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Abstract of the Dissertation

On Thermal Characterization of Breeder Pebble Beds
with Microscale Numerical Modeling of Thermofluid

and Pebble-pebble Interactions

by

Jon Thomas Van Lew
Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2016

Professor Mohamed A. Abdou, Chair

Lithium ceramic pebble beds are a proposed form for tritium breeding volumes in fusion

reactors. In application, the beds will endure high volumetric energy deposition densities

but must maintain within relatively-narrow prescribed temperature operating windows for

efficient tritium release, while also providing continued transport of high quality heat into

coolants for power production. The ceramic pebble beds, as non-cohesive granular material,

exist with metastable packing structures defined by the local equilibrium between normal

forces and static friction force chains in the assembly. Differential rates of heating and

thermal expansion coefficients between ceramic pebble beds and their structural container

induce stresses in the bed volume. If sufficiently large, the stresses overcome the local equi-

librium of inter-pebble forces and irreversibly compel the pebble bed into a new metastable

packing state. Transport of heat from pebble bed to coolant structure is divided between

contact conductance between pebbles in the ensemble and convection with a helium purge

gas filling the interporous voids. Thus thermal characteristics of pebble beds are intimately

linked with its mechanical ones. As a consequence, predictive models of solid breeder heat

transfer characteristics must contend with both flowing interporous fluid as well as transitory

packing structures and the changing modes of heat transfer they present. To provide such

predictive modeling, microscale numerical models were developed allowing investigation of

thermal transport in pebble beds operating in environmental conditions relevant to planned
ii



fusion reactors. Specific effort was made to apply the predictive models toward simulating

pebble bed thermomechanical responses to the fault condition of crushed individual pebbles.

In this work, the thermal discrete element method (DEM) has been used to model forces

and heat transfer between individual pebbles in assemblies. Pebble interaction with slow-

moving, interstitial helium purge gas is accomplished by means of two coupling approaches.

First, the fluid is considered with a volume-averaged computational fluid dynamic (CFD)

method. Volume-averaged models of helium are computationally efficient and provide an

overall view of helium influence on heat transfer in solid breeder pebble beds. Second, the

lattice-Boltzmann method (LBM) is employed to gain insight into complete fluid flow pat-

terns and conjugate heat transfer. The lattice-Boltzmann method is well-suited to modeling

complex porous structures (such as packed beds) due to its inherent parallelizability and

simple application of solid-fluid interface boundary conditions on structured grids.

Several open-source codes have been used as platforms for launching the numerical exper-

iments. The codes provided basic numerical frameworks for, e.g. time integration, particle

tracking, mesh decomposition, and streaming/colliding operators. However to apply the

numeric codes on the unique environment of fusion pebble beds, the following contributions

to the code were necessarily developed: stochastic numerical implementation of ‘apparent’

elastic moduli distributions; model of surface roughness effects for heat transfer contact

conductance; a mass- and energy-conserving pebble fragmentation algorithm; implementa-

tion of the Jeffreson correction to the inter-phase exchange coefficient for moderate-to-high

Biot number conditions. The models were validated against experiments measuring effec-

tive thermal conductivity of pebble beds with a stagnant interstitial gas. The DEM and

CFD-DEM models first agreed well with experiments of lithium ceramic pebble beds in both

vacuum and stagnant helium; simulation results of beds with helium match very well with

experimental data. The predictive capability of the models were then demonstrated with

validation against a broad range of non-fusion-type packed bed experimental data as well as

the commonly-applied SZB correlation. The predictive models developed in this thesis were

used to address several of the most pressing thermomechanical issues for solid breeder ce-

ramic pebble beds: fragmentation of Li2TiO3 or Li4SiO4 pebbles and gap formation between
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pebble beds and structural materials.

In ITER-like representative volumes, mass re-distribution in pebble beds due to fragmen-

tation was shown to induce subtle changes to local packing fractions yet have the ability to

result in macroscopically consequential changes to temperature distributions with volumet-

ric heating. Pebble fragmentation had the largest impact when fragments were significantly

smaller than the original pebble (fragments 1/125 the volume of the original) and a com-

parably large number of pebbles were crushed, 5%. In this case, maximum pebble bed

temperatures increased approximately 20% compared to the well-packed bed with a nuclear

heating rate of 8 MW m−3. Yet when pebbles broke into larger fragments and the amount

of broken pebbles was less extensive, the thermomechanical response of pebble beds was

significantly more tame; less than 5% increases in maximum bed temperatures were seen in

all pebble beds considered when only 1% of the pebbles fragmented.

From the same parametric range of ITER representative pebble bed configurations, the

models predict that horizontal-style configurations of breeder zones, such as in the EU HCPB

design for ITER, produced no gap between the upper layer of pebbles and coolant surface

even up to 5% of all pebbles fragmenting during operation. In fact, the configuration’s

orientation relative to gravity resulted in slight broadening of temperature profiles, and even

slightly lower peak-to-average temperatures than vertical-style configurations, as packing

structures evolved due to fragmentation. Interstitial helium was seen to accommodate much

of the loss of contact conductance on overall thermal transport in packed beds, in spite of the

possibility of gap formation. The role of flowing helium purge gas has been considered for

the first time by the models of fusion pebble beds developed for this thesis, and its impact

on thermal transport was given some careful attention in an LBM-based model.

From LBM results, the laminar nature of low-Reynolds flow in packed beds implies con-

duction is the dominant mode of heat transfer through the packed bed. The maximum dif-

ference between temperature profiles predicted with CFD-DEM and LBM-DEM models was

only 6%, the difference arising entirely from the pure conduction model (volume-averaged

CFD-DEM) versus the consideration of fluctuation terms (LBM) adding to a transverse

thermal dispersion on effective conductivity. For a design which will have such low-Re flow,
iv



CFD-DEM simulations were run in considerably less time than the full models of LBM-

DEM (hours compared to days) and the error from neglecting thermal dispersion may be

acceptable. Nevertheless, the small differences between LBM and CFD-DEM results arose

due to increases in transverse dispersive conductivity of the fluid which itself suggest larger

Reynolds or higher packing fraction pebble beds may increase transverse dispersion and

thereby the ability to handle higher heat deposition due to increased effective conductivity.

The LBM model of fluid and solid interaction should be used for future studies of this topic.
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CHAPTER 1

Introduction

Fusion research and development activities are proceeding on the expectation that the D-T

reaction,

D + T −−→ 4He + n+ 17.6 MeV (1.1)

will be used for the first generation fusion reactors based on its energetics and attainability.

While deuterium can be readily separated from water and is in great abundance on Earth,

tritium is radioactive with β− decay with a half-life of only 12.32 years, rendering it extremely

scarce, expensive, and challenging to store and produce. As a consequence, the feasibility

of a fusion power reactor hinges on the sustained availability of tritium. Accordingly, fusion

reactor designs include a self-sustaining fuel cycle – breeding tritium in blankets surrounding

the fusion core. Breeding blankets will generate tritium in-situ from interactions of lithium

with neutrons originating either from the fusion reaction directly or neutron multiplication

reactions. Relevant lithium reactions are

n+ 7Li −−→ n+ 4He + T − 2.47 MeV (1.2)

n+ 6Li −−→ 4He + T + 4.78 MeV (1.3)

Solid lithium materials are potential candidate forms for tritium generation in fusion

power plants. Many different potential solid materials have been studied in the past; includ-

ing inter-metallic compounds (e.g. Li7Pb2), lithium oxide (Li2O), and ternary oxides (e.g.

Li4SiO4, Li2TiO3, LiAlO2, Li2ZrO3, etc.). Solid breeder materials offer a number of potential

safety advantages including relatively low tritium mobility and low stored chemical energy.

In the years since the solid breeder concept inception, the fusion community has come

to recognize that lithium-based oxides (including ceramic oxides) are the most promising
1



tritium-breeding materials for fusion reactor solid breeder blankets. This conclusion is based

on oxides having many desirable characteristics, such as:

• high Li density

• high melting temperature

• good tritium release (sufficiently high T release rates, low solubility, and open porosity

for purging T)

• good thermophysical and thermomechanical characteristics

• ability to withstand the rigors of long-term irradiation at high temperature and under

large temperature gradients

• desirable neutronics and irradiation characteristics (no bad transmutation nuclides)

• chemical stability & compatibility with structural material at operating temperatures

(in particular thermal stability and chemical inertness are attractive from a safety point

of view)

Calculations of other candidate materials indicate that inter-metallic compounds have

unacceptable operating temperatures (exceedingly narrow temperature windows) and are

unattractive for in-situ tritium recovery. In addition, the compounds of Li7Pb2 and Li62Pb38

were shown to vigorously react with water and do not offer significant safety advantages

compared to liquid breeders.2,40 And a major emphasis of blanket/breeder design is placed

on safety and environmental acceptability, with primary goals of low tritium inventory in

the blanket and minimal long-lived activation products. Therefore this research is focused

entirely on discussion of lithium ceramics and modeling thereof.

Reference solid breeder engineering designs have converged toward liquid-cooled pebble

beds of lithium ceramics. Pebble bed designs incorporate packed ceramic pebbles (spherical

particles) that are filled into containment structures of a reduced-activation ferritic steel. In

a typical solid breeder module, the breeding volume is subdivided into several alternating

2



layers of neutron multiplication material (generally beryllium) and tritium breeding material.

The layers are separated by plates with internal channels for flowing liquid coolant. Coolants

are typically a high pressure helium, though some designs call for pressurized water, in spite

of the dangers of the highly exothermic reaction of lithium with oxygen from water vapor in

the case of coolant leak. The coolant, heated as it passes through tritium breeding modules,

proceeds into a standard electricity production cycle. After tritium is generated inside the

ceramic, the bred hydrogen isotope is ultimately picked up by a low-pressure, slow-moving

purge gas (primarily helium) and extracted in a closed loop for fuel.

Pebble bed forms of tritium breeding volumes have several advantages which include:

ease of assembly of granular materials into complex geometries; bred tritium can be readily

removed via the helium purge gas through interstitial porous networks; ceramic material

is unaffected by the large magnetic fields confining the plasma, and temperature gradients

across any single pebble are small enough to avoid damage from thermal stress. A sketch of

a generic ceramic pebble bed volume depicting all the features described above is given in

Figure 1.1.135
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Figure 1.1: Example sketch of a typical solid breeder design (from a Japanese ITER concept

sketch given in Ref.135). Showing: the first wall upon which a large heat flux from plasma

radiation will be deposited, layered solid breeder and neutron multiplier beds, separated by

a cooling panel structure with internally flowing coolant.

1.1 Solid Breeder Thermal Management and Imposed Tempera-

ture Window

The feasibility of the solid breeder concept is based on the capability of tritium to readily

transport from the solid ceramic into the purge gas. Tritium release, itself, is a function of

grain size, microsctructure, and open/closed porosity. To understand the capability of tri-

tium removal, five mechanistic steps are identified for bred tritium to be recovered (visualized

in Figure 1.2). The steps follow as40

1. bulk diffusion,

2. grain boundary migration,
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3. desorption of tritium (T2O),

4. percolation of tritium through pores internal to the solid ceramic toward the flowing

purge gas,

5. convective mass transfer out of the blanket via purge channels.

Figure 1.2: Mechanistic steps of tritium transport through ceramic materials into the purge

gas for removal. Image reproduced from Ref.147

Bulk diffusion of tritium is considered to be a significant contributor to tritium inventory.

For spherical particles of radius rp, assuming zero surface concentration, the tritium inventory

T is given by

T =
1

15
Ṫ
r2p
D

(1.4)

where Ṫ is the tritium generation rate and D is diffusivity of tritium in the ceramic. It is

significant to note that the tritium inventory is a function of the square of the particle size.

Thus it is clear that: (i) small grain sizes are required for minimum tritium inventory and (ii)

grains should not significantly grow during the lifetime of a reactor blanket. Diffusivity values

of tritium in ceramics are extremely scarce and with much uncertainty. Kinetic experiments

of post-irradiation tritium release from several candidate breeders have been performed. The

kinetics in the experiments are non-steady-state and the diffusivity is given by

D = 0.16
r2p
τ

(1.5)
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where τ is the mean residence time, defined as the time required to extract 87.4% of the

tritium. Combining Equation (1.4) and Equation (1.5) eliminates diffusivity and radius

(with large variation between particles and grains), yielding:

T = 0.42Ṫ τ (1.6)

We can then estimate the diffusive inventory in a blanket based on the readily-measured

residence time, τ . It must be kept in mind that the particular micro-structure of the ceramics

measured in kinetic experiments must correspond to the micro-structure of the material in

the blanket in order for the diffusivity predictions to hold. In other words, residence times

of 1 mm Li2TiO3 with average grain sizes of µ = 1 µm are utterly inappropriate to calculate

tritium diffusion in 0.5 mm pebbles of Li4SiO4 with average grain sizes of µ = 5 µm, for

example.

The tritium generation rate, Ṫ is a function of the fusion reactor power output and

blanket design. Residence times have been measured to be temperature dependent which is

consistent with diffusion-controlled processes. Therefore, based on the present model, the

range of operating limitations are defined on the low end where bulk diffusion is the rate-

limiting step. A minimum temperature is defined as the temperature at which the tritium

inventory exceeds 1 kg GW−1. The minimum temperatures for many candidate materials

are shown (with slight variation between sources) in Figure 1.3. Minimum temperatures

generally range from 300 up to 400 ◦C.

As we saw from Equation (1.4), tritium inventory goes with the square of grain size and

thus another operating limit on temperature arises. An upper limit of temperature is based

on restructuring or grain growth in ceramics which can greatly affect the diffusive inventories.

When ceramic materials are heated above their sintering temperature, generally in excess of

0.8Tmelt (in absolute temperature), grains will grow.

Moreover, when lithium depletion (or lithium burn-up) occurs to a significant extent

(around 5%), the resultant nonstoichiometry in ternary oxides could establish, rather than

single-phase conditions. For example, under irradiation and lithium burn-up, Li4SiO4 ceram-

ics would develop an excess of silica and the melting point of 1300 ◦C would drop to a eutectic
6



Figure 1.3: Minimum temperatures for various candidate materials (compiled from various

sources) based on rate-limiting diffusion processes. STARFIRE data from Ref.,103 Clemmer

from Ref.,40 Johnson et al. from Ref.104

temperature of 1024 ◦C. Such a reduction in melt temperature would have significant impact

on sintering and tritium inventory in the solid breeders.103 Therefore, neutron radiation in-

fluences are generally expected to lower the maximum operational temperature to 0.6Tmelt.103

Candidate materials are compared in Figure 1.4. In general, acceptable candidate materials

have their maximum temperature between 750 and 900 ◦C.

As a consequence of the tritium inventory of solid breeder material, we are faced with

a relatively narrow operational temperature to which solid breeder designers must adhere,

roughly between 350 and 800 ◦C. Thus to provide designers the ability to optimize breeder

volumes for tritium breeding and subsequent tritium release, we must understand the im-

portant physics and phenomena dictating thermophysical properties and thermomechanical
7



Figure 1.4: Maximum temperatures for various candidate materials (compiled from various

sources) based on irradiated sintering temperatures (0.6Tmelt). STARFIRE data from Ref.,103

Clemmer from Ref.,40 Johnson et al. from Ref.104

responses of pebble beds during operation in a fusion reactor.

Tritium breeding blankets will experience high volumetric heating as deposited by high-

energy neutrons that are carrying away approximately 80% of the fusion reaction energy in

addition to heating from secondary γ rays. Heat deposited in breeders must be transported

through pebble bed regions into the walls of containing structures, then ultimately into

the coolant gas. Heat deposited into pebble beds will transfer via inter-particle contact

conduction, inter-particle radiation, and convection with the helium purge gas. At the

interface with the structural material, similar modes of heat transfer are present: particle-

wall contact conduction, particle-wall radiation, and communication via helium purge gas

convection.

There exists a coupling between mechanical forces acting upon beds and their heat trans-
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port capabilities, thus we must understand packing structures in order to understand heat

transfer. The structure of packed beds can be considered as a metastable configuration that

will last indefinitely unless acted upon by an external perturbation such as vibration or

compressive pressure.101 The ability of a metastable configuration to resist perturbations

can, in some way, be quantified by the initial packing fraction. For more compliant beds

(lower packing fractions), stresses from thermal expansion can cause significant rearrange-

ment of the packing structure which is not recoverable after stress removal. This phenomena

has been observed in numerous experiments as so-called plastic rearrangement of pebble

beds.150,151,206 Plasticity of beds may have significant consequences for the ability of the

pebble bed to maintain contact with the containing structure and routes for heat out of the

bed due to gap formation between pebble volumes and coolant walls.

Moreover, as pebbles heat under nuclear loads, thermal expansion of pebbles in the

packed volume will be contained by cooler structural material. Confined expansion will

give rise to increased contact pressure between pebbles. Increased pressure between pebbles

can cause, among other effects, brittle pebbles to fragment. Therefore, some amount of

restructuring of pebble beds (and internal contact force networks) are also likely to occur

from crushing/cracking of individual pebbles, or the effects of inter-pebble sintering and

creep arising from the high-temperature, high-stress environment in a solid breeder unit.

Contact conduction in beds, intimately linked to the packing structure, will be impacted

during operation of ceramic pebble beds in fusion reactors.

Because tritium inventory requirements impose a relatively narrow operational temper-

ature window on lithium ceramic pebble beds, and given the high power densities in fusion

power reactors, it is necessary to have accurate knowledge of ceramic pebble bed thermo-

mechanical behavior and comprehensive characterization; reliable models of heat transfer

in solid breeders are critical for solid breeder designs. In addition, due to the complicated

nature of granular materials, heat transfer in these solid breeder volumes remains transient

during fusion operation. Concurrently, interaction of the slow-moving purge gas with tightly

packed pebble beds is an additional route of heat transfer that must be understood. Thus,

heat transfer in pebble beds is quite different from standard solid materials and requires
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specialized modeling of the synergistic physics. Knowledge and characterization of thermal

transport must anticipate changes to the heat transfer capabilities and predict temperature

profiles for pebble bed packing structures that will emerge after initially-packed pebble beds

react to prolonged exposure to fusion reactor environments.

1.2 Objectives of this Study

The goal of this work is to develop more comprehensive and accurate models for predicting

temperature distributions in ceramic breeder pebble beds, accounting for many important

phenomena including pebble crushing and fragmentation, dynamic analysis of packing re-

structuring, and considerations of slow moving inter-porous helium purge gas.

Modeling will be done with discrete element method (DEM) models coupled to computa-

tional fluid dynamics (CFD) and lattice-Boltzmann method (LBM) descriptions of fluid flow.

In particular detailed relationships between topological changes to packing structures, aris-

ing from fragmented pebbles, and the resulting changes to heat transfer in packed beds will

be considered. For the first time, attention will be given to nuclear heating of pebble frag-

ments as they redistribute through pebble beds and come to rest without strong mechanical

contact (and therefore contact conductance) to neighboring pebbles. This includes analyzing

changes to temperature distributions in pebble beds with different models of pebble damage,

analyzing the impact of helium flow on temperatures in beds with fragmented pebbles, and

changes to bed stresses and contact forces in beds with restructured packing. Furthermore,

changes to effective thermal conductivity in packed beds with simulated reduction in solid

conductivity due to irradiation damage of ceramic pebbles will be considered.

While it is the aim of this study to provide fusion blanket designers with the most

complete models possible for predictive capabilities of temperature distributions in solid

breeders such that operability margins to tolerate irradiation damage or crushed pebbles

may be expanded, it is understood that the models developed here will not, on their own,

provide a total description of physics governing heat transfer in solid breeder pebble beds

during operation. As will be pointed out later in this thesis, effects of radiation, fluid slip,
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sintering, and creep are all phenomena that can play a role in pebble bed heat transfer but

are beyond the scope of the current work. Therefore, it is also the goal of this thesis to

develop modeling tools in a modular method on well-supported, open-source frameworks

which will facilitate adoption of this code and permit future expansion to conjoin with

modules describing other physics. In this way, the code developed for thesis can be adopted

by the community at large and expanded upon in future research.
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CHAPTER 2

Literature Review

Ceramic pebble beds in solid breeders can be seen as belonging to a larger class of gener-

alized granular material, and specifically dry granular material. Granular materials can be

described as an aggregation of discrete, macroscopic particles (mean size greater than 100 µm)

that are characterized with energy dissipation during interaction.55 The main outcome of

this definition is that granular materials cannot be described by conventional thermal or

hydrodynamic variables. Granular materials require their own treatment and modeling for

description.

The study of ceramic pebble bed thermomechanics for tritium breeding have their roots

connnected to historical treatment of granular material and it is instructive to begin with

a short review of this field. Following that, many generalized studies of heat and momen-

tum transfer, specifically correlations that have been developed in the classical continuum

treatment of pebble beds are presented. The correlations will not only be instructive by

view of their limitations, but they will help inform the numerical modeling of coupling fluid

and pebble bed conservation equations. Finally, the literature review will focus specifically

on the progress that has been made in temperature predictions from numerical models of

tritium breeders for fusion reactors.

2.1 Brief History of Granular Material Research

The science and modeling of granular materials has a long and rich history. Coulomb pro-

posed ideas of static friction in 1773, Faraday in 1831 discovered the convective movement of

powders, and even Reynolds in 1885 introduced notions on granular expansion and shear.100
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Granular materials are only second to water in terms of most-used industrial material. Gran-

ular materials play in important role in civil, geotechnical, chemical, and mechanical engi-

neering in industries as diverse as pharmacy, automative, agriculture, and construction to

name just a few.55,91 A resurgence of interest in granular materials has also happened in the

fields of applied mathematics and physics as metaphors for other dynamical systems.100 Yet

despite the diverse fields interested in granular materials, descriptions of granular material

with classic continuum mechanics is still far from complete; quite different from the conclu-

sively described constitutive equations of elastic theory, hydrodynamics, and gas dynamics

that have existed for two centuries.161

Even if we restrict our consideration to static packings of non-cohesive granular ma-

terials (neglecting the complex, unusual granular hydro- and gas dynamics), modeling is

complicated by the heterogeneity (and indeterminancy) of contact forces running through

the packed grains and the packing structure of the grains. The granular medium intro-

duces complexity to modeling, in part, due to its significant difference between compression

and tension experiments; under compression the granular medium behaves as if an elastic or

elasto-plastic body but offers no resistance to tension. Furthermore, when an external excita-

tion, such as vibration, is introduced into the metastable packing state of a granular system,

the packing is unlocked to slowly travel through packing phase space at a logarithmically

slow pace.17,109

Nonetheless, many material models have been developed in an attempt to describe the

mechanics of a granular system as a fictitious continuum with varying success and applicabil-

ity. Researchers in geophysics have long viewed granular materials as continuous materials

for which they painstakingly developed equations as if the granular material obeyed laws

of classical mechanics.54,55,91 Heat transfer in granular materials has also been treated in a

continuum manner and the correlations will be covered in explicit detail in § 2.2.

Granular systems became important to fusion power reactors after the introduction of

ceramic pebble beds in solid breeders for fusion reactors. Because of the large size scale and

complex interactive physics of solid breeders, it is desirable to employ the continuum-based

models of packed beds of ceramics with effective thermomechanical properties derived from
13



experiments on granular beds. In § 2.4, the status and success of early continuum-based

models will be discussed in more detail.

In 1979, Cundall & Strack opened a new avenue for studying granular materials when they

introduced the distinct element method (later renamed by the community as the discrete

element method).42 Since then, grain-scale descriptions of granular systems have taken

prominence for their ability to enrich the macrosopic models when they are insufficient to

describe the rheology of a granular material. In the approach of Cundall & Strack, all of

the individual grains in a system are described as rigid elements for which the equations of

motion can each be simultaneously integrated based on the (typically localized) interacting

forces.

2.2 General Studies of Heat Transfer in Granular Material

For packed beds of ceramic spheres filled into tritium breeding modules, we identify the

following modes of simultaneous heat transfer:

1. Inter-granular conduction

• Conduction through the contact area between contacting particles.

• Conduction through the contact area between particles in contact with structural

walls.

2. Granular-fluid interaction

• Conduction through the stagnant fluid between near, non-contacting particles.

• Conduction through the stagnant fluid between contacting particles.

• Smoluchowski effect of non-Knudsen fluid conduction in near-granular regions.

• Advection of energy by the fluid to contacting- and downstream particles.

3. Radiation effects

• Radiation between the surfaces of contacting particles.
14



• Radiation between the surfaces of particles through adjacent voids.

• Heat generation internally in the particle from incident neutron fluxes.

Historically, granular materials are treated as a fictitious continuous media for which

effective properties or correlations are derived. In this section. The volume of a pebble in

a tritium breeder is on the scale of 10 × 10−9 m3 while the typical container volume can

be on the order of 10 × 10−2 m3.35 Thus a single breeder volume will house upwards of

N =10 × 107 pebbles. Statistically then, it is reasonable to assume that a ceramic pebble

bed can be treated as a fictitious granular material for which continuum theory is applicable.

This assumption is the basis of many correlations for heat transfer in granular material. The

continuum assumption also underpins application of finite element method (FEM) models for

breeder pebble beds; constitutive equations are developed from experimental measurements

of the macroscopic behavior of pebble beds which are fed into FEM models. In the following

sections, historical correlations for heat transfer in packed beds as continua are reviewed.

2.2.1 Effective Thermal Conductivity of Granular Media

Deissler and Boegli, in 1958, proposed upper and lower bounds of effective thermal con-

ductivity, keff, in two-phase granular media to be given by alternating layers of the two

phases arranged in parallel or series, respectively.45 In the case of parallel layers, effective

conductivity, normalized by fluid conductivity, is

ke
kf

= ϵ+ (1− ϵ)κ (2.1)

where kf is the fluid conductivity, κ = ks/kf is the ratio of solid to fluid conductivity, and

ϵ is the void fraction in the porous media. Similarly, the minimum effective conductivity is

found in a serial layering of the solid and fluid phases,

ke
kf

=
1

ϵ+ (1− ϵ)/κ
(2.2)

Equations (2.1) and (2.2) act as theoretical upper and lower limits to true effective thermal

conductivities of real material.
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One of the most widely-used correlations was put forth by Zehner and Schlunder in

1970.204,205 They considered a cylindrically-shaped unit cell and made the analogy between

heat and mass transfer to derive an empirical fit to data in the bulk of two-phase porous

media. The Zehner-Schlunder (ZS) correlation is
ke
kf

=
(
1−

√
1− ϵ

)
+

2
√
1− ϵ

1−B/κ

[
(1− 1/κ)B

(1−B/κ)2
ln
( κ
B

)
− B + 1

2
− B − 1

1−B/κ

]
(2.3)

where B is a deformation parameter related to porosity as

B = 1.25

(
1− ϵ

ϵ

)1.11

(2.4)

Following the success of the ZS correlation, other researchers considered the specialized

cases of high thermal conductivity ratio κ ≥ 103 when loads on the grains in the bed (due to

either an external pressure or the grains own weight) resulted in large contact areas. In these

cases, ZS correlations under-predicted the actual effective conductivity.5 An extensive review

of correlations for effective thermal conductivity with consideration of contact between grains

is provided by van Antwerpen et al.178 Hsu et al. considered three lumped parameters models

of varying two-dimensional unit cells for which they derived an effective conductivity.97 The

first was for contact square-cylinders. The effective conductivity for this model is
ke
kf

= γaγcκ+
γa(1− γc)

1 + (1/κ− 1)γa
+

(1− γa)

1 + (1/κ− 1)γaγc
(2.5)

where Hsu et al. used the same fitting parameter of Nozad et al., γc;136 they found best

agreement with experimental data when γc = 0.01. The other geometric parameter is related

to γc and ϵ as

0 = γ2a + 2γaγc(1− γa) + ϵ− 1 (2.6)

Hsu et al.’s second correlation had the square-cylinder unit cell replaced with circular-

cylinders. The correlation is given with dependence on conductivity ratios. For (1/κ−1)γa <

1,
ke
kf

= γcγaκ+
1− γa

√
1− γ2c

γaγc(1/κ− 1) + 1
+
κ(π/2− 2θc)

1− κ
− 2κ

(1− κ)
√

1− (1/κ− 1)2γ2a

×

[
tan−1

(
tan(π/4− θc/2) + (1/κ− 1)γa√

1− (1/κ− 1)2γ2a

)
− tan−1

(
tan(θc/2) + (1/κ− 1)γa√

1− (1/κ− 1)2γ2a

)]
(2.7)
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For (1/κ− 1)γa > 1,

ke
kf

= γcγaκ+
1− γa

√
1− γ2c

γaγc(1/κ− 1) + 1
+
κ(π/2− 2θc)

1− κ
− κ

(1− κ)
√

(1/κ− 1)2γ2a − 1

×

[
ln
(

tan(π/4− θc/2) + (1/κ− 1)γa −
√

(1/κ− 1)2γ2a − 1

tan(π/4− θc/2) + (1/κ− 1)γa +
√
(1/κ− 1)2γ2a − 1

)

− ln
(

tan(θc/2) + (1/κ− 1)γa −
√
(1/κ− 1)2γ2a − 1

tan(θc/2) + (1/κ− 1)γa +
√

(1/κ− 1)2γ2a − 1

)]
(2.8)

and for (1/κ− 1)γa = 1

ke
kf

=
γcγ

2
a

γa + 1
+

1− γa
√
1− γ2c

γc + 1
+ γa(π/2− 2θc)− tan(π/4− θc/2) + tan(θc/2) (2.9)

where γc = 0.01 was again found to fit best to experimental data. And the other geometric

parameter relationship became

0 = 1− γaγc −
γ2a
2

(π
2
− 2θc

)
(2.10)

where the contact angle is θc = sin−1(γc). The last correlation of Hsu et al. came from

three-dimensional unit cell extension of the square-cylinder to cubes,

ke
kf

= 1− γ2a − 2γaγc + 2γ2aγc + γ2aγ
2
cκ+

γ2a − γ2aγ
2
c

1− γa + γa/κ
+

2(γaγc − γ2aγc)

1− γaγc + γaγc/κ
(2.11)

where γc = 0.13 fit best for cubes and the relationship between γc, ϵ and γa became

0 = (1− 3γ2c )γ
3
a + 3γ2cγ

2
a + ϵ− 1 (2.12)

Hsu et al. also proposed a correction to the ZS model for conductivity ratios of κ ≥ 103.

The assumption built into the ZS model was of a point contact between grains in the bed.

Incorporating the effects of finite-sized contact area, Hsu et al. corrected the ZS model as

κe
κf

= (1−
√
1− ϵ) + κ

√
1− ϵ

(
1− 1

(1 + α0B)2

)
+

2
√
1− ϵ

1−B/κ+ (1− 1/κ)α0B

[
(1− 1/κ)(1 + α0)B

(1−B/κ+ (1− 1/κ)α0B)2
ln
[

1 + α0B

(1 + α0)B/κ

]
− B + 1 + 2α0B

2(1 + α0B)2
− B − 1

(1−B/κ+ (1− 1/κ)α0B)(1 + α0B)

]
(2.13)
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where B is no longer found from as a simple deformation parameter but is instead related

to ϵ and α0. Hsu et al. found best agreement with experimental data when α0 = 0.002 and

ϵ = 0.42. B can then be found from the solution of

0 = 1− B2

(1−B)6(1 + α0B)2

[
(B2 − 4B + 3) + 2(1 + α0)(1 + α0B) ln

(
(1 + α0)B

1 + α0B

)
+ α0(B − 1)(B2 − 2B − 1)

]2
− ϵ (2.14)

Bauer and Schlunder19 also improved on the earlier model of Zehner and Schlunder to

include the additional effects of thermal radiation, gas heat transfer in the Knudsen regime,

and finite-sized contact areas. The combined model, often called the Zehner-Schlunder-Bauer

(ZSB) model is calculated as

ke
kf

=
(
1−

√
1− ϵ

)
ϵ
[
(ϵ− 1 + 1/κG)

−1 + κr
]
+
√
1− ϵ (ϕκ+ (1− ϕ)kc) (2.15)

where

kc =
2

N

[
B(κ+ κr − 1)

N2κGκ
ln
(

κ+ κr
B(κG + (1− κG)(κ+ κr))

)
+
B + 1

2B

(
κr
κG

−B

(
1 +

1− κG
κG

κr

))
− B − 1

NκG

]
(2.16)

and

N =
1

κG

(
1 +

κr −BκG
κ

)
−B(1− 1/κG)(1 + κr/κ) (2.17)

and B is given in Equation (2.4). Radiation is incorporated in κr parameter, given as

κr =
4σ

2/ϵr − 1
T̄ 3 dp
kf

(2.18)

where σ is the Stefan-Boltzmann number (σ = 5.67 × 10−8 W m−2 K−4), ϵr is the emissivity

of the material in the packing, dp is the packing diameter (assumed spherical), and T̄ is the

average, absolute temperature of the system (in K).

Effects due to interstitial gas in the Knudsen regime are defined by the term, κG given

as

κG =

[
1 +

(
l

dp

)]−1

(2.19)
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where l is a modified mean free path of gas molecules,

l = 2
2− αT

αT

(
2πR̃T̄

Mg

)1/2

· kf

P (2cp − R̃/Mg)
(2.20)

where P is the gas pressure (in Pa), R̃ is the universal gas constant (in J mol−1 K−1), and

Mg is the molecular mass of the gas (in kg mol−1). The accommodation factor, αT is given

by Bahrami et al. (originally given by Song & Yovanovich) as16,169

αT = exp [−0.57Tr]

(
M∗

6.8 +M∗

)
+

2.4µ

(1 + µ)2
[1− exp (−0.57Tr)] (2.21)

where Tr = Ts−273 K
273 K , M∗ = Mg for monatomic gases or M∗ = 1.4Mg for diatomic gases,

and µ = Mg

Ms
is the ratio of gas and solid molecular masses. The αT term, as described by

Bahrami et al. represents the fraction of kinetic energy that a gas molecule leaves behind

as thermal energy on a solid after collision.

In Figure 2.1, we see comparisons of effective conductivity predictions by the three models

of Hsu et al. , Hsu et al. modification of ZS model, ZSB correction model, and their

differences with the simple ZS correlation.

Van Antwerpen compiled data from numerous publications to compare the accuracy of

effective conductivity correlations.178 For our discussion, experimental data with all the

correlations discussed above are also plotted. The plots are given in Figure 2.2.

Near κ = 1, all correlations collapse to predict a ke
kf

= 1, and experiments naturally match

predictions. From the range of κ > 1 to κ < 1000, experimental data is well-bound by the

predictions of the simple ZS model and the complex two-dimensional models of Hsu et al..

