge conservation equation (5.4)

and surface nodes are advanced in time using finite differences and an explicit second

order Runge-Kutte scheme with the initial condition q(t = 0) = 0.

∂tq = Q+ 2
1 + 2R(E−n −RE+

n )−∇s · (qu) + um · ∇sq, (5.32)

∂tx = n · u+ um (5.33)

We implemented a finite volume [177] and a semi-implicit scheme for the charge

conservation equation wherein the linear JσEnK and nonlinear ∇s · (qu) terms are

treated implicitly and explicitly respectively. These alternative methods did not

produce significant differences in the results when compared to the second order

Runge-Kutte method. As a validation of the numerical implementation of the electric

problem, we solved electrohydrodynamics of a solid spherical particle under Quincke

rotation for easy comparison with analytical solutions based on spherical harmonic
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Table 5.2: Material properties: systems 1 and 2 correspond to the experi-
ments of Lanauze et al. [90] and Salipante & Vlahovska [141], respectively.
ε0 = 8.8542× 10−12 F.m−1 denotes the permittivity of vacuum.

System ε/ε0 ε̄/ε0 σ σ̄ µ µ̄ γ

(S.m−1) (S.m−1) (Pa.s) (Pa.s) (mN.m−1)
1a 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5
1b 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5
1c 4.9 2.8 5.8× 10−11 0.2× 10−11 0.68 0.05 4.5
2a 5.3 3.0 4.5× 10−11 0.12× 10−11 0.69 0.97 4.5
2b 5.3 3.0 4.5× 10−11 0.12× 10−11 0.69 0.97 4.5

expansions [35]. We also tested our numerical method for hydrodynamics of drops in

simple shear flow [81] and electrohydrodynamics of drops without convection [88].

5.4 Results and discussion

For measuring the drop’s deviation from sphericity, we use Taylor’s deformation

parameter D, defined as

D = L−B
L+B

, (5.34)

where L and B denote the length of the axis of the drop parallel and perpendicular

to the electric field respectively in the Taylor regime. The sign of D distinguishes

between oblate (D < 0) and prolate (D > 0) shapes. In the Quincke regime, L and B

denote the length of the major and minor axis of the drop respectively, resulting in

D > 0 at all times. The tilt angle of drops is measured with angle α, see figure 5.1.

In order to find these geometric quantities, the drop’s surface is fitted to an ellipsoid

using least squares method.
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Table 5.3: Material properties: systems 1 and 2 with drop radius and electric
field strength.

System a E0
(mm) (kV.cm−1)

1a 2.0 1.6
1b 2.0 2.1
1c 2.0 6.1
2a 0.7 0.45–2.0
2b 2.1 0.26–1.2

5.4.1 Taylor regime

We first investigate drop dynamics in the Taylor regime, where the drops

attain either a steady oblate or prolate shape. We compare our three dimensional

boundary element method with existing experiments, small deformation theories and

an axisymmetric boundary element method developed in our previous work [37]. The

material properties are chosen from experiments of Lanauze et al. [90] for transient

(system 1) and Salipante & Vlahovska [141] for steady drop deformations (system 2),

see table 5.2. The corresponding dimensionless parameters are presented in table 5.4.

Since both these experiments focused on oblate drops, we choose one set of parameters

from the prolate drop experiments of Ha & Yang [58] (system 3). As they did not

report all the material properties necessary to construct all the 5 dimensional groups;

we set CaE = 0.3 and Ma = 0.5.

Figure 5.3a shows the transient deformation of oblate drops for system 1a for

an electric field strength of E/Ec = 0.49. The axisymmetric boundary element method

performs the best in predicting drop deformation when compared with experiments.

We calculate drop deformations obtained using the three dimensional boundary element

method for two different mesh sizes as a convergence test; Nd = 2 and Nd = 3. The
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Table 5.4: Dimensionless parameters corresponding to the material proper-
ties of table 5.1: systems 1, 2 and 3 correspond to the experiments of Lanauze
et al. [90], Salipante & Vlahovska [141] and Ha & Yang [58], respectively.

System R Q λ CaE Ma
1a 29.0 0.57 0.074 0.49 0.65
1b 29.0 0.57 0.074 0.85 0.375
1c 29.0 0.57 0.074 7.18 0.045
2a 36.6 0.57 1.41 0.03–0.6 0.27–5.4
2b 36.6 0.57 1.41 0.03–0.6 0.8–16
3 0.1 1.37 1 0.3 0.5
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Figure 5.3: Deformation parameter D as a function of time for the param-
eters of: a) system 1a, b) system 1b, c) system 1c, the steady deformation
values predicted by the models of Taylor (1966) and Ajayi (1978) are -0.75
and -1.40, respectively, and out of the frame of figure and d) system 3. The
effect of mesh relaxation algorithm on drop deformation measurement is seen
to be more profound for larger deformation as in system 3 when compared to
system 1b.
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results from the finer mesh converges to that of the axisymmetric boundary element

method. The small deformation theories [159, 2] do not perform as well as the full

numerical simulations, however, inclusion of charge convection in the theoretical model

improves the results considerably [37].

Next, we consider system 1b, to investigate the effect of increasing the electric

field to E/Ec = 0.64 that correspondingly results in an increase in drop deformations.

The axisymmetric and three dimensional boundary element method with Nd = 3

again find excellent agreement with the experimental data. The interfacial charge

and velocity profile for the three dimensional simulation is shown in figure 5.4. These

time series profiles reveal that as the interfacial velocity strength increases, negative

and positive charges are advected towards the equatorial circumference of the drop,

thereby creating a sharp charge gradient across it. We also consider the effect of the

mesh relaxation algorithm of Loewenberg & Hinch [99] and find that it improves the

predictions by a small fraction. The deviations of the coarser mesh Nd = 2 from the

experimental results are small and improve slightly on including mesh relaxation. We

again find that the small deformation theory with convection matches the simulations

and experiments better than that without convection.

Considering system 1c, with an even higher electric field E/Ec = 1.86, we

find the charge gradient across the drop’s equator becomes sharper and an actual

discontinuity appears that triggers instabilities, reminiscent of Gibb’s phenomena,

leading to the termination of the simulations. Lanauze et al. [90] had discovered this

charge shock in their simulations and attributed it to three dimensional flows (referring

to Quincke electrorotation) that an axisymmetric boundary integral formulation cannot

capture. However, our three dimensional simulations do not show any rotational flow



135

(a) (b) (c)

(d) (e) (f )

Figure 5.4: Time evolution profiles of interfacial charge and velocity for
system 1b in the Taylor regime at t/τMW = 1.0, 2.5, 4.0.

at this electric field strength that could prevent the formation of this charge shock.

