
UC Santa Barbara
Core Curriculum-Geographic Information Systems (1990)

Title
Unit 47 - Fractals

Permalink
https://escholarship.org/uc/item/3329925c

Authors
Unit 47, CC in GIS
Klinkenberg, Brian

Publication Date
1990
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3329925c
https://escholarship.org
http://www.cdlib.org/



UNIT 47 - FRACTALS


Compiled with assistance from Brian Klinkenberg, University of
British Columbia

A. INTRODUCTION

Why learn about fractals?
Length of a cartographic line
Where did the ideas originate?

B. SOME INTRODUCTORY CONCEPTS

Euclidean geometry

C. SCALE DEPENDENCE

Determining fractal dimension
Some questions

D. SELF-SIMILARITY AND SCALING

Self-similarity
Scaling

E. ERROR IN LENGTH AND AREA MEASUREMENTS

REFERENCES

EXAM AND DISCUSSION QUESTIONS 

NOTES


UNIT 47 - FRACTALS


Compiled with assistance from Brian Klinkenberg, University of
British Columbia

A. INTRODUCTION

Why learn about fractals?

fractals are not so much a rigorous set of models as a
set of concepts

these concepts express ideas which have been around in
cartography for a long time

they provide a framework for understanding the way
cartographic objects change with
 generalization, or
changes in scale
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they allow questions of scale and resolution to be dealt
with in a systematic way

Length of a cartographic line

if a line is measured at two different scales, the second
larger than the first, its length
 should increase by the
ratio of the two scales

areas should change by the square of the ratio
volumes should change by the cube of the ratio

yet because of cartographic generalization, the length of
a geographical line will in
 almost all cases increase by
more than the ratio of the two scales

new detail will be apparent at the larger scale
"the closer you look, the more you see" is true of
almost all geographical data
in effect the line will behave as if it had the
properties of something between a
 line and an area

a fractal is defined, nontechnically, as a geometric set
- whether of points, lines, areas or
 volumes - whose
measure behaves in this anomalous manner

this concept of the scale-dependent nature of
cartographic data will be discussed
 in more detail
later

Where did the ideas originate?

term was introduced by Benoit Mandelbrot to the general
public in his 1977 text
 Fractals: Form, Chance and
Dimension

a second edition in 1982 is titled The Fractal
Geometry of Nature

some of Mandelbrot's earliest ideas on fractals came
from his work on the lengths
 of geographic lines in
the mid 1960s

fractals may well represent one of the most profound
changes in the way scientists look
 at natural phenomena

fractal-based papers represent over 50% of the
submissions for some physics
 journals
many of the studies of the fractal geometry of
nature are still at the early stages
 (especially
those in geomorphology and cartography)
the results presented in some fields are very
exciting (e.g., see Lovejoy's (1982)
 early work on
the fractal dimensions of rain and cloud areas)

B. SOME INTRODUCTORY CONCEPTS

Euclidean geometry

in traditional Euclidean geometry we work with points,
lines, areas and volumes
Euclidean dimensions (E) are all positive whole
numbers

the Euclidean dimension represents the number of
coordinates necessary to define a
 point

to specify any point on a profile requires two
coordinates, thus a profile has a
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 Euclidean
dimension of two
to define a point on a surface requires three
dimensions, therefore a surface has a
 Euclidean
dimension of three

closely allied with Euclidean dimensions are the
topological dimensions (DT) of
 phenomena

on a flat piece of paper (which has a Euclidean
dimension of 2) you can draw a
 two-dimensional
figure (DT= 2), a one-dimensional line (DT= 1), and
a zero-
dimensional point (DT= 0) (compare 0-cell, 1-
cell and 2-cell notation)

in fractal geometry we work with points, lines, areas and
volumes, but instead of
 restricting ourselves to integer
dimensions, we allow the fractal dimension (D) to be
 any
real number

the limits on this real number are that it must be
at least equal to the topological
 dimension of the
phenomenon, and at most equal to the Euclidean
dimension
 (i.e., 0&LT=DT&LT=D&LT=E)
a line drawn on a piece of paper can have a fractal
dimension anywhere from one
 to two

the term fractals is derived from the same Latin root
[fractus] as fractions; therefore:
 fractional dimensions

the fractal dimension summarizes the degree of complexity
of the phenomenon, the
 degree of its 'space-filling
capability'