Above κ > 1000, the ZS model, not taking into account heat transfer through finite-sized

contacts, is no longer reliable as a model for keff. In high ranges of κ, the models incorporating

contact-conduction in the granular material remain well-matched to experimental data. The

results here show the worth of these general models for predictions of effective conductivity

in some granular material.

As part of the Ceramic Optimal Material Experiments for Thermomechanics (COMET)

project at UCLA, we measured the effective conductivity of dp = 1 mm graphite (IG11) peb-

bles for 135 ◦C to 544 ◦C. The results will be discussed in more detail later, though the results
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Figure 2.1: Models incorporating contact area demonstrate signficant deviation from the ZS

correlation above κ > 103. All correlations are still bound by parallel and series approxima-

tions of the material.

will be presented here for comparison with the correlations; Figure 2.3 shows the COMET

data. The measured conductivity from COMET is well above the lower bounds of series

approximation for effective conductivity, though is just below the lowest values predicted

from Hsu et al.’s square-cylinder two-dimensional model. We attribute the smaller values

of effective conductivity on the surface roughness of the graphite pebbles in conjunction

with their small size and small mass. In short, however, the measurements of COMET are

also demonstrative of the inaccuracies in general predictions of granular material thermal

properties.
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Figure 2.2: Comparison of keff correlations with compiled experimental data over a broad

range of conductivity ratios, κ. Data compiled by Ref.178 from many sources.

Lastly, one commonly-used correlation from Breitbach & Barthels.25 Breitbach & Barthels

began with the unit cell defined by Zehner & Schlunder, though noted that the closed cell

precluded radiation from voids outside the cell volume. Therefore they modified the corre-

lation via closing the bases of the unit cells with black surfaces instead of with surfaces of

the same emissivity as the grains in the bed. The result is given as the BB correlation,25

F ∗
E =

[(
1−

√
1− ϵ

)
ϵ+

√
1− ϵ

2/ϵr − 1
· B + 1

B
· 1

1 + 1
(2/ϵr−1)Λf

]
(2.22)

where B is again given by Equation (2.4), and Λf = ks
4dpσT̄ 3 is a dimensionless solid conduc-

tivity for the granular packing.

An IAEA technical report provides effective conductivity measurements of dp = 6 cm
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Figure 2.3: Comparison of COMET data on IG11 graphite, keff correlations, and experimen-

tal data. Data compiled by178 from many sources and measured data at UCLA.

graphite pebble beds.134 The data is used to compare against the combined correlations

of ZS and BB. The keff measurements in Helium are given in Figure 2.4, measurements in

Nitrogen are given in Figure 2.5. We see that the effective thermal conductivity correlations

are significantly under-predicting, over the entire range of temperatures, when compared

to experimental values. For the graphite pebble beds measured in the SANA report, we

consider the Grashof number for the packing. The Grashof number is indicative of natural

convection effects in the voids. The Grashof number is written as

Gr = gβ(Ts − T0)l
3

ν2f
(2.23)

where we estimate it in voids of size l = dp
2

, a temperature drop of Ts − T0 = 10 K is an
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lower estimate. The kinematic viscosity, νf of the gases is known, and thermal expansion of

an ideal gas is β = 1
T

. Let us assume a situation where temperatures and materials are all

identical and the only variation is in length. Grashof numbers for these cases would be

Gr1
Gr2

=

(
l1
l2

)3

(2.24)

Zehner & Schlunder derived their correlation from mass-diffusion experiments of Curie.43

The data of Curie was done primarily on grains of around 1 mm. Thus comparing l1
l2

between

the size of particles for which the ZS correlation was derived and particles for which it was

applied for SANA data yields
Gr1
Gr2

∼ 10−6 (2.25)

With a Grashof number significantly higher for the SANA experiments, it is indicative that

the amount of natural convection present in the SANA experiment will have a much greater

impact on heat transfer than the ZS correlation, derived on data for stagnant interstitial

gas, is able to predict. This demonstrates limited applicability of effective conductivity

correlations for packed bed conditions either different from those for which the correlations

were derived or when convection effects are present.

2.2.2 Convection in Granular Media

Before discussing the correlations for Nusselt number of particles with forced convection in

two-phase porous media, we consider a simple case of an axisymmetric sphere completely

immersed in a quiescent fluid. The steady-state energy equation of the fluid surrounding the

sphere is
∂

∂
(kfr

2T ) = 0 (2.26)

for which the solution is

T = −C1

r
+ C2 (2.27)

subjected to a boundary condition of

kf
∂T

∂r

∣∣∣∣∣
R

= −h(TR − Tf ) (2.28)
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Figure 2.4: Comparison of SANA data in Helium gas with ZS and Breitbach-Bartels corre-

lations. Data from IAEA Tecdoc-1163.134

where TR is the temperature of the fluid in contact of the sphere of radius R and Tf is the

temperature of the fluid infinitely far away from the sphere – which naturally leads to the

second boundary condition of T (r → ∞) = Tf . These two boundary conditions yield a

temperature solution of

T =
hR

kf

R

r
(TR − Tf ) + Tf (2.29)

We can also say T (r = R) = TR to show,

TR =
hR

kf

R

R
(TR − Tf ) + Tf (2.30)

or simply
hR

kf
= 1 (2.31)

The Nusselt number for a sphere is defined as

Nup =
hdp
kf

(2.32)
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Figure 2.5: Comparison of SANA data in Nitrogen gas with ZS and Breitbach-Bartels cor-

relations. Data from IAEA Tecdoc-1163.134

which is simply

Nup = 2
hR

kf
= 2 (2.33)

showing that in the limit of Rep → 0, the Nusselt number for a sphere in fluid will asymp-

totically approach Nup = 2. This value is a natural limit for a Nusselt number correlation

for particle-to-fluid heat transfer.

2.2.2.1 Nusselt number correlations for an individual sphere

For a particle falling through a fluid or a fluid moving past a single particle, a number of cor-

relations exist for the Nusselt number of that individual sphere. One common correlation is

from Ranz & Marshall,148 developed from heat and mass transfer analogies with experiments
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on evaporating drops. Their correlation is

Nup = 2.0 + 0.6Pr1/3Re1/2p (2.34)

Generally considered valid for Rep < 200. The Ranz & Marshall correlation is used by

Sasdisevi et al. in a CFD-DEM study of heat transfer in 2D fluidized spouts.172 Romkes

et al. did direct CFD studies of particle-to-fluid heat transfer and validated against Ranz

& Marshall;158 though they noted the correlation was valid over particle Reynolds numbers

of 10 < Rep < 104. Wu et al. also employed the correlation in a DEM study of granular

material.195 Li & Mason studied the correlation against their CFD-DEM studies,118 they

found the Ranz & Marshall’s correlation to be adequate for small Rep < 200 also.

Gnielinski80 developed a semi-empirical method where the Nusselt number for an arbi-

trary shape is related to the solution for a flat plate with appropriate transformations of the

length scale. The solution is a function of the asymptotic laminar, turbulent, and Rep → 0

solutions,

Nup = 2 +

√
Nu2

lam + Nu2
tur (2.35)

where

Nulam = 0.664Re1/2p Pr1/3 (2.36)

and

Nuturb =
0.037Re0.8p Pr

1 + 2.443Re−0.1
p (Pr2/3 − 1)

(2.37)

The two single-particle correlations are shown over a range of Reynolds numbers in Fig-

ure 2.6. The two correlations are in good agreement near low Reynolds number.

2.2.2.2 Nusselt number correlations for a sphere as part of a packing

The above correlations were generally developed from measurements of a single particle in

flow. The influence of neighboring grains will disrupt the flow field and result in a different

Nusselt number. Thus, for the Nusselt number for a single grain in a packed bed, Nui, is

often related to the Nusselt number of a single particle (alone in an infinite fluid), Nup, via
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Figure 2.6: Comparison of correlations for Nusselt number of a single spherical particle in

forced flow.

the packing fraction. The subscripts i and p will be used consistently below to signify the

Nusselt for a particle in a packing or a correlation for a single particle.

The data of Ranz suggested the following for spherical particles in a fixed bed

Nui = 2 + 1.8Re0.6p Pr1/3 (2.38)

Another commonly-cited correlation is that of Wakao et al.192,193 Combining a large

amount of data over a broad range of particle Reynolds numbers and Prandlt numbers

found a fitting function of

Nui = 2 + 1.1Re0.6p Pr1/3 (2.39)

Flueckiger et al.63–65 as well as Yang & Garimella,200 both implemented the Wakao et

al. correlation in their studies of heat transfer in solar thermal storage tanks.

Zhou et al.215 used a modified form from Kunii and Levenspiel, to fit their experimental

data. They gave

Nui = 2 + 1.2Re1/2p Pr1/3 (2.40)

In another study, Li & Mason117 also employed a modified form of Ranz & Marshall

to account for the packing in the assembly with a function of void fraction in front of the
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Reynolds and Prandtl terms,

Nui = 2 + 0.6ϵnRe1/2p Pr1/3 (2.41)

where they found n = 3.5 fitting for 3 mm pellets in dilute flows.117 Kloss et al.108 and Di

Maoi et al.49 also use the modified Ranz & Marshall correlation provided by Li & Mason

in their CFD-DEM studies. This correlation, however, conflicts with the correlations of

Ranz, Wakao, and the Kunii & Levenspiel. In the asymptotic limit of ϵ→ 1, the correlation

correctly approaches the single particle correlation of Ranz & Marshall, Equation (2.34). For

a dense packing, ϵ = 0.36, the correlation gives

Nui = 2 + 0.0168Re1/2p Pr1/3 (2.42)

which is significantly less than any of the correlations of Equations (2.38) to (2.40)

Achenbach defined an empirical arrangement factor, f(ϵ) = 1 + 1.5(1− ϵ) to related the

single particle Nu of Gnielinski, Equation (2.35), to a sphere in a packing,

Nui = (1 + 1.5(1− ϵ))Nup (2.43)

The modified form of Achenbach was used in a CFD-DEM study by Rickelt et al.,156 which

covers Rep up to 10 × 105 and Pr from 0.7 to 7 × 104. The Gnielinski correlation80 is also used

in the ANSYS calculations of helium-cooled pebble bed breeders, reported by Hernandez et

al.,90 Cismondi et al.,39 Poitevin et al.,145 etc. However, Visser notes191 that the correlation

of Gnielinksi is valid for Rep in 500 to 1000, for ϵ in the range 0.26 to 1.0. Thus he uses the

correlation of Gunn for his situation of lower Reynolds number84

Nui = (7− 10ϵ+ 5ϵ2)(1 + 0.7Re0.2p Pr1/3) + (1.33− 2.4ϵ+ 1.2ϵ2)Re0.7p Pr1/3 (2.44)

which Gunn developed to be valid for: heat transfer to particles at low and high Reynolds

number, at low and high porosities; single particle at low Reynolds number, particles and

particles in ensembles with high Reynolds number and moderate Prandtl. Amritkar et

al. also employ the Gunn correlation in their simulations of spout-fluidized flow.6

The correlations are given as functions of Re at a specified value of ϵ = 0.36 and Pr = 0.7

in Figure 2.7. We see the correlation from Li & Mason (a modified form of Ranz & Marshall),
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from Equation (2.41), predicts very small Nusselt numbers over this entire range of Reynolds

number. Additionally, the modified Gnielinski of Equation (2.43) and the correlation of Gunn

in Equation (2.44) predict much higher Nusselt numbers at low Reynolds number than any

other correlation, and are well above the single particle limit of Nu = 2 when Re → 0.

In the studies of Achenbach and Rickelt, which employed the modified Gnielinski studies,

the authors were interested in larger Reynolds number regimes. Above Re > 10, Gnielinski

correlation is similar to Wakao and Ranz correlations, thus the over-prediction at very small

Re may not have been observed. Gunn rejects the notion that the Nusselt number should

approach 2 in the no-flow limit.84 The discrepancy appears to arise because of definitions

of either particle or bed heat transfer coefficients. It seems Gunn’s definition was meant for

representative cross sections of packed beds with voidage defined by the void fraction rather

than for an individual particle communicating with forced flow in a packed bed.

Figure 2.7: Comparison of correlations for Nusselt number of a single spherical particle in

forced flow.

After discussing many popular correlations for Nusselt number in packed beds, consider-

ing the very small Reynolds number (Re ∼ 1) and packing fraction expected with the purge

gas of helium in tritium breeders, the correlation of Wakao et al., as given in Equation (2.39),

is sufficient. However, we note the debate that still exists in literature for determining Nus-

selt number for a specific particle in a packed bed. If experimental validation shows the
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Wakao correlation to be inaccurate, we will revisit the implementation in our modeling.

2.2.2.3 Natural convection in porous media

Natural convection is a concern in fusion packed beds due to exceptionally high temperature

gradients, adverse to the gravity vector, that arise in some configurations of packed beds. The

issue of natural convection has been addressed in Appendix F. The conclusion is that, in spite

of temperature gradients as high as 400 K cm−1, viscous forces in the porous media dominate

any buoyant forces that might arise in ceramic breeders. Therefore, natural convection is

not considered for modeling in this thesis.

2.2.3 Radiation in Granular Media

In order to quantify radiative heat transfer compared to conduction heat transfer, consider

particle i at temperature Ti with material properties of E, ν, radius R, emissivity ϵ, and

solid conductivity ks in contact with particle j of the same material at temperature Tj, the

amount of heat transfered through a single contact of these two pebbles can be calculated

from Equation (3.13), where conductance is given by Equation (3.16). Together, these are,

Qc = 2ks

(
3

4

R∗

E∗

)1/3

F 1/3
n (Ti − Tj) (2.45)

Radiation exchange from particle i to j can be found from a radiative transfer equation,

assuming the surfaces are grey and diffuse,

Qr = ϵσAsFij

(
T 4
i − T 4

j

)
(2.46)

where, As = 4πR2 and the pebbles have an emissivity of ϵ = 0.5, and mechanical properties

of Li2TiO3 are used. Feng and Han provide view factors between spheres of equal size in

various packing structures.61 Between two pebbles, regardless of the packing structure, the

view factor is approximately Fij = 0.075. The value of view factor can also be approximated

as slightly less than 1/12, which is the number of contacts in the most dense packing of

spheres, hexagonal-close packing.
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The amount of energy transfered between the two particles is a function of: (i) tempera-

ture differences, (ii) absolute temperatures, and (iii) contact force. In the following figures,

the temperature of Ti is varied between 300 ◦C to 800 ◦C, Tj is varied between Ti− 100 ◦C to

Ti, and Fn is varied between 0 and 100 N. We report the radiative heat transfer as normalized

against the conductive heat transfer at the given combination of temperatures and forces,

and thus the values in Figure 2.8 are the direct fractional amounts of radiation compared to

conduction.

From the results, we see that at the lower end of temperatures, 300 ◦C, radiation is

negligible compared to conduction even when contact forces approach 0. At slightly higher

pebble temperatures, 467 ◦C, radiation heat transfer is still significantly less than conduction,

the highest percent is around 14% when contact forces are very small. When the pebble

temperature increases to 667 ◦C, radiation is still small but potentially no longer negligible

for pebbles with contact forces less than 20 N, which is common for many pebbles not existing

as part of large force chains in packed beds. For these pebbles, radiation is around 20% or

more of the energy transfer from contact conductance. Finally, at the higher end of 800 ◦C,

even at very high contact forces of 100 N, radiative exchange is more than 20% of conduction.

At lower forces, contribution of radiation to energy exchange between the two pebbles is

nearly half of that from conduction.

Temperatures expected in the solid breeder will range between, approximately, 300 ◦C and

800 ◦C. Forces will also vary between pebbles in a probability distribution where the majority

have small forces and some have very high contact force (as will be discussed from DEM

results, to follow). Additionally, when we will later consider fragmentation particles which

are significantly smaller than the original pebbles, view factors from small-to-large spheres

will increase significantly. Thus we can not say that for the entirety of the pebble bed, under

all conditions, radiation heat transfer is negligible. Nevertheless for the present study we

must maintain with the assumption to neglect any contribution of radiation. The challenge

of incorporating radiation into DEM is due to the non-locality of radiative exchange beyond

contacting neighbors in the ensemble. In the work of Feng and Han to calculate view factors

in packed beds, they found that in random packings, pebbles as far away as 5 diameters from
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(a) T1 = 300 ◦C (b) T1 = 467 ◦C

(c) T1 = 633 ◦C (d) T1 = 800 ◦C

Figure 2.8: Comparison of radiative heat transfer with conduction heat transfer between two

example pebbles at various temperatures.

the pebble of interest contribute to radiative transfer, as shown in Figure 2.9.61 Tracking

neighbors in an algorithmically expedient fashion among thousands or hundreds of thousands

of particles is a challenge that is not attempted in the present work. We leave it to future

iterations of the DEM model to incorporate the view factor calculation and radiative heat

transport in DEM.
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Figure 2.9: Cumulative view factors for different packing structures. Reproduced from Ref.61

2.3 Momentum Transfer in Packed Beds with Fluid Flow

P.C. Carman,30 using Kozeny’s Equation as a starting point, derived a formula for the average

velocity of a laminar flow through randomly packed beds at the close-packed limit,

Ū =

(
L

Le

)2
ϵ3

k0µS2

∆p

L
(2.47)

where µ is the viscosity, Carman called the tortuosity (Le/L) the ratio of the actual path

of a streamline through the pore space, Le, to the length of packing, L. S is the particle

surface area per unit volume of the bed. For a bed of spheres this is S = 6(1− ϵ)/dp, ϵ is the

void fraction, and constant, k, varies between materials and packings but for regular spheres

is found experimentally to be k ≈ 5.0. The pressure drop per unit length of flow is ∆p/L.

We rearrange Equation (2.47) as

∆p

L
=

180Ūµ

d2p

(1− ϵ)2

ϵ3
(2.48)
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The pressure gradient acting upon the fluid in the packed bed must be balanced by the

drag force of all the particles in the bed. If we assume some average force, ⟨f⟩, as the

ensemble average of the particle drag forces, we can write

∆p

L
= n⟨f⟩ (2.49)

where n is the number density of particles in the bed. We relate the number density in terms

of the packing fraction as

n =
6ϕ

πd3p
=

6(1− ϵ)

πd3p
(2.50)

Thus the average drag per particle in this flow is

⟨f⟩ = ∆p

L

πd3p
6(1− ϵ)

(2.51)

We will nondimensionalize the average drag force based on the classic Stokes force – the

drag force of a single particle in unbounded fluid,

F =
⟨f⟩

3πµdpU
(2.52)

and when we plug in Equation (2.51) to Equation (2.52) we have

Fkc =
∆p

L

πd3p
6(1− ϵ)

1

3πµdpU
(2.53)

which, with the substitution of the Kozeny-Carman pressure (Equation (2.48)), becomes

Fkc =
180Uµ

d2p

(1− ϵ)2

ϵ3
πd3p

6(1− ϵ)

1

3πµdpU
(2.54)

or simply

Fkc = 10
1− ϵ

ϵ3
(2.55)

Carman himself31 points out the limitations of applicability of the Kozeny-Carman (KC)

equation: built into the equation is the assumption that the range of pore size and shape

is fairly isotropic and similarly the tortuosity through the packed bed is relatively uniform.

In the form we have used with Equation (2.55), we have also assumed spherical particles in

random packing near the close-packed limit (ϕ → 0.64) with laminar flow at low Reynolds
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numbers. Carman provided modifications to cases of extremely high porosity and non-

spherical, non-regular packings in his book from 1956.31

Another correlation that is perhaps more commonly used in general is the Ergun equa-

tion.59 Ergun’s equation is an empirical fit to a vast amount of experimental data. His

pressure drop per length is given as

∆p

L
=

150Uµ

d2p

(1− ϵ)2

ϵ3
+

1.75ρU2

dp

1− ϵ

ϵ3
(2.56)

We nondimensionalize the Ergun equation of Equation (2.56) by Stokes flow solution, as

done to derive Equation (2.55), to find

Fe = 8.33
1− ϵ

ϵ3
+ 0.18

Re
ϵ3

(2.57)

where we see the Reynolds number dependence in the second term on the right side of

Equation (2.57). Comparing this to the nondimensionalized drag force of the Kozeny-Carman

relation (Equation (2.55)), we see that the first term on the right hand side is essentially the

same but Ergun’s equation underpredicts Stokes flow by roughly 20% (comparing the leading

coefficient of 8.33 to 10.0). This is understandable as Ergun’s equation was meant to fit a

wide range of flow (finite-to-large Re), including turbulent flow, whereas the Kozeny-Carman

was meant specifically to apply to Stokes flow-type laminar packed beds.

Koch, Hill, & Ladd studied packed bed flow with high-precision lattice-Boltzmann simu-

lations to develop correlations for drag in a packed bed over a wide range of packing fractions

and Reynolds numbers.92,93,110 They studied ordered arrays of spheres at various flow angles

with dilute arrays (interstitial Reynolds number greater than particle Reynolds number), up

to dense ordered arrays, and random arrays.

They consider the drag force as a sum of viscous and inertial stresses. Based on scaling

arguments, the viscous and inertial contributions to F are expected to be independent of Re

and linearly proportional to Re, respectively (in much the same form as Ergun’s empirical

fit of Equation (2.57)). Thus their numerical results were fit to the form

F = F0(ϕ) + F3(ϕ)Re (2.58)
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where, from their lattice-Boltzmann simulations they found,

F0 =


1+3(ϕ/2)1/2+(135/64)ϕ lnϕ+16.14ϕ

1+0.681ϕ−8.48ϕ2+8.16ϕ3 if ϕ < 0.4

10.0 ϕ
(1−ϕ)3

if ϕ > 0.4

(2.59)

and

F3 = 0.0673 + 0.212ϕ+ 0.0232
1

(1− ϕ)5
(2.60)

Koch, Hill, & Ladd23,82,92,110 also compared their results with data from experiments.

They found that at smaller Reynolds number and larger solid volume fractions, the rate of

increase of drag force increases with the Reynolds number in much the same way predicted

by Ergun’s equation. However, at solid volume fractions smaller than those that can be

achieved in physical experiments, at the largest Reynolds numbers, the rate of drag force

increase is significantly smaller than the value predicted by Ergun’s equation.

For Stokes-flow (and near-Stokes-flow), the drag force computed from their lattice-Boltzmann

simulations were indistinguishable from experimental data over all ranges of packing frac-

tions achievable in controlled experiments. Their correlation for small Reynolds number and

large packing fraction is simply the Kozeny-Carman relationship – which was itself generated

with coefficients matching experimental data so it is no surprise their correlation fits that

phase space of ϕ− Re.

Three correlations relating a nondimensional drag force to packing fraction and Reynolds

number have been presented. The first, the Kozeny-Carman equation, Equation (2.55), was

derived assuming small Reynolds numbers with a broad range of packing fraction. The sec-

ond, the Ergun equation, Equation (2.57), is meant to be applicable over a broad range of

Reynolds number due to its origins as an empirical fit from experimental data but, by the

same token, is limited to experimentally attainable packing fractions. Finally, the third cor-

relation by Koch, Hill, & Ladd (KHL), Equations (2.58) to (2.60) was numerically developed

to provide drag correlations over a much more broad packing fraction and Reynolds numbers

than is possible with physical experiments.

A graphical comparison of the relationships that compares the three correlations: KC,

Ergun, and KHL is presented here.
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Figure 2.10: Comparison of pressure drop correlations over a range of packing fractions and

Reynolds numbers.
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2.4 Status of Ceramic Breeder Modeling and Analysis

Research efforts have been aimed at developing an understanding and characterization of

thermomechanics of ceramic breeder pebble beds. Such an understanding is essential to

providing confidence in performance and lifetime of ceramic breeder blanket designs. In

particular, a significant effort of pebble bed thermomechanical studies is development of

modeling simulation tools. In this section the current state of modeling – and experimental

work feeding into modeling efforts – for ceramic breeders of tritium is presented.

2.4.1 Experiments to Develop Constitutive Equations for Pebble Beds

Many experiments have been run to measure the effective thermal conductivity of a volume

of ceramic pebbles. In Figure 2.11, the effective conductivity is seen to be strongly affected

by the interstitial gas but weakly affected by the mechanical loads on the bed. The main

conclusions to bear in mind from Figure 2.11 are that: 1) the interstitial gas, even when

stagnant, is an important facilitator of heat transfer in beds and 2) the effective thermal

conductivity of the pebble bed is low and will limit the size of the ceramic pebble bed

volume to satisfy the temperature window imposed on ceramic breeders.

Reimann et al. have conducted an extensive experimental study of stress-strain relations

of ceramic breeder pebble beds using an oedometric test apparatus.142,151,152,154,155 The most

significant macroscopic experimental phenomena witnessed in pebble beds is an irreversible

plastic strain when load is removed, a non-linear elasticity, a pressure-dependent plasticity,

and volumetric creep. A particularly noticeable feature, clearly demonstrated in Figure 2.12,

is the reduced amount of irreversible strain when subjected to additional loading cycles after

the first unloading. This may suggest the existence of a semi-equilibrium packing state in

the pebble bed which can be reached after applying a pre-load to account for the large strain

in the first cycle of a pebble bed. This semi-equilibrium packing state is a feature which may

be advantageous for use in a fusion reactor.

To study temperature effects in Reimann’s studies, beds are freely heated to desired

working temperatures before pressure load is applied. Under the same loading condition,
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(a) Effective conductivity of ceramic pebble

beds is dependent on the pressure of the in-

terstitial gas, a minimum of about keff =

0.2 W m−1 K−1 in vacuum.

(b) The effective conductivity of several

Li2TiO3 packing structures.

Figure 2.11: Effective conductivity of lithium ceramics. Results from Ref.4

beds behave much softer at higher temperatures. The bed stiffens as the pressure increases.

An illustration of this phenomenon is presented in Figure 2.13 for a lithium orthosilicate

pebble bed between 50 ◦C to 850 ◦C. At higher temperatures (such as > 650 ◦C), a creep-

like behavior becomes apparent. Creep behavior allows the pebble bed to relax and sustain

higher stresses, however at eleveated temperatures we must keep in mind issues of surface

sintering of pebbles. The data was used to correlate creep rate as a function of temperature,

stress, and time for both lithium orthosilicate, lithium metatitanate, and beryllium pebble

beds.27,153,155

Coming from the standpoint that strain in a pebble bed is induced by thermal expansion,

an experiment was conducted to characterize the pebble bed thermal expansion coefficient.173

The thermal expansion coefficient of a packed Li2TiO3 pebble bed is measured under a

compressive load of 0.1 MPa. The study concludes that for beds with packing factors of

65.3 to 68.5%, the average thermal expansion coefficient was (1.4 ± 0.2) × 10−5K−1. This

thermal expansion coefficient of the pebble bed was equal to 78% of that for the bulk material

under the conditions used in the study. The reduction in thermal expansion coefficient is

less significant than that of the effective modulus, which is more than 2 orders of magnitude
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Figure 2.12: Example of uniaxial compression testing results for lithium metatitanate pebble

bed.181

smaller than the bulk value.

The effect of thermal cycling on the packing state is of interest; in particular, it is foreseen

that the ITER TBM will be subjected to such conditions. The question that arises is whether

a void region will be created under thermal-cyclic loading due to the differential rates of

expansion and contraction of the pebble bed and structural containing wall. This uncertainty

was first addressed in an experimental set-up involving Li2TiO3 pebbles enclosed by two

Kovar flanges while sandwiched between two commercial-grade CVD silicon carbide discs.29

The set-up allows for generating a high stress through large differential in thermal expansion

coefficients. The experimental results indicate that high thermal stresses and deformations

are present during the initial thermal cycle of the assembled test article, but are successively

alleviated due to a combination of pebble re-arrangement within the bed and creep induced

deformation. This suggests that a few thermal cycles under a controlled atmosphere and

a compressive load before final assembly of blanket sections would mitigate the severity of

the thermal stresses during start-up. This is also shown in a later experiment, in which the
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Figure 2.13: Example of uniaxial compression testing results compared with predictions from

material constitutive equations for lithium orthosilicate pebble beds at different tempera-

tures.70

increment of compression decreased with each heating cycle and became negligible after 30

cycles.175 Extrapolating the finding to a prototypical blanket breeder pebble bed design,

the study concludes that for a height of 1 m long pebble bed, a 51 mm high cavity may

be generated at the top of the bed with an initial packing of 65% under thermal cyclic

operations.

2.4.1.1 Post-irradiation experiments at Petten

The pebble bed assemblies (PBA) experiment is designed to study the effect of neutron

irradiation on the thermomechanical behavior of a ceramic breeder pebble-bed under DEMO

representative thermomechanical loads.123 This was accomplished via analysis of changes

of the in-pile temperature profiles during irradiation as wall as from the post irradiation

examination of the pebble bed in the Hot Cells. Within the assemblies, there are four test

elements; each resembling a small-scale mock-up of a HCPB TBM with a ceramic breeder

pebble bed sandwiched between two beryllium pebble beds. Before irradiation, the beds are

pre-compacted with a compressive load of 3 MPa to ensure good settling and contact.
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FEM analysis was performed to study pre-compaction procedures. During progressive

irradiation, temperatures are recorded at several locations in the ceramic breeder bed as well

as other critical positions. Reviewing the recorded temperature data, when comparing the

temperature in the center of the ceramic breeder pebble bed during later cycles and earlier

cycles there appears to be a decrease in temperature for the exact same environmental

conditions. Changes in the pebble beds and their characteristics are examined both in-pile

by neutron radiography and out-of-pile by e.g. SEM during post-irradiation examination

(PIE). The estimated bed height reduction from neutron radiographies over the course of

the irradiation has shown 3% of creep compaction.

A pebble bed experiencing creep compaction is both becoming more dense as well seeing

more-developed inter-pebble conduction paths. The effective thermal conductivity for a

creep-compacted ceramic pebble bed is thus expected to be higher than a standard ceramic

pebble bed. This phenomenon results in lower temperature gradients and a lower overall

temperature magnitude, which is precisely what was observed in the experiment over the

course of the cycling.

During PIE, various microscopy preparation techniques are used to study the deformation

state of the pebble beds (signs of creep compaction and sintering), formation of gas gaps

between the pebble beds and structural materials, and the interaction layers between eurofer-

ceramic and eurofer-beryllium.

Figure 2.14 shows the cross-section of Li2TiO3 pebbles (left) and Li4SiO4 pebbles (right)

post irradiation. Evident in the images is sintering of the lithium titanite and significant

fracturing of the lithium orthosilicate pebbles. Importantly, however, it must be noted that

the pebble beds performed reliably in spite of the changes displayed in these images.123

2.4.2 Continuum Modeling of Granular Material for Solid Breeders

When we consider beds of granular material from the standpoint of engineering continuum

mechanics, packed beds cannot be adequately described by traditional models of either solids

or liquids alone. Under compression, a packed bed responds like a solid with non-linear
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Figure 2.14: Notable features of irradiated Li2TiO3 and Li4SiO4 pebble beds from

PBAcitemagielsen2011. (Left) Demonstration of significant sintering of Li2TiO3 pebbles

with no fracturing; the visible cracks originated from production and handling. (Right)

Demonstration of cracking of Li4SiO4 pebbles.

elasticity and a plasticity that is history-dependent. At the same time, the packed bed can

obviously not support any tensile pressure and will often behave as an extremely viscous

liquid as it may fill in voids under just the force of gravity. Nevertheless, phenomenological

models, derived from the volumes of collected data, have been developed, using effective

material properties for the ceramic pebble bed, that describe the pebble beds in an Eulerian

manner that provide reliable information on the initial states of breeder volumes in the fusion

reactor environment and allow reasonable design predictions of the thermomechanics of the

breeding blanket.

In spite of the shortcomings of a continuum approach, it is the only option which currently

allows treatment of the pebble beds with standard finite element modeling (FEM) that can

be scaled up to the breeder system. To employ FEM, mathematical models written in terms

of average quantities and containing effective parameters are used. These models deduce a

set of constitutive equations to be implemented in the framework of a finite element code.

There are two major variants of phenomenological modeling approaches developed among

institutions, including: (1) A non-linear elastic model and a modified Drucker-Prager-Cap

theory for plastic strain;66,69 and (2) A hyper-porous non-linear elastic model and a Gur-

son model for the plastic model.47,48,50 Another approach was taken by Ref.66 wherein

the authors employed two different elasticity laws for the loading and unloading branches.
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Alongside the development of the modeling techniques, several large scale pebble bed Ther-

momechanics experiments were conducted. These experiments were intended to reveal the

underlined thermomechanical characteristics of ceramic breeder pebble beds, and provide

data for benchmarking the developed models. The vast amount of work done on model-

ing the pebble beds in the FEM framework can be found in literature.47,48,51,69,71,73,74 A

study was also published in 2012 that summarized, compared, and highlighted features of

the models under development at the time.201

2.4.3 Pebble Bed Modeling Benchmarks

The constitutive equations developed for finite element models were derived from the uniaxial

compression experiments, which are not fully representative of fusion operating conditions.

A more prototypical experiment should subject a pebble bed to isostatic loading. This could

be generated by either an in-pile pebble bed experiment or by making use of differential

thermal expansion between a pebble bed and its containing structure. The latter has been

attempted with several out-of-pile experiments launched by the HE-FUS 3 facility at ENEA

Brasimone. The experiments investigated the thermomechanical behavior of pebble beds

within geometry much more representative of current breeder designs. These include the

medium-scale mock-up exercises of HELICA (HE-FUS3 Lithium Cassette) and HEXCAL-

IBER (HE-FUS3 Experimental Cassette of Lithium Beryllium Pebble Beds).46,50 For those

experiments, the pebble layers are heated by electric heaters, and temperature and displace-

ment were measured.

2.4.3.1 FZK Benchmarking

FZK has performed validation of their FEM code against the data collected from the HELICA

experiment.70 They have also reported the results of simulations of HEXCALIBER but have,

as yet, not directly validated against the collected experimental data.71

In the HELICA experiment, the pebble beds experienced six thermal ramps, each applied

for an hour, and then the pebble beds were actively cooled with a helium flow. After cooling,
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the pebble beds were subjected to the another thermal ramp and the process was repeated.

DIN reports46 that the pebble bed temperatures exhibited cyclical behavior. FZK simulated

two cycles of the HELICA test and an example of the calculated results and experimental

data are shown in Figure 2.15 and Figure 2.16. In Figure 2.15 we see temperature histories

at a particular location (100 mm from the first wall) during a loading-unloading cycle.

The simulation results follow the temperature increase during the thermal ramps up until

the seventh hour, then again follow the experimental data as the test rig is cooled with

the helium coolant. Even with the two-dimensional simplification of the model, there is

excellent agreement between calculations and measurements. In Figure 2.16 the displacement

calculated by FZK is also in strong agreement with the average of measured displacements

for the entire duration of the heating-cooling cycle. Because of the overwhelming amount

of computer time necessary for the FZK model to complete a fully three-dimensional and

transient simulation, the FZK computations of HELICA and HEXCALIBER are carried out

in two dimensions; the helium temperature is chosen at an average value of measured inlet

and outlet temperatures.