This shows that charge shock can exist in the Taylor regime as well. The charge shock

is solely due to the straining flow that causes accumulation of positive and negative

charges at the equator. The strength of this straining flow increases with electric field

and is more pronounced for low viscosity drops. Taylor’s and Ajayi’s drop deformation

predictions are out of the frame for this case. Inclusion of charge convection in the

small deformation theory appears to help the situation, however, the sharp charge

discontinuity is still unable to be captured.

We also consider a prolate drop case, system 3, that undergoes larger de-

formations than the oblate cases. The steady state deformation value reported in

experiments of Ha & Yang [58] with unknown Ma is D = 0.25, simulation of Lac

& Homsy [88] with Ma → ∞ is D = 0.22, and our simulations with Ma = 0.5 is
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Figure 5.5: Steady drop deformation D as a function of electric capillary
number CaE for the parameters of: (a) system 2a, and (b) system 2b. The
various theoretical models and simulations are compared to the experimental
measurements of Salipante & Vlahovska [141].

D = 0.27, see figure 5.3d. Since there are no experimental data for transient drop

deformations we will consider the axisymmetric simulations as the benchmark for

convergence test. We find that the three dimensional simulations with Nd = 3 and

mesh relaxation converges to the results of the axisymmetric simulation, however, with

a small discrepancy in the transient state. Simulations with Nd = 2 and mesh relax-

ation perform as good as Nd = 3 without mesh relaxation. These results signifies the

importance of including mesh relaxation in simulations with larger drop deformations.

Unsurprisingly, the large drop deformation is poorly captured and underpredicted by

the small deformation theories.

We now consider steady state drops deformations, system 2, and compare our

simulations with theoretical and experimental data. We consider drop deformations

for two drop sizes; system 2a with a = 0.7mm and a = 2.1mm for increasing values

of electric capillary number CaE. For a given value of electric capillary number, the

smaller drop experiences a stronger electric field corresponding to a lower Mason

numberMa, when compared to the larger drop. As a consequence, for a fixed CaE value
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the smaller drop experiences stronger charge convection on its surface, resulting in less

oblate shape, see figure 5.5a. The larger drop, on the other hand, experiences weaker

charge convection and consequently deforms more, see figure 5.5b. In consistence with

previous results, the axisymmetric and three dimensional simulations perform the

best in predicting drop deformations. The small deformation theory with convection

performs the best out of all the theories. Since the effect of charge convection is weaker

in the case of the larger drop, the small deformation theories without convection do

not deviate significantly from the simulation, experiments and theory with convection.

5.4.2 Quincke regime

We now turn our attention to electrorotation of drops in the Quincke regime.

We use the drop-fluid system from the experiments of Salipante & Vlahovska [141] but

only consider smaller drop sizes. We consider three systems with different viscosity

ratios; system 2c with λ = 14.1, 2d with λ = 7.05, 2e and 2f with λ = 1.4. Note

that system 2e and 2f are the same as 2b, however, with different drop sizes and

stronger electric fields. The heuristic mesh relaxation algorithm of Loewenberg &

Hinch [99] is not included in the simulations in the Quincke regime as we found it

to cause numerical instabilities preventing the simulations to reach a steady state.

This is not a problem since we do not expect mesh relaxation to considerably alter

the results since the drop deformations considered here are moderate D 6 0.1. For

comparisons with the drop tilt angle α, we define β as the angle between the induced

dipole moment and the direction antiparallel to the electric field following the notation
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Table 5.5: Material properties: system 2 corresponding to the experiments
of Salipante & Vlahovska [141] has a critical electric field of Ec = 2.68
kV.cm−1. Permittivity and conductivity of this system are given in table 5.2.

System µ µ̄ γ a E0
(Pa.s) (Pa.s) (mN.m−1) (mm) (kV.cm−1)

2c 0.69 9.74 4.5 0.25, 0.75, 1.25, 1.75 0.67–5.36
2d 0.69 4.87 4.5 0.25, 0.75, 1.25, 1.75 0.67–5.36
2e 0.69 0.97 4.5 0.25 4.69–5.49
2f 0.69 0.97 4.5 0.75 4.69–6.03

Table 5.6: Dimensionless parameters corresponding to the material prop-
erties of table 5.5: system 2 corresponds to the experiments of Salipante &
Vlahovska [141].

System R Q λ CaMW E0/Ec
2c 36.6 0.57 14.1 0.44, 1.32, 2.20, 3.08 0.25–2.0
2d 36.6 0.57 7.05 0.23, 0.69, 1.15, 1.61 0.25–2.0
2e 36.6 0.57 1.41 0.07 1.75–2.05
2f 36.6 0.57 1.41 0.21 1.75–2.25

of Salipante & Vlahovska [141],

β = π

2 − arctan
(E2

0
E2
c

− 1
)−1/2

. (5.35)

In order to characterise the onset of Quincke electrorotation of drops, we present

a phase digram that distinguishes Taylor from the Quincke regime for systems 2c

and 2d, figure 5.6. Figure 5.6a shows the transition from Taylor to Quincke regime

for increasing drop sizes with correspondingly increasing CaMW for viscosity ratio

λ = 14.1. We find that the applied electric field required for the onset of rotation

decreases with an increase in CaMW in agreement with experimental data for the range

of CaMW considered here. The physical interpretation of this observation is as follows;

for a given electric field strength, a smaller drop experiences smaller deformation, due
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Figure 5.6: Phase diagram distinguishing Taylor (empty symbols) from
Quincke regime (filled symbols) for two different viscosity ratios (a) λ = 14.1,
(b) λ = 7.05.

to smaller CaE value, resulting in a weaker induced dipole moment P when compared

to a larger drop that deforms more. As a result, the electric torque P ×E0 required to

overcome viscous torque for sustained rotation is higher for a smaller drop as compared

to a larger drop. The same effect is seen in figure 5.6b with λ = 7.05. For a given

electric field strength and drop radius, a drop with lower viscosity experiences stronger

charge convection, resulting in a weaker induced dipole moment. Consequently, the

critical electric field for the onset of Quincke electrorotation increases. Our simulations

were unable to explore higher E/Ec and CaMW due to two probable reasons. Strong

electric fields gives rise to strong flow velocities which leads to significant mass loss of

the drop arising from discretization errors and requirement of exceedingly small time

steps for advection of nodes for numerical stability. We discuss potential remedies of

these problems in the conclusion section.