overhead - Lines of different fractal dimensions

straight line will have equivalent topological and
fractal dimensions of 1
slightly curved line will still have a topological
dimension of 1, but a fractal
 dimension slightly
greater than 1
highly curved line (DT= 1) will have a much higher
fractal dimension
line which completely 'fills in' the page will have
a fractal dimension of 2
many natural cartographic lines have fractal
dimensions between 1.15 and 1.30
a surface can have a fractal dimension anywhere from
2 (perfectly flat) to 3
 (completely space-filing)

fractal dimension indicates how measures of the object
change with generalization
e.g. a line with a low fractal dimension (straight
line) keeps the same length as
 scale changes
a line with fractal dimension 1.5 loses length
rapidly if it is generalized

topological dimension tells us little about how shapes
differ
e.g. all coastlines have the same topological
dimension
however, sections of many coastlines have been found
to have very different
 fractal dimensions

fractal dimension quantifies the metric information in
lines and surfaces in a new and
 unique manner
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C. SCALE DEPENDENCE

the scale dependent nature of measurements (especially
those made on maps) has been
 observed by many people

e.g. as you measure the length of a natural boundary
on maps of larger scales, or
 make your measurements
with more precise instruments, the length appears to
 increase
this is known as the "Steinhaus Paradox"

Richardson (1961) made an extensive study of the
cartographic representation of
 international borders


suggested overhead Richardson plot, see Mandelbrot 1982, p.
33

he observed that there was a predictable
relationship between the scale at which
 the
measurement was made, and the length of the line
even though the length increased when the borders
were measured on maps of
 larger scale, the increase
was predictable
plots illustrating the relationship between
measurement scale and length have
 since become known
as Richardson plots
Mandelbrot subsequently placed Richardson's (and
others) work within the
 framework of fractal
geometry, and showed that such behavior is predicted
in a
 fractal world

Determining fractal dimension

an example of how to determine the fractal dimension of a
cartographic line:
1. step a
 pair of dividers (step size s1) along
the line; say it takes n1 steps to span the line
2. the
 length of the line is equal to s1n1
3. repeat the process, but decrease the step size
(to
 s2); it now takes n2 steps to span the line
4. the length of the line is now s2n2
5. the
 fractal dimension can be calculated as:


D = log (n2/n1) / log (s1/s2)

worked example:
dividers size: 10 m
number of steps: 100
dividers size: 5 m
number of steps: 220


D = log (220/100) / log (10/5)
= log (2.2) / log (2.0)
= 0.3424 / 0.3010
= 1.14

here used logs to base 10, but any base could be
used

the more irregular the line, the greater the increase in
length between the two estimates,
 and the greater the
fractal dimension

Mandelbrot's texts, the book by Peitgen and Saupe (1988),
and the papers by Goodchild
 and Mark (1987) and Milne
(1988) discuss other methods of determining the fractal
 dimension

there are a large number of ways of determining the
fractal dimensions of points,
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 lines, areas, and
volumes

Some questions

1. what is the "true" length of a line?

2. how can you compare curves whose lengths are
indeterminate?

3. of what value are indices based on length
measurements?

the perimeter of an area object increases steadily
with scale, but the area of an
 area object deviates
up and down by much smaller amounts
are analyses based on area less scale-dependent than
ones based on perimeter?
what does this indicate about measures of shape
based on the ratio of perimeter to
 the square root
of area?

there is no complete solution to these (and similar types
of) problems
however, use of fractal geometry (especially the
fractal dimension) does allow us
 to make reasonably
meaningful comparisons and indices (as illustrated
in
 Woronow, 1981)

these questions are of special interest to cartographers
interested in digital
 representations of cartographic
features (e.g. Buttenfield, 1985)

there are implications with respect to:
1. digitizing
determination of the appropriate sampling
interval
2. generalizing lines

the best method for generalizing lines may be
that method which best
 retains the fractal
dimension of the line
3. displaying lines at a scale greater
 than that
at which the line was collected
introduce additional "information", by adding
artificial detail to the line,
 detail which is
a function of the fractal dimension of the
original line);
4.
 incorporating the fractal dimension into
traditional cartometry measures
see Woronow (1981)

D. SELF-SIMILARITY AND SCALING

Self-similarity

indicates that some aspect of a process or phenomenon is
invariant under scale-changing
 transformations, such as
simple zooming in or out

can be expressed in two ways:


overhead - Self-similarity
1. geometric self-similarity, in which there is
strict equality
 between the large and small scales

not found in natural phenomena
the Morton order, quadtrees use this idea in
replicating the same pattern at
 every level
2. statistical self-similarity, in which the
equality is expressed
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 in terms of probability
distributions
this type of (random) self-similarity is the
more common, and is the type
 found in many
natural phenomena, such as coastlines, soil pH
profiles,
 river networks (Burrough, 1981;
Peitgen and Saupe, 1988; etc.)