From FZK’s numeric simulation arise several important observations: (i) a three-dimensional

analysis would provide more detail, spatial temperature variation of e.g. coolants would likely

explain much of the deviation between temperature profiles predicted by the simulation and

measured in the HELICA experiment; (ii) gap formations, with sizes on the order of a pebble

diameter, were detected at the interface of the first wall in ceramic beds; (iii) the maximum

hydrostatic pressures seen in the ceramic bed are anticipated to be above the fracturing limit

of the lithium ceramic. The consequences of some of these observations, if true and real, are

severe enough that they merit careful attention.

Gap formation and pebble damage (due to crushing or fracturing) are important topics

that must be considered in validation with future experiments. Observing the temperature

profiles during the first cooling cycle, the HELICA experimental data deviate from simulation

values. It is during the cooling cycle when gap formation would occur as pebbles began

to thermally retract. Simulations that predict gap formation would then predict slower

cooling, or higher temperatures, as the gap disrupts mechanical contact between pebble bed
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and coolant structure. Such phenomena seems present in comparison of experimental and

numerical results in the cooling cycle. This discrepancy seems well-suited to be answered

with pebble-scale simulations of solid breeder units as the stress-induced gap could be more

thoroughly studied with that modeling approach.

2.4.3.2 DIN Benchmarking

Because of the characteristics of the DIN model, full three-dimensional simulations were

capable of being relatively easily performed. In the framework of benchmarking efforts, DIN

has performed validation of their model against experimental results of HELICA, shown in

Figure 2.17 as well as HEXCALIBER, shown in Figure 2.18.

The results of the DIN model show also good agreement with experimental results of

HELICA as demonstrated in one example of temperature histories shown in Figure 2.17.

In this profile, the same location as that modeled by FZK (100 mm from the first wall)

is simulated by DIN. The FEM simulations from DIN (Figure 2.17) are reported over the

six-hour heating portion of a single heating ramp cycle of HELICA. When comparing the

results from DIN with those of FZK (in Figure 2.15 and Figure 2.16) we see the DIN model

has slightly better predictive capabilities for the temperature histories. This may be due

attributed to the three-dimensional variations in coolant temperature being captured by the

DIN model.

Unfortunately, the ambitions of HEXCALIBER were limited due to the crippling of

several heaters. Even so, the limited data was still used in efforts to validate the constitutive

relationships of the DIN model. The temperature variations with time were the only major

result reported by the ENEA Brasimone team, such as that shown in Figure 2.18; mechanical

results were not release. From the comparisons to experimental measurements in HELICA

and HEXCALIBER it is encouraging to notice that even in the absence of a creep model,

satisfactorily close agreement were seen between computation and measurement. So far, no

detailed displacement comparisons have been made to experimental data.

Several important observations are also made from the results of the DIN simulation: (i)
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Figure 2.15: Results of the FZK benchmarking with HELICA71 showing temperature varia-

tions with time during a loading cycle (T in ◦C) at 100 mm from FW.

Figure 2.16: Results of the FZK benchmarking with HELICA71 showing a comparison of

displacements (in mm) in HELICA between calculated and measured LVDT values.

three-dimensional effects were important to calculations of the convective energy transport

of the helium coolant; future models should continue to be analyzed in three-dimensions; (ii)

DIN reports that in HELICA all ceramic beds experience a compressive force everywhere

and no gap formation is ever detected.

In summary, the benchmarking efforts have only recently begun. A typical pebble bed

thermomechanics simulation involves first calculating overall temperature fields of the blan-

ket unit as it undergoes volumetric nuclear heating as well as cooling at the boundaries. The
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Figure 2.17: Exemplary results of the DIN benchmarking with HELICA: Temperature vari-

ations with time during a loading cycle at 100 mm from FW.47

non-linear mechanical analysis is then performed for stress and strain estimations. However,

since the effective thermal conductivity of the ceramic breeder pebble bed is, to some degree,

dependent on strain, a coupled thermal and mechanical analysis is needed. Additional de-

tails on modeling steps can be found in Refs.46,48,50,51,71,73 The two most developed models,

from FZK and DIN, have had their results compared to experimental data and have thus

far shown promise.

However, it must be noted that the benchmarking efforts are incomplete and inconsis-

tencies between the two models must be explained as they move forward. For example, the

model of FZK concluded that a gap appeared between the pebble bed and structural wall,

however the model from DIN reported no gap formation. The existence of a gap between

pebble bed and structural wall will negatively affect the ability to cool the pebble bed and

thereby impact structural and tritium release properties of the bed. That such a discrepancy

exists between calculated results of the models on such a critical feature warrants either more

benchmarking efforts or a careful deconstruction of the constitutive equations to discover the

source of the inconsistency. Future experiments aimed at benchmarking ought to focus on

creating apparatus capable of expressing, among other things, when gap formation or pebble

failure occurs.

48



	
  

Figure 2.18: Exemplary results of the DIN benchmarking with HEXCALIBER : Temperature

variations with time during a loading cycle within the first lithium-orthosilicate cell.48

2.4.4 Discrete Element Method for Solid Breeders of Tritium

There are many reasons to model ceramic breeders from the point of view of individual

pebbles, for instance we observed the incongruity on the issue of gap formation observed

during benchmarking efforts of continuum models. Correlations for effective properties of

heat transfer and the constitutive equations derived from experiments are still incapable of

accurate modeling of granular thermomechanics as packing structures evolves in time (based

on creep, granular crushing, sintering, etc.), thus many researchers of ceramic pebble beds

began modeling with the grain-scale discrete element method (DEM).

The Discrete Element Method (DEM) introduced by42 has been shown to be a promising

tool to study the behavior of granular systems through the interaction between the individ-

ual particles. DEM was first applied to study the micro-mechanical aspects of cyclic thermal

loads on the relaxation of stress in pebble beds for fusion reactors.121,202 An iterative relax-

ation strategy of DEM was used to study the internal contact forces in a pebble bed under

an external load by An et al.8 The same DEM tools, and the insight provided by which, were

also used to initiate DEM-based investigations of creep between pebbles under thermal and

mechanical loads.7 While An et al. studied the pebble assemblies in rectangular and cylin-

drical containers bounded by a elastic walls, computational requirements prevented more
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than a few thousand particles in the ensemble with rigid walls.8 Following An’s work, the

DEM torch was passed across the pond to researchers at KIT where they began to improve

upon the initial studies begun at UCLA.

Figure 2.19: Stress–strain behaviors of granular materials in a rectangular box under uniaxial

compaction from DEM are qualitatively matched to behaviors seen experimentally.

The effect of packing factor, geometry of the assembly on the overall stress-strain re-

sponse under uniaxial compression tests (UCT) has been thoroughly investigated.72 Gan

et al. pebble assemblies in a cubic box with periodic boundary conditions to prevent the

influence of boundaries dominating the ensemble response to loads.79 In the DEM uniaxial

compression studies (see Figure 2.19), a non-linear stress-strain response and a characteristic

residual strain after unloading (analogous to plastic strain in continuum systems) is observed

akin to the experimental results.150 It was shown that the average coordination number, av-

erage normal contact force and the maximum normal contact force in the assembly has a

unique functional relation (nonlinear, linear and linear, respectively) with the hydrostatic

pressure or the applied pressure independent of the packing factor.7,72 These functional re-

lations may be used as master curves for the micro-macro correspondence in the pebble bed

Thermomechanics studies.
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Recently, the effect of the pebble size distribution on the overall thermomechanical be-

havior of the pebble assembly is studied by Annabattula et al.11 They consider the pebble

size distribution of ceramic breeder pebbles (Li4SiO4) with a diameter range of 0.25 mm-

0.65 mm. Figure 2.20 shows a binary pebble assembly in a periodic box. The colors indicate

stored elastic strain energy of the pebble (red: maximum and blue: zero). The assembly has

a maximum pebble radius rg = 0.25 mm with the pebble size ratio r∗ = rs/rg = 0.6, relative

volume fraction V ∗ = Vg/V = 0.7 and a packing factor η = 0.643. The average stress in a

granular assembly can be deduced from the contact forces between individual grains.

X
Y

Z

Figure 2.20: A binary pebble assembly with r∗ = 0.6 and V ∗ = 0.7 showing the stored elastic

energy of the pebbles at ϵ33 = 1.5%; pebbles of radius rs (small) and rg (large).

Another aspect of interest in the study of mechanics of pebble beds is the crush behavior

of individual pebbles and their impact on the over all pebble bed response. DEM was

used to study the behavior of a crushable pebble assembly with the crush load data for

Li4SiO4 pebbles (for individual pebbles) measured at KIT for pebbles of diameter 0.5 mm.

A probabilistic method for analyzing the crush events of individual pebbles and a proce-

dure with the combination of DEM and experimental data to obtain crush load probability

has been reported by.74 Figure 2.21 shows the cumulative distribution function as a func-

tion of the hydrostatic pressure placed on the bed. The probability analysis, derived from
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DEM calculations, provides quantitative report of pebble crushing as a function of a specific

hydrostatic pressure. The results of this analysis exemplify the growing strength of DEM

techniques for analyses connecting global pebble bed loads to individual pebbles.
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Figure 2.21: Cumulative distribution functions for crushing of individual pebbles inside the

bed for as-fabricated pebbles, calculated by (1) maximum contact forces and (2) all inter-

particle contact forces.74

However, it has been shown by Zhao et al. that a criterion based on critical stored elastic

energy is a promising criterion for describing the Li4SiO4 pebble failure.210,213 An alternative

criteria is given in appendix C for reference, but has not been validated experimentally and

is thus not included in this discussion. Hence, the crush load data (provided by fusion

materials laboratory at KIT) has been transformed into equivalent elastic strain energy

showing a Weibull distribution.210 Critical energy, with randomly generated distribution, is

used as the criterion for failure of pebbles in their DEM simulations. First, the assembly is

loaded up to 3% strain in uniaxial compression and then unloaded to a stress-free state. The

elastic modulus of the pebble is reduced, beginning from an initial value to a small value of

1 kPa, with increase in elastic strain energy of the pebble according to a phenomenological

damage accumulation law.12 The damage state is frozen at the end of loading step and hence

there will be no further damage accumulation in the unloading step.

Figure 2.22 shows the results for two types of damage law each with three different

realizations.201 Each realization corresponds to a different random distribution of critical
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energies assigned to the pebbles in the assembly. The results do not show appreciable sensi-

tivity to random distribution of energies. In the case of gradual damage law, the reduction

of the elastic modulus of the pebble starts when the stored elastic energy reaches 50% of the

critical energy for that pebble and the elastic modulus reaches exponentially to its minimum

value when the stored elastic energy reaches the critical energy prescribed. In the case of

sudden damage this reduction starts at a much later stage when the stored elastic energy

reaches 95% of the critical energy of the pebble. Clearly, the assembly with a sudden damage

accumulation shows a higher maximum strength compared to the gradual damage. In the

case of the gradual damage, the pebbles start to fragment at smaller strains than in the case

of sudden damage. Hence the critical number of pebbles to fail for the onset of maximum

strength is reached at lower strain values in gradual damage. It turns out that a mere 0.2%

pebbles is the critical number for the onset of maximum strength, as manifest in observed

stress plateaus.

The nature of damage evolution influences the strain at which the maximum strength

is attained while the critical number of failed pebbles for this saturation is independent

of the damage evolution law (also see210). Also note that the high frequency oscillations

during loading in the stress-plateau region represent the failure of new pebbles. The analysis

also shows a creep-like behavior of the stress-strain response and hence the stress-plateaus

observed in experiments150 may indicate the presence of pebble crushing in addition to the

thermal creep mechanism. Furthermore, the residual strain after unloading is larger for the

system with sudden damage than the system with gradual damage. It should be noted

that the assembly with gradual damage has more number of damaged pebbles at the end

of loading (at 3% strain) making the assembly more compliant than in the case of sudden

damage.
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Figure 2.22: Stress-Strain response of a granular assembly under uniaxial compression for

two different damage evolution laws (gradual and sudden). Each damage evolution criterion

is simulated with three different realizations of randomly prescribed critical failure energy

for individual pebbles following Weibull distribution. Reproduced from Ref.201
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CHAPTER 3

Transient DEM Modeling of Solid-solid Contact

Conductance and Packing Changes in Solid Breeder

Pebble Beds

In this chapter thorough descriptions of mechanical and thermal interactions internal to

packed beds and their governing equations as implemented with the discrete element method

are given. We start with establishing a kinematics framework which simply states that phys-

ical granular interactions obey Newton’s laws of motion, and the motion of interactions is

integrated in time. Contact mechanics models then dictate the normal and tangential forces

of interacting grains that feed into the generic kinematic equations; the choice of contact

model thus largely dictates the overall behavior of the granular material. Granular heat

conductance models are implemented in DEM which, too, is reliant upon the contact force

modeling. Application of DEM as a tool for measuring thermomechanical interactions be-

tween pebbles for solid breeders is validated via numerical experiments to compare effective

thermal conductivity with established measurements of effective thermal conductivity of

lithium ceramic pebble beds. The contact model we use is based on Hertz’s solution for elas-

tic bodies, thus the elastic modulus of the grain is an important property for our models and

we experimentally validate the application of Hertz Law; validation is possible with a new

phenomenological model for the ceramic pebble elasticities. Lastly a technique for fragmen-

tation modeling and investigate fragments and resettling in numeric ensembles is provided.

The DEM model established in this chapter will form the basis for further development of

tools for determining temperature distributions in solid breeder pebble beds.
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3.1 Grain-scale Modeling

The observable, macroscopic behavior of particulate, or granular, systems is a complex func-

tion of myriad particle interactions. Historically, empirical relationships have been used to

describe these systems as if continuous media, e.g. the correlations for heat transfer dis-

cussed in § 2.2. But with the advent of the discrete element method by Cundall & Strack

and the acceleration of computing power, it became practical to investigate these granular

materials at the particle scale without continuum assumptions.42 With DEM, we track all

the particles in the system in a Lagrangian manner. In the ensemble, the kinematics of each

particle is tracked and updated based on balances (or imbalances) of forces or energy acting

upon the particle.

3.1.1 Particle Dynamics

The grains in our system are allowed translational and rotational degrees of freedom. In

a packed bed, we can restrict our attention to local forces between particles; neglecting,

say, non-contact forces such as, van der Waals, electrostatic, or for the time being any fluid

interaction forces. Assuming we know the contact forces acting upon particle i, Newton’s

equations of motion are sufficient to describe the particle kinematics. For translation and

rotational degrees of freedom, the equations are:,

mi
d2ri
dt2 = mig + fi (3.1a)

Ii
dωi

dt = Ti (3.1b)

where mi is the particle mass, ri its location in space, g is gravity, Ii is the particle’s moment

of inertia, and ωi its angular velocity.

The net contact force, fi, represents the sum of the normal and tangential forces from

the total number of contacts, Z, acting on this grain.

fi =
Z∑

j=1

fn,ij + ft,ij (3.2)
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and the net torque, Ti, is similarly,

Ti = −1

2

Z∑
j=1

rij × ft,ij (3.3)

When Cundall & Strack first proposed the discrete element method, they used a linear

spring-dashpot structure which saw normal and tangential forces written as,

fn,ij = kn,ijδn,ijnij − γn,ijun,ij (3.4a)

ft,ij = kt,ijδt,ijtij − γt,ijut,ij (3.4b)

where Cundall & Strack defined the stiffness coefficients k as constants and local damping

coefficients γ were proportional to them, γ ∝ k, to allow dissipation of energy and the system

to reach an equilibrium.

Relative normal and tangential velocities, respectively, are decomposed from particle

velocities,

un,ij = (−(ui − uj) · nij)nij (3.5a)

ut,ij = (−(ui − uj) · tij)tij (3.5b)

with the unit vector nij pointing from particle j to i

As in the solution of Hertzian interaction (see Appendix B), the surfaces of the two

particles are allowed to virtually pass through each other (no deformation) resulting in

normal and tangential overlaps of,

δn,ij = (Ri +Rj)− (ri − rj) · nij (3.6a)

δt,ij =

∫ t

tc,0

ut,ij dτ (3.6b)

where the fictive tangential overlap, δt,ij, is truncated to so the tangential and normal forces

obey Coulomb’s Law, ft,ij ≤ µifn,ij with µ as the coefficient of friction of the particle.

Thus the approach of DEM is relatively simple: calculate interaction forces between

particles with Equation (3.4) based on the kinematics of velocity and position of interacting

particles from Equation (3.5) and Equation (3.6), respectively, then update the positions
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based on the forces. As DEM evolved and drew attention of more researchers, more complex

formulas governing the spring-dashpot coefficients of Equation (3.4) emerged. But the core

approach remained the same and the models all fall into the same family of so-called ‘soft

particle’ models of DEM. A well-composed summary of the different DEM force models is

given by Zhu et al..216

The method used in this work fits into the computational skeleton of Cundall and Strack’s

method but with non-linear spring-dashpot coefficients defined by simplified Hertz-Mindlin-

Deresiewicz model. In this model, the normal-direction stiffness coefficient of Equation (3.4a)

is based on the Hertzian contact law (derived explicitly in Appendix B). The validity of

Hertzian descriptions of normal forces is tested experimentally and reported in § 3.2.The

tangential-direction stiffness coefficient follows from Brilliantov.26,115,216 Together, the spring

coefficients are,

kn,ij =
4

3
E∗

ij

√
R∗

ijδn,ij (3.7a)

kt,ij = 8G∗
ij

√
R∗

ijδt,ij (3.7b)

where E∗
ij is the pair elastic modulus, G∗

ij is the pair bulk modulus, and R∗
ij is the relative

radius. The terms are defined as,

1

E∗ =
1− ν21
E1

+
1− ν22
E2

(3.8a)

1

R∗ =
1

R1

+
1

R2

(3.8b)

1

G∗
ij

=
2(2 + νi)

Ei

+
2(2 + νj)

Ej

(3.8c)

Similar to Cundall & Strack’s formulation, damping coefficients, γ, are included to ac-

count for energy dissipated from the collision of two particles.52,176,177 Whether the damp-

ing coefficient is local or global and the exact form of the coefficient is more important for

loosely confined granular systems and dictates the way the system approaches an equilibrium

state.124 For the case of our tightly packed pebble beds, it suffices to use the efficient form

58



of Refs.,26,124,164,207,216

γn =
√
5βdiss

√
m∗kn,ij (3.9a)

γt =

√
10

3
βdamp

√
kt,ijm∗ (3.9b)

with βdamp as the damping ratio, and the pair mass, 1
m∗ = 1

mi
+ 1

mj
. For a stable system with

βdamp < 1, the damping ratio is related to the coefficient of restitution, e, as

βdiss = − ln e√
ln2 e+ π2

(3.10)

Systems to be solved by DEM models are therefore well-defined after specifying the few

material properties of E, ν, ρ, and Rp and the interaction properties of µ and e.

Having expressed the contact mechanics of the discrete element method, we now must

integrate the kinematic equations of the particles to resolve their evolutions. The most

common means of marching in time with DEM is the velocity-Verlet algorithm.111 In this

algorithm, Equation (3.1) are integrated with half-steps in velocity, full steps in position,

and then finally the full step in velocity. In practice, the two half-steps in velocity are often

compressed into a single, full step. The computational time integration steps are given in

explicit detail in Appendix E. Owing to the explicit nature of the velocity-Verlet algorithm,

stability is a constant concern with DEM simulations. Stable, critical time steps and practical

means of circumventing unreasonably small time steps are discussed in Appendix E.

A last note. Throughout this work, we required a fully quiesced bed to act as a starting

point or demarcate a mechanically steady-state bed. To determine when this occurs, the

total kinetic energy of the entire ensemble is monitored and a packed bed is considered to

have completely settled once the magnitude of the system’s kinetic energy is less than 10−8.

A similar process was independently determined in a similar matter in the work of Ref.166

3.1.2 Granular Heat Transfer in DEM

In a way analogous to handling particle momentums with Newton’s laws of motion, La-

grangian tracking of particle energy is obtained via the first law of thermodynamics. Each
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particle is treated as a single distinct object and thus internal temperature gradients are

assumed negligible. The temperature of particle i is governed by

miCi
dTi
dt = Qs,i +Qi (3.11)

where m and C are the mass and the specific heat of the solid, respectively. Heat generation

inside the particle is input with Qs and the total heat transferred to/from particle i via

conduction to all, Z, neighboring particles, is

Qi =
Z∑

j=1

Qij (3.12)

Assuming the particles are spherical, smooth, elastic, in vacuum, and we neglect radiation

transfer between them, for two particles at temperatures Ti and Tj, we quantify the amount

of energy transferred between them with a contact conductance, Hc:

Qij = Hc(Ti − Tj) (3.13)

Batchelor & O’Brien18 developed a formulation of similar form and then made a brilliant

observation that “when the radius of the circle of contact is so large that the heat flux through

the thin annular matrix layer is negligible by comparison with that through the contact circle,

the distribution of temperature inside the two particles is approximately the same as that of

the velocity potential in irrotational flow of incompressible fluid through a circular hole in a

plane wall.” With the analogy, they made use of the fluid flow solution to write the total

heat flux across the circle of contact as Equation (3.13) with heat conductance

Hc = 2ksa (3.14)

where ks is the conductivity of the contacting solids and a is the radius of contact. Because

we have assumed smooth, elastic, spherical solids, with Hertz theory (see Appendix B),

contact radius can be found as a function of contact normal force, Fn,

a =

(
3

4

R∗

E∗

)1/3

F 1/3
n (3.15)

where, as before, 1
E∗ =

1−ν21
E1

+
1−ν22
E2

and 1
R∗ = 1

R1
+ 1

R2
.
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In the development of Equation (3.14), Batchelor & O’Brien had assumed the two con-

tacting spheres to be of equal conductivity, ks. Cheng et al.34 proposed a slightly modified

conductance which allows for contacting materials of different thermal conductivity. They

give,

Hc = 2k∗a = 2k∗
(
3

4

R∗

E∗

)1/3

F 1/3
n (3.16)

where 2
k∗

= 1
ki
+ 1

kj
. As well as being a more general, flexible formulation, the models analyzed

by Cheng et al.34 are in good agreement with experiments.

The condition for validity of Batchelor & O’Brien’s formulation of Equation (3.14) is in

the limit where Ψ → ∞, where18

Ψ =
a

R∗κ (3.17)

The term a
R∗ , from Appendix B, is necessarily less than 1 for Hertz theory to be applicable.

Thus for fluid in vacuum, the condition is identically satisfied but we must consider inaccu-

racies if we introduce an interstitial fluid with low conductivity ratios; for lithium ceramics

in helium, the ratio is approximately κ ≈ 10.

We step back from contact of a single pair of particles and consider a particle in an en-

semble with many contacts. We must again consider the validity of applying Equation (3.16)

at each contact. Vargas and McCarthy,188 propose introducing a conduction Biot number

to relate resistance of heat transfer internal to a particle with resistance between particles,

Bic =
Hc

k∗dp
= 2

a

dp
(3.18)

Then if Bic ≪ 1, the individual energy transferred between each point of contact can be

decoupled. The Biot number criteria is already satisfied for Hertz theory to be valid; having

assumed that a
dp

≪ 1. Therefore the total heat transferred out of a single particle with Z

contacts, due to contact conductance, is the summed contribution of individual contacts,

Qi =
Z∑
j

Qij (3.19)

For the case when we do not have a perfectly smooth elastic sphere, we use the approach of

Bahrami et al., introducing a joint thermal resistance to develop a modified heat conductance
61



term. Bahrami et al.15 use a joint thermal resistance of the superposition of macroscopic

and microscopic influences; the thermal joint resistance is

Rj = Rs +RL (3.20)

where the subscript L refers to macroscopic variables and s refers to microscopic ones.

Bahrami et al. used the constriction formulation of Yovanovich et al. to express the macro-

scopic resistance as203

RL =
(1− a/R∗)3/2

2ksa
(3.21)

If the contact of the two materials obeys Hertz contact law, then a/R∗ ≪ 1 and the above

becomes

RL =
1

2ksa
(3.22)

which matches the heat conduction form of Batchelor & O’Brien,18 Equation (3.14).

To determine the thermal resistance of the asperities in contact, Bahrami et al. used a

superposition of many cylindrical constrictions inside of the contact area. The result is given

in15 as

ψ∗
s =



(
πH′R∗2

F

)s
Fc = 0

(R∗/a)2(H ′/P0)
s(1 + sγ) F ≤ Fc

(H ′/P0,c)
s(1 + sγc) +

[
πH′R∗2

(F−Fc)

]s
F ≥ Fc

(3.23)

where ψ∗
s is a non-dimensional form of the surface roughness thermal resistance, defined as

ψ∗
s = 1.25πR∗2k∗(m/σ)ψs, k∗ is the harmonic mean of contact grains thermal conductivity,

H ′ is the Vicker’s microhardness value, F is the contact force, P0 is the maximum pressure

of contact, s is a parameter based on the hardness constants, γ = 1.5(P0/P0,H)(a/aH)
2 − 1,

Fc is the critical force where a = R∗, γc is the value of γ at the critical force, m is the mean

absolute surface slope, and σ is the root-mean-square (rms) surface roughness. For Hertzian

contact, γ = 0.5.

Antonetti et al. proposed a correlation for mean absolute surface slope related to surface

asperities as13

m = 0.125(σ × 106)0.402 (3.24)
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where the range of applicability of surface roughness is 0.216 × 10−6 m≤ σ < 9.6 × 10−6 m.

Thus the term σ/m = 0.031σ0.598

For Hertzian contacts of the non-conforming ceramic materials, F ≪ Fc, thus we consider

only that case to write

Rs =
(R∗/a)2(H ′/P0)

s(1 + s/2)

1.25πR∗2k∗(0.031σ0.598)
(3.25)

or

Rs =
(H ′/P0)

s(1 + s/2)

1.25πa2k∗ (0.031σ0.598)
(3.26)

For Hertzian contact, the maximum pressure is given by Equation (B.14). It is

P0 =
2E∗δn
πa

Furthermore, as noted by Bahrami et al., the parameter s is in the range of 0.95 ≤ s ≤ 0.97.

Therefore it is approximated as s = 0.96 here. The thermal resistance of Equation (3.26) is

rewritten in a simplified form,

Rs =

(
H ′

E∗δn

)0.96 ( σ
m

) 1

1.720k∗a1.04
(3.27)

The macroscopic and microscopic thermal resistances given in Equation (3.22) and Equa-

tion (3.27), respectively, are combined to give the total joint thermal resistance of

Rj =

(
H ′

E∗δn

)0.96
0.031σ0.598

1.720k∗a1.04
+

1

2k∗a
(3.28)

and the total thermal conductance between the two grains, Hj = 1/RJ , is

Hj =

[(
H ′

E∗δn

)0.96
0.031σ0.598

1.720k∗a1.04
+

1

2k∗a

]−1

(3.29)

In the limit of zero roughness, the first term inside the bracket tends to 0 and the conduc-

tance is simply the Batchelor & O’Brien form with Hertzian assumptions of perfectly smooth

elastic spheres. In our DEM model, we employ a flag to choose between the simple smooth

assumption for heat conductance, Equation (3.14), or the more advanced conductance equa-

tion, Equation (3.29), if we have known hardness and roughness properties for ceramics. In

practice, the hardness and roughness properties are, as yet, unknown for lithium ceramic

materials and most studies in this work are done with smooth sphere approximation.
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3.1.2.1 Thermal Expansion

The stresses which will act upon the solid breeder volume during operation of the fusion

reactor arise from the differential rate of thermal expansion from the highly heated ceramic

volume and the relatively cool structural container. Moreover, thermal settling motion is

observed in pebble beds with cyclic heating.32,53,175,189 Both of those phenomena originate

from effects of thermal expansion of individual grains in the ensemble. Therefore, we intro-

duce a simple thermal expansion method into the DEM structure that updates the diameter

of each particle as,

dp,i = dp0,i [1 + βi (Ti − T0)] (3.30)

where βi is the thermal expansion coefficient (in units of 1 K−1), Ti is the temperature of

the pebble at the current step, and d0,i is the initial diameter of the pebble at temperature

T0. The update of pebble diameter based on thermal expansion could be computed at every

time step as it is not computationally expensive. Nevertheless, flexibility in the code allows

computation at an arbitrary interval of time, typically every N
∆t

= 104

10−7 in most models of

ceramic pebble beds).

3.1.3 Numerical Implementation of DEM

The primary computational tool used in this study is LAMMPS (Large-scale Atomic/Molecular

Massively Parallel Simulator),144 a classical molecular dynamics code. The package of code,

maintained by Sandia National Labs (http://lammps.sandia.gov), has many features mak-

ing it particularly attractive for our use of granular material simulations. LAMMPS is

open-source and written in highly-portable C++ allowing customization of any core mod-

eling feature. LAMMPS runs with distributed-memory message-passing parallelism (MPI)

and provides simple control (manual or automatic) of the spatial-decomposition of simula-

tion domains for parallelizing. Perhaps most importantly, LAMMPS provides an efficient

method for detecting and calculating pair-wise interaction forces; the largest consumer of

run-time in the DEM algorithm.144 We build the LAMMPS core as a library to allow coupling

LAMMPS features to other numerical tools. The scripting language of Python (Python 2.7)
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to write parent routines that pass information between LAMMPS objects while accessing all

of Python’s numeric and scientific libraries (e.g. NumPy and SciPy).

LAMMPS by default provides a rudimentary method of modeling of granular particles

(the term ‘granular’ in LAMMPS vernacular simply differentiates the discrete element of

molecules or atoms from larger-scale granular particles of powders or pebbles); LAMMPS

has been used for studying granular material since at least 2001 when Silbert et al. stud-

ied granular flow on inclined planes.167 However, the usefulness of LAMMPS for studying

granular systems was greatly enhanced by LIGGGHTS (LAMMPS Improved for General

Granular and Granular Heat Transfer Simulations), a suite of modules included on top of

LAMMPS. LIGGGHTS has many academic and industrial contributors from around the

world, with the code maintained as open-source by DCS Computing, GmbH.

Briefly, some notable features that LIGGGHTS brings to the LAMMPS environment

include: built-in Hertz/Hooke pair styles with shear history, mesh importing for handling wall

geometry, moving meshes, stress analysis of imported meshes, a macroscopic cohesion model,

a heat transfer model, and improved dynamic load balancing of particles on processors.107,108

Both LIGGGHTS and LAMMPS are distributed under the open-source codes under terms

of the Gnu General Public License.67 LIGGGHTS is compiled with modified source files of

heat transfer to account for the introduction surface roughness given in Equation (3.29).

3.1.4 Benchmarking Solid-Solid Conductance Models for Pebble Beds

For validation, we will compare numeric calculations of effective thermal conductivity to the

few experimental campaigns which measured effective thermal conductivity of packed beds

in vacuum. For comparison, in Figure 2.11a, we saw the effective thermal conductivity of

a pebble bed, in near-vacuum conditions, is measured by Enoeda et al. as approximately

keff = 0.2 W m−1 K−1 for Li4SiO4at 517 ◦C. Aquaro & Zaccari also measured the effective

conductivity in vacuum, over a range of external pressures.14 Their results are reproduced

in Figure 3.1. The effective conductivity of Li2TiO3 pebble beds are seen to increase from

approximately keff = 0.2 W m−1 K−1 to keff = 0.3 W m−1 K−1 over the range of external

65



pressures, 0 MPa to 7 MPa. The solid-solid conductance modeling of DEM can be seen as

Figure 3.1: Effective conductivity of Li2TiO3 and Li4SiO4 in air and vacuum environment

conditions. Reproduced from Ref.14

the vacuum limit when no influence of interstitial purge gas is present; the results of DEM

should therefore then be in the range of 0.2 MPa to 0.3 MPa.

A recent thermal DEM study has been performed by Gan et al. which analyzed temper-

ature profiles in pebble bed regions reflecting the European design of helium-cooled pebble

bed.8 In their work, they use the more generic form of heat conductance provided by Batch-

elor & O’Brien,18

Hc = 2π
ks
κ
R∗H (κ,Ψ) (3.31)

where κ = ks/kg as defined above; H (κ,Ψ) is a function of (i) the flux across contact

circle, (ii) the difference between the flux across the matrix layer and the total flux between

particles in point contact, and (iii) the conductivity ratio κ. In the limit of Ψ → ∞ (see

Equation (3.17)), H → κa
πR∗ and thus Equation (3.14) is recovered.

For the case of ϕ = 0.645, the temperature profile for mono-sized pebbles is reproduced

in Figure 3.2.

66



Figure 3.2: Temperature profile across a pebble bed from Ref.8

An effective thermal conductivity can be calculated from the data given by Gan et al. and

using Equation (3.38). For the case of ϕ = 0.645, an effective thermal conductivity is found

to be keff = 4.37 W m−1 K−1. In the heat conductance term used by Gan et al., contribution

of helium is accounted for in near-contact regions of pebbles and thus the effective thermal

conductivity determined from these beds should be higher than the values of vacuum, yet

the value of 4.37 W m−1 K−1 is exceedingly high, given the stress state in the pebble bed

after heating is calculated as only 5.7 MPa. The effective conductivity was not reported in

paper of Gan et al. and consequently no discussion on why the value is so large is given.

To validate the heat transfer capabilities of our DEM models, a three-dimensional pebble

bed consisting of mono-dispersed particles of diameter dp is analyzed. The particles are

constrained by rigid y-z-planes at locations of x
dp

= ±10 (the walls of the container). There

are periodic boundary conditions in the y-direction located at y
dp

= ±5. Gravity acts in the

negative z-direction and the particles are resting on a rigid x-y-plane at z = 0 (the floor of

the container) and held from the top by an x-y-plane at approximately z
dp

= 50 (the roof of

the container). The precise height of the container is chosen to satisfy the requested initial

packing fraction. Several initial packing fractions are chosen, ϕi = [59, 61, 62, 64]% with

6875. The volume is chosen to represent the long, tall, narrow channels seen in many solid

breeder module designs.35,56,145
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Table 3.1: Material properties used in validation study of keff for Li2TiO3.

E ν k C α

(GPa) (W m−1 K−1) (J kg−1 K−1) (K−1)

60 0.24 2.4 1156 15 × 10−6

For this study, the material properties were chosen to represent Li2TiO3 pebbles, however

the thermal properties of Li4SiO4 are roughly equal and this validation also applies to pebble

beds of that material as well. All the properties come from Ref.,78 though a modified elastic

Modulus . They are summarized in Table 3.1

Figure 3.3: Demonstrating the pouring process of pebbles into the control volume with at

an early time (left), when it is nearly filled (middle) and after the pebbles have settled to

negligible kinetic energy (right).