Figure 5.7, shows the charge and velocity evolution plots of a drop under

Quincke rotation, corresponding to system 2c with an initial radius of a = 1.25mm

and electric field E/Ec = 1.5. In figure 5.10, we measure the tilt angle for system

2c as a function of the applied field for three different drop sizes. We also show the
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Figure 5.7: Time evolution profiles of interfacial charge and velocity for
system 2c with drop radius a=1.25mm in the Quincke regime at t/τMW =
3.75, 5.25, 10.5.

experimental results of Salipante & Vlahovska [141], however, with larger drop sizes for

qualitative comparison. In figure 5.10a, we find that an increase in drop size shifts the

supercritical pitchfork bifurcation point to the left. This effect, which is a consequence

of stronger induced dipole in more deformed drops, was also found in the experiments,

however to a lesser degree. We also plots the drop deformation as a function of the

applied field. We find that the drop deformation increases non-monotonically in the

Taylor regime till the point of transition to Quincke regime. In the Taylor regime,

there is only straining flow that serves to deform the drop. Once the drop enters

the Quincke regime, the rotational flow dominates over the straining flow and the

drop deformation decreases. We see these same effects in a drop with lower viscosity

ratio λ = 7.05 as well, however, the entire bifurcation plot is shifted to the right, see

figure 5.9. This is a consequence of stronger charge convection that serves to decrease

the strength of the induced dipole moment as compared to the higher viscosity drop.

These results are consistent with the electrorotation theory of He et al. [64].

In order to quantify the straining and rotational flow in the drop, we first

obtain the velocity gradient tensor by taking the gradient of the velocity field (5.29)
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Figure 5.8: Time evolution profiles of interfacial charge and velocity for
system 2c with drop radius a = 1.25mm in the Quincke regime at t/τMW =
3.75, 5.25, 10.5
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Figure 5.9: a) Tilt angle α and b) drop deformation D as a function of
applied electric field E/Ec for system 2d for various drop sizes.
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with respect to x0.

∇0u(x0) =− 1
4πµ(1 + λ)

∫
S

∆fH(x) · ∇0G(x0;x) dS(x)

+ κ

4π

∫
S
u(x) · ∇0T (x0;x) · n(x) dS(x), for x0 ∈ V ±, S,

(5.36)

We define a parameter ζ to characterise the straining and rotation flow as,

ζ = tr(S2)− tr(W 2)
tr(S2) + tr(W 2) , (5.37)

where, S = 1
2(∇u+∇uT ), W = 1

2(∇u−∇uT ), (5.38a, b)

are the usual strain-rate and vorticity tensors. Values of ζ closer to 1 or −1

represent dominant straining or rotational flows respectively. In the Taylor regime,

rotational flow is completely absent and the value of ζ is identically 1. During the

transition from Taylor to Quincke regime ζ ∈ (−1, 1) but once the drop is in the

Quincke regime, the straining flow does not increase while rotational flow continues

to increase with the electric field and ζ → −1. This also explains the asymptotic

behaviour of drop deformation as electric field increases, see figure 5.10b and 5.9b.

We investigated a few cases for system 2e and 2f with λ = 1.4, figure 5.11. We

were not able to start these simulations from a spherical uncharged drop due to the

formation of charge shock. The initial condition for these cases were obtained from

the steady state data of λ = 7.05. We also show the experimental data for larger

drops sizes for qualitative comparison.

Finally, we show the tilt angle and deformation of the drop as a function of

time, see figure 5.12. In particular, we find that stronger electric fields induce more

oscillations in the drop tilt angle and deformation before they reach a steady state.



143

-1.0

-0.75

-0.5

-0.25

0.0

0.25

0.5

0.75

1.0

ζ

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

E/Ec

BEM: CaMW = 0.44
BEM: CaMW = 1.32
BEM: CaMW = 2.20

λ = 14.1

(a)

-1.0

-0.75

-0.5

-0.25

0.0

0.25

0.5

0.75

1.0

ζ

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

E/Ec

λ = 7.05

(b)

Figure 5.10: ζ calculated at the drop’s center x0 = 0 as a function of electric
field for a) λ = 14.1 and b) λ = 7.05. Values of ζ close to 1 or −1 represent
dominant straining or rotational flows respectively.
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Figure 5.11: a) Tilt angle α and b) drop deformation D as a function of
applied electric field E/Ec for system 2e and 2f. The experimental data for
drop deformation corresponding to CaMW = 0.98 is not available.
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Figure 5.12: (color online) a) Tilt angle α and b) drop deformation D
as a function of time t/τMW for system 2d with drop size a=0.75mm and
CaMW = 0.69. Stronger electric fields cause more oscillations in the tilt angle
and drop deformation.

These observations are also consistent with the theoretical results of He et al. [64].

5.5 Conclusion

In this work, we have developed a three dimensional boundary element method

for the complete Melcher-Taylor leaky dielectric model, thereby extending the previous

work in this field [151, 10, 88, 90]. Our simulations are able to predict the steady

oblate and prolate drop shapes in the Taylor and tilted drops in the Quincke regime.

We presented a phase diagram to show the transition from Taylor to Quincke regime.

We measured the tilt angle and drop deformation in the Quincke regime as a function

of electric field that agrees well with the experiments. We also characterized the

nature of the flow in the drop as a function of electric field helpful in explaining the

drop deformation in the two regimes.