the simplest test of self-similarity is visual
if a phenomenon is self-similar, any part of it, if
suitably enlarged, should be
 indistinguishable from
the whole or from any other part
if a natural scene is self-similar, it should be
impossible to determine its scale

e.g. it should be impossible to tell whether a
picture of self-similar
 topography shows a
mountain range or a small hill - there are no
visual
 cues as to the picture's scale

since many scale cues are cultural, geological or
geomorphological, self-similar
 topographies are most
common on lunar or recent volcanic landscapes

Scaling

not necessarily equivalent to self-similarity, although
the two terms are often used
 interchangably in the
literature

consider a landscape, as represented by a surface and a
contour map
on the contour map (coordinates in 2 dimensions
only) the axes can be switched
 without fundamentally
changing the characteristics of the landscape, i.e.
the
 characteristics of the contour lines

contour lines are therefore examples of simple
scaling fractals
in the case of the surface, with coordinates in 3
dimensions, we cannot
 interchange the z axes with
either of the x or y axes without fundamentally
 altering the characteristics of the landscape

since the z axis has a different scaling
parameter than the x or y axes, a
 three-
dimensional representation of the Earth's
surface is therefor an
 example of a non-uniform
(or multiple) scaling representation

shapes that are statistically invariant under
transformations that scale different
 coordinates by
different amounts are known as self-affine shapes
(Peitgen and Saupe,
 1988)

the Earth's surface is an example of a self-affine
fractal, but it is not an example of
 a self-similar
fractal
contour lines, which represent horizontal cross-
sections of the land surface, are
 examples of
statistically self-similar scaling phenomenon
(because the contour
 has a constant z value)

because the land surface is self-affine and not self-
similar, those techniques which
 determine the fractal
dimension of the land surface itself produce values which
are
 different than the values produced by those
techniques which determine the fractal
 dimension of the
contours derived from that land surface

E. ERROR IN LENGTH AND AREA MEASUREMENTS
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scale, through its relationships with generalization and
resolution, significantly
 influences length and area
measurements

problems in estimating line lengths, areas, and point
characteristics can be related to the
 phenomenon's
fractal dimension (Goodchild, 1980)

estimates of area are frequently based on pixel counts,
especially in raster-based systems
the error in the area estimate is a function of the
number of pixels cut by the
 boundary of the object
boundaries with a fractal dimension greater than one
will appear more complex as
 the pixel size decreases
(as the resolution increases)
the more contorted the boundary, or the higher its
dimension, the less rapid the
 increase in error with
cell size


diagram

error in a pixel-based area estimate will also be a
function of how the
 phenomenon is distributed about
the landscape: the error in area associated with a

highly compact phenomenon will be much less than the
error in area associated
 with a widely dispersed,
patchy phenomenon
Goodchild and Mark (1987, p. 268) show that:

the standard error as a percentage of the area
estimate is proportional to a(1-
D/4) where a is
the area of a pixel and D is the fractal
dimension of the
 boundary
standard error will thus depend on a1/2 for
highly scattered phenomenon
 and a3/4 for
single, circular patches with smooth boundaries
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EXAM AND DISCUSSION QUESTIONS

1. Although fractal concepts are important in understanding
the error associated with pixel-
based area estimates, little
has been said about the relationship between fractals and
area
 estimates obtained from vector-based systems. Why?
(i.e., would the area of an enclosed
 figure change
significantly? It is expected that the area shouldn't
change significantly, as the
 self-similar detail should
increase the area as much as it decreases the area.)

2. Define "fractal". Include in your description terms such
as scale dependency, self-similarity
 and scaling.

3. Discuss some of the ways in which fractals have changed
our way of looking at
 phenomena. Based on your readings,
provide examples from a variety of fields.

4. Theoretically, fractal behavior applies to a phenomenon
across all scales. Practically, of
 course, there are limits
to the application of self-similarity to natural phenomena.
Where do
 you think some of these limits occur? (i.e.,
between what scales do you think portions of
 coastlines, for
example, exhibit self-similar behavior.) What are the
implications with respect
 to the generalization of
cartogrpahic lines, if we observe definite limits to the
self-similar
 behavior of cartographic features?

 Last Updated: August 30, 1997.

Unit 47 - Fractals

NCGIA Core Curriculum in GIS - 1990 Page 8



UNIT 47 IMAGES

Unit 47 - Fractals

NCGIA Core Curriculum in GIS - 1990 Page 9


	Unit 47 - Fractals
	Unit 47 - Images