The first attempt to pack the bed followed from the ‘recipes’ we had used in physical

experiments in the lab. That is, the pebbles were numerically poured into the volume from

above and allowed to settle under their own weight (see Figure 3.3), then the volume was

vibrated while a roof was lowered to compact the system to ϕ = 0.64, the desired packing

fraction. This technique was ultimately abandoned in place of a less realistic but more

computationally efficient technique which resulted in comparably packed beds.

In the preferred method, N particles are inserted randomly, with large spacing, into
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a volume with an expanded y-direction. Gravity is not initialized and the coefficient of

friction of the pebbles is set to µ = 0. The system boundaries wrapped around the y-limits

are slowly compressed until they reach the desired volume is obtained (as specified above).

In the absence of friction, the pebbles move easily next to each other during the compression

and there is no stored tangential forces when the pebble bed is ‘packed’. Next, the coefficient

of friction is increased to a realistic level, µ = 0.2, and gravity in the system is initialized.

The bed is then allowed to come to rest, as measured by the kinetic energy of the system.

At this point, the pebble bed is considered to be packed and the system state is saved, to

be loaded into the heating routine.

To simulate the conditions of a solid breeder in a fusion reactor, where the heat is removed

from the pebble bed via contact to the containing structure, a constant temperature of Tc

is assigned to the vertical walls. Nuclear heating of the pebbles is simulated through a

constant source term on each pebble. A representative heating rate of Qs =
q′′′p

ϕ0
, where

q′′′p = 8 MW/m3 and ϕ0 = 0.64.8 The heating cycle runs until a thermal steady state is

reached. Based on a measurement of the total thermal energy of the bed, ET =
∑N

i miCiTi,

steady-state is determined as dET

dt = 0 within a specified tolerance. Once at steady state,

effective thermal conductivity of the beds is analyzed for comparison to experimental data

on pebbles in vacuum.

Based on the boundary conditions of the system, the heat transfer becomes symmetric

and one-dimensional in the x-direction from x = 0 to the walls at x
dp

= ±10. The pebble bed

has negligibly small variation of forces and temperatures in the y-direction due to the periodic

boundary condition at the edges of the domain. Gravity effects are minor in the overall heat

transfer and induce only a slight z-dependency to the results. Taking advantage of the

pebble bed temperature profile’s resemblance to a one-dimensional heat transfer problem to

calculate an effective conductivity from an analytic, one-dimensional test case analogy.

Assuming a one-dimensional pebble bed, to find an effective conductivity, we step back

into a continuum mechanics formulation where the pebble bed can be represented as a slab

of solid material. We can analytically solve for the temperature equation in a slab with heat

generation, symmetry about the centerline, and a constant boundary temperature condition.
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At steady-state, the temperature of a material with constant temperature boundary

conditions (T (L) = Ts), constant thermal conductivity (keff), and nuclear heating (q′′′) obeys

the following equation

0 =
d2T

dx2 +
q′′′

keff
(3.32)

In nondimensional form, the temperature is

θ =
T (x)− Ts
T0 − Ts

(3.33)

where T0 is the temperature at the centerline of this slab (a value found momentarily). The

length is nondimensionalized as

x∗ =
x

L
(3.34)

Thus Equation (3.32) in nondimensional form is,

0 =
d2θ

dx∗2 +G (3.35)

where

G =
q′′′L2

keff(T0 − Ts)
(3.36)

In the nondimensionalized form, the solution is revealed to be purely geometric,

θ = 1− x∗2 (3.37)

as T0 − Ts =
q′′′L2

2keff
. The nondimensional temperature solution of Equation (3.37) is used to

prove the one-dimensional assumption of heat transfer is justified for the pebble beds.

Noting that in this continuum mechanics formulation, we are assuming that the nuclear

source, q′′′ term is applied evenly over the entire volume. In our DEM formulation, our

source term applies to a single pebble, Qs =
q′′′

ϕ
.

From the solution of Equation (3.35), we find the effective conductivity to be

keff =
q′′′L2

2(T0 − Ts)
(3.38)

I use this formulation of Equation (3.35) to analyze and compare the pebble beds.
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For our representative pebble bed, after applying the nuclear heating and wall cooling, the

steady-state temperature distributions of some representative volumes are given in Figure 3.4.

Evident in all three pebble beds, though increasingly so for smaller packing fractions, are

loose pebbles that have poor mechanical contact with neighboring pebbles and therefore have

arbitrarily high temperatures (the magnitude is only limited by the time of the simulation).

We refer to these pebbles as ‘rattlers’. The phenomena of hot rattlers is possible in DEM

simulations because there is no other method of heat removal. This is a strong argument for

the need to include helium purge gas in the thermal transport models of ceramic pebble beds.

If these hot rattlers persist even in the presence of helium, it could lead to an unfavorable

performance of the ceramic solid breeder – the hot rattlers would sinter and prevent the

outgassing of tritium, among other issues. The observation of these isolated pebbles is

another motivator for the coupling of DEM to thermo-fluid models. In Figure 3.4, we also

see that, intuitively, the more loosely packed the pebble bed, the higher the temperatures.

(a) ϕi = 61% (b) ϕi = 62% (c) ϕi = 64%

Figure 3.4: Temperature distributions in representative packed beds with given initial pack-

ing fraction.

In order to calculate an effective conductivity of the pebble bed, we find an average

temperature profile through the bed. Average values of the bed, along the x direction, are
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generated via averaging temperatures in bins. We create bins that are volumes slices of

width ∆x that extend through the limits of the y- and z-directions. We then find the n

pebbles residing in the slices and take the mean value of their temperatures. The average,

given by Equation (3.39), is also shown as the solid lines in Figure 3.6. The binned average

temperature is

⟨T ⟩ = 1

n

n∑
i

Ti (3.39)

Using the volume slices, average contact forces are also found,

⟨F 1/3⟩ = 1

n

n∑
i

F
1/3
n,ij (3.40)

Van Lew et al. showed that the largest parameter governing the effective conductivity of

a granular material like a packed bed is the magnitude of contact forces between pebbles.184

In Figure 3.5, we see the distribution of contact forces as scatter points. The binned average

along x is also plotted in the black line. Figure 3.5a is given as reference for a pebble bed

for which the packing fraction does not completely fill the volume when the pebble bed

quiesces. At ϕi = 59% there are regions of gap between the top layer of pebbles and the

container, as a result the contact forces are on the order of the accumulated weight of the

pebbles in the volume. For packing fraction of ϕi = 61%, we have a relatively well-packed

pebble bed with small average contact forces, ⟨Fn⟩ = 5.9 N. At an initial packing fraction

of ϕi = 64%, for the geometry of this bed, we see somewhat larger average contact forces,

⟨Fn⟩ = 25.9 N. In large-volume experiments on pebble beds, such a large contact force would

be indicative of being under slight compression and, as such, we expect the effective thermal

conductivity of the bed to be larger than the well-packed case of ϕi = 61%. The effective

thermal conductivities are given in the temperature plots of Figure 3.6.

From Figure 3.6, we see that even the most compliant well-packed bed of case ϕi =

0.61, the effective thermal conductivity is more than three times larger than the measured

effective conductivity from experimental data.57 We will see that part of this discrepency

is due the current model not accounting for surface roughness of pebble material. For the

simulations generating the data of Figure 3.6, the smooth particle contact conductance model

of Batchelor & O’Brien was used (see Equation (3.16)). In experimental measurements of
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(a) ϕi = 59% (b) ϕi = 61%

(c) ϕi = 62% (d) ϕi = 64%

Figure 3.5: Contact forces in the initially packed beds .

effective thermal conductivity with roughness, at small loads, effective thermal conductivity

of face-centered cubic steel spheroids in an air environment reduced approximately 25%

between cases between a smooth surface (σ = 0.03 µm) and rough (σ = 1.7 µm).28 In spite

of the lack of data for roughness of the specific pebbles used in the experiments of Enoeda

et al., we will see that including surface roughness, via Equation (3.29), allows our DEM

models to obtain comparable effective thermal conductivities.

Following ranges of values found in a variety of experimental data,15 we can choose

average parameters for roughness. The asperity height, ranging in experiments from 0.12 µm

to 13.94 µm; we use an average value of σ = 5 µm. Vickers hardness is reported for Li2TiO3 as

H = 363(1 − 2.36ϵ) MPa, where 0.1 ≤ ϵ ≤ 0.3 is the porosity of the bulk ceramic; with
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(a) ϕi = 61% (b) ϕi = 62%

(c) ϕi = 64%

Figure 3.6: keff for the packed beds is higher than values measured in experiments in vacuum.

ϵ = 0.2, H = 192 MPa.78,159 However, it is unclear if the reported value is the microhardness

or macrohardness (as defined by ASTM E384). Surface microhardness can be much larger

than bulk hardness.16 Regardless, for this study we set the microhardness value equal to

H = 192 MPa. No Vickers hardness data has been reported for Li4SiO4. Using the place-

holder roughness values, we use Equation (3.29) form of conductance to run the above cases

again.

Before discussing the results of effective thermal conductivity with roughness, we analyze

the effect of the above roughness parameters in order to have an understanding of what to

expect in packed beds with rough-surface pebbles. We normalize the heat conductance of
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Equation (3.29) by the smooth-sphere conductance of Equation (3.16),

Γ =
Hj

Hc

=
1

2k∗a(
H′

E∗δn

)0.96
0.031σ0.598

1.720k∗a1.04
+ 1

2k∗a

(3.41)

Therefore we see from Equation (3.41) that Γ is a quantification of reduction in heat

conductance due to roughness parameters. Using the a hardness of H = 15 GPa, we then

find heat conductance reduction, Γ as a function of contact force (which determines the value

of a) and asperity height, σ. The contour of Γ is given in Figure 3.7.

Figure 3.7: Colorbar gives value of Γ, the measure of reduction in heat conductance com-

paring calculations with roughness and smooth sphere approximations.

The bed initially packed to ϕi = 0.64, had average contact forces of about 25 N. According

to Figure 3.7, at that force level, with an asperity of 5 µm, contact heat conductance of a

rough pebble is 75% of a similar contact between smooth pebbles. The bed packed to

ϕi = 0.61 had average contact forces of 5.9 N; in this case heat conductance has been reduced

approximately 45% from the smooth approximation. The total effective thermal conductivity

is the macroscopic result of heat conductance between all pebbles and can not be linearly

extrapolated from heat conductance of any single contact, nonetheless, the measure of Γ

provides insight into approximate scales of reduction in effective thermal conductivity we

should expect when roughness is taken into account.
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Temperature distributions in pebble beds with roughness, along with measures of effective

thermal conductivity are given in Figure 3.8. Accounting for roughness of the pebbles in

contact, the effective thermal conductivity of numeric pebble beds approaches the value

found in experimental studies of pebble beds in vacuum. When the initial packing fraction is

ϕi = 0.61, the effective thermal conductivity falls to keff = 0.398 W m−1 K−1, which compares

quite well to experimental measurement of keff = 0.2 W m−1 K−1.

(a) ϕi = 61% (b) ϕi = 62%

(c) ϕi = 64%

Figure 3.8: keff with roughness for given initial packing fractions. Reduced initial packing

fractions had lower initial contact forces and therefore effective conductivity values closer to

experimentally measured ones.

The effective conductivities of models with the smooth-sphere and roughness approxima-

tions are plotted together in Figure 3.9. For reference, the grey bar indicates the window of
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experimental measurements for effective conductivity in vacuum.

Figure 3.9: Comparison of effective conductivity measurements for Li2TiO3.

The combination of microhardness and asperity height resulted in substantial drops in

the effective thermal conductivity of these representative pebble beds. The reductions in

effective conductivity were 37%, 39%, and 41% for initial packing fractions of 61%, 62%,

and 64%, respectively. While these reductions make the effective conductivity calculated

with DEM approach the experimental measurements for pebble beds in vacuum, the values

are still more than 25% higher. The Vicker’s microhardness value used in this study could

be measured again for other production techniques of lithium ceramics and variations in that

value could lead to DEM results that approach even closer to experimental values. More-

over, the arbitrarily-chosen rms asperity height needs to be measured for ceramic pebbles

for more accurate roughness contact resistance modeling. Lastly, the majority of ceramic

pebbles produced for solid breeders have non-perfect sphericity, some are ovoid or ellipsoidal.

However, in the current implementation of DEM, the pebbles are all perfectly spherical. The

impact on effective thermal conductivity with geometric variations of the packing material

is fertile grounds for future studies.

77



3.2 Elastic Modulus Implementation in DEM for Ceramic Pebbles

The discrete element method has been used by many ceramic breeder researchers to model

the interaction of individual pebbles in an ensemble.7,12,72,120,184,210 In the past studies, the

elastic modulus of the ceramic materials used in DEM simulations was taken from historical

data, for instance lithium metatitanate from Ref.78 Furthermore, the assumption of Hertzian

descriptions of normal contact for the pebbles is also assumed to be true without direct vali-

dation. In our experimental test stand for crushing individual pebbles, shown in Figure 3.10,

our equipment was able to record accurate measurements of the force-travel relationship for

each pebble. Using the data, we will directly test the validity of Hertzian contact laws for

describing interactions of lithium ceramics.

(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure 3.10: Crush forces of Li2TiO3 pebbles display probability distributions around mean

values for each average diameter batch.

The derivation of the Hertz force can be found on page 237. The result is given again

here for reference:

Fn,ij =
4

3
E∗

ij

√
R∗

ij δ
3/2
n,ij
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and, again, the pair elastic modulus and radius are

1

E∗ =
1− ν2i
Ei

+
1− ν2j
Ej

1

R∗ =
1

Ri

+
1

Rj

In experiments where we press a ceramic pebble between two anvils, we measure the

travel, s, of the crosshead rather than the pebble overlap. We modify Equation (B.16) to

be represented in terms of travel (s = 2δ). Furthermore, for a pebble (Ri = Rp) in contact

with a smooth plane (Rj → ∞), the relative radius is simply R∗ = Rp = dp/2. We write

the elastic modulus of the pebble as Ep and for the test stand’s anvil as Es; similarly for the

Poisson ratios of the two materials. The Hertz force acting upon a pebble between anvils is

then expressed as a function of the pebble and anvil properties as,

F =

1
3

√
dp

1−ν2p
Ep

+ 1−ν2s
Es

 s3/2 (3.42)

The elastic modulus and Poisson ratio of the test stand are known values that do not vary

between pebble experiments. Similarly, in the application of Hertz theory, we also assume the

elastic modulus and Poisson ratio of the ceramic are also known and constant. In that case,

for any given pebble diameter, the term inside the bracket ought to be composed entirely

of constants for any given pebble; there would therefore be a single force-travel response

possible – based only on s. Using material properties given in Ref.78 for Li2TiO3, we plot a

set of parametric curves based on diameter over a range of travel. The properties we have

used for the nickel-alloy anvil of our test stand and Li2TiO3 are given in Table 3.2. The

curves are given in Figure 3.11.

Table 3.2: Material properties used for Li2TiO3 and nickel-alloy platen

Epeb νpeb Estand νstand

(GPa) (GPa)

126 0.24 220 0.27
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Figure 3.11: Hertzian responses of Li2TiO3 pebbles compressed between platens. The col-

ormap shows pebble diameters in m. The diameters span an order of magnitude from

dp = 0.2 mm to dp = 2 mm.

Figure 3.11 shows that, for a given pebble, that is strictly obeying Hertz theory, there

is only a single force-displacement curve it can follow. However, during our experiments

on Li2TiO3 pebbles, we observed behavior such as the curves shown in Figure 3.12. The

diameters of the pebbles are mapped to the colormap on the right side of the figures. These

pebbles are responding much different than the expected Hertzian curve, predicted by Equa-

tion (3.42).

We can confirm that the force-travel relationship goes as F ∝ s3/2 by plotting the force-

travel data on log-log plots; the slope of the data represents the power relationship of force

and travel. The log-log plots are given in Figure 3.13. The slope of the response is calculated

for each experimental curve and a histogram is collected in Figure 3.14. For both sets of

Li2TiO3 pebbles, the data is heavily centered around a slope of n = 1.5, validating the

dependence of force on travel as fitting Hertzian predictions.

We propose the experimental curves of force travel can be explained via unique reductions

in elastic modulus of each pebble. We introduce an ‘apparent’ elastic modulus for each pebble

which is iteratively found as the elastic modulus which provides the best fit when used in

Equation (3.42) and compared to force-travel responses from experiments. The apparent
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(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure 3.12: Experimental measurements of pebble force as a function of cross-head travel.

elastic modulus is reported normalized against the Li2TiO3 elastic modulus from literature,

Elit,

κ =
Epeb

Elit
(3.43)

where we introduce κ as a softening coefficient. The sintered pebble value of elastic modulus

for Li2TiO3 is taken from Ref.80 to be Elit = 124 GPa. Iterating over apparent elastic

modulus, the L2-norm of the difference between Hertzian and experimental curves is used

as the ‘error’. The L2 norm, A for a given array, a is

||A||F =

[∑
i,j

abs(ai,j)2
]1/2

(3.44)

This is a convenient way to compare the error at every point along the force-displacement

curves. When the error is minimized, the apparent elastic modulus is recorded and a softening

coefficient is calculated. A Hertzian curve (in black), using the apparent elastic modulus in

Equation (3.42), is plotted alongside its respective experimental curve in Figure 3.15

The majority of the curves for two batches of Li2TiO3 pebbles analyzed (Figure 3.15)

fit well to Hertzian curves with apparent elastic moduli. Apparent elastic moduli of the

Li2TiO3 pebbles are given in Figure 3.16. Histograms of κ for two batches of Li2TiO3 are

given in Figure 3.17. The distributions for both batches of Li2TiO3 pebbles more closely

resemble Snedecor’s F distribution with many pebbles behaving with a very small κ, then a
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(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure 3.13: Log-log plots of experimental measurements of pebble force as a function of

cross-head travel.

long tail of few pebbles with large κ.

In Figure 3.18 we see scatter plots of the pebble diameters against κ values for the different

batches of lithium ceramic pebbles. A Pearson Correlation value was calculated for each of

the batches to quantify a correlation between diameter and κ. For the Li4SiO4 pebbles,

we find R = 0.198 which is a weak positive correlation. For the Li2TiO3 pebbles we have

R = −0.385 for d̄p = 1 mm and R = −0.201 for d̄p = 1.5 mm. Both of these are weakly

negatively correlated.

We hypothesize that manufacturing processes of pebbles leads to slightly different internal

structures in the ceramic. Those differences yield stronger or weaker pebbles in a probability

around a mean value, as seen in Figure 3.10a. Different internal structure would then

also cause each pebble to behave with different stiffness. Thus if the elastic modulus in

Equation (3.42) for the batch of pebbles had a probability distribution, rather than a single

value, we can account for the variations in responses of Figure 3.12.

The results of these single pebble experiments indicate that the elastic modulus tradi-

tionally used in DEM simulations for ceramic pebble beds in solid breeders is incorrect.

Numerical re-creations of the probability distribution curves will be used to apply κ to peb-

bles in the ensemble. From the weak correlations between diameter and κ, we are free to
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(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure 3.14: Slopes from the log-log plots of experimental measurements of pebble force as

a function of cross-head travel show the relation is approximately F ∝ s1.5.

ignore any diameter dependence when assigning κ values in the DEM framework, especially

in light of the current implementation of monodisperse pebble beds. Therefore, numerically,

when assigning elastic moduli to the particles in the ensemble, the κ distribution will be

applied in a random fashion.

83



(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure 3.15: Force-displacement curves for Li2TiO3 pebbles (in color) along with their

Hertzian fits (in black) calculated with each pebble having a unique elastic modulus.

(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure 3.16: Distribution of modified elastic modulus for a batch of Li2TiO3 pebbles. All

pebbles responded to compression with a elastic modulus well below the sintered pellet value

of 126GPa.
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(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure 3.17: Histogram of κ for two batches of Li2TiO3 pebbles. All pebbles responded to

compression with a elastic modulus well below the sintered pellet value of 126GPa.

(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure 3.18: Scatter of κ against pebble diameter for two batches of Li2TiO3 pebbles showing

almost no relationship between apparent stiffness and diameter.
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3.2.1 Elastic Modulus Influence on Mechanical Response of Pebble Beds

Proper calculation of normal force in DEM simulations is critical for accuracy in heat transfer

modeling, as seen in Equation (3.16), as well as accuracy in predictions of pebble crushing, as

will be shown in § 3.3. We showed in the previous section that Hertzian contact is generally

valid for describing pebble interactions. The Hertzian force is linearly proportional to the

pair elastic modulus of contacting spheres. Based on the softening coefficient, κ, values found

in § 3.2, the apparent elastic moduli of Li4SiO4 and Li2TiO3 are, on average, less than half

the values given for sintered materials in literature. For the case of Li2TiO3, the average

value was closer to only 10% of the value from literature. Thus the actual contact forces in

pebble beds may be 10% of the values found from DEM simulations with incorrect elastic

modulus! In this section, we compare a number of pebble beds modeled with DEM using

different elastic moduli.

We first simulate uniaxial compression tests on pebble beds. One set of beds will be

composed of pebbles with the single elastic modulus from literature and the other set will

be composed of pebbles with a distribution of elastic moduli that fit the distribution from

experiments. The second set of numerical experiments will simply compare the effective

thermal conductivity of pebble beds as a function of elastic modulus.

3.2.1.1 Uniaxial Compression Simulations: Numerical Setup

The pebble beds are modeled as undergoing a standard uniaxial compression up to 6 MPa

while measuring the macroscopic stress-strain for some parametrically varied pebble beds.

At the moment of maximum stress, we can investigate the differences in contact forces of

the different pebble beds.

Our pebble ensemble is composed of 0.5 mm diameter Li4SiO4 pebbles. The pebble beds

are initiated and packed in the same manner as § 3.1.4. There are two main bed groups. Set

A: three beds (A.1-3) containing a single type of pebble with E = 90GPa. Set B: four beds

(B.1-4) containing ten types of pebbles with their elastic modulus assigned in a discrete,

random way to satisfy the distribution seen from experimental data. For the DEM study,
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Figure 3.19: On the left, set A, a pebble bed with a single type, of E = 120 GPa. On the

right, set B, is a pebble bed with 10, randomly distributed types; each type corresponds to

a reduced, apparent elastic modulus as derived from experimental data.

Li4SiO4 pebbles are fit with a Weibull distribution of shape parameter σ = 1.6 where the

average stiffness was Ē = 49 GPa. The description of the two sets of pebble beds is visually

represented in Figure 3.19. The pebble bed geometry was also the same used in the study of

Ref.184 : two virtual walls in the x-direction located at xlim = ±20Rp, periodic boundaries

at the limits of ylim = ±15Rp, and a total of 8000 pebbles packed into the volume to an

approximate height of zlim = 20Rp.

Among both sets, a parametric study was done on pebble radius and coefficient of friction.

The radii of pebbles in beds A.1, A.2, B.1, and B.2 were constant at Rp=.25 mm. The radii

of pebbles in beds A.3, B.3, and B.4 followed a Gaussian distribution about R̄p = 0.25 mm:

µd = Rp and σd = Rp. The coefficient of friction was set at µ = 0.2 for beds A.1, A.3, B.1,

and B.3; the coefficient of friction was µ = 0.3 for beds A.2, B.2, and B.4.

3.2.1.2 Uniaxial Compression Simulations: Results

A constant-velocity, uniaxial compression was applied to the pebble beds. A single cycle up

to 6 MPa then down to 0 MPa was used on all the beds. The macroscopic measurements of

stress-strain are shown for all the pebble beds in Figure 3.20.
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Figure 3.20: Stress-strain responses of pebble beds with: squares, constant elastic modulus;

and circles, Gaussian distribution of elastic modulus. The constant elastic modulus beds all

had much firmer responses for all parametric cases studied here.

Naturally, the pebble beds with smaller elastic�s modulus (with circle markers) are more

compliant to external loads. The result is true regardless of the coefficient of friction or

distribution of pebble radius studied here. Group B moved to an average strain of about

2.6% at 6 MPa, by comparison the beds of Group A only had strained 1.9% on average to

reach the same stress. Among the beds of each group, pebble beds with constant radius

pebbles behaved virtually the same as similar pebble beds with a Gaussian distribution

on radius. An increase in the coefficient of friction had a moderate impact on the overall

stress-strain response.

The parametric study here shows that the largest contributor to stress-strain response is

the elastic�s modulus. The coefficient of friction and radius distribution had comparatively

insignificant influence. A pebble bed geometry more directly comparable to oedometric

compression experiments should be used to allow direct comparison and validation of the

numerical models.

At the point of peak stress for each bed, DEM results are used to visualize the distribution

of contact forces among all pebbles in the ensemble. A plot of the probability distributions

of all the beds together, Figure 3.21, shows that the majority of the contacts in all the beds
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Figure 3.21: Probability distribution of contact forces in all the pebble beds studied here.

Elastic moduli value is the largest contributor to higher peak contact forces among pebbles.

are equally small. There are a few overall trends we observe from the results however. The

pebble beds with the constant elastic modulus are always higher for their comparable version

with distributed elastic modulus. For pebble beds with comparable elastic moduli and radii,

higher coefficients of friction generally have higher peak contact forces. Pebble beds’ radius

distributions have much less impact on peak contact forces than either coefficient of friction

or elastic�s modulus. Another method of comparing overall contact force distributions is to

consider predictions on pebble cracking which assigns a strength value at random to pebbles

in the bed (details are given in § 3.2). At the point of maximum stress, this is done and the

results are shown in Table 3.3.

While overall the predicted number of broken pebbles is small, we compare similar pa-

rameteric pebble beds and in each case pebble beds with modified elastic�s modulus overall

predict smaller percentages of broken pebbles. Pebble crushing is a major topic for the over-

all evaluation of the feasibility of ceramic pebble beds in fusion reactors. This study reveals

that past DEM work on pebble crushing, such as Ref.,10,12,212 were likely over-predicting the

extent of crushing if the elastic modulus used in the study was much larger than the realistic

response of individual pebbles.
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Table 3.3: Comparisons for the two styles of elastic moduli used in the study.

Bed label Parameters Predicted crushed

%

A.1 E, Rp, µ = 0.2 0.3

A.2 E, Rp, µ = 0.3 1.0

A.3 E, R̄p, µ = 0.2 0.9

B.1 Ē, Rp, µ = 0.2 0.6

B.2 Ē, Rp, µ = 0.3 0.8

B.3 Ē, R̄p, µ = 0.2 0.4

B.4 Ē, R̄p, µ = 0.3 0.7

3.3 Pebble Damage Modeling

To address pebble damage, there are two major modeling tasks: (i) predictive models for

pebble crush events and (ii) modeling fragmentation after a crush event. For (i), the task is to

develop a model to relate inter-particle pebble forces in an ensemble to measured crush loads

of pebbles from experiments. Appendix Appendix C discusses predictive models developed

in the fusion community as well as other theory behind a predictive model developed recently

at UCLA. To address (ii), models must exist which simulate damage pebbles; i.e. a scheme

to treat a cracked, shattered, or crushed pebble in the assembly as small particles, removed

particles, or particles with modified material properties.

Modeling of ‘crushed pebbles’ in numerical assemblies has been attempted by a number

of researchers. In most cases, indirect changes to the simulation are done with the hope

of matching macroscopic features of beds that are observable in assemblies with damaged

pebbles. In work by Marketos and Bolton, they treated a crushed pebble very similar to Van

Lew et al.; when a pebble was damaged it was removed completely from the assembly.126,184

Marketos and Bolton study the stress-strain response of a pebble bed with a predictive

crushing routine while Van Lew et al. studied the effective thermal conductivity of a damaged

pebble bed.
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Annabattula et al., noting the computationally expensive approach of modeling small

fragments, introduced damaged pebbles via reduction in elastic modulus.12 Annabattula et

al. was also interested in the mechanics of the pebble bed with the presence of crushable

materials. The study highlighted the differences in behavior of assemblies with different

failure criteria and initial packings. From Figure 3.23, results are qualitatively similar to the

stress-strain curves depicted by Marketos et al..

Figure 3.22: Stress-strain response of a pebble bed with crushed pebbles modeled with

removal of pebbles from assembly. Reproduced from Ref.126

Figure 3.23: Stress-strain response of a pebble bed with crushed pebbles modeled with

reduction in elastic modulus with varying failure criteria. Reproduced from Ref.12

Ben-Nun et al. studied the effects of fragmentation in two dimensional DEM studies of

compressed packings.20,21 In two dimensions, they were able to introduce small fragments
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Figure 3.24: Configurations of fragmentation used in the study of Ref.20

after a crush event without excessive computational overhead. Under compression, they

observed small fragments rearranging into smaller pores, giving rise to new force chains,

until ultimately for a given initial volume an asymptotic limit is reached where fracture

effectively stopped.20 More important than his conclusions on self-organization in highly

fragmented volumes were his observations that were similarly made here. In essence, any

attempt to prescribe spherical fragments within the surface of a parent sphere will always

fail to satisfy mass conservation (except in the limit of the fragment radius approaching 0).

In order to resolve this situation Ben-Nun et al. conserve the mass by inserting fragments in

two phases: first, non-overlapping fragments are prescribed and randomly inserted, second,

a rapid linear expansion is then introduced in the second phase to gain back the overall solid

mass. Our approach, to be discussed soon, will be seen to be quite similar.

The importance of mass conservation in modeling ceramic pebbles beds for fusion is

critically important to conserve energy in pre- and post-fragmentation systems. In the first

study of Van Lew et al. , where broken pebbles were removed from the system, energy input

into two systems being studied were not dissimilar. This is quantified as follows. The total

energy pouring into the non-damaged system is

Eh =
q′′′nucVpebN

Vbed
(3.45)

where N is the total number of pebbles of volume Vpeb that exist in the pebble bed of volume

Vbed. After a crushing event, when pebbles are removed, the total amount of energy is

E ′
h =

q′′′nucVpebηN

Vbed
(3.46)
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where η is the percent of crushed pebbles. Obviously then, the ratio of the two heating rates

is
E ′

h

Eh

= 1− η (3.47)

and the energy deposited is not balanced between a virgin bed and one with crushed pebbles.

To continue the discussion of mass conservation of spherical packings, we consider how

many fragments of a given radius would need to be inserted to conserve mass. In terms of

DEM spheres we strictly wish to conserve mass between a solid pebble of radius Rp and

the crushed fragments of radius Rc. Thus the number of crushed fragments (spheres) per

crushed pebble is

Nc =

(
Rc

Rp

)−3

(3.48)

The number of fragments goes like the inverse of radius ratio to the third power; the

number of crushed fragments to represent a single crushed pebble increases rapidly as the

fragments shrink. The relationship between radius ratio and number of fragment particles is

given in Figure 3.25. Note that in the DEM simulation, it is impossible to insert fractions of

a particle so the number of fragment pebbles is rounded to the nearest integer in the table.

While the large numbers of fragments are computationally expensive to model, they are not

prohibitive at least down to Rc/Rp = 0.20, as will be seen later.

Table 3.4: Example values of the particle crush fragments, Nc, necessary to replace a single

crushed particle and obey conservation of mass (fragment number is rounded to nearest

integer).

Rc/Rp Nc

0.20 125

0.30 37

0.40 16

0.50 8

0.75 2
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Figure 3.25: Number of fragment pebbles necessary to conserve mass increases rapidly as

the size of the radius ratio (Rc

Rp
) decreases.

Aside from satisfying conservation of mass, we must physically insert the particle frag-

ments into void space in the simulation domain. During the course of the simulation, when

we choose to replace the pebble with the fragments, the only available room is the spherical

void left over by the damaged pebble. As mentioned previously, without allowing overlap,

the condition of mass conservation will never be satisfied. Then we may consider what pre-

cisely is the smallest size sphere that could hold non-overlapped spheres of given fragment

radii.

Luckily, dense packing of spheres inside a larger sphere is an interesting mathematical

problem and has been tackled by many mathematicians in the past. Hugh Pfoertner keeps

a compiled list of many solutions for a number of particles; many solutions are his are from

Gensane.75 If we consider, for instance, that a radius ratio of Rc/Rp = 0.3 requires 37

particle fragments, then we can also find from Ref.75 that 37 particles would have to be

of radius 0.2406866 to fit into a single sphere of radius of unity. We defined the particle

fragment radius as Rc, the original particle as Rp, and then the radius of sphere necessary to

hold the Nc fragments will be RN , we can find a relationship between the volume of sphere

Vp and necessary volume VN ,

r∗1 =
Rc

Rp

(3.49)
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and

r∗2 =
Rc

RN

(3.50)

then

RN = Rp
r∗1
r∗2

(3.51)

thus
VN
Vp

=

(
r∗1
r∗2

)3

(3.52)

Choosing a linearly spaced distribution of r∗1 between 0 and 1, allows finding Nc particles

necessary to conserve mass. Then from the Nc particles we can find from the database of

sphere packing solutions the size of sphere that would be necessary to fit the Nc particles.

The calculations are carried out and shown in Figure 3.26. The data in Ref.75 does not go

above 72 spheres so we are limited to radius ratios above about r∗1 > 0.24.

Figure 3.26: The volume necessary to house the particles of different radius ratios decreases

toward unity as the radius ratio decreases. It is greater than 5 times the volume for large r∗1.

The plot of Figure 3.26 shows that for particle fragments of reasonable numbers (Nc ≈ 20

for r∗1 ≈ 0.3), the volume necessary to fit the number of volume-conserving particles is greater

than double the volume of the original sphere! Therefore from the point of view of having

the physical space to insert the fragments, smaller sized fragments are ideal. To insert

the few number of large particles would require disrupting the packing in the region of
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the damaged particle. From this discussion, we conclude that an upper size limit should

approximately be r∗1 = 0.3. This result agrees with the work from Ben-Nun et al. who only

studied configurations with particles as large as r∗1 = 1/3.20

Our approach for inserting mass-conserving fragments is in essence similar to that de-

scribed by Ben-Nun et al.. Whereas they would insert fragments fully enveloped in the circle

and then increase their radius up to a mass-conserving value, we insert mass-conserving

spheres but allow extreme overlap in the first phase. In the second phase, we permit a relax-

ation of the overlap by enforcing a limit to the travel during integration with the velocity-

Verlet scheme. After the fragments have slowly moved away from each other and reached

a local equilibrium with their neighboring particles, we re-initiate standard velocity-Verlet

integration of all the particles in the ensemble to allow fragmentation resettling.

In the next section, we see some sample pebble beds where fragmentation is induced to

equal amounts but with varying fragmentation sizes. We will investigate such characteristics

as disruption caused by large fragments and travel of small fragments during resettling.