Our simulations were restricted to relatively small to moderate drop sizes

while the experiments of Salipante & Vlahovska [141] reported larger drop sizes as
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well. The mass loss at stronger electric fields and larger deformations can be cured

by increasing mesh discretization. However, an increase in the size of the linear

system to be solved will require full parallelisation (as compared to OPENMP used in

this work) for achieving convergence in reasonable computational time. A spectral

boundary element method for electrohydrodynamics of drops will also be helpful for

faster convergence. Being able to investigate drops in stronger electric fields will

help in reproducing and understanding the chaotic drop dynamics at stronger electric

fields reported in experiments [142]. The sharp charge discontinuity observed at the

equatorial circumference of the drop requires a shock capturing scheme. Standard

upwind schemes are non-trivial to implement on an unstructured mesh. High-order

weighted essentially non-oscillatory (WENO) schemes using finite volume formulation

can be employed towards this purpose [67]. Potential extensions of our work include

studying sedimenting drops under electric field, the effect of surfactants on drop

deformation and rotation and drop-drop interactions leading to electrohydrodynamics

of emulsions that may necessitate the use of fast multipole methods [180]. Numerical

simulations of electrohydrodynamics of emulsions will be helpful in understanding

recent experiments that have reported collective flow pattern in these systems. Finally,

a three dimensional small deformation theory for the complete Melcher-Taylor leaky

dielectric model will be helpful in understanding these phenomena due to analytical

tractability and is the subject of our current research.
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Chapter 6

Conclusions and directions for

future work

6.1 Conclusions

In this work, we addressed a number of fundamental questions concerning the

electrohydrodynamics of particles and drops, many of them motivated by experiments.

While most of the previous work in this field focused on the dynamics of particles

and drops in weak electric fields, there are only a handful of work investigating the

dynamics in strong electric fields. Of particular interest to us was the phenomena

of Quincke electrorotation, where particles and drops exhibit a symmetry breaking

bifurcation leading to spontaneous steady rotation in strong electric fields. This

phenomena, although, discovered almost a century ago had been mostly overlooked

until recently and constitutes the main theme of this work. The methods and techniques

used and developed in this work are applicable to other similar multiphysics and

multiphase problems like acoustico-fluidics, magnetohydrodynamics, thermophoresis
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and electrokinetics of particles and drops to name a few.

In chapter 2, we developed a comprehensive model to study electrohydrody-

namic interactions between a pair of spherical particles using method of reflections,

particularly in strong electric fields where these particles are under Quincke rotation.

The motivation of this work was the discrepancy between experiments and theoretical

predictions observed by Lemaire and coworkers [98, 95, 112]. We demonstrated the

importance of electrohydrodynamic interactions and their effect on the critical electric

field required for the onset of Quincke rotation. Using numerical simulations, we solve

the nonlinear governing equations and discovered complex dynamics exhibited by a

pair of particles under Quincke rotation.

In chapter 3, we used the mathematical tools developed earlier and explored

the effects of wall on the Quincke rotation of a particle. The spontaneous angular

velocity of the Quincke particle or roller enabled it to self-propel in a random direction

with Brownian diffusion. The electrohydrodynamic interaction between many such

rollers gave rise to large scale correlated motion. We studied these effects using a

combination of experiment, theory and simulations. This proved to be an ideal system

in the emerging field of active matter primarily due to its high controllability, accurate

measurement techniques and ease of manoeuvrability. The effect of confinement in

ring, square and circular geometry were also discussed. In circular confinement, we

discovered that the motile colloids self organise into a steadily rotating vortex that

live on the verge of a phase separation.

In chapter 4 and 5, we addressed the problem of electrohydrodynamics of drops

in strong electric fields using a theoretical and numerical approach, respectively. It is

a classic multiphase problem best described by the Melcher-Taylor leaky dielectric
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model. The most novel aspect of our work was the inclusion of the nonlinear charge

convection term in the theoretical model that had been neglected by researchers in

the past mostly due to convenience. We also tackled this problem using a numerical

approach based on boundary element method. Our simulations were able to capture

Quincke rotation of drops inaccessible by previous researchers as they either confined

themselves to axisymmetric drops or neglected the charge convection term that drives

this phenomena.

6.2 Directions for future work

• Particles under Quincke rotation have been shown to reduce the effective viscosity

[98] and increase the apparent conductivity of these suspensions[113]. The work

described in chapter 2 is a first step towards simulating many particles under

Quincke rotation interacting with each other electrohydrodynamically. One can

also approach the same problem in a different way by developing a continuum

model of leaky dielectric particles through a Smoluchowski equation. Both

discrete particle simulations and continuum approach have been used previously

to model bacterial suspensions. A theoretical model will give us a physical

insight into the mechanisms and allow us to obtain macroscopic properties like

effective viscosity and bulk electrical conductivity of these suspensions.

• The transient small deformation theory developed in chapter 4 includes charge

convection, however, only relatively weak in strength. As charge convection

increases in strength one needs to include higher order multipoles both in the

first and second order theory. This makes the problem more complicated owing
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to the nonlinear nature of the convection term. Moreover, the theory presented

in this work is only valid for axisymmetric drops. Extension to three dimensions

precludes the use of Stokes streamfunction and one has to use Lamb’s general

solution. A theoretical model for electrohydrohydrodynamics of drops in three

dimensions will be useful in analysing pair interactions between them, thereby

paving the path for a dilute suspension theory.

• A natural extension of the numerical work based on boundary element method

presented in chapter 5 is to study drop-drop interactions and include the effect

of surfactants. There have been recent experiments with particle laden drops in

electric fields that exhibit complex dynamics [109, 110, 43, 134, 41, 42]. These

experiments are yet to be explained and reproduced in simulations.



Appendix A

Pair interactions

A.1 Asymptotic estimate of the steady-state angu-

lar velocity

In this Appendix, we derive an asymptotic expression for the steady-state

angular velocity of two interacting spheres that are fixed in space, in the case where

the spheres are co-rotating: Ω1 = Ω2 = Ω. In this case, it is also obvious by symmetry

that P1 = P2 = P. We seek an expression for the correction to the steady-state

angular velocity Ω0 = |Ω0| and dipole moment P0 of an isolated sphere to account

for leading-order interactions in the limit of large separation distance R � 1. The

single-sphere case was solved in Sec. 2.2.1, where we obtained in dimensionless variables