3.3.0.1 Example Beds with Fragmentation

To study the effects on a pebble bed of different fragmentation schemes, we begin with a

bed of 6875 particles and randomly crush 1%. This was done with a range of fragments

of size r∗1 = [0.20, 0.25, 0.35, 0.50]. The number of particles inserted for these different r∗1
followed the from Equation (3.48). In the images of Figure 3.27, Figure 3.28, Figure 3.29,

and Figure 3.30, we see the initial packing of new particle fragments (in blue) settle into the

interstitial gaps of the packing structure of original pebbles (yellow).
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(a) initial (b) final

Figure 3.27: Nc = 8594, Ntot = 15430, r∗1 = 0.20. Side view of the packing arrangement and

settling for different crush fragment sizes. The small crush fragments migrate far through the

height of the bed. The yellow particles are the original pebbles and the blue are fragments

inserted into the system after pebble crushing.

(a) initial (b) final

Figure 3.28: Nc = 4400, Ntot = 11222, r∗1 = 0.25. Side view of the packing arrangement and

settling for different crush fragment sizes. The small crush fragments migrate far through the

height of the bed. The yellow particles are the original pebbles and the blue are fragments

inserted into the system after pebble crushing.
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(a) initial (b) final

Figure 3.29: Nc = 1603, Ntot = 8393, r∗1 = 0.35. Side view of the packing arrangement and

settling for different crush fragment sizes. The bigger fragments remain largely in place. The

yellow particles are the original pebbles and the blue are fragments inserted into the system

after pebble crushing.

(a) initial (b) final

Figure 3.30: Nc = 550, Ntot = 7358, r∗1 = 0.50. Side view of the packing arrangement and

settling for different crush fragment sizes. The bigger fragments remain largely in place. The

yellow particles are the original pebbles and the blue are fragments inserted into the system

after pebble crushing.
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Figure 3.31: After the particle fragments are inserted into the system they re-settle due to

gravity and inter-particle forces. The small fragments travel much further throughout the

bed than the large fragments.

The settling of crushing fragments is also visualized in Figure 3.31. For this figure, the

magnitude of displacement for all the crushed fragments is recorded based on the change

between initial insertion location and final resting place. The displacement of the fragments

is normalized against a pebble diameter and then a probability distribution is generated.

Immediately obvious from Figure 3.31 is that larger fragments, r∗1 = [0.35, 0.50] rarely travel

beyond their original insertion point; very few particles have a normalized fragment settling

distance larger than 1.0. In contrast, a good number of smaller fragments travel well beyond

a single pebble diameter. In fact, 12% of the fragments of size r∗1 = 0.20 travel more than

2 diameters before coming to rest. We will return to the effects of pebble fragment travel

when we consider ITER-relevant configurations and pebble bed heating.

From Figure 3.31, the impression then arises that the large displacement magnitudes

of the small crush fragments may result in an overall less-dense bed with large increase in

packing fraction near the floor where pebbles settle. For 1% crushed pebbles, there is some

observable changes to the local packing fraction near the floor of the pebble bed, but no

appreciable changes elsewhere in the bulk. In Figure 3.32, the packing fractions of the four

different pebble beds are given. We look closely at the distribution within the first pebble
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Figure 3.32: For only 1% of crushed pebbles, the re-settling of small pebble fragments has a

small effect on the overall packing fraction of the pebble bed. In the inset, the main influence

is seen in the slight increase of packing fraction within the first pebble radius of the floor.

diameter (see inset of Figure 3.32) and see the small crush fragments have a small change to

the local packing fraction as they settled onto the floor of the container.
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(a) r∗1 = 0.20 (b) r∗1 = 0.25

(c) r∗1 = 0.35 (d) r∗1 = 0.50

Figure 3.33: Contact force distributions throughout the pebble beds with different crush

fragment sizes. Average forces in the bed are largely unaffected by the size of crushed

particle fragments.

The last point to discuss is how the different size particles change the distribution of

contact forces inside the ensemble. We plot the scatter of contact forces for all the pebbles in

the ensemble in Figure 3.33. We are most interested in the contact loads carried by the large

particles that make up the force network after crush fragments are inserted into the ensemble.

The small fragments, moving through the interstitial gaps, are not expected to carry much

load. Therefore in the data processing for the subplot of Figure 3.33a and Figure 3.33b, the

vast number of small forces on the fragments are omitted in the average value of contact

force. Opposingly, the larger fragments, r∗1 > 0.4, are expected to be inserted firmly into the
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contact network and their contribution to the average value is included.

What we see in Figure 3.33 is that the average contact forces in the pebble bed remain

mostly unchanged as a function of the size of the fragment radii. For all pebble beds, after

the bed re-settles from the crushing event, the average contact forces (to the 1/3 power,

which is the value important for heat transfer) are approximately 4.9 N1/3. None of the beds

have a maximum value greater than 9 N1/3.

3.4 Summary of DEM Modeling of Solid Breeder Pebble Beds

A transient, thermal discrete element method approach to studying heat transfer in pebble

beds has been introduced. Use of the method is important for blanket researchers and

designers because it allows one to interrogate solid-solid interactions in pebble beds and

opens a window into the micro-mechanical world of pebble beds. The DEM method recreates

the constriction of heat conduction through normal-force-dependent contact areas between

pebbles and between pebble-walls in an ensemble. The approach also allows exploration

of evolving packing structures that will occur during operation of a ceramic pebble bed

in a solid breeder unit of a fusion reactor - in this case we specifically consider packing

structure changes due pebble damage. DEM-based models provide us with the ability to

understand, predict, and more importantly, ultimately avoid pebble damage and associated

thermomechanical changes to pebble beds.

Our DEM modeling of heat transfer was validated against experimental measurements

of effective thermal conductivity of pebble beds in vacuum. The smooth-sphere approxima-

tion of pebbles was seen to over-predict the ability of pebbles to transport energy between

contacts. Reductions in contact conductance due to roughness were shown to allow DEM

models to approach experimental measurements. In the numeric models, we witnessed the

phenomena of hot rattlers loosely settled in pebble beds and heating to a much higher degree

then neighbors in the ensemble. If, in practice, the hot rattlers truly exist in solid breeders,

it would be disadvantageous from the point of view of sintering or densification of pebbles

leading to poorer tritium release. This observation strongly supported the need to include

102



helium purge gas in models of thermal transport of pebble beds with DEM.

A modified elastic modulus is shown to capture the observed scatter of elasticity of indi-

vidual ceramic pebbles from experiments. The modified elastic Modulus is realized in DEM

simulations with numeric re-creations of measured experimental elastic modulus distribu-

tions. The models applying modified elastic moduli predict more compliant pebble beds and

smaller peak contact forces in beds and thus fewer crushed pebbles. Because normal contact

forces between pebbles, a direct function of elastic modulus, are used to calculate pebble

heat transfer and it is therefore imperative to have an accurate determination. The new

approach to implementing elastic moduli in simulations is a necessary step towards more

faithful DEM models.

In the case of a crushed pebble, a volume-conserving pebble fragmentation method is

used to simulate a broken pebble. Smaller pebble fragments were seen to have the capability

of traveling relatively long distances before re-settling. Redistribution of mass was seen in

increased local packing fractions of beds. Nuclear heating of the beds will also be affected by

mass redistribution and will be studied during applications of the models for ITER-relevant

pebble beds.

We have demonstrated the usefulness of discrete element methods to model complex,

transient, micro-mechanical interactions of pebbles in an ensemble and the concomitant

heat transfer between them. Toward the goal of a complete model of thermal transport

in solid breeder pebble beds, we must also take into account the slow-moving interstitial

helium purge gas. In the next chapters, we will discuss augmentation of DEM models with

two different schemes of helium flow models.
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CHAPTER 4

Coupled DEM and CFD Modeling of Solid-solid and

Solid-fluid Heat Transfer in Solid Breeder Pebble Beds

Our DEM model, introduced in § 3, was shown to be useful for modeling thermal transport

between contacts in pebble beds in vacuum. The discrete element method’s strength lies in

its ability to resolve granular interactions at the pebble scale, allowing realistic modeling of

contact forces and packing structure evolutions from crushed pebbles in fusion solid breeders.

This is, however, insufficient on its own to model a solid breeder unit in a fusion reactor as

the DEM equations neglect slow-moving helium purge gases permeating solid breeder pebble

beds. Therefore, to develop a more complete model of temperature distributions in solid

breeders, we will introduce the interstitial gas into our model.

Coupled granular-fluid flow is an important process used in a variety of industries.108,214

Early work on gas-particle flow models treated the solid and gas phases as two inter-

penetrating continua. The solid and gas were treated with the so-called two fluid model

(TFM) by Anderson & Jackson as early as 1967.9 Volume-averaging Theory (VAT) followed

TFM. The VAT approach is similar to TFM in that the fluid computational cell is sufficiently

large to include many individual particles but still smaller than the size of the system.58 VAT

allows treatment of complex porous flows with smooth continuous equations. In VAT, we

average over a discrete space to replace complex geometry with a fictitious, smooth, contin-

uous medium in which quantities of interest are defined independently of whether specific

locations in that space are, for instance, solid or gas.162,194 The governing equations of VAT

required constitutive equations for closure between the fluid and solid phases. To overcome

the difficulties of closure in VAT, multi-scale strategies have been devised for formulation of

governing equations and constitutive relationships between solid and fluid phase.
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At the microscopic level, the discrete element method describes the motion and energy

transfer of particles interacting with a surrounding fluid. At the mesoscopic level, fluid flow

is handled in a continuum sense with volume-averaged governing equations that are closed

with constitutive relationships with the particle phase.177,198 A numerical technique of cou-

pling volume-averaged computational fluid dynamics (CFD) flow solvers to discrete element

models was first proposed by Tsuji et al.. in 1992 and then Hoomans et al. in 1996.94,176,177

Since then, CFD-DEM coupling approaches have grown as a tool for granular flow research

and many CFD-DEM models have been experimentally validated for fluidized beds and

preliminarily validated for heat transfer in packed beds.38,44,82,108,140,141,172,179,198,208

Noting the growth in application of coupled CFD-DEM, a systematic review of the the-

oretical developments behind different particular system models was given by Zhu et al.216

They consider the two most common formulations, following the notation of Gidaspow, for

the governing equations. The two formulations are commonly referred to simply as Model A

and Model B.77 Both of these models have been implemented somewhat interchangeably in

CFD-DEM simulations. As pointed out by Zhu et al., the two models differ by their treat-

ment of the pressure drop. In Model A, the pressure drop on the system is jointly shared by

the gas and solid phases. In Model B, it is only the gas phase which directly experiences the

effects of pressure drop. Therefore, the two models have different forms of coupling source

term, Sk (see Equation (4.9a)). The source of Model B is related to that of Model A as

SB
k = SA

k /ϵ− ρfϕg.

However, as is shown by Zhou et al., there is a built-in assumption to Model B which is

typically overlooked in the implementation of CFD-DEM. For an accelerating fluid, there is

an added-mass in the momentum equation. In the derivation of Model B, it is tacitly as-

sumed that the fluid is steady which is not generally valid.214 Nevertheless, the proliferation

of Model B is due to the ease in numerical implementation and, except for some situations,

Model B is numerically similar to Model A for most cases studied in CFD-DEM simula-

tions.214 In the simulations of packed beds for tritium breeding, we choose to implement

Model B as it is valid for any of the flow scenarios ever experienced by the ceramic pebble

bed.
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4.1 Modeling Particles in the Presence of Fluid Flow Fields

Governing equations of DEM systems were given in § 3.1.1. To review, each pebble obeys

Newton’s equations of motion in response to a net force acting upon it. To include the influ-

ence of helium in the DEM formulation, we simply add a drag force term to Equation (3.1a).

The momentum balance of our Lagrangian-tracked pebble now reads,

mi
d2ri
dt2 = mig + fi + βiVi∆uif (4.1)

The components of the last term are ∆uif = uf − ui, which is the relative velocity between

the fluid and pebble, i; βi, a volumetric drag coefficient; and the drag acts upon the entire

pebble volume, Vi. A discussion on the method of determination and form of the inter-phase

drag coefficient will be discussed after introducing the DEM heat transfer equation.

To similarly include the influence of helium gas field surrounding pebble, i, on its tem-

perature, we must simply add a source term to the original energy balance equation of the

DEM pebble, as given in Equation (3.11). In this case, the inter-phase exchange coefficient

for energy is the heat transfer coefficient, h, for a fluid moving past a sphere in a packed

bed. Heat transfer with passing fluids is added to the energy balance as

miCi
d2Ti
dt2 = Qs,i +

Z∑
j=1

Qij + hiAi∆Tif (4.2)

where again we have only needed to add the last term to account for the energy de-

posited/removed by the passing fluid. ∆Tif is the temperature difference, Tf − Ti, and

the inter-phase energy exchange coefficient, hi, acts upon the pebble surface area, Ai.

In the development of Equation (3.11), it was assumed that a ‘conduction’ Biot number

was satisfied such that a lumped-capacitance method would be valid for the discrete pebbles

in our ensemble. Likewise, for Equation (4.2) to be valid, we must assume that the true Biot

number is also Bi ≪ 1. However, the lumped capacitance method is generally developed in

heat transfer systems without heat generation. Furthermore, considering the low conductiv-

ity of our pebble material, it is not apparent a priori if the lumped capacitance assumption

inherent in our DEM formulation is valid. The validity of the assumption is explored in

§ 4.2.
106



At present, assuming their validity, these simple additions to the governing equations

of momentum and energy of each particle are all that are necessary to incorporate helium

into the DEM computations of solid breeder pebbles. The computations of the inter-phase

exchange coefficients, βi and hi are discussed next.

4.1.1 Inter-phase Exchange Coefficients

The purge gas in ceramic breeders is meant to travel at very low flow rates to maximize

the absorption of tritium. The pebble beds will also always be near the close-packed limit.

As such, the particle Reynolds number for these flows is often near unity and the Kozeny-

Carman equation, as applicable for Stokes flow, is quite sufficient. However, we will employ

the full Koch-Hill-Ladd (KHL) correlations which include terms for both the Stokes flow cor-

relation (as a function of ϕ) in the zero Reynolds number limit and the viscous effects with

a Reynolds number-dependent term. The KHL correlation is of a general form, and reduces

to the Kozeny-Carman correlation in the close-packed, zero Reynolds number limits.110 The

KHL correlation allows for flexibility of discretized fluid cells to contain low volume-fraction

regions of pebble beds, such as in the near-wall region. A short review of other correla-

tions, their applicable ranges of fluid parameters, and other details is given in § 2.3. The

assumptions leading to the development of the KHL correlation provide justification for our

implementation in packed beds of lithium ceramics.

The nondimensional force of the KHL correlation reads,

F = F0(ϕ) + F3(ϕ)Re (4.3)

where the viscous term of the drag is

F0 =


1+3(ϕ/2)1/2+(135/64)ϕ lnϕ+16.14ϕ

1+0.681ϕ−8.48ϕ2+8.16ϕ3 if ϕ < 0.4

10.0 ϕ
(1−ϕ)3

if ϕ > 0.4

(4.4)

and the inertial component of the drag is

F3 = 0.0673 + 0.212ϕ+ 0.0232
1

(1− ϕ)5
(4.5)

107



The correlation from Koch-Hill-Ladd provide a nondimensional drag that must simply

be re-written to fit into the pattern of our inter-phase momentum exchange coefficient. The

momentum exchange coefficient follows the common form by Gidaspow.77 The form used

here is actually that of Van der Hoef, which differs from the classic form of Gidaspow by a

factor of 1 − ϕ, because numerically it is more convenient to couple the pressure gradient

force to the buoyancy force.23,180 Thus,

βi =
18µf

d2p,i
(1− ϕk)ϕkF (4.6)

where µf is the fluid viscosity and the diameter of pebble i is dp,i. The packing fraction, ϕk,

in this equation is the local packing fraction in the fluid cell k. Localized packing fraction in a

ceramic breeder volume may change in time due to fragmentation of pebbles or other packing

rearrangement. The packing fraction will also change due to ordered packing enforced by

pebble bed mechanical boundaries.22,98,157 For example, the void fraction (ϵ = 1 − ϕ) in

narrow annular containers using the correlation from Mueller, as a function of wall-distance

in a cylinder is,130

ϵ = ϵ0 + (1− ϵ0)J0(ar
∗)e−br∗

where r∗ is the nondimensional distance from the wall; here it is defined in terms of the

pebble diameter, r∗ = r/dp. The constants, a and b, are defined in terms of the size

parameter α = D/dp where D is the diameter of the annular tube. First, a is

a =


7.383−

2.932

α− 9.864
, if α ≥ 13

8.243−
12.98

α + 3.156
, if 13 ≥ α ≥ 2.61

then

b = 0.304−
0.724

α

The bulk void fraction is found from the correlation:

ϵ0 = 0.379 +
0.078

α− 1.8
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Figure 4.1: Showing the packing fraction approach the bulk value after a few pebble diame-

ters when the pipe is 20dp and that when the pipe is only 5dp, the packing fraction at any

radius is not the same as the bed average.

The packing fractions as a function of distance from the container wall for two example

sizes, diameters of 20dp and 5dp, are plotted in Figure 4.1. This example is meant to

demonstrate the varying packing fraction in a packed bed that is described with a single

‘bulk’ or ‘global’ packing fraction. It is important that the computational cell used in the

CFD domain be sufficiently small to capture the variation of void fraction in near-wall

regions. The size of the discretized cell relative to the pebble will dictate how much of the

void fraction variation is captured in the volume-averaged equations.

The inter-phase energy transfer coefficient is calculated from the Nusselt number for the

helium flow in the ensemble,

hi =
Nukf
dp,i

(4.7)

where kf is the thermal conductivity of the fluid. Several correlations for determining the

Nusselt number are given for reference in § 2.2.2. For the low-Reynolds number flows of

the helium purge gas, the most appropriate correlation is from Wakao et al., given in Equa-

tion (2.39).

From Eqs. 4.6 and 4.7, we have a formulation wherein knowledge of the flow field around

our pebbles will allow calculation of dimensionless drag, F , and Nusselt number, Nu, and
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thereby the two inter-phase exchange coefficients. The flow is coupled to our DEM compu-

tations with simple algebraic additions to the equations of motion and energy of the pebble,

Equation (4.1) and Equation (4.2), respectively.

4.1.2 Volume-averaged Thermofluid Flow

The gas phase flow field will be treated in a method analogous to the approach of volume-

averaging theory (VAT); the criticl difference is that with formal VAT the solid field is not

handled with the discrete element strategy employed in CFD-DEM models.177

In this formulation of gas flow, we discretize fluid space with cells that are slightly larger

than the individual particles; in the application of our CFD-DEM coupling, this meant at

most roughly 5 to 6 particles per cell. With VAT, the particles themselves are not resolved

in the fluid space but are simply introduced via closure terms.96,162 A clear derivation of the

governing equations of VAT can be found in Sbutega et al..162 The momentum and energy of

a fluid flow through a solid phase with volume-averaged Navier-Stokes and energy equations

are applied to each cell, k, in the discretized fluid space,

∂ϵkρf
∂t

+∇ · (ϵkufρf ) = 0 (4.8a)
∂ϵkuf

∂t
+∇ · (ϵkufuf ) = − ϵk

ρf
∇Pf +∇ · (νfϵk∇uf )−

Sk

ρf
(4.8b)

∂ϵkTf
∂t

+∇ · (ϵkufTf ) = ∇ (ϵk∇Tf )−
Ek

ρfCf

(4.8c)

where the packing fraction in any fluid cell is calculated as a function of the volumes of

particles residing in cell k. The computation of the void fraction is critically important and

is discussed in length in § 4.1.3.

Coupling the fluid phase to the particles happens with the closure terms in momentum

and energy of Sk and Ek, respectively. They are volume-weighted sums of the drag forces

and energy exchanges for all particles in the discretized fluid cell,
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Sk =
1

Vk

∑
∀i∈k

βiVi∆uif (4.9a)

Ek =
1

Vk

∑
∀i∈k

hiAi∆Tif (4.9b)

The inter-phase momentum and energy exchange coefficients act as the communicators

between the particle information from the DEM solver and the fluid fields from CFD. Thus

the motion and energy of the fluid field are intimately and dynamically coupled with the

particle positions and energy. Computational time is preserved by only considering volume-

averaged values in the fluid domain but important inter-particle forces are still calculated in

the DEM space. The nature of the coupling, i.e. how information is mapped between the

two computational spaces, is discussed next.

4.1.3 Lagrangian-Eulerian Mapping Calculations of Porosity

The simplest method for calculating the porosity of a CFD computational cell is to map

all the DEM particles into the Eulerian volume via their centroid. We refer to this simple

technique as the particle centroid method; in spite of its simplicity it is often used for large

cell-to-particle volume ratios.198 A two-dimensional demonstration of the centroid technique

is given in Figure 4.2. In this figure, we see a computational cell (dashed line) in which many

particles exist either partially or fully. The particles shaded in red have their centers located

inside the cell and therefore in the simple technique have their entire volume contribute to

the calculation of the porosity. The porosity for the centroid method is calculated as,

ϵcell = 1− 1

Vcell

i=L∑
i=A

Vp,i (4.10)

where Vp,i is the volume of particle i. As the cell size begins to approach the size of the

particle, erroneous calculations of porosity arise. This is visible, for instance, when consid-

ering particle A in Figure 4.2. This particle has only a quarter of its volume inside the cell

but the porosity of the cell is computed as if the entire particle existed inside. Hoomans

et al. recognized this limitation of the centroid method and introduced a fractional volume
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method.94 In the fractional volume method, the porosity is found as only partial volumes of

the original sphere,

ϵcell = 1− 1

Vcell

i=L∑
i=A

fiVp,i (4.11)

where fi is the fraction of the particle residing in the Eulerian cell. A similar approach

taken by Kloss et al. and Zhao & Shan is the divided technique.108,209 In this technique,

the spherical particle is artificially divided into a number of regions with markers indicating

their location. For example, see now how particles at the boundary, such as particle A,

are treated in Figure 4.3. Instead of searching for centroids of particles, each particle has a

search through the marker points (the black markers drawn in particle A) and the volume of

that section of the sphere is assigned to whichever cell it falls inside. Note that in the sketch

of Figure 4.3, every particle is divided with markers but particles not near the cell boundary

have not had them drawn for clarity and convenience.

A

B
CD

E

F G
H

I

J
KL

Figure 4.2: The dashed line represents a computational cell in which exist many particles.

The particles with centroids inside the cell are shaded red.

As the computational cell volume approaches the size of a single particle Vcell → Vp, the

centroid and divided techniques break down. A technique introduced by Link et al. treats
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A

Figure 4.3: The dashed line represents a computational cell in which exist many particles.

The divided portions of the particles with the sectional markers (dots) located in the cell

are colored red.

the particle as a porous cube and allows computations when a cell is completely occupied

by only a single particle.119 Peng et al. offer an analytic technique as well as guidelines

for validity of either analytic or centroid techniques.141 However, in this work, the divided

technique of Kloss et al. is implemented, based on the geometry of our packed bed flow and

the guidelines established by Peng et al.108,141

4.1.4 Eulerian-Lagrangian Mapping Calculations of Force and Energy

Once the fluid momentum and energy fields are calculated in the Eulerian grid, the coupled

inter-phase exchange coefficients must map the velocities and temperatures onto the parti-

cles in the Lagrangian DEM framework. A particle centroid method is always used in the

exchange onto the particles. Referencing Figure 4.2, the velocity and temperature of the

dashed cell is mapped only onto the particles highlighted in red. The approach has been

used successfully by others.108,119,198
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4.1.5 Numerical Implementation of CFD-DEM

The infrastructure for solving the DEM equations continues to be handled by LIGGGHTS.

Details of the software are described in § 3.1.3. The DEM solver is a highly parallel C++

code based on the Molecular Dynamics (MD) code LAMMPS.144

Taking advantage of a separate, stand-alone CFD solver that is maintained by a large

community, the CFD simulations are conducted by the pressure-based solver using the

PISO algorithm realized within the open-source framework of OpenFOAM®.99,137 The cou-

pling routines, maintained by DCS Computing GmbH, are collected in a library provid-

ing a modular framework for CFD-DEM coupling with the C++ codes LIGGGHTS and

OpenFOAM®.81,108

The routine of coupling CFD-DEM consists of several steps:

1. the DEM solver calculates the particles positions, velocities, and temperatures with

time step dictated by stability of DEM

2. the particles positions and velocities are passed to the CFD solver using the Message

Passing Interface (MPI)

3. for each particle, the cell in the CFD mesh that contains the particle is located

4. for each cell, the particle volume fraction is determined from the divided technique

described in § 4.1.3. The ensemble-average velocity of the particles is determined

5. on the basis of ϵ and Rep, the fluid forces and heat transfer rate acting on each particle

are calculated from the inter-phase exchange coefficients of Eqs. 4.6 and 4.7

6. the momentum and energy source/sink terms are assembled from particle-based forces

by ensemble averaging over all particles in a CFD cell via Eqs. 4.9

7. the inter-phase exchange coefficients of Eqs. 4.6 and 4.7 are sent to the DEM solver

8. the CFD solver calculates the fluid velocity and temperature from the source/sink

terms determined in step 6.
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4.2 Jeffreson Correction to Lumped Capacitance Method

When incorporating helium into the DEM-based modeling, the lumped capacitance assump-

tion for each particle in the ensemble is assumed. The assumption eases the computational

efforts of solving for the temperature distribution inside each particle; each particle is treated

as being isothermal. The accuracy of the lumped capacitance method is described by the

Biot number,

Bi = hdp
kr

(4.12)

and for Bi ≪ 1 the lumped capacitance method accurately models the behavior of a solid

interacting with a fluid. For Bi ≈ 0.1 (in cases with no heat generation), the error from the

lumped capacitance method is only about 5%. In solid breeder volumes, the particles are

generally small, the solid conductivity low, and heat transfer coefficient generally is also low.

This leads to small-to-moderate Biot numbers expected in the packed bed. In this section

we will analyze the accuracy of the lumped capacitance and introduce a correction method

to account for inaccuracies of the method at moderate Biot numbers.

I simplify the case of a packed bed and only consider a single sphere with volumetric heat

generation submerged in- and thermally interacting with a fluid. The sphere will be of radius

R = dp/2, as shown in Figure 4.4. The sphere will initially be at a uniform temperature of

Ti. The fluid temperature will remain constant at Tf

Figure 4.4: Control volume of a single spherical particle in a packed bed

115



4.2.1 Lumped Capacitance Solution for Sphere

I solve for a single sphere interacting with a passing fluid, as shown in Figure 4.4, while mak-

ing the lumped capacitance assumption for this sphere. The solid is initially at temperature

T0, with constant volumetric heat generation, cooling in a fluid with constant heat transfer

coefficient. The fluid will remain constant at Tf .

The time response of the sphere’s temperature is dictated by the balance of energy

to/away from the solid,

ρrCrV
dT

dt
= −hA(T − Tf ) + ġV (4.13)

Equation (4.13) is solved in dimensionless form with the following nondimensional pa-

rameters of temperature and time,

θ =
T (t)− Tf
T0 − Tf

(4.14a)

τ =
t

R2/α
(4.14b)

where α is the thermal diffusivity of the sphere, T0 is the initial isothermal temperature of

the sphere, and Tf is the constant fluid temperature. The resulting temperature distribution

is,

θLC =

(
1− G

3Bi

)
exp(−3Biτ) + G

3Bi (4.15)

where a dimensionless heat generation is defined as,

G =
ġR2

k(T0 − Tf )
(4.16)

The energy contained in the sphere, relative to the fluid, in nondimensional terms is

E∗(τ) =
E(τ)

E0

(4.17)

where E0 is the initial energy of the sphere,

E0 = ρrCrV (T0 − Tf ) (4.18)
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Thus for a sphere with the lumped capacitance model, in nondimensional form, the energy

is simply

E∗
LC(τ) = θLC(τ) =

(
1− G

3Bi

)
exp(−3Biτ) + G

3Bi (4.19)

The nondimensional energy profile of Equation (4.19) is plotted over the nondimensional

time of τ ∈ [0, 1/Bi] in Figure 4.5.
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Figure 4.5: Lumped capacitance model: Sphere energy profile decaying from an initial value

to a time of 1/Bi

Reviewing Equation (4.15) we see that the speed of decay is dictated by the term in

the exponential, 3Bi. Meanwhile, the steady-state value being approached is given by G
3Bi =

gR
h(T0−Tf )

. It is important for this discussion to point out that because both the nondimensional

heat generation and Biot number terms contain the solid conductivity, the steady-state value

of the lumped capacitance model will not change for varying solid conductivity even if it

leads to different Biot numbers.

4.2.2 Exact Solution for Sphere

I again analyze the sphere of Figure 4.4 but now will account for internal temperature

gradients inside the sphere. The details of the analytic solution for a sphere with heat
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generation interacting with a fluid is given in Appendix D. Again, solving in terms of the

nondimensional temperature and time introduced in § 4.2.1 as well as a nondimensional

radius,

θ =
T
T0

ρ =
r

R

τ =
t

R2/α

The energy conservation equation for the sphere with internal temperature gradient, in

nondimensional form θTG, is
1

ρ

∂2

∂ρ2
(ρθTG) +G =

∂θTG

∂τ
(4.20)

With the initial condition and boundary conditions outlined in appendix D, the nondi-

mensional temperature distribution inside the sphere is

θTG(ρ, τ) =

(
G

6
+

G

3Bi − ρ2
)
+

∞∑
n=1

exp(−ζ2τ)sin(ζnρ)
ρ

Z(ζn)

N(ζn)
(4.21)

where ζn are the eigenvalues of the equation and the functions of ζn (Z,N ,C) are given in

appendix D.

The accompanying nondimensional energy of the sphere is integrated to,

E∗
TG(τ) =

(
G

15
+

G

3Bi

)
+ 3

∞∑
n=1

exp(−ζ2τ)Z(ζn)
N(ζn)

Cn(ζn) (4.22)

I now compare the exact solution from Equation (4.22) to the solution of energy given by

the lumped capacitance model of Equation (4.19). The two profiles are given in Figure 4.6.

For the value of Biot number here, Bi = 0.245, the energy profile of the analytic solution

of the sphere cooling in a flow is well-captured by the lumped capacitance model. The

maximum relative error over the time span, as defined by

error =
∣∣E∗

TG(τ)− E∗
LC(τ)

∣∣
E∗

TG(τ)
(4.23)
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Figure 4.6: Analytic and lumped capacitance models: Sphere energy profile decaying from

an initial value to a time of 1/Bi

is always less than 10%.

Consider now the same size sphere but with the Biot number increased by an order from:

a) a conductivity of k = kr/10 and b) a heat transfer coefficient of h = 10hf . The two

physical changes to the system result in the same Biot number (Bi = 2.45) but as we can

see in Figure 4.7, there are drastic differences between the energy profiles.

Seen in Figure 4.7a, the lumped capacitance solution both over-predicts the speed at

which the sphere reaches a thermal steady-state as well as the value of the steady-state.

Comparatively, in Figure 4.7b, for the same Biot number, the lumped capacitance solution

again over-predicts the speed to thermal steady-state by the same rate but is relatively

accurate for the steady-state value itself.

Viewing the steady-state terms of the two solutions, the source of the error becomes

apparent. From Equation (4.22), the steady-state term of the exact solution is

E∗
TG,ss =

G

15
+

G

3Bi (4.24)

Whereas, the steady-state term of the lumped capacitance solution from Equation (4.19)
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(a) k ↑, lumped capacitance error in the transient

and steady-state.
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(b) h ↑, lumped capacitance error mainly in the

transient.

Figure 4.7: Analytic and lumped capacitance models: Sphere energy profile decaying from

an initial value to a time of 3/Bi. The same Biot number produces different results for the

exact solution of a sphere with heat generation.
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is,

E∗
LG,ss =

G

3Bi (4.25)

The two steady-state values differ only by the additional term of G
15

on the exact solution.

This term appears in the exact solution from integration of the temperature gradient that

exists in the pebble due to volumetric heating (see appendix D). The lumped capacitance

solution assumes no internal temperature gradient in the sphere and thus by definition can

not account for this G
15

term. Furthermore, the nondimensional heat generation term, G,

given in Equation (4.16), is importantly a function of thermal conductivity but not the heat

transfer coefficient. The lack of dependence on h explains the difference between steady-state

values in Figure 4.7 When Bi is small, the steady state error between lumped capacitance and

the exact solution is small. If only h increases the error in steady-state remains small. This is

demonstrated in Figure 4.7b when steady-state solutions are close. However, in Figure 4.7a

as k was reduced, the curves no longer converge to similar steady-states. This phenomena

appears only with the combination of low conductivity materials with volumetric heating.

Even in cases without volumetric heating, when the Biot number grows large, errors

appear in the transient portion of curves but ultimately converge to the same steady-state

solutions. To address the inaccuracies in the time-dependent response of the lumped capaci-

tance method with large Biot number, a correction factor, implemented by Van Lew and Xu

et al. in situations without heat generation, is employed.183,197 In their work, they considered

a heat transfer fluid interacting with a low conductivity thermal storage material. The solar

thermal storage systems they analyzed often had moderate-to-large Biot numbers but they

could continue to apply the lumped capacitance model in their calculations with application

of a so-called Jeffreson Correction.102 However, because their applications did not involve

heat generation, its usefulness for application in our pebble beds absorbing nuclear heat is

validated.
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4.2.3 Jeffreson Correction for Sphere with Nuclear Heating

The correlation to correct the heat transfer coefficient due to solids with large Biot number

is given by Jeffreson as,102

hp =
h

1 + Bi/5 (4.26)

where hp is the modified heat transfer coefficient of the particle with an internal temperature

gradient. As the Biot number increases, the modified heat transfer coefficient decreases. THe

form of this correlation works to effectively slow down the rate of heat removed by the passing

fluid. Recall the curves of Fig 4.7. where the lumped capacitance solution over-predicted

the speed with which the energy decayed towards steady-state. A modified Biot number can

then also be written as

Bip =
hpd

kr
=

Bi
1 + Bi/5 (4.27)

Applying the Jeffreson Correction to Equation (4.15), the modified lumped capacitance

solution is written now in terms of the modified Biot number,

θJC =

(
1− G

3Bip

)
exp (−3Bipτ) +

G

3Bip
(4.28)

and thereby Equation (4.19) also yields

E∗
JC(τ) =

(
1− G

3Bip

)
exp (−3Bipτ) +

G

3Bip
(4.29)

The energy profiles from the lumped capacitance model (LC), the Jeffreson correction

(JC), and the exact solution are all plotted together in Figure 4.8. Barely visible under

the JC solution are teh curves from the exact solution. The Jeffreson correction to the

lumped capacitance method allows the simple modeling approach of the lumped capacitance

method to capture the proper transient as well as steady-state values for this sphere with a

moderately sized Biot number.