P0 = −A0
1Ω0 × ẑ + A0

2ẑ, Ω2
0 =

(
E0

E0
c

)2

− 1, (A.1)

with

A0
1 = ε21 − σ21

1 + Ω2
0
, A0

2 = ε21 − A0
1. (A.2)
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When interactions are taken into account, the dipole relaxation equation (2.52)

at steady state simplifies to

Ω× (P + ε21Ee)− (P + σ21Ee) = 0, (A.3)

where Ee = −ẑ + Π ·P/R3 is the electric field experienced by each sphere. To leading

order, this can be approximated as Ee ≈ −ẑ + Π · P0/R
3, where P0 is given in

Eq. (A.1). The dipole moment equation (A.3) can then be inverted for P as

P = A1 [Ω× Ee + (Ω · Ee)Ω]− A2Ee, (A.4)

where A1 and A2 are defined as in Eq. (A.2) but with Ω0 replaced by Ω. This expression

can then be substituted into the torque balance equation (2.54), which becomes

Ω = A1

Ma

[
E2
eΩ− (Ω · Ee)Ee − (Ω · Ee)(Ω× Ee) + 1

R3 (I− ẑẑ) ·Ω0

]
, (A.5)

where we have only kept leading-order corrections in 1/R3. Eq. (A.5) is a nonlinear

equation for the angular velocity Ω; as in the single-sphere case, it does not admit a

unique solution as the direction of rotation is indeterminate. However, it can be used

to obtain an expression for the magnitude of the angular velocity. To this end, we

assume an asymptotic expansion for Ω of the form

Ω = Ω0 + α

R
+ β

R2 + γ

R3 +O(R−4), (A.6)

where α, β, and γ are unknown vectors. The corresponding expansion for the
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magnitude of the angular velocity is also given by

Ω2 = Ω2
0 + 1

R
(2Ω0 ·α) + 1

R2 (2Ω0 · β + α2) + 2
R3 (Ω0 · γ +α · β) +O(R−4). (A.7)

By substituting these expansions into Eq. (A.5), where care must be taken to also

expand A1 which is also a function of Ω, one can derive a hierarchical set of conditions

on the unknown vectors α, β, and γ by successively identifying terms corresponding

to various powers of 1/R. At zeroth order, we recover the solution for an isolated

particle, as expected. At first, second, and third orders, the conditions obtained are:

O(R−1) : α · ẑ = 0, Ω0 ·α = 0, (A.8)

O(R−2) : β · ẑ = 0, 2Ω0 · β + α2 = 0, (A.9)

O(R−3) : Ω0 · γ +α · β

= (1 + Ω2
0) [(Π : Ω0Ω0)/4Ω2

0 − ẑ ·Π ·P0] . (A.10)

While these conditions are not sufficient to solve for the vectors α, β, and γ, they are

sufficient to fully obtain the unknown coefficients in the expansion of Ω2 in Eq. (A.7),

which becomes:

Ω2 = Ω2
0 + 2

R3 (1 + Ω2
0)
(

Π : Ω0Ω0

4Ω2
0
− ẑ ·Π ·P0

)
+O(R−4). (A.11)

This expression shows that electric and hydrodynamic interactions modify the angular

velocity of the spheres to order O(R−3), though the perturbation depends on the

direction of rotation through Ω0 and on the orientation of the spheres through the

tensor Π. To obtain a more general estimate for the angular velocity that does
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not depend on the direction of rotation, we take an average of Eq. (A.11) over all

orientations of Ω0, which after algebra yields the simple expression

〈Ω2〉 = Ω2
0 + 1 + 3 cos 2Θ

R3

ε21

(
E0

E0
c

)2

+ (σ21 − ε21)
+O(R−4), (A.12)

in terms of the angle Θ = cos−1(R̂ · ẑ) between the field direction and the direction of

the line of centers. While this expression was obtained for two co-rotating spheres,

we show in Sec. 2.4 that it provides a very good approximation to the steady-state

angular velocity in the limit of R � 1 even when the two spheres are rotating in

different directions.

We also note that Eq. (A.12) can be used to provide an estimate for the critical

field Ec in the presence of interactions by solving for the field value for which 〈Ω2〉 = 0:

Ec ≈ E0
c

√√√√(1 + 3 cos 2Θ)(ε21 − σ21) +R3

(1 + 3 cos 2Θ)ε21 +R3 , (A.13)

which can be compared to the numerical results of the linear stability analysis of

Sec. 2.3 and shows excellent agreement for R� 1.

A.2 Contact algorithm

In the simulations of freely suspended spheres, particle overlap is prevented

by introducing additional equal and opposite contact forces Fc = Fc
1 = −Fc

2 at the

point of contact between the two touching particles. These forces modify both the

torque and force balances on the spheres. The torque balance of Eq. (2.42) becomes,
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in dimensionless form:

Ω1 + 1
2R3 Π ·Ω2 = 1

Ma

[
P1 ×

(
ẑ− 1

R3 Π ·P2

)
+ 1

4π R̂ × Fc
]
, (A.14)

Ω2 + 1
2R3 Π ·Ω1 = 1

Ma

[
P2 ×

(
ẑ− 1

R3 Π ·P1

)
+ 1

4π R̂ × Fc
]
, (A.15)

The force balances of Eqs. (2.48)–(2.49) are also modified as

U1 = − 1
R2 Ω2 × R̂ + 1

3πMa(F1 + Fc), (A.16)

U2 = 1
R2 Ω1 × R̂ + 1

3πMa(F2 − Fc). (A.17)

To determine the contact force, we prescribe that there be rolling without slipping

between the two touching surfaces, which is expressed as

U1 + Ω1 × R̂ = U2 −Ω2 × R̂. (A.18)

If P1 and P2 are known, Eqs. (A.14)–(A.18) form a system of five vector equations for

the five unknowns Ω1, Ω2, U1, U2, and Fc. This system can be inverted analytically,

yielding new expressions for Ω1, Ω2, U1 and U2 to be used instead of Eqs. (2.54)–(2.57)

when the two particles are in contact.



Appendix B

Small deformation theory

B.1 Electric field, charge and jump in Ohmic cur-

rent

The normal component and tangential components of the electric field are

expressed in terms of the dipole and octupole moment as:

En
01 = 1 + 2P01, Ēn

01 = 1− P01, (B.1a)

En
11 = 2P11 − 6

5f12(1 + P01), Ēn
11 = −P11 − 6

5f12(1− 2P01), (B.1b)

En
13 = 4P13 + 6

5f12(1− 4P01), Ēn
13 = −3P13 + 6

5f12
(
1 + 7

2P01
)
. (B.1c)

Et
00 = −(1− P01), (B.2a)

Et
10 = P13 + P11 − f12(1 + 2P01), (B.2b)

Et
12 = 5P13 − f12(2 + 7P01). (B.2c)
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Substituting the expressions obtained in (B.1) into Gauss’s and Ohm’s law respectively,

the surface charge and jump in Ohmic current are written as:

q01 = En
01 −QĒn

01 = 1 + 2P01 −Q(1− P01), (B.3a)

q11 = En
11 −QĒn

11 = 2P11 − 6
5f12(1 + P01)−Q[−P11 − 6

5f12(1− 2P01)], (B.3b)

q13 = En
13 −QĒn

13 = 4P13 + 6
5f12(1− 4P01)−Q[−3P13 + 6

5f12
(
1 + 7

2P01
)
]. (B.3c)