To look more closely, we view the instantaneous error (see Equation (4.23)) in Figure 4.9.

For the value of Bi > 1 due to either low conductivity (Figure 4.9a) or high heat transfer

coefficient (Figure 4.9b), the error in the Jeffreson correction is always under 10%; often
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(a) The Biot number increased from a decrease in

the solid conductivity.
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(b) The Biot number increased from an increase

in the heat transfer coefficient.

Figure 4.8: Analytic, lumped capacitance model, and LC model with Jeffreson correction:

Jeffreson correction corrects for transient and steady-state errors of lumped capacitance.
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Figure 4.9: Error of lumped capacitance and reduced error of the model with Jeffreson

correction for moderate Biot number.
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closer to only 1%. This is in opposition to the standard lumped capacitance method which

has 50-80% error for both transient and steady-state values.

The lumped capacitance method allows researchers to simplify transient, conjugate heat

transfer problems to a situation with an isothermal solid. In the discrete element method,

the assumption of isothermal solid is innate in the framework of the method. With the imple-

mentation of the Jeffreson correction in the discrete element method, we have confidence in

the fidelity of the heat transfer with the helium flow for moderately sized Biot numbers. The

Jeffreson correction will be implemented into the DEM computations via Equation (4.27).

4.3 Benchmarking Solid-solid and Solid-fluid Heat Transfer Mod-

els for Pebble Beds

We will now validate the coupled CFD-DEM formulations of momentum and energy heat

transfer. Momentum calculations will be validated via pressure drop calculations in the

helium purge gas with empirical correlations for pressure drop of packed beds. Coupling of

energy will be validated by means of calculating effective thermal conductivity of stagnant

helium in a pebble bed with experimental measurements of effective thermal conductivity.

4.3.1 Validating Pressure Drop in Packed Beds with Flowing Helium Purge Gas

Our three-dimensional system consists of mono-dispersed particles of diameter dp. The

particles are constrained by two rigid walls in the x-direction at locations of x = ±10dp and

periodic boundary conditions in the y-direction located at y = ±7.5dp. Gravity acts in the

downward z-direction and the particles are bound from below by a rigid wall at z = 0. The

size of the system allows approximately 10 000 particles to fill to a height of approximately

z = 30dp. The volume was chosen to represent the long, tall, narrow channels seen in many

solid breeder module designs.35,56,145 The fluid domain is constructed to include an inlet and

outlet region of fluid to permit development of the flow profiles. The inlet region is 5 pebble

diameters in length and the outlet is 30 pebble diameters. No-slip boundary conditions are
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enforced at the walls at the x-limits of the region. To match the DEM domain, periodic

boundary conditions are used in the y-limits. The inlet face of the fluid is specified at a

constant v = (5, 0, 0) cm s−1. The outlet face is specified with OpenFOAM’s ‘inletOutlet’

command with a given pressure. This boundary condition allows the inlet pressure to float

to value that satisfies the specified inlet velocity and outlet pressure.

The size of the CFD cells were chosen to be large enough to fit approximately 5 pebbles,

for which the divided technique of computing void fraction is applicable (see § 4.1.3); the ratio

of cell volume to particle volume was Vcell/Vp = 7.46. The helium, for this first validation,

was modeled with constant fluid properties. The values are given in Table 4.1.

The Koch-Hill-Ladd drag model is employed in the style of Model B with an Archimedes

pressure for buoyancy term. The terminology of these CFD coupling drag models is discussed

in Ref.214 The Nusselt number correlation of Li & Mason is used for calculating the Nusselt

number. OpenFOAM’s dummy turbulence model (which is nothing more than a laminar

model) is used.

An implicit time marching scheme is employed with a time step in the fluid domain

of ∆tf =1 × 10−4 s. The small time step is not necessary to capture the fluid flow. The

momentum equation is essentially not even transient as a steady-state laminar solution is

achieved almost instantaneously in comparison to the long time span required to reach

thermal steady state. The small time step is necessary for a relatively tight coupling to the

pebble bed as the temperatures increase on the pebbles. Integration schemes of gradients,

divergence terms, and laplacians are all Gauss linear or Gauss limitedLinear (as defined

in OpenFOAM). The time step of the DEM is ∆ts = 1 × 10−7 s which must be small for

stability of the DEM explicit integration. The coupling between CFD and DEM domains

occurs every 10 time steps of the fluid domain - equating to every 10 000 in the pebble

domain.

The layout of the pebble bed inside the CFD domain is shown in Figures 4.10 and 4.11.

Notable of the layout is the relaxation of the mesh size in the direction of the periodic

boundaries. The size is permitted as there are few variations in fluid or temperature in
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the periodic direction. The meshes are made much smaller in the direction between cooling

boundaries. In this direction (x-direction), we need the meshes small enough to resolve a

temperature and velocity profiles across the bed between centerline and cooling boundaries.

We also want to capture the behavior of near-wall arrangement of the pebble bed.

Table 4.1: Constant fluid properties of helium purge gas in CFD-DEM coupling.

ν α k Cp ρ

(m2 s−1) (m2 s−1) (W m−1 K−1) (J kg−1 K−1) (kg m−3)

4.02 × 10−4 6.06 × 10−4 0.2 5192.8 0.175

The CFD-DEM model was run at various particle Reynolds numbers and the overall

pressure drop of the packed bed was measured. The pressure drop is compared against

the well-known Kozeny-Carman and Ergun equations. The Kozeny-Carman is known to fit

better with experimental data at very small Reynolds numbers while the Ergun equation is

a more general equation meant to span a large range of Reynolds numbers. In Figure 4.12

we see the CFD-DEM coupling model is providing bed-scale pressure drops that match very

well with Kozeny-Carman over the Reynold’s numbers applicable to helium purge flow in

fusion reactors (Rep ≈ 1).

Seki et al. experimentally studied the flow of helium purge gas in efforts to better under-

stand tritium recovery.163 They ran a representative volume of pebbles up to flow rates of

100 L min−1 and also found that Ergun’s pressure drop prediction was highly accurate for the

pebble beds as long as the viscous contribution (see the right-most term in Equation (2.56))

was small, e.g. when the Reynolds number of the packed bed is small. This result is a

strong validation of the macroscopic results of pressure drop as calculated by the CFD-DEM

simulation of a packed bed.
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Figure 4.10: Front view of the pebble bed as it resides in the CFD mesh. The meshes in the

direction of cooling are chosen to be large enough to fit many pebbles but small enough to

provide a resolved temperature profile.
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Figure 4.11: Top view of the pebble bed as it resides in the CFD mesh.

Figure 4.12: Pressure drop calculations across packed beds, solved by CFD-DEM, fit well to

the Kozeny-Carman empirical relation.
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4.3.2 Effective Thermal Conductivity from CFD-DEM with Stagnant Helium

In § 3.1.4 we saw that DEM models, including contact roughness modeling, were able to

effectively model heat transfer of pebble beds in vacuum by means of measuring effective

thermal conductivity of a representative pebble bed. We consider the same pebble bed but

now immerse the pebbles in a stagnant helium gas. The fluid volume surrounding the pebble

bed has equal dimensions in the x- and y-directions. A constant length 50dp was used in the

z-direction. The boundaries were: periodic in y, adiabatic in z, and constant temperature,

Tw = 573 K in x. A constant nuclear heating rate of q′′′p = 8 MW m−3 was applied to the

pebble volumes. The simulation is allowed to run to thermal steady-state.

After reaching a steady solution, temperature distributions of the pebbles are used to

calculate an effective thermal conductivity. For the first set of pebble beds, the Jeffreson

correction is not applied. The temperature distribution is given in Figure 4.13.

(a) ϕi = 62% (b) ϕi = 64%

Figure 4.13: keff for packed beds in stagnant helium.

In addition, a grid-independence study was run. The grid size was reduced by 50% in each

case and keff was calculated. The results for each grid are given in Figure 4.14. Negligible

change was found between the two finer cases and consequently the results given here are of

the finest mesh.

For stagnant helium, the Nusselt number is Nu = 2 which leads to a heat transfer
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Figure 4.14: Effective thermal conductivity as a function of the grid size. The change between

keff becomes negligible at the finer grid sizes.

coefficient of

h =
kfNu
dp

(4.30)

where kf is the thermal conductivity of helium, kf = 0.34 W m−1 K−1. The heat transfer

coefficient is therefore h = 680 W m−2 K−1

The Biot number, using solid conductivity of ks = 2.4 W m−1 K−1, is

Bi = hdp
ks

= 0.283 (4.31)

which is small enough that the Biot assumption should not be highly inaccurate. Neverthe-

less, a second set of pebble beds is run with Jeffreson correction applied. The corrected heat

transfer coefficient is reduced to

h′ =
680 W m−2 K−1

1 + 0.283/5
= 643 W m−2 K−1 (4.32)

which results in a 5% drop in heat transfer coefficient with the Jeffreson correction applied.

Using the Jeffreson-corrected heat transfer coefficient for simulations, temperature profiles at

thermal steady state are given in Figure 4.15. For the case of stagnant helium, the Jeffreson

correction had negligible effect on determinations of temperature distributions in the two

packed beds studied.
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(a) ϕi = 62% (b) ϕi = 64%

Figure 4.15: keff for packed beds in stagnant helium with Jeffreson correction to heat transfer

coefficient.

Comparing the results of pebble beds with Jeffreson correction applied, for a stagnant

fluid with Nu = 2, with material producing Bi = 0.29, there is a negligible change to the

effective thermal conductivity of beds without the correction. Nevertheless, the correction

is costs practically no computational time and is trivially applied during the convection

calculation routine in the code. For cases when the Nusselt number increases locally, the

effect may be larger and is therefore applied in general to CFD-DEM coupling code.

In the current framework, constant thermal properties are implemented for helium gas.

The transport properties used in this study were from averages between 300 ◦C and 900 ◦C,

a range over which the properties were all fairly linear. This is equivalent to reporting

data at an average bed temperature of 600 ◦C. Hatano et al. reported the effective thermal

conductivity of Li2TiO3 was reported for a packed bed of dp = 1.91 mm as approximately

keff = 1.18 W m−1 K−1 with the hot-wire technique.87 Tanigawa et al. reported the effec-

tive thermal conductivity at 600 ◦C as a function of compressive strain and series cycle.174

The results of Tanigawa et al. are reproduced in Figure 4.16; the values are approximately

keff = 1.3 W m−1 K−1 above a stress state on the bed of 1 MPa. Abou-Sena et al. measured

the effective thermal conductivity of uncompressed Li2TiO3 but only up to temperatures of

500 ◦C, and are therefore not relevant to comparison here.3 Mandal et al. measured the effec-
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tive thermal conductivity of Li2TiO3 pebbles in stagnant and flowing helium environment.125

However, the results of Mandal et al. are much lower than data from other members, they

report keff = 0.274 W m−1 K−1 in a stagnant helium environment at 200 ◦C which is 20% of

values of other research centers. At their lowest superficial velocity, us = 0.146 m s−1, they

find an effective conductivity of keff = 0.65 W m−1 K−1 with dp = 1 mm pebbles.

Figure 4.16: Effective thermal conductivity of a compressed Li2TiO3 pebble bed. Reproduced

from.174

The results found here are in agreement with reported values from literature of uncom-

pressed pebble beds at similar temperatures;87 we found keff = 1.05 W m−1 K−1 when the

initial packing fraction was ϕi = 0.62. As the contact forces increased between the pebbles

as is the case for initial packing of ϕi = 0.64, we found keff = 1.2 W m−1 K−1. The results of

this validation are plotted alongside experimental data in Figure 4.17.

Another important observation to be made from the pebble temperatures of CFD-DEM

simulations is the lack of ‘hot rattlers’ that appeared in DEM simulations. For example,

in Figure 3.8, there are many pebbles with temperatures much higher than the majority of

nearby pebbles. These pebbles exist in localized pockets where their neighbors are carrying
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Figure 4.17: Comparison of effective conductivity measurements for Li2TiO3.

more contact force and they sit with relatively small forces at all contacts. The isolation

allows nuclear heating to run away without temperature moderation. Including helium

convection on pebble beds resulted in the complete disappearance of all hot rattlers. In Fig-

ure 4.15, all temperatures in a given region are tightly grouped around average temperatures.

This demonstrates that the helium purge gas, while not intended to be a major carrier of

heat in the system, plays a role in thermally equilibrating temperatures between pebbles and

moderating temperatures of any mechanically isolated pebbles. This also has implications

for fragmentation in pebble beds with helium. Small fragments were seen in § 3.3 to travel

through beds before coming to rest with very small contact forces. We will see in § 6 that

helium moderates fragmentation temperatures just as it did hot rattlers.

4.4 Summary of CFD-DEM Modeling of Solid Breeder Pebble

Beds

The physics of heat transfer in solid breeder pebble beds are innately mixed-scale. On one

hand, heat transfer through contact conductance is strongly dependent on the contact force

network established in the packed bed of solids. During operation of the solid breeder in

a fusion reactor, the force network and packing structure are bound to evolve due to, for
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example, forces on pebbles and fragmentation of individual pebbles. The impact on heat

transfer due to pebble-scale interactions is important to capture with numerical models

because of the narrow operating temperature imposed on solid breeders. On the other hand,

the slow-moving helium purge gas is a larger-scale interaction as the fluid transports heat well

beyond the range of individual pebbles. Experimentally, helium’s contribution to effective

thermal conductivity has long been known to be larger than solid conductance and is critical

to models of temperature distributions of solid breeder pebble beds.

Likewise, we use a microscale approach to heat transfer modeling of the pebble beds.

Lithium ceramic pebbles are handled with the DEM code introduced in § 3. DEM mod-

els allow continual monitoring of inter-particle forces and individual particle temperatures

such that any of the crush-prediction, fragmentation, or thermal expansion methods allow

modeling changes of packing structures. Helium is treated with a continuum approach us-

ing volume-averaged versions of conservation equations of Navier-Stokes and energy. The

volume-averaged approach of the fluid allow for an efficient overlaying of the fluid contribu-

tion to the thermophysical behavior of the pebble bed. Closure of coupled fluid conservation

equations is easily performed via summed contributions of particles in fluid computational

space.

We tested the validity of the lumped capacitance assumption when pebbles experience

heat generation with a moderately large Biot number. Inaccuracies appeared for calculations

of both transient and steady-state temperatures in a single pebble, with heat generation,

when immersed in a passing fluid. The inaccuracies were larger for cases when solid con-

ductivity decreased compared to cases when heat transfer coefficient increased – even if the

two cases had the same Biot number. This was shown to be an effect of heat generation

internal to the solid and standard lumped-capacitance validity on Biot number was invali-

dated. However, by incorporating the Jeffreson correction to heat transfer coefficients, we

showed lumped-capacitance approximations (with Jeffreson correction) continues to be ac-

curate even under the condition of volumetric heating of the solid. The Jeffreson correction

is implemented in the CFD-DEM solver for solid breeder pebble beds.

A benchmarking effort was made to validate the application of this CFD-DEM model
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for the specific conditions of solid breeder packed beds. A parametric study of Reynolds

number showed that the coupled codes were able to recreate the pressure drop predicted

by Kozeny-Carman correlation. From the point of view of heat transfer, CFD-DEM models

of heat transfer in a stagnant helium bed were compared to experimental measurements of

Li2TiO3 pebble beds and seen to be in sufficient agreement, considering the assumptions

made for the computational models.

The CFD-DEM model is a powerful and efficient means of simulating helium flow through

packed beds, while retaining heat transfer contributions of pebbles and their packing struc-

ture. However the simplicity of the volume-averaging model sacrifices the ability to resolve

the complex flow fields that develop in the pebble bed. It is unclear if this simplification

is completely acceptable. Therefore, in the next section we introduce another solid-fluid

coupling technique which will solve for complete velocity and temperature fields of helium

and ceramic in packed beds.
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CHAPTER 5

Conjugate Heat Transfer in Solid Breeder Pebble Beds

with Lattice-Boltzmann Modeling

The volume-averaged approach of the CFD-DEM coupling is an effective and efficient method

for solving transiently-coupled heat transfer between flowing helium and pebble beds via

volume-averaging techniques to handle the fluid conservation equations. However, the ap-

proach does not provide a complete view of the tortuous flow of interstitial helium because

the CFD-DEM solver does not resolve the helium pathways on the particle scale. Therefore

we have also investigated fluid-pebble interactions by means of linking DEM pebble beds

with lattice-Boltzmann solvers which allows us the ability to solve the complete conjugate

heat transfer of flowing helium through pebble beds within reasonable computational times.

The lattice-Boltzmann method (LBM) to simulate fluid flow is a growing field of numeri-

cal modeling with a rich historical development. As the LBM approach is relatively new and

its governing equations have roots in both computer science and statistical mechanics, in this

section we first review notable evolutions in modeling history and the background physics

leading to the governing equations – which lend themselves to relatively straightforward nu-

merical implementation. References33,37,170,171,190 provide more thorough descriptions of the

physics, modeling approaches, and applications of LBM theory to fluid dynamics problems.

5.1 Historical Development and Physics of LBM

We begin with a brief discussion of the Boltzmann equation describing the statistical behavior

of non-equilibrium thermodynamic systems. Then we will introduce some of the lattice gas

automata predecessors to the current lattice-Boltzmann method.
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5.1.1 Discretized Boltzmann Equation

In the realm of statistical mechanics, suppose we wish to know, at a certain time t, how

many particles exist at a given location, x, that have momentum, p. We define a number,

n = f(x,p, t)dxdp (5.1)

as the number of n particles in the system that exist within the coordinates of dx and

momenta dp at that instant. f(x,p, t) is the probability density function representing the

odds of finding a particle per phase space (x,p) at a moment in time, t.

Now let us assume we apply a small force, F, to all the n particles and then increment

time by dt. Assuming further that none of the particles collide (with each other or any other

particles in the system), the particles will have moved an amount x + p
m

dt. The particles

will all also have had their momentum changed by an amount p + Fdt = p + dp. In other

words, those n particles are now found in the phase space of

n = f(x +
p
m

dt,p + dp, t+ dt)dxdp (5.2)

The number of particles in the two moments of time are conserved, so we can also say

f(x +
p
m

dt,p + dp, t+ dt)dxdp = f(x,p, t)dxdp (5.3)

Next we relax the assumption of no collisions. If we focus our attention of the phase

space as before, some of the particles that began at (x,p, t) will not arrive at the phase

space of (x + p
m

dt,p + dp, t+ dt). By the same measure, some particles that began in some

other phase space will arrive in (x+ p
m

dt,p+dp, t+dt). Now the number of particles is not

conserved and we write the net number of particles having left/entered this phase space as

Ωdxdpdt (5.4)

where Ω is classically referred to as the collision operator. This function dictates the evolution

of particles after a collision (what phase space they leave/enter). Treatment of the collision

operator is itself a source for discussion but we leave it as a generic operator. Thus the
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balance of particles is now

f(x +
p
m

dt,p + dp, t+ dt)dxdp − f(x,p, t)dxdp = Ωdxdpdt (5.5)

To be precise, to arrive at the collision operator, Ω, in the form we have used in Equa-

tion (5.5), it is required to make a few more assumptions on the system. Following Ludwig

Boltzmann, we assume: the particles are dilute, point-like, and structureless that only in-

teract via short-range two-body potentials. Another famous assumption from Boltzmann

was of Stosszahlansatz (molecular chaos) which allow the inter-particle interactions to be de-

scribed only in terms of their local binary collisions with very long paths through free space

between collisions.170 For the sake of this discussion, we will just accept the formulation of

Equation (5.5) as the evolution equation for the particles in our system.

We consider a case where there are a discrete number of directions a particle may travel,

such as toward discrete i directions of neighboring nodes in a lattice. In such a case, velocities

point only toward those neighbors, c → ci. In Equation (5.5), we also normalize the mass

such that m = 1, making p/m = p = c. In discrete increments of time, we also write the

collision operator in a discrete form, Ωdt→ Ωi(x, t). Thus, Equation (5.5) becomes,

fi(x + ci∆t, t+∆t)− fi(x, t) = Ωi(x, t) (5.6)

Lastly, if we assume that we are using time units that have also been normalized such

that ∆t = 1, the above becomes

fi(x + ci, t+ 1)− fi(x, t) = Ωi(x, t) (5.7)

In the form of Equation (5.7), our discretized version of the Boltzmann equation for

statistical mechanics will be seen to be identical to a lattice-based formulation that will be

arrived at purely from the point of view of lattice gas automatons.

5.1.2 Lattice Gas Automata

In a broad sense, lattice gas automata (LGA) simulated the behavior of individual particles

with a simple boolean approach where basic collision rules were defined at nodes in a lattice.
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As particles approach nodes from neighbors at a given time, rules dictate the direction of the

particle at the next moment in time. Computationally, the particles were simply represented

with boolean operators that said either 1: a particle existed at that node in that direction;

or 0: no particle existed at that node in that direction. Conceptually, the particles can be

thought of as hard spheres that would collide on nodes of a lattice; collisions would send the

particles rebounding along discrete directions toward neighboring nodes. The restraint on

collision rules required that they obey conservation of mass and momentum.

The earliest LGA was a two-dimensional model by Hardy, Pomeau, and de Pazzis (HPP)

in 1973.86 The HPP model applied basic conservation rules that particles had to obey at each

node. From the streaming particles, macroscopic units could be extracted. For instance, the

particle density at a node is found from the total number of boolean particles at that node,

ρ(x, t) =
∑
i

ni(x, t) (5.8)

where ni(x, t) are the particles occupying the node at x at time t with a velocity of ci.

As mentioned, the value of n is a boolean value of 1 or 0 if the particle is present or not,

respectively. Similarly, the momentum at the node is found as,

ρ(x, t)u(x, t) =
∑
i

cini(x, t) (5.9)

where u(x, t) is the mean velocity of the particles at the node at that time.

Boolean nature of the HPP automata meant that the solution was not only exact (not

susceptible to any round-off errors of floating point numbers) but each node required only

four bits to completely describe the state (each bit described the four directions of traveling

particles in the two dimensional node).86 Furthermore, the HPP model benefited from the

inherently parallel nature of all LGA simulations. The collision behavior at any given node

is independent of all other nodes; the nodes only need to communicate when particles stream

to neighbors.170

The LGA method was given considerable more attention after 1986 when Frish, Hass-

lacher, and Pomeau (FHP) showed it to be possible to solve lattice gas automata simulations

that were ostensibly equivalent to Navier-Stokes equations (in two dimensions).68 Descrip-
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tions of the hexagonal lattice used in the FHP model can be found in the textbooks of

Succi170 and Sukop & Thorne.171 The FHP method gave qualitatively beautiful reproduc-

tions of hydrodynamic phenomena.

Other such LGA models were developed with the same fundamental construction as the

two models mentioned here. All the models followed the same basic form of evolution of the

particles. Following the form of Ref.,36

ni(xi + ci, t+ 1)− ni(x, t) = Ωi(x, t) (5.10)

where, in lattices, ∆t = 1 is a standard normalization. After already deriving the Boltzmann

equation, Equation (5.10) should appear quite familiar. The equation states that the particle

occupation number at a specific location and time, ni(x, t), evolves based on the collision

rules, Ωi(x, t), defined at every node, x. In the LGA framework, the collision operator is

much simpler than the form used in the Boltzmann equation for statistical mechanics. Here,

the rules are simplified and discretized so that Ωi can exist in a simple look-up table or

explicit function of ni (with randomness).36,171

Collision operators are chosen such that they obey conservation of mass and momentum,

expressed as,

∑
i

Ωi = 0 (5.11a)

∑
i

ciΩi = 0 (5.11b)

With these simple rules applied to specific lattices, such as the LHP hexagons, it is

possible to show the lattice gas automata, on a proper lattice, can be re-expressed to satisfy

continuity and conservation of momentum (see Ref.68,190). The construction of LGA schemes

were extremely simple yet, with their connection to conservation equations in the continuum,

seemed promising as a perfect scheme for modeling fluid mechanics.

However, as exciting as the early LGA methods were, their drawbacks were very nearly as

disheartening after being formally compared to the Navier-Stokes equations. Succi provides

a thorough summary of the early issues with FHP (and all LGA approaches).170 For the
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sake of brevity we only mention that the main disadvantages were: lack Galilean invariance

at higher Mach numbers (the results were not the same irrespective of inertial frame) and

statistical noise in macroscopic quantities. The microscopic nature of LGAs – tracking the

paths of individual particles – precluded the method from ever completely eliminating the

issues such as statistical noise. The solution to the issues came in 1988 as a group zoomed-

out from the microscopic into a mesoscopic formulation – the first version of what would

eventually be the lattice-Boltzmann numerical method.

5.1.3 The Lattice-Boltzmann Equation

McNamara and Zanetti proposed a fix to the statistical noise in LGA via ensemble-averaging

the boolean occupation numbers,129

fi = ⟨ni⟩ =
1

q

q∑
i=1

ni (5.12)

where q is the number of lattice directions from the node. The average quantity, fi, was now

identical in form to the distribution function of the Boltzmann equation. In the formulation

of McNamara and Zanetti, we are no longer tracking individual boolean particles but a

representative ensemble population of the particles.

Replacing the boolean occupation numbers in Equation (5.10) with the density function

of Equation (5.12), we have

fi(x + ci, t+ 1)− fi(x, t) = Ωi(x, t) (5.13)

which is precisely the form found for the discretized Boltzmann equation in Equation (5.7)!

This is the essence of the lattice-Boltzmann method: it can be considered as a simplification

of the Boltzmann concept via reduction of the continuous phase space into a finite number

of discrete phase options; or it similarly can be considered as an ensemble-averaging of the

lattice gas automata into calculations of mesoscopic distribution functions.

The boolean occupation numbers were simply imagined as the actual particles traveling

from node to node in the LGA lattice. The ensemble average of these numbers, fi(x, t),

akin to the probability density function from kinetic theory, can be envisioned to be the
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probability of finding a density of particles pointing in a certain direction, i, at a given node,

x, at a specific point in time, t. The values of fi are direction-specific fluid densities and

thus macroscopic fluid properties are still directly calculated from them,

ρ(x, t) =
∑
i

fi(x, t) (5.14a)

u(x, t) = 1

ρ(x, t)
∑
i

cifi(x, t) (5.14b)

The fluid pressure is related to the density for an ideal gas, so we can find the physical

pressure in terms of the lattice density,

p = p0
ρ(x, t)
ρ0

(5.15)

The density distribution function, while eliminating statistical noise, broke the exactness

of calculations from the boolean numbers of ni in LGA methods. The density distribution

function is now a floating point number, requiring more memory storage per node and

introducing round-off error into calculations. In Chapter 3 of Ref.170 , Succi provides an

excellent discussion of the early stages of LBM and the problems that the early models (such

as those of McNamara and Zanetti) faced as well as their many great advantages. For our

purposes, we accept Equation (5.13) as the fundamental equation driving the evolution of

the density distribution function in a system.

5.1.3.1 Collision Operator for Lattice-Boltzmann Equation

The strength of Equation (5.13) hinges on the ability for the collision operator, Ωi(x, t), to

allow reproduction of the Navier-Stokes equations. Up to this point we have only alluded

to its function in the LGA and now LBM computations. While there are many potential

collision operators (see Ref.170), we focus on the operator proposed by Qian, d’Humieres,

and Lallemand.146 Noting the similarities of LBM to kinetic theory, Qian, d’Humieres, and

Lallemand proposed a collision operator similar in form to that proposed by Bhatnagar,

Gross, and Krook in 1954 for the Boltzmann equation.24 Thus the operator was named the
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BGK collision operator and is given as,

Ωi = −1

τ
[fi(x, t)− f eq

i (x, t)] (5.16)

where τ , a free parameter, is the relaxation time of the lattice, and f eq
i is the equilibrium

distribution. Thus in the BGK formulation, the collision operator is a relaxation of the node

towards equilibrium for the density distribution function.24

Inserting the operator of Equation (5.16) into the evolution of the density distribution

function, Equation (5.13), we have the lattice-Boltzmann evolution equation with the BGK

operator,

fi(x + ci, t+ 1) = fi(x, t)−
1

τ
[fi(x, t)− f eq

i (x, t)] (5.17)

In spite of the relaxation time being a free parameter, there are limits to its value. The

kinematic viscosity in a lattice is,

ν = c2s

(
τ − 1

2

)
(5.18)

which shows that τ can not shrink to an arbitrarily small number. Numerical instabilities

appear as τ → 0.5 and the kinematic viscosity ν → 0. Furthermore, if τ > 1, we have

subrelaxation and the distribution function will never completely relax to equilibrium. When

τ < 1, we have overrelaxation and the system out of equilibrium will advance toward it at

different rates. When τ is small, the relaxation to f eq is fast and thus the viscosity of the

lattice can be considered to be small. A negative viscosity occurs if τ < 1/2 and is not

allowed.33,37

The equilibrium distribution function, f eq, is derived from the Maxwell-Boltzmann ve-

locity distribution in statistical mechanics. With clever application of the ideal gas law and

the isothermal ideal gas pressure relation (see, for example, Refs.37,190), it is possible to find

an equilibrium distribution that allows Ωi to respect all conservation laws,

f eq
i = ρ(x, t)wi

[
1 +

u · ci

c2s
+

(u · ci)
2

2c4s
− u2

2c2s

]
(5.19)

where cs is the speed of sound on the lattice and wi are weighted lattice constants. In the

development of the equilibrium function, it is assumed that the velocity of the fluid is small
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Figure 5.1: A representative node with directional vectors to the 18 neighbors (+1 central

node) in the D3Q19 lattice (reproduced from Ref.88).

compared to the speed of sound on the lattice, in other words we require small Mach numbers:

Ma = |u|
cs
< 1, on the lattice.33,146 It is worth noting here that the equilibrium function of

Equation (5.19) is defined entirely in terms of local velocity and density; everything is in

terms of node i and no other neighboring node. This feature aids the LBM approach in

being highly parallelizable in the same way the LGA method was.

There are several conditions a lattice must meet to satisfy the isotropy necessary to

regain the Navier-Stokes equations in the macroscopic form.116,190 A lattice structure in

d dimensions with q lattice directions is commonly identified with the DdQq lattice label.

In the three-dimensional flow of our packed beds, we use the D3Q19 lattice, i.e. d = 3

dimensions, and q = 19 nodes surround the node of interest (including the node itself). A

representative node from the D3Q19 lattice is shown in Figure 5.1.

The numbered directions in the lattice of Figure 5.1 follows the standard practice of

LBM. The index i = 0 corresponds to the node center. The indices i = 1, 2, 3, . . . , 6 point to

the six faces of the cube surrounding the node. Lastly, the indices i = 7, 8, 9, . . . , 18 point
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to the twelve midpoints of the edges of the cube. The weight constants, satisfying lattice

symmetry, of the lattice structure of Figure 5.1 are calculated in Ref.116 and given as,

wi =


1
3

i = 0

1
18

i = 1, 2, 3, . . . , 6

1
36

i = 7, 8, 9, . . . , 18

(5.20)

The lattice weights, wi are necessary to account for the different vector lengths in the

lattice. In principle, there is freedom in choosing the lattice speed of sound, cs, requiring

a change to the rest-weight of w0 to maintain lattice symmetry. However, in practice, it is

common to use c2s = 1
3

for numerical stability.116,170

5.1.3.2 Boundary Conditions

Techniques for implementation of no-slip boundary conditions in LBM are direct descendants

of the bounce-back schemes from lattice gas automata. In the scheme, lattice nodes that

exist at the boundary have particle directions that point into the wall. For example, see

f4, f7, and f8 in Figure 5.2 for a D2Q9 lattice. The scheme is ‘bounce-back’ because as

particles stream into the wall, their distributions are scattered back in equal and opposite

directions. Computationally, the bounce-back scheme is very attractive for the simplicity

of implementing the method even in complex geometries. A fact which makes the use in

LBM particularly attractive for packed bed simulations.33 The bounce-back scheme has been

shown to be first-order accurate for most three-dimensional flows, degrading the other-wise

second order accuracy of the fluid bulk calculations.33,217 To combat the loss in accuracy

with increasing Reynolds number, several modifications to the bounce-back scheme have been

proposed.33 However, for the porous flow to be studied in ceramic pebble beds, it suffices

to implement the bounce-back boundary condition to enforce no-slip at the fluid-particle

interface.33,122

To treat velocity or pressure boundary conditions, the technique of Zou & He is used.217

They proposed extending the bounce-back condition to the non-equilibrium distribution

function in the direction normal to the boundary where v or p is specified. The approach
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Figure 5.2: Sketch of the D2Q9 nodes showing at the boundary the distribution functions

that would come from neighbors outside the boundary (at the wall) are unknown (drawing

from correspondence with Dr. Bao, billbao@cims.nyu.edu).

allows closure of the algebraic calculation of distribution functions when we have a known

velocity or pressure (see Eqs. 5.14). We note again that, in lattice units, determination of

density is equivalent to determination of pressure via the ideal gas pressure law. Zou & He

showed the approach provides second-order accurate results on these boundaries.217

5.1.3.3 Thermal LBM

Thus far the lattice-Boltzmann formulation has been shown to calculate mass and momentum

transport of a fluid. But in the packed beds of fusion reactors, the transport of energy in the

system is of utmost importance. To handle the thermal equations in the lattice-Boltzmann

framework, we use the model of Guo et al.85 Guo et al. introduced a second lattice upon which

the distribution functions for temperature reside. The temperature distribution evolved with

a coupling to the velocity distribution on the lattice solving the Navier-Stokes equations. The

temperature was linked back to the Navier-Stokes lattice with a Boussinesq assumption that

introduced a body force term to the fluid.85 Guo et al. referred to their approach as the

Coupled Lattice BGK (CLBGK) method.

On the thermal lattice in the CLBGK method, the temperature is a passive scalar that

is transported by the velocity (it is specified at each node corresponding to nodes from

lattice solving the Navier-Stokes equations). Therefore, the density distribution functions
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on thermal lattices are in fact temperature distribution functions. The thermal lattice BGK

equation is analogous to Equation (5.17) and written as,

gi(x + ci, t+ 1) = gi(x, t)−
1

τg
[gi(x, t)− geq

i (x, t)] (5.21)

where we have a second relaxation time for the thermal lattice, τg. The temperature field is

reconstructed via

T =

q∑
i

gi (5.22)

A microscale Champan-Enskog expansion of Equation (5.21) can show that it is equiv-

alent to the temperature form of the continuous energy conservation equation.85 For the

transport of the passive scalar, we can use a D3Q7 lattice which is sufficient to model the

advection-diffusion of temperature.,116,139 For such a lattice, the speed of sound is c2s,g = 1
2
.