JjKn01 = REn
01 − Ēn

01 = R(1 + 2P01)− 1 + P01, (B.4a)

JjKn11 = REn
11 − Ēn

11 = R[2P11 − 6
5f12(1 + P01)] + P11 + 6

5f12(1− 2P01), (B.4b)

JjKn13 = REn
13 − Ēn

13 = R[4P13 + 6
5f12(1− 4P01)] + 3P13 − 6

5f12
(
1 + 7

2P01
)
. (B.4c)

The tangential electric stress coefficients in equation (4.47) are written as

[qEt]01 = q01E
t
01, (B.5a)

[qEt]11 = q01E
t
11 + 2

5q01E
t
13 + q11E

t
01, (B.5b)

[qEt]13 = 3
5q01E

t
13 + q13E

t
01, (B.5c)
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where the various products on the right-hand side are easily evaluated using equations

(B.2) and (B.3). The electric pressure coefficients in equation (4.48) are

JpEK00 = 1
6(En2

01 −QĒn2
01 ) + 1

3(Q− 1)Et2
00, (B.6a)

JpEK02 = 1
3(En2

01 −QĒn2
01 )− 1

3(Q− 1)Et2
00, (B.6b)

JpEK10 = 1
3(En

01E
n
11 −QĒn

01Ē
n
11) + 2

3E
t
00(Et

10 − 1
5E

t
12), (B.6c)

JpEK12 = 2
3(En

01E
n
11 −QĒn

01Ē
n
11) + 3

7(En
01E

n
13 −QĒn

01Ē
n
13)

+ 2
3E

t
00(5

7E
t
12 − Et

10),
(B.6d)

JpEK14 = 4
7(En

01E
n
13 −QĒn

01Ē
n
13)− 12

35E
t
00E

t
12, (B.6e)

and can be calculated using equations (B.1) and (B.2).

B.2 Interfacial velocity and hydrodynamic stress

The zeroth-order coefficients of the normal and tangential component of the

interfacial velocity used in equation (4.43) are found to be

vn02 = A03 +B03, v̄n02 = Ā03 + B̄03, (B.7a)

vt01 = A03, v̄t01 = −3
2Ā03 − 5

2B̄03. (B.7b)
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At first order, the normal velocities read

vn10 = −2
5f12(A03 +B03), (B.8a)

vn12 = A13 +B13 − 2
7f12(3A03 + 2B03), (B.8b)

vn14 = A15 +B15 − 12
35f12(8A03 + 3B03), (B.8c)

v̄n10 = −2
5f12(Ā03 + B̄03), (B.8d)

v̄n12 = Ā13 + B̄13 − 1
7f12(Ā03 − B̄03), (B.8e)

v̄n14 = Ā15 + B̄15 + 6
35f12(9Ā03 + 19B̄03), (B.8f)

whereas those of the tangential velocity are given by

vt11 = A13 + 3
5A15 + 3

10B15 − 2
5f12(7A03 + 3B03), (B.9a)

vt13 = 7
5A15 + 7

10B15 − 3
5f12(7A03 + 3B03), (B.9b)

v̄t11 = −3
2Ā13 − 5

2B̄13 − 3
4Ā15 − 21

20B̄15 − 3
5f12(3Ā03 + 7B̄03), (B.9c)

v̄t13 = −7
4Ā15 − 49

20B̄15 − 9
10f12(3Ā03 + 7B̄03). (B.9d)

The zeroth-order boundary conditions (4.44a) and (A.18a) provide us with the relations

A03 = −B03 + δḟ12, Ā03 = −B03 + 7
2δḟ12, B̄03 = B03 − 5

2δḟ12. (B.10)

Using these relations together with the condition that f20 = −f 2
12/5 obtained in §4.3.1

from volume conservation, it is easy to show that (4.44b) is trivially satisfied. The

remaining first-order boundary conditions then yield six additional equations that can
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be combined to show that

A13 = −B13 − 2
7f12B03 + δḟ22 + 6

7δf12ḟ12, (B.11a)

Ā13 = −B13 + 3
7f12B03 + 7

2δḟ22 + 1
2δf12ḟ12, (B.11b)

B̄13 = B13 − 5
7f12B03 − 5

2δḟ22 + 5
14δf12ḟ12, (B.11c)

A15 = −B15 − 12
7 f12B03 + δḟ24 + 96

35δf12ḟ12, (B.11d)

Ā15 = −B15 − 6
7f12B03 + 11

2 δḟ24 + 3
35δf12ḟ12, (B.11e)

B̄15 = B15 − 6
7f12B03 − 9

2δḟ24 + 93
35δf12ḟ12. (B.11f)

Equations (B.10)–(B.11) therefore allow us to reduce the number of flow unknowns

to three, namely B03, B13 and B15. The hydrodynamic stress is obtained by using

equations (4.49). At zeroth order, we find:

JTHKnn00 = JpHK00, (B.12a)

JTHKnn02 = (2 + 3λ)B03 − 1
2(16 + 19λ)δḟ12, (B.12b)

JTHKnt01 = 5(1 + λ)B03 − 1
2(16 + 19λ)δḟ12. (B.12c)
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Similarly, at first order,

JTHKnn10 = JpHK10 + 2
5(−1 + 11λ)B03f12 + 1

5(8− 43λ)δḟ12f12, (B.13a)

JTHKnn12 = (2 + 3λ)B13 + 1
7(−8 + 13λ)B03f12 − 1

2(16 + 19λ)δḟ22

− 105
14 λ δf12ḟ12,

(B.13b)

JTHKnn14 = 3
10(4 + 5λ)B15 + 3

35(28 + 37λ)B03f12 − 3
4(16 + 17λ)δḟ24

− 3
70(32 + 47λ)δf12ḟ12,

(B.13c)

JTHKnt11 = 5(1 + λ)B13 + 27
10(1 + λ)B15 − 4

35(33 + 18λ)B03f12

− 1
2(16 + 19λ)δḟ22 − 9

20(16 + 17λ)δḟ24 + 2
175(227− 466λ)δf12ḟ12,

(B.13d)

JTHKnt13 = 63
10(1 + λ)B15 − 9

5(1 + λ)B03f12 − 21
20(16 + 17λ)δḟ24

+ 9
50(4− 7λ)δf12ḟ12.