We use a linear equilibrium function for geq
i ,

geq
i = wiT

(
1 +

ci · u
c2s,g

)
(5.23)

The thermal diffusivity (analogous to the viscosity in the momentum lattice) is

α = c2s,g

(
τg −

1

2

)
(5.24)

Thermal boundary conditions are handled via a decomposition of the boundary nodes

into equilibrium and non-equilibrium parts and the values of the node extrapolated from

neighboring nodes. Details can be found in the paper by Guo et al..85

5.1.4 Realizing LBM Models Computationally

Because of the immensely simple implementation of no-slip boundary conditions for even the

most complex geometry, the lattice-Boltzmann method was immediately seen as a powerful

option of fluid modeling in porous networks. Chen & Doolen review many of the major

accomplishments of implementing LBM models which verified Darcy’s Law, the Cozeny-

Karman equation, and Brinkmann equation, among other efforts.33 Pan et al. evaluated

the single-relaxation time BGK operator against models with multiple relaxation times as
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well as models with different implementationsi of fluid-solid interface boundary conditions

– among which was the bounce-back scheme we use here.138 For the conditions we will

consider, single-relaxation time models are sufficient.

For practical application of the LBM approach, as it will be used to simulate the conjugate

heat transfer of the helium purge gas through ceramic pebble beds, there are two main objects

required to define the structure of a lattice-Boltzmann model: collision operator, Ωi, and

constants which define the scaffolding of the lattice.

The computational domain of the fluid is discretized into a Cartesian grid with regularized

spacing, δx, in every dimension. At each node are density functions, fi(x, t), which represent

the density at that node (found at x), traveling in the direction of ci at a moment in time, t.

The density distribution function evolves according to Equation (5.13). It is helpful to look

at the equation compartmentalized in the same manner it is handled computationally, thus

we see the streaming and collision parts,

fi(x + ci, t+ 1) = fi(x, t)︸ ︷︷ ︸
streaming

+Ωi(x, t)︸ ︷︷ ︸
collision

Conceptually the two steps of lattice evolution can be thought of as two distinct opera-

tions. First, the collision operator is calculated based only on each node’s local information.

Using the BGK approximation, given in Equation (5.16), the collision is calculated as,

Ωi = −1

τ
[fi(x, t)− f eq

i (x, t)]

Post-collision, in the streaming step, the information is passed from every node to its

neighbors along the lattice directions shown in Figure 5.1. While the collision operation is

exactly local, the streaming operation involves only nearest neighbors. After the streaming

step, the nodes that lie along the boundary have the bounce-back scheme applied wherein

distributions arriving at the boundary are reflected back to their incident directions.

Splitting the evolution of the distribution function into the two steps of collision and

streaming, in addition to being a conceptual aid, is a natural partition of computational

steps. In practice the algorithm proceeds as follows,190
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1. using macroscopic properties of density and fluid velocity, the equilibrium distribution

function is calculated at every node following Equation (5.19),

2. the BGK collision operator is calculated according to Equation (5.16) to find the post-

collision distribution of every node,

3. information from each node streaming to neighboring nodes based on the evolution

equation of Equation (5.13),

4. updated macroscopic properties are found from the new distribution functions accord-

ing to Equation (5.14).

It is worth stressing again that the lattice-Boltzmann collision calculations are completely

local, with the streaming step requiring only nearest inter-node communication for updating

distribution functions which lends the method to extremely efficient parallelization.

5.1.5 Physical to Lattice Units

In LBM one typically works with lattice variables – differing from their physical counterparts

simply through normalization. This is akin to achieving dynamic similarity in fluid mechan-

ics experiments. Therefore the nondimensional form of governing equations is discussed,

and then the nondimensional values are translated into lattice variables. We then see how

tuning of some lattice variables will allow a sufficiently refined grid while still representing

the physical system we are attempting to model. The notation of working with physical,

nondimensional, and lattice variables can quickly become cumbersome. The convention here

is to use ψ̂ for physical variables, ψ∗, or nondimensional variables, and simply ψ for lattice

variables.

Thus the Navier-Stokes equations, in physical units, for an incompressible fluid are

∇̂ · û = 0 (5.25)

and
∂û
∂t̂

+ (û · ∇̂)û = − 1

ρ̂0
∇̂p̂+ ν̂∇̂2û (5.26)
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I nondimensionalize the length scale based on the average diameter of pebble in our

system, the velocity by the superficial velocity of our inlet, and pressure and time on derived

forms of these two variables,

x∗ =
x̂

d̂p
(5.27a)

u∗ =
û
ˆ|u|i

(5.27b)

p∗ =
p̂

ρ̂0 ˆ|u|
2

i

(5.27c)

t∗ =
t̂
d̂p
ûi

(5.27d)

Thus the nondimensional form of Navier-Stokes is the familiar,

∇∗ · u∗ = 0 (5.28a)
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇∗p∗ +

1

Re∇
∗2u∗ (5.28b)

Note, too, that the physical limits of our system are describable in terms of the nondi-

mensional units. In other words, if our system is X̂ meters wide, the nondimensional width

is X∗ = X̂

d̂p
.

Next, the dimensionless kinematic viscosity, ν∗ = 1/Re, is converted into a lattice vis-

cosity as

ν =
δt
δ2x

1

Re (5.29)

from which, we can finally calculate the relaxation time for our single-relaxation-time, D3Q19

lattice (calculated from Equation (5.18)) as,

τns =
ν

c2s
+

1

2
(5.30)

where the subscript ns denotes the relaxation time is specific for the fluid flow as described

by the Navier-Stokes equations and the lattice speed of sound is c2s = 1
3
.

To specify the velocity boundary condition (and similarly to convert our lattice velocity

results back into physical values), we must have a translator between nondimensional and
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lattice velocities,

u =
δt
δx

u∗ (5.31)

Translating from physical to lattice units is done via,

u =
δt
δx

û
ˆ|u|i

(5.32)

The spatial discretization of the lattice is defined in terms of the resolution of our sphere

in the discretization process. The values of lattice spacing, δx, and the total lattice nodes

are calculated as,

δx = δy = δz =
1

res (5.33a)

Nx = res ·X∗ + 1 (5.33b)

Ny = res · Y ∗ + 1 (5.33c)

Nz = res · Z∗ + 1 (5.33d)

where res is defined as the number of nodes spanning the diameter of a pebble.

The only lattice parameter not defined at this point is the lattice time step, δt. In lattice-

Boltzmann, δt and δx are linked via the incompressibility constraint in the lattice. At the

same time, from Equation (5.31), the lattice velocity is directly related to the lattice time

step size; and the magnitude of u may not be larger than the speed of sound on the lattice,

cs. The time step is further constrained when enforcing incompressibility of our fluid. The

LB model is a quasi-compressible fluid solver which permits slight compressible regimes to

enter the system to solve the pressure equation of the fluid. Compressibility effects will

impact the numerical accuracy and should therefore be minimized. Compressibility effects

scale like the square Mach-number, Ma2, and thus effects can be minimized by enforcing a

small Mach number. In LBM, the lattice Mach number is simply,

Ma =
|u0|
cs

(5.34)

where |u0| = δt
δx

. Thus to say the compressibility error scales like ϵ ∼ Ma2 is to say it scales

like ϵ ∼ δ2t
δ2x

. The compressibility error need not be smaller than the numerical error of the
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LBM method itself. As LB is second-order accurate,170 ϵ ∼ δ2x, we can then determine the

time step size relative to lattice spacing for which the two errors will be comparable in size,

δ2t
δ2x

∼ δ2x

→ δt ∼ δ2x

Also, because the lattice spacing is directly dependent on our chosen resolution, the

requirement on time step is alternatively written as

δt ∼
1

res2 (5.35)

which shows, similar to standard CFD solvers, the time step requirement shrinks rapidly as

we attempt to more finely represent the pebbles with more and more nodes. Thus care must

be taken to balance the resolution with the time step requirements.

In the LBM model, we only treat the energy as a passive scalar transported by the fluid

motion (i.e. we do not make the Boussinesq approximation to couple the fluid energy to

momentum). The energy equation for the fluid in physical units is,

∂T̂f

∂t̂
+ ∇̂ · (û T̂f ) = −α̂f∇̂2T̂f (5.36)

The temperature will be nondimensionalized based on a characteristic temperature of

volumetric heating,

T ∗ =
T̂ − T̂c

∆T̂
(5.37)

and the time and length scales are nondimensionalized as in the Navier-Stokes equations.

Thus the nondimensional energy equation is

∂T ∗
f

∂t∗
+∇∗(u∗T ∗

f ) =
1

Pef
∇∗2T ∗

f (5.38)

where Pe is the Peclet number (Pe = Re · Pr).

To discretize the dimensionless energy system into the lattice, we recognize the similarities

between Equation (5.28) and Equation (5.38) to directly write the lattice thermal diffusivity

of the fluid as

αf =
δt
δ2x

1

Pef
(5.39)
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For the solid, the energy equation in dimensional units is

∂T̂s

∂t̂
= α̂s∇̂2T̂s +

q̂′′′

ρ̂sĈps

(5.40)

which similarly nondimensionalizes to,

∂T ∗
s

∂t∗
= −α∗

s∇∗2T ∗
s +Q

′′′∗ (5.41)

where the dimensionless thermal diffusivity of the solid is α∗
s = α̂s

d̂pûi
and the dimensionless

nuclear heating rate is Q′′′∗ = q̂′′′d̂p
ûiρ̂sĈps∆T̂

.

We can now directly write the lattice thermal diffusivity of the solid as

αs =
δt
δ2x

1

α∗
s

(5.42)

The lattice heat rate is Q = δtQ
′′′∗

On the thermal lattice, we need only use a D3Q7 to satisfy isotropy, for which the lattice

speed of sound is only c2s = 1
2

(I will refer to it as cs,ad to distinguish). On this lattice, we

are solving the energy equation for both the fluid and solid, so each material has a unique

relaxation time. They are designated as the advection-diffusion (ad) and conjugate (cj)

relaxation times, for short. They are,

τad =
αf

c2s,ad
+

1

2
(5.43a)

τcj =
αs

c2s,ad
+

1

2
(5.43b)

and the size of lattice spacing and time steps are equal to those of the Navier-Stokes lattice.

To summarize the unit conversion process described above, our lattice needs to be defined

in terms of lattice spacing and time step. The physics of the system are encompassed in

the relaxation time – values which can be determined completely from lattice spacing and

nondimensional values of the Reynolds, Peclet, and solid diffusivity values. Physical bound-

ary conditions of velocity and temperature can be enforced in the lattice with translations

into lattice variables as given above.
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Lattice diffusivity values given in Equation (5.29), Equation (5.39), and Equation (5.42),

respectively, are summarized together,

ν =
δt
δ2x

1

Re

αf =
δt
δ2x

1

Pef

αs =
δt
δ2x

1

α̂∗
s

From which we calculate relaxation times:

τns =
ν

c2s
+

1

2

τad =
αf

c2s,ad
+

1

2

τcj =
αs

c2s,ad
+

1

2

And relaxation parameters:

ωns =
1

τns

ωad =
1

τad

ωcj =
1

τcj

5.2 Numerical Implementation of LBM and DEM Coupling

As usual, the packing structure of our pebble bed is rendered with the code LIGGGHTS.

Details of the software are described in § 3.1.3. The DEM solver is a highly parallel C++

code based on the Molecular Dynamics (MD) code LAMMPS.144 The translation between

the DEM packing and LBM nodal network is done with Python scripts created specifi-

cally to discretize and digitize the ‘spherical’ information of DEM into LBM. To solve the

lattice-Boltzmann collision and streaming equations, we make use of the open-source code

maintained by FlowKit Ltd named Palabos.62 The Palabos library provides an interface

for quick implementation of lattice-Boltzmann models in C++. Implemented models in-

clude the BGK and thermal flows with the Boussinesq approximation, among many others.
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The lattices available are the common grids of D2Q9, D3Q13, D3Q15, D3Q19, or D3Q27.

Zou/He, periodic, and bounce-back conditions are built into the LB kernel; implementation

of Dirichlet or Neumann conditions with velocity or pressure are also available. The soft-

ware is freely available under the terms of the open-source AGPLv3 license.67 All mentioned

models and ingredients are parallelized with MPI, including the I/O operations that are

implemented in terms of MPI’s Parallel I/O API.

5.3 DEM Mapping to LBM & Realizing Proper Hydrodynamics

Unlike the dynamic coupling between DEM and the volume-averaged CFD where information

passed back and forth between fluid and particle, in the LBM construction we are simply

translating a static packing structure from DEM into the LBM framework. The lattices of

the LBGK solver use equally spaced nodes that discretize our volume into regular spacing.

The pebble data from DEM is mapped onto the LBM nodes with a script via knowledge of

the centroid and radius of each pebble. To demonstrate, in Figure 5.3, we have a sketch of

the outline of a two-dimensional slice of a pebble projected onto a section of an LBM lattice.

If the distance from a node to the centroid is less than pebble radius, the node is assigned

as solid. All other nodes are assigned as fluids.

In the example of Figure 5.3, the resolution is only 9. Thus 9 nodes are needed to span

the diameter of a single pebble and the lattice spacing is δx = 1/9. In the second example

shown in Figure 5.4, we see an individual pebble in three dimensions that has been mapped

onto the LBM nodes with a resolution of 25 (thus δx = 1/25). The trade-off between small

lattice spacing is the ability to resolve the spherical surface of the pebble, stability, and even

the ability to resolve a proper packing fraction in the pebble bed.
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solid node
fluid node

Figure 5.3: An example of the mapping process from DEM to LBM structures. Nodes are

assigned as fluid or solid based on relative location of pebble centroid and radius. Here we

have a resolution of 9 (i.e. 9 nodes per pebble diameter).

Figure 5.4: A three-dimensional DEM pebble as imported into the LBM lattice with a

resolution of 25.
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5.3.1 Consistency of Packing Fraction in Digitization

In the process of digitizing DEM onto lattice sites, the size of the sphere is often over-

represented and the LBM lattice does not faithfully reproduce the correct void fraction from

DEM. In order to capture proper macroscopic values of porosity on the lattice sites, a radius-

reduction factor was introduced into the digitization process. Radii mapped into LBM are

then rlbm = krdem. The effects of the radius reduction factor can be seen in Figure 5.5, where

the void fraction is calculated as discussed below.

(a) ϕ = 0.181 in

pebble bed section

with k = 0.50.

(b) ϕ = 0.389 in

pebble bed section

with k = 0.75.

(c) ϕ = 0.555 in

pebble bed section

with k = 0.90.

(d) ϕ = 0.667 in

pebble bed section

with k = 1.00.

Figure 5.5: For a given resolution, the scaling parameter k will result in different packing

fractions. These mappings were generated from a pebble bed with ϕ = 0.64; only a specific

k will yield that void fraction after mapping into LBM.

A digital void fraction for each mapping was measured numerically by comparing the
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number of white pixels to black pixels in each bitmap slice,

ϕd,j =
Nblack

Nwhite +Nblack
(5.44)

Then the total digital packing fraction of the ensemble, as mapped into LBM, is simply

ϕd =
1

J

J∑
j

ϕd,j (5.45)

where there are J total slices. For example, we see in Figure 5.6 a plot of the digital

packing fraction moving through a particular pebble bed. Digital packing fractions changed

as a function of the radius-reduction factor and can be seen in Figure 5.5. The DEM packing

from which these slices originated was a ϕ = 0.64 initial packing of § 6.2.

Figure 5.6: The digital packing fraction was measured at all slices through the height of the

pebble bed. When the average value equaled the expected value, the mapping from DEM

to LBM was considered consistent.

5.3.2 Pore Size Effects on Hydrodynamics

To model proper hydrodynamics with the lattice-Boltzmann method there are still several

measures the lattice must satisfy. Several numerical experiments by Succi et al. have shown

proper hydrodynamics of Pouiselle flow in channels requires 4 lattice sites for fluid in pores.170

When spherical packings are digitized onto LBM lattices, constricted pores are consistently

observed when resolutions are low and we thus must consider if there are regions of the lattice

violating Succi’s rule of 4 nodes (pixels). Taking DEM packings from § 6.2, we analyze the

pore size distributions of different resolutions. The important pore size for a flow in the
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x-direction is the transverse y-z-plane. Thus taking a digitized bitmap of the ϕ = 0.64 DEM

packings, we measure the pore size sweeping along the y- and z-axes to generate Figure 5.7

for various resolutions.

Figure 5.7: Normalized histogram of pore sizes with increasing resolution. Hydrodynamic

fidelity is violated with average pore sizes less than 4 nodes on the LBM lattice.

Figure 5.8 shows the percentage of pore openings in the lattices that are less than the 4

nodes recommended for proper hydrodynamics. Adhering to Succi’s criteria of 4 pixel-wide

pore opening minimums, it is obvious that the lattice resolution of 10 is unacceptable in terms

of faithful reproduction of packed bed flow hydrodynamics: nearly 90% of the pores in the

lattice are less than 4 nodes wide. It is less evident if the violation of 4-node recommendation

of other resolutions are allowable, so we instead consider the Knudsen criteria for continuous

media for these resolutions.

The Knudsen number, the ratio of a gas’s mean free path, λmfp, to a characteristic

geometric length of the system, L,

Kn =
λmfp

L
(5.46)

is a key nondimensional parameter indicating when continuum assumptions, free molecule
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Figure 5.8: For small resolutions, the number of pore openings smaller than 4 lattice nodes

is 87.5%. Increasing the resolution to 80 reduces this percentage to 26.2%.

solutions, or rarefaction take place in a gas flow. The mean free path for an ideal gas can be

calculated as

λmfp =
µ

ρ

√
πM

2kbT
(5.47)

where viscosity, µ, and density, ρ, are temperature-dependent. M is molecular mass, kb the

Boltzmann constant, and T absolute temperature.

A classification of flow regimes dictates that must be Kn < 10−2 for the continuum

assumption to hold.106 The Knudsen number is calculated as a function of pore size and

temperature for helium in Figure 5.9. To satisfy the Kn criteria for continuum modeling,

pore sizes must be larger than 50 µm for helium at 400 ◦C and greater than 100 µm at 900 ◦C.

In packed beds of spheres, a large range of pore sizes appears; near the contact points

of two pebbles, pore sizes can be extremely small. Simultaneously, pore sizes between some

pebbles in the packing can be on the order of pebble diameters. The distribution of pore

sizes for a ϕ = 0.64 packing can be directly measured from very high resolution, res =

10 000, digitalizations of DEM. Pore size is converted into micro-meters from the translation
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Figure 5.9: Knudsen number for helium at 400 ◦C and 900 ◦C as a function of characteristic

pore size.

between resolution and pebble diameter (resolution = pixels/mm). The result is shown in

Figure 5.10. Analysis of pore sizes tells us that this packed bed has 41.2% of its pores smaller

than 100 µm and 22.5% of the pore openings are smaller than 50 µm. In other words, based

on the Knudsen number of helium, at 400 ◦C, nearly a quarter of the gaseous space in the

pebble bed is violating the assumption necessary for continuum treatment of the fluid. As

the temperature increases to 900 ◦C, almost half of the gaseous space is in violation of the

continuum assumption.

We are left with two, somewhat unsatisfying, conclusions from this present consideration.

First, assuming a 64% packed bed that is digitized with a resolution of 40 voxels per mm at

an average temperature of 400 ◦C, Succi’s criteria of 4 voxels per throat necessary to model

continuum mechanics is violated in nearly 50% of the packed bed. Second, in the same

packed bed, Knudsen’s criteria which allows treatment of the fluid as a continuum is also

violated in nearly 22.% of the bed. Thus, we cannot directly ascertain if moderate resolution

lattices (i.e. 20 to 80 voxels per mm) provide accurate hydrodynamics at high temperatures
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Figure 5.10: Measured pore sizes from digitized DEM packings at ϕ = 0.64, determined from

a lattice with res = 10 000.

when Knudsen’s criteria is violated. For the sake of this research, we must assume that these

moderate resolution lattices are acceptable and leave the issue of violating Knudsen criteria

in heated packed beds for future research consideration.

5.3.3 Parametric Study with Resolution and Packing Fractions

We now apply LBM models to a variety of DEM-generated pebble beds to find an optimum

resolution which yields both tractable models in terms of computational time and stability.

Packing fraction and resolution of slices have a direct impact on both of computational time

and lattice stabilities. We consider several two-dimensional slices from a three-dimensional

packing, such as the slices shown in Figure 5.5. Lattices were generated with varying values

of both radius reduction factor, k, and resolution, res. Using simple boundary conditions of

no-slip on the left and right walls, a Neumann boundary condition at the outlet (top) and

constant velocity at the inlet (bottom), all latices were tested to find the stability of the

resolutions and packings. To determine if a steady-state condition was reached, the velocity
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of the entire lattice was integrated. The value has units of ψ = [m/s][lu2], with dimensionless

lattice spacing units. The value of ψ is plotted in Figure 5.11; we see a steady-state velocity

is reached in all of the low-packing fraction lattices. As the packing fraction increased,

following the increase of k, we see the system velocity slowly becomes unstable. When k =

0.9, with a packing fraction of ϕ = 0.555, the system approximately linearly increases into

unstable values. Note, for the case when k = 1, the density calculated in this system blew

up to ∞ in less than 300 steps, so the velocity profile does not have a chance to demonstrate

the unstable increase. For that bed, the packing fraction was high enough that there was

not a continuous path available between inlet and outlet.

Figure 5.11: Integrated system velocity shows stable lattice configurations in two dimensions.

The two-dimensional study shows settings that lead to a stable lattice but, because of

the limitations of two-dimensional lattices, such as rapid instability in such cases as k = 1,

an additional study was done on a scaled-down pebble bed in three-dimensions (temporarily

without consideration for the error of the modeled hydrodynamics). The simplified system

considers a pebble bed with width of 6dp, periodic depth of 1dp, and height of approximately

6dp. The pebble bed is discretized using the same numeric schemes and loaded onto three-
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dimensional lattices. The pebble bed, as visualized from DEM data, is shown in Figure 5.12.

When the simplified pebble bed is mapped onto discrete LBM nodes, we see the effects of

resolution in Figure 5.13. Here we have chosen resolutions of 10, 20, and 40, respectively. For

each resolution, the coarseness of discretization requires varying radius reduction factors in

order to achieve a consistent digital packing fraction; k = 0.92, 0.947, and 0.97, respectively.

Details of the lattices are given below in Table 5.1.

Figure 5.12: Simplified three-dimensional pebble bed, packing generated with DEM.

(a) k = 0.92, res = 10. (b) k = 0.947, res = 20. (c) k = 0.97, res = 40.

Figure 5.13: For a specified packing fraction, 62.4%, different resolution lattices require

different radius scaling factors. The increased resolution is seen in increasing accuracy of

spherical modeling on the discretized lattice.

In Figure 5.14, the lattices shown in Figure 5.13 and others have their overall average
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Figure 5.14: Averaged system velocity shows pebble beds with the same digital packing

fraction and different resolutions will have different average system velocities.

velocity plotted. In this case, the magnitude of steady-state velocity is important so the

integrated velocity has been divided by the total fluid space in the simulation. We see from

Figure 5.14 that a lattice with the same packing fraction will have slightly different rates at

which steady-state is approached.

At a location along the axial midpoint, velocity profiles across the pebble bed are shown

in Figure 5.15. The velocity jets in the near-wall region, caused by low packing fraction

from ordered packing, are not well-captured by the low resolution (res = 10) lattice. Other

features of velocity are qualitatively seen in the low resolution packing, such as the velocity

near x = 2 lu, but the res = 20 shows much greater correspondence with the profiles predicted

by the highest resolution packing.

Considerations of the velocity in the packed bed are important because the impact of

tortuous velocity pathlines are what we seek to understand with implementation of the DEM-

LBM study. However, hydrodynamically, an important measure of the physical fidelity of

the packing simulation is the pressure drop across the bed. In Figure 5.16, the pressure
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Figure 5.15: Low resolution lattices show qualitatively similar behavior but have insufficient

resolution to capture jet velocity magnitudes.

drop between inlet and outlet as a function of time are given for the three packings with

equal packing fraction (the beds of Figure 5.13). The pressure drop predicted by the Kozen-

Carman relationship is approximately 66 Pa. The steady state value of the res = 40 lattice is

61 Pa. The lower resolution, res = 20, lattice comes close to the KC prediction; the steady-

state pressure drop is 64 Pa. The lowest resolution pebble bed lattice is unstable and the

density blows up shortly after 200 sec.

The last aspect to consider in the execution of the LBM model is the duration of a

complete simulation. The last row in Table 5.1 shows the product of total timesteps (to

reach 200 s) and total lattice nodes. Assuming a perfect scalability of the simulation, this

value is approximately the number of calculations performed to solve for steady-state on the

lattice. Normalizing against the res = 10 lattice, we see that it requires 16 times longer

to run the res = 20 lattice and more than 255 times longer to run the res = 40 lattice.

The same scaling rules will apply to the full pebble bed lattices that we wish to study.

Thus, like most models of packed beds, we are forced to concede some accuracy in physics of
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the model for simplifications that allow reasonable computational times. For this reason, we

conclude that the res = 20 lattice, with k chosen to satisfy digital porosity, is the appropriate

setting to continue pebble bed simulations. The res = 20 lattice had reasonable accuracy

on hydrodynamic measurements of pressure drop and showed acceptable ability to capture

features of the flow velocity such as the near-wall jets.

Figure 5.16: Pressure drops across the simplified pebble bed approaching steady-state in

time. The low resolution pebble bed greatly over-predicts the pressure drop. Increased

resolution appears to converge to approximately 61 Pa.
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Table 5.1: Comparison of lattice parameters for simplified pebble bed model.

res 10 20 40

Nx 60 120 240

Ny 10 20 40

Nz 138 276 553

Ntot 82.8 × 103 662.4 × 103 5308.8 × 103

ωns 1.131 0.789 0.491

δx 0.1 0.05 0.025

δt 0.001 0.0005 0.00025

Nt 200 × 103 400 × 103 800 × 103

Ntot ×Nt 16.6 × 109 264.9 × 109 4247.0 × 109

5.4 Summary of LBM Modeling Development

The lattice-Boltzmann method of modeling fluid flow was introduced and its merits for ap-

plication to porous flow discussed. We have shown a method for mapping data of packing

structures, generated in DEM, onto nodes of lattices solving momentum/mass and energy

conservation with collision-streaming operations of the lattice-Boltzmann method. The LBM

approach was chosen in place of finite element or finite volume methodology because of,

firstly, the extreme ease with which boundary conditions can be applied inside the highly

complex packing structure of ceramic pebble beds; enforcing no-slip conditions on complex

geometry is trivially realized with bounce-back rules on distribution functions. Furthermore,

discretization of fluid domains in lattice-Boltzmann frameworks requires no special meshing

in the highly-skewed regions near contacting pebbles, such as is necessary with standard

CFD/FEM solvers. The multi-relaxation-time lattices for momentum and energy offer com-

plete modeling of complex geometry and conjugate heat transfer with far less computational

overhead compared to FEM models.

We also showed that proper selection of lattice properties can lead to stable solutions that
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are also faithful to the macroscopic fluid mechanics being modeled. Consistency in packing

structure representation is maintained between DEM and LBM through modification of

pebble radii when mapped on LBM voxels; accomplished through measurements of digital

packing fraction in LBM lattices. We then considered the effects of grid sizing and resolution

on stability of packed bed simulations. For densely packed beds, we found a resolution of

20 pixels/nodes per pebble diameter was sufficient for results that were: stable, capable of

reproducing correct hydrodynamics, and computationally tractable.
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CHAPTER 6

Applied Modeling of Solid Breeders

In the preceding chapters, descriptions of the microscale models established for this thesis

were given. The new models were created to permit studying the internal packing structure

of solid breeder pebble beds, specifically under fault conditions (i.e. crushed pebbles, altered

packing structures), and the subsequent ability to maintain heat removal of deposited nuclear

energy. In this chapter we finally apply all the models toward studying heat transfer in

fusion-relevant pebble bed configurations. There will be three main topics considered: (i)

changes to effective conductivity due to irradiation damage of ceramic solids, (ii) the effect

of pebble bed orientation, initial packing fraction, and pebble fragmentation on temperature

distributions in pebble beds, and (iii) helium tortuosity effects on heat transfer after pebble

fragmentation.

6.1 Irradiation Effects on Effective Thermal Conductivity

Ceramic materials primarily conduct heat by phonon transport. Irradiation-induced vacan-

cies act as phonon scattering centers and consequently thermal conductivity of ceramics is

reduced under irradiation.95 Fast neutron damage can produce large populations of defects

and thereby reduce room-temperature thermal conductivity of ceramics by orders of mag-

nitude with doses ≤ 1 dpa.168 Analysis of breeding blanket modules for ITER indicate a

maximum expected neutron damage in steel to be about 3 dpa over a span of 20 years of op-

eration. By comparison, dpa levels required for DEMO are greater than 70 dpa.76 Reduced

thermal conductivity due to fast neutron damage is a concern for blanket designers and this

study is meant to address pebble bed thermal reactions to irradiated pebbles.
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Neutron fluence in ITER is targeted to reach 0.3 MW yr m−2.1,182 In terms of 14 MeV

neutrons, this equates to a fluence of 4.22 × 1024 n m−2. Kawamura et al. carried out irradi-

ation experiments on Li2TiO3 pebble beds to detect changes in effective thermal diffusivity.

They found a reduction in thermal diffusivity of 30% compared to unirradiated pebble beds

at 400 ◦C but report that no change in effective thermal conductivity is detectable up to

thermal neutron fluence of 1 × 1024 n m−2.

An experimental irradiation campaign has been carried out in Petten, Netherlands as

part of the European program for development of HCPB blanket concept, a high fluence ir-

radiation project, HICU (High neutron fluence Irradiation of pebble staCks for fUsion). The

high fluence irradiation of lithium ceramics was meant to be up to DEMO-relevant values

of 20 to 25 dpa, even with a neutron spectra not including 14.1 MeV.89,186 Temperatures in

ceramic regions dropped during the experimental campaign, trailing somewhat the tritium

production rate and lithium burn-up. On-line temperatures were measured during the year-

long experiment, temperatures in ceramic pebble regions were measured between 600 K to

800 K. Similar to Kawamura et al., a significant increase in temperatures as a result of de-

creased thermal conductivity was not witnessed. However, careful thermal characterizations

of ceramic pebble beds under irradiation were not evaluated.

The experiment of Kawamura et al. reached neutron fluence of the same order of mag-

nitude of a years operation in ITER though only with thermal neutrons. HICU matched

much of the neutron energy spectrum, save for the highly energetic fusion neutrons. Both

experiments did not detect significant reductions in thermal conductivity. The results are

providential for ceramic breeder regions far from first walls. Nevertheless, damage from fast

neutrons in near-wall regions remains a concern.

In this study, we investigate the effects on effective conductivity as impacted by two or-

ders of magnitude reduction in solid conductivity. To simulate neutron damage of Li2TiO3 in

solid breeder pebble beds, we will parametrically reduce the solid conductivity as η =

kirr/kunirr, where kirr is a proxy value for the solid conductivity of material that has been

damaged by neutron irradiation and kunirr = 2.4 W m−1 K−1. In this study η is varied from

η = 1 down to η = 0.01 to cover a broad range of reduction. The nuclear heat generation rate
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is 8 MW m−3. We calculate an effective thermal conductivity of pebble beds with damaged

ceramics. The pebble bed geometries are duplicates of those used for validation in § 3.1.4.

The initial packing fraction of the pebble bed is ϕi = 0.61. At thermal steady-state, tem-

perature scatters of pebbles and binned average values are plotted for the neutron-damaged

pebble beds in Figure 6.1. A keff is calculated for each bed and plotted alongside its fit in

Figure 6.2; the effective thermal conductivity for irradiated beds is normalized against the

case of non-irradiated bed, keff = 0.398 W m−1 K−1. As a consequence of irradiation damage

to conductivity, maximum temperatures in the pebble beds increased dramatically; average

maximum values are plotted in Figure 6.3.

Figure 6.1: Temperature scatters and average profiles for DEM models of ceramic pebbles

with irradiation-damage-induced reductions in thermal conductivity.

The effective thermal conductivity is fit to the following fifth-order polynomial, with

R2 = 0.9999,

keff[W m−1 K−1] = 1.39η5 − 4.649η4 + 6.061η3 − 3.964η2 + 2.124η + 0.03875 (6.1)

173



Figure 6.2: In DEM-based simulations, keff of pebble beds rapidly decreases as the solid

conductivity drops by more than a single order of magnitude.

Data for mid-line temperatures was fit to the following power law, with R2 = 0.9993,

Tmid[K] = 1536.2η−0.526 (6.2)

In the DEM model, heat transport between constituents in pebble beds proceeds only

through points of contact as if in vacuum. In the idealized situation considered here, as

solid conductivity reduces due to neutron damage, kirr → 0 W m−1 K−1, the effective thermal

conductivity must similarly converge to keff → 0 W m−1 K−1. The pebble temperatures of

these beds will thereby increase to Tp → ∞ because of the lack of the material to transport

heat. This behavior is seen in Figure 6.2 and Figure 6.1.

Bearing in mind that heat transfer in vacuum is not directly relevant to blanket operation

but the results do facilitate observation of contact conductance’s role in pebble bed heat

transfer. For instance, when η > 0.4, reduction in irradiated keff is approximately linear

with a slope of 0.77. In other words, the effective thermal conductivity of beds of irradiated

pebbles drops only 77% of the reduction in solid conductivity of the irradiated pebbles
174



Figure 6.3: In DEM-based simulations, mid-line temperatures increase sharply as η < 0.1.

themselves. Returning for a moment to Equation (3.16), heat conductance between two

pebbles is directly related to solid conductivity and radius of the contact area between them,

a. However, there is not a one-to-one reduction in Hc due to reductions in ks. Nor is there an

inflection point where the magnitude of ks decreases to be on the same order of magnitude,

or less, than the contact radius; at an irradiated conductivity as low as η = 0.01, ks,irr is

still, generally, three orders of magnitude larger than the contact radius, a. The reduction

in keff for irradiated pebble beds, is instead due to combined effects of solid conductivity,

coordination number, and contact forces. A thorough look into the relationship between heat

transfer and parameters describing packing structures was reported by Van Lew et al..184

The results in vacuum are interesting and illustrative, but not directly pertinent for

blanket designers. Thus we now consider a more fusion-appropriate case of reduction in

effective thermal conductivity due to neutron damage in the presence of helium. In this

case, the pebble beds are re-creations of those from § 4.3, with packing fractions of ϕi = 0.62

and stagnant helium. Again, pebble temperature scatter plots and binned average values

are plotted for the neutron-damaged pebble beds in Figure 6.5, keff is given in Figure 6.6;
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the effective thermal conductivity for irradiated beds is normalized against the case of non-

irradiated bed, keff = 1.02 W m−1 K−1, average maximum values are plotted in Figure 6.9.