(B.13e)

In equations (B.12) and (B.13), JpHK00 and JpHK10 denote uniform hydrostatic pressure

jumps that do no affect drop shape.

B.3 Axisymmetric boundary element method

We outline the numerical method used in §5.4 for the solution of the full

nonlinear problem in axisymmetric geometry based on boundary integral equations

[74, 157]. The method shares similarities with that of [90] but makes use of a

finite-volume algorithm for the solution of the charge convection equation. We

first solve Laplace’s equation for the electric potential using a single-layer potential
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[151, 10, 88, 90], yielding the integral equation

ϕ(x0) = −x0 ·E0 +
∫
C
JEn(x)KGa(x0;x) ds(x), (B.14)

where C is the one-dimensional curve describing the drop shape, which is parametrized

by arclength s. Equation (B.14) is valid for any location of the evaluation point x0

on the drop surface C or in either of the fluid domains V and V̄ . It involves the

axisymmetric Green’s function for Laplace’s equation, which is obtained by integration

of the three-dimensional free-space Green’s function over the azimuthal direction:

Ga(x0;x) =
∫ 2π

0

dφ
4πr , where r = |r| = |x0 − x|. (B.15)

Knowledge of the single-layer potential density JEnK therefore allows determination of

the electric potential anywhere in space by simple integration, which prompts us to

seek an equation for JEnK in terms of the charge density q. To this end, we first take

the gradient of equation (B.14) with respect to x0 to obtain integral equations for the

electric field in both fluid phases:

E(x0) = E0 −
∫
C
JEn(x)K∇0Ga ds(x) for x0 ∈ V, (B.16a)

Ē(x0) = E0 −
∫
C
JEn(x)K∇0Ga ds(x) for x0 ∈ V̄ . (B.16b)

The derivative of the Green’s function undergoes a discontinuity across the interface,

which needs to be accounted for when the evaluation point is on the boundary [129],
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leading to the following expressions on the drop surface:

E(x0) = E0 −
∫
C
JEn(x)K∇0Ga ds(x) + 1

2JEn(x0)Kn(x0) for x0 ∈ C, (B.17a)

Ē(x0) = E0 −
∫
C
JEn(x)K∇0Ga ds(x)− 1

2JEn(x0)Kn(x0) for x0 ∈ C. (B.17b)

These equations are singular at x = x0, though the singularity disappears after taking

the dot product with the normal n(x0). An integral equation for the jump can then

be obtained by summing both equations and combining them with Gauss’s law (4.4),

which is written q = En −QĒn in dimensionless form. After manipulations, it reads

∫
C
JEn(x)K[n(x0) · ∇0Ga]ds(x)− 1 +Q

2(1−Q)JE
n(x0)K = En

0 (x0)− q(x0)
1−Q. (B.18)

This can be solved for JEnK, from which En and Ēn are deduced using Gauss’s law as

En = q −QJEnK
1−Q , Ēn = q − JEnK

1−Q . (B.19)

The tangential component of the electric field can then be obtained by evaluating

equation (B.17), though care must be taken to treat the integral singularity [149].

Another approach, which we adopt here, consists in evaluating the potential ϕ using

equation (B.14), which is only weakly singular, and then differentiating it numerically

along the curve C to obtain Et.

Once both normal and tangential components of the electric field are known,

they can be used to determine the jump in electric tractions JfEK using equation (4.9),

from which we infer the jump in hydrodynamic tractions JfHK using the stress balance

(4.7). Hydrodynamic tractions then enter the Stokes boundary integral equation for
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the fluid velocity v [127], which for an axisymmetric domain reads

v(x0) =− 1
4πMa(1 + λ)

∫
C
JfH(x)K · G a(x;x0) ds(x)

+ 1− λ
4π(1 + λ)

∫
C
v(x) · T a(x;x0) · n(x) ds(x),

(B.20)

where G a and T a are the axisymmetric Green’s functions for the Stokeslet and

stresslet, respectively:

G a(x;x0) =
∫ 2π

0

(
I
r

+ rr

r3

)
dφ, T a(x;x0) =

∫ 2π

0
−6rrr

r5 dφ, (B.21)

The exact expressions for these functions are very cumbersome but can be found in

[127, 128]. The integral equation (B.20), which is valid in both fluid domains and on

the interface, can be inverted to determine the interfacial velocity, which is then used

to update the drop shape and charge distribution.

The complete algorithm can be summarized as follows:

1. Given a surface charge distribution q(x), compute JEnK, En, and Ēn by solution

of the integral equation (B.18) together with equation (B.19).

2. Determine the surface potential ϕ by evaluation of equation (B.14).

3. Differentiate the surface potential ϕ numerically along the interface to obtain

the tangential electric field Et = −∇sϕ.

4. Knowing both components of the electric field, calculate the jump in electric

tractions JfEK using equation (4.9), and use it to determine the jump in hydro-

dynamic tractions JfHK using the stress balance (4.7).
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5. Solve the Stokes boundary integral equation (B.20) to obtain the interfacial

velocity.

6. Update the charge distribution q(x) by time marching of the charge conservation

equation (5.4) using an explicit scheme.

7. Update the position of the interface by advecting the mesh with the normal

component of the interfacial velocity using the same time-marching scheme as

in (vi).

In all simulations, the drop shape is taken to be initially spherical, and the

initial surface charge is uniformly zero. We use spline interpolation to represent

the shape of the interface, which allows for an easy and accurate determination of

geometric properties such as the normal and tangential vectors and surface curvature,

and for accurate evaluation of surface integrals. The charge conservation equation,

however, is discretized using a finite-volume scheme [97], which has better conservation

properties and is also more adequate for capturing sharp gradients as arise in strong

fields (figures 4.4 and 4.5); this distinguishes our method from that of [90], which uses

splines for both the drop shape and surface charge distribution.



Appendix C

Boundary element method

C.1 Discrete surface parametrisation

The drop’s surface is divided into N4 6-nodes curved triangular elements that

allows accurate computation of its curvature. The physical three dimensional element

is mapped to a right angles isosceles triangle residing in a plane described by s1 and

s2 coordinates. Any point on the surface x in the physical space is represent using 6

basis functions φ that are defined on each triangle, exact expressions of which can be

found in [127, 128],

x =
6∑
i=1
xiφi(s1, s2), (C.1)

where The unit tangential vectors in the directions of s1 and s2 in the physical space

are,

es1 =
6∑
i=1
xi
∂φi
∂s1

, es2 =
6∑
i=1
xi
∂φi
∂s2

. (C.2)
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The unit normal vector is given by,

n = 1
hS
es1 × es2 (C.3)

where hS(ξ, η) = |es1 × es2| is the surface metric. We define the metric tensor A,

Aij = ∂xk
∂si

∂xk
∂sj

, (C.4)

using which the surface divergence of any surface vector v can be found as,

∇s · v = A−1
ij

∂vk
∂si

∂xk
∂sj

. (C.5)

We use equation (C.5) to compute the mean curvature 2κm = ∇s · n and charge

convection term ∇s · (qu). Since these terms are computed locally at each element,

the value at a global node is found by simply averaging the values at the local nodes.

An alternative method of computing the surface divergence of a vector is by using

Stokes theorem that enables us to find the effective curvature of each element,

κm = 1
2SE

∫
SE

∇s · v dS = 1
2SE

∫
CE

(b× v) dl (C.6)

where, b = t×n is the outward unit normal to the edges of the triangular element and

SE and CE are the element area and contour respectively [129]. The Stokes theorem

also forms the basis of the finite volume method for the charge conservation equation.

We did not find any significant difference between these methods and the curvature is

computed using (C.5) in this work.
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C.2 Regularisation of hypersingular integral

In this section we briefly summarize the regularization of hypersingular integral

that arises in the boundary integral equation for the electric field. The interior and

exterior potential problems are,

∫
S
[ϕ−(x)− ϕ−(x0)][n(x) · ∇G(x;x0)] dS(x)

=
∫
S
[∇ϕ · n]−(x)G(x;x0) dS(x),

(C.7)

∫
S
[ϕ+(x)− ϕ+(x0)][n(x) · ∇G(x;x0)] dS(x)− ϕ+(x0)

=
∫
S
[∇ϕ · n]+(x)G(x;x0) dS(x),

(C.8)

respectively, where, G(x;x0) = 1/(4πr) is the fundamental solution of Laplace’s

equation, also known as Green’s function. It is evident from these integral equations

that the knowledge of potential on the boundary gives us the knowledge of its normal

flux and vice versa. Using continuity of potential, ϕ+ = ϕ− and subtracting equation

(C.8) from (C.7) and adding the external potential ϕe = −x · Ee to the resulting

equation, we obtain the electric potential in terms of the normal jump in the electric

field.

ϕ±(x0) = ϕe(x0) +
∫
S
JEnK(x)G(x;x0) dS(x) (C.9)

The singular integral are regularised by converting them to tangential derivatives

of the potential using integral identities, details of which can be found in [149] and

are omitted here for brevity. The regularized integral equations for the exterior and
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interior electric field are,

1
2E

+(x0)− [nEt −Etn](x0) ·L(x0)

+
∫
S

{
[nEt −Etn](x)− [nEt −Etn](x0)

}
· ∇0G(x;x0) dS(x)

=1
2E

e(x0)− E+
n (x0)L(x0) +

∫
S

{
E+
n (x)− E+

n (x0)
}
∇0G(x;x0) dS(x),

(C.10)

1
2E
−(x0) + [nEt −Etn] ·L(x0)

−
∫
S

{
[nEt −Etn](x)− [nEt −Etn](x0)

}
· ∇0G(x;x0) dS(x)

=1
2E

e(x0) + E−n (x0)L(x0) +
∫
S

{
E−n (x)− E−n (x0)

}
∇0G(x;x0) dS(x).

(C.11)

where L is an integral equation containing geometrical properties of the surface,

L(x0) = 1
2n(x0)−

∫
S

{
[∇G(x;x0) · n(x)][n(x)− n(x0)]

+ G(x;x0)[∇ · n](x)n(x)
}

dS(x).

(C.12)

Since the tangential electric field is continuous on the surface, we can eliminate the

terms involving the tangential electric field by adding the integral equations for the

exterior (C.10) and interior (C.11) field.

1
2 [E+ +E−](x0) =Ee(x0)− JEnK(x0)L(x0)

+
∫
S
{JEnK(x)− JEnK(x0)}∇0G(x;x0) dS(x)

(C.13)

C.3 Weilandt’s deflation technique

In this section we present Weilandt’s deflation technique used for faster con-

vergence of the iterative GMRES solver used for solving the Stokes’s boundary
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integral equation. The boundary integral equation for the interfacial velocity non-

dimensionalized with the appropriate scales is,

u(x0) + λ− 1
8π

∫
S
[u(x)− u(x0)]·T (x;x0) · n(x) dS(x)

= − 1
8πMa

∫
S

∆fh · G(x;x0) dS(x). (C.14)

Weilandt’s deflation technique involves formulating a boundary integral equation in

terms of the interfacial velocity, w, obtained after removal of rigid body motion and

uniform expansion solutions.

w(x0) + (λ− 1)
8π

[∫
S
[w(x)−w(x0)] · T (x;x0) · n(x) dS(x)

+ 4πw′(x0)− 4π
S
n(x0)

∫
S
w(x) · n(x) dS(x)

]
=− 1

8πMa

∫
S

∆fh(x) · G(x;x0) dS(x)

(C.15)

The rigid body motion w′ is given by the summation of translational U and rotational

Ω velocities,

w′(x0) = U + Ω× (x0 − xc), (C.16)

where xc is the surface centroid,

xc = 1
S

∫
S
x dS(x), (C.17)

U = 1
S

∫
S
w(x) dS(x), (C.18)

Ω = M−1 ·
∫
S
(x− xc)×w(x) dS(x), (C.19)
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and the matrix M is,

M =
∫
S
{I|x− xc|2 − (x− xc)(x− xc)} dS(x). (C.20)

Putting everything together we obtain the desired integral equation for w that we

solve iteratively using GMRES,

w(x0) + (λ− 1)
8π

[∫
S
[w(x)−w(x0)] · T (x;x0) · n(x) dS(x)

+ 4π
S

∫
S
w(x) dS(x) + 4π

(
M−1 ·

∫
S
(x− xc)×w(x) dS(x)

)
× (x0 − xc)

− 4π
S
n(x0)

∫
S
w(x) · n(x) dS(x)

]
= − 1

8πMa

∫
S

∆fh(x) · G(x;x0) dS(x) (C.21)

Finally, the interfacial velocity is computed as,

u = w + λ− 1
2 w′. (C.22)
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