In the case of reduced solid conductivity, the Jeffreson correction to heat transfer co-

efficient becomes more pronounced. A sphere in a stagnant fluid has a Nusselt number of

Nu = 2, equating to a heat transfer coefficient of h = 680 W m−2 K−1 for these pebbles in

helium. The Biot number is a function of solid conductivity, Bi = hdp/ks, inversely related

to solid conductivity. The Biot number for irradiated pebbles is given in Figure 6.4. Jeffre-

son correction accounts for large Biot numbers and reduces the heat transfer coefficient as

hp = h/(1 +Bi/5). Reduced heat transfer coefficients are also given in Figure 6.4. The Biot

number and heat transfer coefficients are normalized against the unirradiated condition. We

see that, for example, when η = 0.1, meaning one order of magnitude reduction in solid

conduction, the heat transfer coefficient reduces to 40% of the original value.

For the zero-velocity helium in this consideration, the fluid’s volume-averaged energy

equation at steady-state reduces to

∇ (ϵk∇Tf ) =
1

VkρfCf

∑
∀i∈k

hiAi∆Tif (6.3)

If an uncorrected heat transfer coefficient was introduced into this energy equation, the

term on the right-hand-side would introduce large errors into the fluid temperature profile.

Without the Jeffreson correction, the lumped capacitance assumption in the DEM framework

would greatly over-estimate the amount of energy capable of being transported from pebble

internals to fluid at the surface.

In the presence of stagnant helium, the effective thermal conductivity is fit to the following

linear equation with R2 = 0.9998,

keff[W m−1 K−1] = 0.545η + 0.458 (6.4)

Interestingly, as kirr → 0 W m−1 K−1, interstitial helium causes keff → 0.46 W m−1 K−1. Inter-

stitial helium plays a significant role in the ability of the overall pebble bed to transport heat,

even when its conductivity (as used in this modeling effort) is only kf = 0.34 W m−1 K−1.

Normalized reductions in effective conductivity for irradiated pebbles in DEM and CFD-

DEM environments are compared directly in Figure 6.7. Figure 6.7 shows the contribution
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Figure 6.4: Biot number as a function of normalized solid conductivity (left), modified heat

transfer coefficient via Jeffreson correction (right).

of helium at maintaining effective thermal conductivity of pebble beds after the solid ma-

terial is damaged due to neutron-induced vacancies. Large reductions in solid conductivity,

i.e. more than one order of magnitude, almost completely destroys the ability of pebbles to

transport heat out of the assembly. Interstitial helium provides a limit to how far effective

conductivity can drop in beds. We see a linear decrease in effective conductivity at a rate

that is half as fast as the linear reduction in solid conductivity; evident from the slope of

0.55.

Plotted in Figure 6.8 are the results from our CFD-DEM model plotted alongside much

other experimental data from Ref.178 as well as the heat transfer correlations for stagnant

interstitial gas (discussed in § 2.2.1). As a reminder, κ = ks
kf

. From Figure 6.8, we see at larger

values of solid conductivity, the CFD-DEM results compare well with many correlations from

literature. However, for the two smallest values of κ (of kirr = 0.1, 0.01), the results from

CFD-DEM are above theoretical predictions and experimental data by almost double. At

κ = 1, fluid and solid conductivities are equal and as such, the effective thermal conductivity

177



Figure 6.5: Temperature scatters and average profiles for CFD-DEM models of ceramic

pebbles with irradiation-damage-induced reductions in thermal conductivity.

should similarly be unity. The fact that the CFD-DEM results yield data twice as high as

theory suggests more investigation is required.

In mapping Lagrangian data from DEM into Eulerian CFD fields (for e.g. calculat-

ing porosity and inter-phase exchange coefficients), the divided technique is employed (see

Figure 4.3). Mapping fluid temperatures back onto DEM, however, employed the simpler

particle-centroid technique. A validation effort was performed to define proper fluid mesh

sizes in the unirradiated pebble bed condition.
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Figure 6.6: In CFD-DEM-based simulations, keff of pebble beds decreases linearly with

reduced solid conductivity to a limit of keff → 0.46 W m−1 K−1 when solid conductivity is

reduced.
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Figure 6.7: Helium’s contribution maintains a minimum of keff even as contact-conductance

heat transfer reduces to 0, as demonstrated by keff of DEM-based results.
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Figure 6.8: Values of keff measured for irradiated pebbles with CFD-DEM for all but the

smallest solid conductivity values compare well with correlations and other experimental

data.
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Again mid-line temperatures for the considered pebble beds are given in Figure 6.9.

Figure 6.9: In CFD-DEM-based simulations, mid-line temperatures increase as solid con-

ductivity drops; the increase is governed by helium heat transfer continuing in spite of large

reductions in solid conductivity.

Data for mid-line temperatures was fit to the following third-order polynomial with R2 =

0.9999 equation,

Tmid[K] = −314.1η3 + 840.1η2 − 994η + 1431 (6.5)

In the pebble bed with non-irradiated pebbles, the average maximum temperature in

the mid-line was 964 K. Wall temperatures are always held at 573 K. As an example, when

neutron damage causes solid conductivity to drop by an order of magnitude, the pebble bed

centerline temperature increases to 1337 K, an increase of nearly 40%. The temperature

curves given here are, however, for a generic volume under the average maximum heat gen-

eration rate expected for Korean designs of HCPBs, namely 8 MW m−3 and no consideration

was given for design margins of temperatures in beds. As such, the magnitude of temperature

given here may not match design targets of a real blanket. It is thus illustrative to consider a
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non-dimensional temperature and view its increase. To that end, a second set of pebble beds

was run with a nuclear heat rate of 5.12 MW m−3. Maximum bed temperatures are reported

in non-dimensional terms; bed temperatures are normalized against the unirradiated result,

Θ =
Tmid(η)− Twall

Tmid,unirr − Twall
(6.6)

With this transformation from temperature magnitude, the results of any nuclear heat

generation rate or bed geometry will collapse into a single curve, shown in Figure 6.10. The

curve is fit with the following relationship

Θ = −0.803η3 + 2.148η2 − 2.541η + 2.194 (6.7)

Figure 6.10: Non-dimensional temperatures of different pebble beds collapse into a single

curve, allowing direct comparison of pebble bed temperature increases for irradiated beds

with different operating parameters (of nuclear heat rate and geometry).

As an example of the applicability of these results, suppose we wish to find the amount

of irradiated damage is allowable in a ceramic breeder region. In this scenario, a blanket
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designer chooses to allow a maximum operating temperature with 10% margin away from

950 ◦C. The planned bed mid-line temperature would therefore be 855 ◦C. To find the amount

of damage allowable within the 10% margin, we then know Θ = 950−573
855−573

= 1.34. Thus, solving

for η in Equation (6.7) yields η = 0.52; a solid conductivity of ks,irr = 1.25 W m−1 K−1. The

last step would require knowledge of a relationship between solid conductivity and dpa.

With such information, allowable dpa could be ascertained and the 10% design margin on

temperature evaluated.

Neutrons from fusion plasma are highly energetic and it is important to consider how

these neutrons will affect heat transport internal to lithium ceramics during their operation

in a fusion reactor. In this study, we varied solid thermal conductivity parametrically as a

proxy to represent material damaged by neutron irradiation. When stagnant helium gas is

included in the calculation, the results fit well within limits of correlations and theoretical

limits above κ ≈ 1. We also arrived at correlations relating effective thermal conductivity

and maximum bed temperatures as a function of irradiated solid conductivity. At present

we have no data indicating the precise quantity of expected dpa in lithium ceramics, nor

a correlation between dpa and reduced conductivity. There is, however, irradiation data

from a high-dose fission experiment, HICU, in which it appears conductivity values did

not decrease dramatically at the temperatures and dpa experienced. Next steps should be

to study precisely the relationship between dpa and conductivity in the lithiated ceramic

materials considered for use in ITER and future DEMO reactors.

6.2 Temperature Distributions with Breeder Orientation, Pebble

Fragmentation

We apply coupled computational fluid dynamics and discrete element method (CFD-DEM)

modeling tools with new numerical implementations of pebble fragmentation to study the

combined effects of granular crushing and ensemble restructuring, granular fragment size,

and initial packing for different breeder volume configurations. In typical solid breeder

modules, heat removal from beds relies on maintaining pebble-pebble and pebble-wall contact
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integrity. However, contact is disrupted when an ensemble responds to individually-crushed

pebbles. Furthermore, restructuring of metastable packings after crushing events are, in

part, dependent on gravity forces acting upon the pebbles. We investigate two representative

pebble bed configurations under constant volumetric heat sources; modeling heat removed

from beds via inter-particle conduction, purge gas convection, and contact between pebble

beds and containers. In one configuration, heat is removed from at walls oriented parallel

to the gravity vector (no gap formation possible); in the second, heat is removed at walls

perpendicular to gravity, allowing for the possibility of gap formation between bed and wall.

Judging beds on increase in maximum temperatures as a function of crushed pebble amount,

we find that both pebble bed configurations to have advantageous features that manifest at

different stages of pebble crushing. However, all configurations benefit from achieving high

initial packing fractions.

6.2.0.1 Simulation domain, boundary conditions, and material properties

Two ITER-relevant volumes are considered in this study, sketched in Figures 6.11a and 6.11b.

They are differentiated from each other by gravity’s direction in the configuration. Because

of their similarity, we use generic coordinate systems (χ, ζ). Thus χ-configurations, shown

in Figure 6.11a, have χ = y and ζ = x while ζ-configurations, Figure 6.11b, have χ = x and

ζ = y. The ζ-configuration in this study is meant to represent the orientation of European

Union’s TBM,90 while the χ configuration is an orientation adopted by many other current

TBM designs in ITER.35,60

In terms of the generic coordinates, outflow of bed heat to coolant is along ζ. Constant

temperature boundaries, Tw, exist at the edges of that dimension. As sketched in Figure 6.11,

gravity resettling in the χ configuration will not allow gap formation between bed and wall.

However, in the ζ-config it is possible for a gap to form between top coolant walls and pebbles

after gravity resettling. A constant nuclear heat rate was applied to every particle in the

bed which is representative of the highest source term anticipated in current ITER designs

of solid breeder blankets, q′′′ = 8 × 106 W m−3.
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Figure 6.11: Sketches of the two breeder orientations show that gravity settling will not allow

gaps between pebbles and walls in the χ-configuration. However for the ζ-configuration,

gravity-induced resettling can create a gap between pebbles and upper wall.

The simulation consists of pebbles of diameter dp = 1 mm, in beds filled to two initial

packing fractions, ϕ1,2 = 62, 64%. Mechanical properties of the pebbles are given in Table 6.1.

To note is the elastic modulus chosen for pebbles in this study. In a past experimental

study, Van Lew et al. found that individual pebbles behaved in a manner indicative of

having a elastic modulus from 20 to 60% of values reported in literature for sintered blocks

of Li2TiO3 and Li4SiO4.185 Therefore to maintain some generality to this study, we have

chosen a elastic modulus at a nominal value of E = 60 GPa to generically represent either

ceramic pebble.

Pebble bed widths in ζ are 20 mm, a size comparable to breeding volumes of many ITER

TBM designs.35,60,90 Bed depths (in the z-direction, in/out of the page in Figures 6.11a

and 6.11b) are 5 mm, with periodic boundary conditions. Bed lengths in χ vary to accom-

modate 6000 pebbles, initially, with given initial packing fractions; the length is approxi-

mately 50 mm. Virtual walls are placed at extents of χ and ζ dimensions. Walls in ζ had
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constant temperature boundaries of Tw,s, all walls have mechanical and thermal properties

of structural steel, given in Table 6.2.

Fluid domains, overlaid on DEM pebbles, have fluid inlet and outlet regions of lengths

10 mm and approximately 51 mm, respectively. The side walls of the fluid domain were

adiabatic in inlet and outlet regions and had constant temperature boundaries where they

contacted the pebble bed, Tw,f . Fluid entered with a constant velocity magnitude of 5 cm s−1

and constant temperature Ti. At present, temperature-dependencies of helium properties

have not been incorporated into the model. Over the range of 400 ◦C to 900 ◦C, increases in

helium momentum and thermal diffusivities are both essentially linear and thus an arithmetic

mean for properties over that range is used as a first approximation. Future models will

incorporate temperature-dependence of fluid properties. Fluid transport properties are given

in Table 6.3.

Table 6.1: Mechanical and thermal properties of ceramic pebbles in the DEM domain. Aside

from Es, properties come from78 with ϵ = 0.2

Property Symbol Value

elastic modulus (GPa) Es 60.0

Poisson ratio νs 0.24

thermal conductivity (W m−1 K−1) ks 1.79

diameter (m) dp 0.001

pebble-pebble friction coefficient µs 0.2

pebble-wall friction coefficient µw 0.2

heat capacity (J kg−1 K−1) cs 1.45 × 103

thermal expansion coefficient (K−1) βs 1.77 × 10−5

density (kg m−3) ρs 3.44 × 103

6.2.0.2 Modeling crush events

Models have been proposed in the past which translate experimental measurements of

granular crushing into contact forces in an ensemble to predict granular crushing, e.g.

Refs.,10,74,160,185,211 but no validation has set any model apart as yet. Here, packed beds ex-

perience artificial pebble-crushing events for which a chosen percentage, η, of initial pebbles
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Table 6.2: Mechanical and thermal properties and boundary conditions of structural con-

tainer in the DEM domain.66

Property Symbol Value

elastic modulus (GPa) Ew 175.0

Poisson ratio νw 0.30

thermal conductivity (W m−1 K−1) kw 29.0

wall temperature (K) Tw,s 573

Table 6.3: Transport properties of helium and boundary conditions in the CFD domain;

mean values over the temperature range 400 ◦C to 900 ◦C.

Property Symbol Value

thermal conductivity (W m−1 K−1) kf 3.40 × 10−1

heat capacity (J kg−1 K−1) cf 5.19 × 103

density (kg m−3) ρf 5.38 × 10−2

kinematic viscosity (m s−2) λf 8.52 × 10−4

thermal diffusivity (m s−2) αf 1.28 × 10−3

wall temperature (K) Tw,f 573

inlet temperature (K) Ti 573

(at randomized locations) fragment. Four pebble crush percentages are used: η = 0, 1, 3, 5%.

Numerical models of crush events themselves have received attention. Annabattula, Zhao,

and Gan attempted to model a crushing event as either a reduction in radius of the crushed

pebble or a reduction in elastic modulus.11,12,212 Van Lew et al made similar simplifications

when they considered a crushed pebble as being removed from the force network, thus being

removed from the DEM domain.184

In this work, we replace a parent pebble of radius r with Nc smaller daughter fragments,

each of equal radius, rc. After a crushing event, fragments are free to resettle through

interstitial gaps in the pebble bed and original pebbles respond in kind with re-arrangement

into a new metastable packing structure. To conserve volume between pre- and post-crush,

we can relate the number of daughter fragments to the radius ratio between fragments and

parent, r∗ = rc/r, as Nc = (1/r∗)3. Conservation of energy of crush events is enforced by
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setting the temperature of daughter fragments equal to the parent pebble at the moment of

crushing.

Numeric techniques to handle overlap after crush events, as a consequence of volume con-

servation, were shown in § 3.3. To summarize the approach, in our fragmentation procedure,

overlap and the associated high contact forces between the daughter fragments is permitted.

Directly following a fragmentation event, a cut-off distance is applied to the velocity-Verlet

integration of daughter fragments which prevents instabilities in position; e.g. in any given

timestep fragments are only allowed to travel xcutoff, regardless of the distance calculated in

integration. A short time is permitted for the daughter fragments to relax away from the

highly-overlapped state; relaxation time was a function of number of pebble fragments and

pebble fragment size. Contact forces in the system were monitored and when average values

returned to pre-fragmentation levels, the relaxation procedure concluded, cut-off distance

was removed, and standard velocity-Verlet integration of daughter pebbles was reinstated.

Experimental studies of crushing brittle pebbles show many different modes of fragmen-

tation, often with highly irregular sizes (see e.g. Ref.196). As a first effort, we compare the

effect of fragmentation size by studying two different values, r∗1 = 0.32 and r∗2 = 0.2 which

results in Nc,1 = 23 and Nc,2 = 125 daughters per crushed parent (at η = 5%, for r∗2 the

system expands to 43 200 pebbles).

6.2.1 Results & Discussion

In Figure 6.12, a bed of 64% initial packing with 5% of pebbles broken into fragments of size

r∗2 = 0.2 is shown; vectors of flow field, colored by fluid temperature, are seen moving through

the bed. The inset image qualitatively demonstrates how the fluid field aids in equilibrating

temperatures of fragments with neighboring larger pebbles in spite of light physical contact

between pebbles.

Several cross-sections are created at mid-planes in z. Representative results are taken

from 64% packings of ζ- and χ-configurations and compared against their respective η = 5%,

r∗2 conditions, shown in Figures 6.13 and 6.14. The numbered zones of the beds will be
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Figure 6.12: Showing the case for ϕ2 = 0.64, η = 5% with fluid velocity vectors colored by

temperature. Inset image reveals size discrepancies between fragments and pebbles and the

ensemble interaction with fluid flow.

discussed shortly.

Wall offset temperatures (T−Tw) in beds are found in slices of width ∆ζ along ζ. Pebble-

weighted mean values are found as ⟨T ⟩ = 1
Vn

∑n
j (Tj − Tw)Vj, for n pebbles of temperature

Tj consuming a total volume Vn in the slice. Demonstrative cases of ϕ2 = 0.64 with r∗2 = 0.2

are given in Figure 6.15 as functions of granular crushing percentage.

We report the overall hydrostatic pressure of pebble beds, p = σii/3, at steady-state

heating. Bed stress tensors can be calculated as,8,72,127

σ =
1

V

(
N∑
δijfn,ijn ⊗ n +

N∑
δijft,ijn ⊗ t

)
(6.8)

where n and t are unit vectors of the normal and tangential directions, respectively, and

fn and ft are the magnitudes of force in the normal and tangential directions, respectively.
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Figure 6.13: Cuts at the mid-plane of z for ζ-config beds. (a) bed initially packed to ϕ2, and

(b) bed with crushing of η5 pebbles with particle size r∗2.

Hydrostatic pressure values are normalized against initial (η = 0) beds for respective config-

urations. Hydrostatic pressure is given in Figure 6.16.

A total mean bed temperature is found from all pebbles in the system as ⟨T ⟩tot =

1
VN

∑N
j (Tj − Tw)Vj where N is the total number of ensemble pebbles. The total mean

bed temperature is also normalized against initial packing cases of each respective set of

beds. Results for all beds are given in Figure 6.17. Maximum temperature rises of every bed

are also found, Tm = max(T ) − Tw, and normalized against the maximum temperature in

the initial packing of each respective set of beds. To avoid aberrant results from a bed which

might have a single, very high temperature pebble, the maximum temperature, max(T ), is
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Figure 6.14: Cuts at the mid-plane of z for χ-config beds. (a) bed initially packed to ϕ2,

and (b) bed with crushing of η5 pebbles with particle size r∗2.

calculated as a mean value of the 50 highest temperature pebbles. The results are given in

Figure 6.18. In addition to total mean bed temperature, maximum temperature rise is also

an important factor in evaluation of a pebble bed.

Lastly, we consider how far pebble fragments travel in the bed after a crushing event.

Total displacements from the moment of crush event to final resting, |∆h|, are normalized

against the original pebble diameter, |∆h|/dp. Histograms for 64% packing fractions of χ-

and ζ-configurations at 5% pebble crushing with fragment sizes r∗2 are given in Figure 6.19.

These two beds saw the most settling, all other beds tested saw considerably less fragment

travel.
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Figure 6.15: Mean offset temperature profiles, ⟨T ⟩, along ζ in beds with initial packing

fractions ϕ2 = 0.64, fragmentation sizes were r∗2. Solid lines are χ configurations, dashed

lines are ζ configurations. Fragmentation settling of ζ-configs are seen in ‘lumps’ near Zone

(2) and in the χ-config spike in zone (3).

Analyzing results of all the pebble beds in this study revealed two main contributors to

bed temperatures with resettling from pebble crushing: final settling location of fragment

particles and overall contact force relaxation. The two interacting contributors were found

to be expressed to different extents depending on crush amount and bed configuration.

Hydrostatic pressure (a global measure of inter-particle contact forces) is predominately

a function of initial packing fraction alone, as seen in Figure 6.16. Smaller initial packing

fractions had their internal hydrostatic pressures reduced more rapidly as pebbles crushed

in the ensemble. Breeder orientation appears to have less impact on stress relief than size of

crush fragments. Due to the inter-connected nature of the force network, and geometry of

beds studied here, resettling in beds and contact force relaxation is uniform throughout the

beds. Thus we expect reductions in contact forces to directly result in an overall increase of

bed temperatures. This is reflected in the curves of Figure 6.17. Total mean temperatures

of ϕ1 = 0.62 beds increased between 16 to 19% at η = 5%. Yet beds initially packed to
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Figure 6.16: Dashed lines represent the lower packing fraction, ϕ1 = 0.62, solid lines are

ϕ2 = 0.64. Markers are: ◦ for ζ-config, ♢ for χ-config. Color differentiates the fragment

radius ratio. Contact force relaxation is more rapid for lower packing fractions.

ϕ2 = 0.64 increased by only 10 to 13% at the same value of crushed pebble amount.

Fragment settling location, on the contrary, is strongly dependent on fragment size and

breeder orientation. Larger pebble fragments generally did not travel far, settling loosely

in regions near the point of fragmentation. Smaller fragments were seen to be capable of

traveling much further through interstitial gaps between pebbles before also coming to rest

with loose settlings. The looseness of the fragment settling is indicated by their ensemble-

average coordination number (counting only the fragments) for r1∗ and r∗2, respectively, as

⟨Z⟩ = 3.2 and ⟨Z⟩ = 2.8. Contacts with walls or floors are not counted in this coordination

number. A consequence of loose packings of fragments is poor thermal conductance to

neighboring pebbles. Fragment temperatures are therefore mostly regulated by convection

with interstitial helium and their influence on bed temperatures is much more complex.

To identify the effects of fragment settling, we look to Figure 6.19 and the several zones

demarcated in the results of Figures 6.13 and 6.14. The majority of fragments, even in this

194



Figure 6.17: Dashed lines represent the lower packing fraction, ϕ1 = 0.62, solid lines are ϕ2 =

0.64. Markers are: ◦ for ζ-config, ♢ for χ-config. Color differentiates the fragment radius

ratio. Lower packing fraction is the most dominant parameter for overall bed temperature.

Amongst the same packing fraction, fragment size is most influential factor.

case of smallest fragment size and largest crushing amount, remain approximately at the

location of the parent pebble; for both configurations, approximately 60% travel less than 1

pebble diameter (1 mm). However, in both configurations, approximately 8% of fragments

travel more than 2 diameters, and those pebbles have a significant impact on the ensembles

overall thermal response.

In ζ-configuration beds, pebbles traveling more than a few pebble diameters will move

between colored isotherms drawn in Figure 6.13. For example we can see the fragment

group identified in Zone (1) as moving downward, away from the top wall. Similarly, when

pebbles in Zone (3) are crushed, some of the fragments tumble downward into Zone (2) before

coming to rest where they continue to receive volumetric heating. Thus the fragments, with

poor thermal conductance, increase heating in the regions where they settle. The effect is

seen in the η = 3, 5% temperature profiles in Figure 6.15 that are asymmetric with lower

temperatures in the top half (above Zone (3)) and higher temperatures in the region near
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Figure 6.18: Dashed lines represent the lower packing fraction, ϕ1 = 0.62, solid lines are

ϕ2 = 0.64. Markers are: ◦ for ζ-config, ♢ for χ-config. Color differentiates the fragment

radius ratio. The dominant parameter influencing maximum bed temperature varies as a

function of the number of crushed pebbles in the bed.

Zone (2).

In contrast, χ-config beds respond much differently to pebble fragment settling. We

again see from cross-sections in Figure 6.14 a pebble identified in Zone (1) that breaks but

remains in that zone after settling. The trend continues in other regions of the bed. When

pebbles are crushed in the χ-config beds, gravity causes them to fall downward but remain

generally in the same isotherm, as drawn in Figure 6.14. According to Figure 6.15, the

effect of pebble crushing has little effect up to 3% of damaged pebbles. But suddenly at

η = 5%, the combination of reduced overall bed pressure and fragmentation heating causes

the maximum bed temperature to jump above all other ϕ = 64% beds (see Figure 6.15

and Figure 6.18). The temperature increase in this χ-config bed is due to the accumulation

of pebble fragments that remain in Zone (3), only tumbling to lower heights. Helium that

enters the χ-configuration bed reaches higher temperatures more quickly due to the increased
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Figure 6.19: Normalized displacement histograms for fragment sizes of r∗2 = 0.2 with η = 5%.

χ-config: 59.7% of fragments travel up to 1 mm and 8.2% travel more than 2 mm; ζ-config:

60.7% of fragments travel up to 1 mm, 7.9% travel more than 2 mm.

heating from fragments which settled at lower heights of y. Helium then continues to heat

from the many fragments in Zone (3) which ultimately results in the highest maximum

bed temperatures (for the given packing fraction). This can also be seen with comparison

between Figures 6.13 and 6.14: the χ-config bed reaches the 780 K contour at a much lower

height than the ζ-configuration.

Travel of pebble fragments also manifests in changes to local packing fraction. In Fig-

ures 6.20 to 6.23, we see the changes local packing fraction distribution, for all pebble beds

of χ-configuration, due to fragmentation and resettling. Similarly, in Figures 6.24 to 6.27,

we see the local packing fraction distributions for all pebble beds of the ζ-configuration.

These figures are alternative depictions of fragmentation travel, illustrating global changes

to pebble beds after pebble crushing. The images are generated from binning particles in

grids of x and z and considering all pebbles in the depth y.

Comparing Figure 6.20 with Figure 6.22, two sets of beds with the same configuration

and fragment size but different initial packing fraction, we see pebble beds with lower initial
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packing fractions have an amplified response to crushing than beds with higher packing

fraction. Likewise, if we flip the orientation such as in Figure 6.24 and Figure 6.26, there is

again a more widespread change in local packing fraction for beds of smaller initial packing

fractions.

The effect of pebble fragment size to local packing fraction is also revealed in these

images. For both configurations, and all initial packing fractions, the beds with smaller

fragment size, r∗2, would result in accumulation of mass (i.e. higher packing fraction) at the

base of the pebble beds and a reduction of mass near the top wall. Among this subset of

pebble beds with smaller fragments, we again clearly see that lower initial packing fractions;

beds of either configuration with ϕ = 0.62 have larger regions of ∆ϕ = 0.07 than any of the

ϕ = 0.64 beds.
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Figure 6.20: Distribution of local changes in packing fraction (ϕη−ϕi) for χ-config, ϕ = 0.62,

r∗ = 0.32
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Figure 6.21: Distribution of local changes in packing fraction (ϕη−ϕi) for χ-config, ϕ = 0.62,

r∗ = 0.2
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Figure 6.22: Distribution of local changes in packing fraction (ϕη−ϕi) for χ-config, ϕ = 0.64,

r∗ = 0.32
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Figure 6.23: Distribution of local changes in packing fraction (ϕη−ϕi) for χ-config, ϕ = 0.64,

r∗ = 0.2
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Figure 6.24: Distribution of local changes in packing fraction (ϕη−ϕi) for ζ-config, ϕ = 0.62,

r∗ = 0.32

Figure 6.25: Distribution of local changes in packing fraction (ϕη−ϕi) for ζ-config, ϕ = 0.62,

r∗ = 0.2
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Figure 6.26: Distribution of local changes in packing fraction (ϕη−ϕi) for ζ-config, ϕ = 0.64,

r∗ = 0.32

Figure 6.27: Distribution of local changes in packing fraction (ϕη−ϕi) for ζ-config, ϕ = 0.64,

r∗ = 0.2
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6.2.2 Conclusions

We conducted several microscale simulations of granular heat transfer using coupled CFD-

DEM simulations of representative tritium-breeding ceramic pebble bed volumes with para-

metric variations of: bed orientation with respect to gravity, pebble crushing amount, initial

packing fraction, and crushed fragmentation size.

There was one general trend observed that reiterates past conclusions from solid breeder

research. Namely, more persistent behavior is witnessed in pebble beds with higher initial

packing fractions. In this study, the most dominant parameter observed to affect tem-

peratures in pebble beds was the initial packing fraction: beds with higher initial packing

fraction had smaller increases in bed temperatures due to pebble crushing. We therefore

conclude that manual densification, from either long-term vibration packing or load-induced

pre-compaction, must be done to ceramic pebble bed volumes to gain some temperature

control during operation in a fusion reactor. To achieve packing fractions of 64% in the

relatively small sizes of this study, for example, a load of over 1 MPa was necessary. In the

assembly of tritium breeding modules, it must be kept in mind that similar pre-compaction

may need to be performed.

As stated earlier, a concern with the ζ design is the possibility of gap formation between

pebble bed and upper walls after bed resettling, particularly after pebble fragmentation.

In this study, we found pebble beds initially packed to ϕ = 62% experienced the high-

est increases in both total average bed temperature as well as maximum temperature rise.

The comparably looser packing allowed a quick reduction in hydrostatic pressures and con-

sequently a reduction in heat conduction to the upper wall. Nevertheless, no gaps were

detected even at 5% of pebbles crushed. However, temperatures in pebble beds packed to

64% showed a resistance to fragmentation; overall average temperatures were comparable to

χ-configurations, and in fact these EU-style beds had the lowest maximum temperatures for

beds with many crushed pebbles. We showed that freedom of fragments to travel between

zones in these beds prevented a build-up of loose fragments (and thereby avoided build-up

of heating) in the hottest regions.
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As for the χ-configurations, we found that when there were not many broken pebbles

(η ≤ 3%), these beds generally had lower temperatures in comparison to similar ζ-config

beds. But as η went above 3% for many of the beds, the averaged bed temperature and,

importantly, the maximum temperature rise actually jumped above the ζ-configurations. We

showed that for these beds it was the inability for fragments to move between zones which

left many small fragments to settle in the hottest region, further contributing to heating.

From the results we have shown, it is obvious that pebble crushing and bed resettling

effects on temperature are complicated, non-linear responses and are particular to breeder

design and ceramic material employed. We found indications of certain operational spaces

for which different designs responded less severely to pebble crushing. For instance, from the

point of view of temperature response in pebble beds, if one were to employ a material known

to have a limited crush strength, one might accept that many pebbles could break (at least

up to 5%, as studied here) over the life of the breeder and choose to employ the ζ-style which

avoided large increases in temperature after long operation of the breeder. Alternatively, if

one had a ceramic material with a larger crush strength, the χ-design would be preferable

as it generally retained lower overall and maximum bed temperatures when fewer pebbles in

the ensemble were crushed.

It must be pointed out that the findings discussed here are concerned primarily with

temperature distribution, without consideration for other consequences of pebble crushing

such as blocking of helium purge, and thereby tritium extraction, by clogging from fragment

dust or particulates. Clogging of purge flow is specific to each pebble bed design and must

receive future attention in its own right.

This study was performed on some generic geometries and has provided some generalized

conclusions. But in light of the pebble beds’ complex responses, as breeder designs continue

to evolve into their final form before deployment in ITER, CFD-DEM models should con-

tinuously be employed to study the specific thermomechanical responses to pebble crushing

and bed resettling unique to each design.
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6.3 Lattice-Boltzmann Method Modeling of Temperature Distri-

butions in Pebble Beds

In this section, lattice-Boltzmann method (LBM) numerical models are used to study the

complete interstitial flow of helium through a packed bed of lithium ceramics. A discussion

on the development of the LBM method was given in § 5. To review, for implementation

of DEM and LBM coupling, pebble packing structures are generated with DEM simulations

then mapped into the LBM nodal grids where the thermofluid and conjugate heat transfer

models solve momentum and thermal conservation equations. The DEM-LBM approach

is a one-way coupled approach in that LBM results are not currently fed back into DEM

simulations for future packing evolution. The sacrifice of two-way coupling (that is currently

possible with volume-averaged CFD-DEM models) offers instead to understand the tortuous

helium flow and its impact on thermal transport in the tritium breeding ceramic pebble beds.

In the lattice-Boltzmann formulation, we will consider representative pebble bed volumes.

The system spans 6dp and 4dp in the x and y directions, respectively. Primitive walls are

placed at the limits of x, periodic boundary conditions are used in the extent of y. The limit

in the flow direction, z, is set to satisfy the desired packing fraction of ϕ = 0.61 with an

ensemble of N = 200 pebble,

zlim =
Nπd3p

6xlimylimϕ
(6.9)

where xlim and ylim are the limits given above. The result is approximately 7 pebble diameters

of height (7.16dp) in the flow direction. Primitive walls are also placed at the limits of z.

The damaged pebble bed case considers fragments of size r∗ = 0.2 and a damage amount

of η = 5% (following the syntax developed in § 6.2). A resolution of res = 40 is chosen

in order to properly resolve the smaller fragments of the bed with damaged pebbles. Such

a resolution dictates lattices of size Nx = 241, Ny = 161, and Nz = 368 for a total of

approximately 14.2 million LBM nodes. The grid spacing is δx = 25 × 10−3. A lattice

velocity is chosen as u0,lb = 0.02 which sets the lattice timestep size as δt = 500 × 10−6.

The relaxation parameters, ω, for the lattice solving the momentum equation (ωns), the
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lattice nodes representing the solid in the energy equation (ωcj) and the lattice nodes for the

fluid in the energy equation (ωad) are given in Table 6.4.

The simulation procedure begins with creating volumes in DEM of a well-packed pebble

bed and a pebble bed with crushed and fragmented particles. The two pebble beds are

shown in their DEM representation in Figure 6.28. In order to highlight the differences

between modeling methods, the pebble-fluid system will also be simulated in the CFD-DEM

framework.

Table 6.4: The momentum relaxation constants for fluid (ns), thermal relaxation constants

for fluid (ad), and thermal relaxation constants for the solid (cj) used in the simulation.

ωns ωad ωcj

0.6569 0.3925 0.6995

(a) Representative pebble bed having filled

the volume to ϕ = 0.61 with DEM.

(b) Pebble bed with r∗ = 0.2 and η = 0.05

constructed with DEM.

Figure 6.28: DEM pebble beds are generated to provide pictures of packings to be loaded

into LBM lattices.
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6.3.1 Results & Discussion

After mapping DEM pebbles onto LBM lattices, they are run to thermal steady-state. Peb-

bles, as realized in LBM, are shown in Figures 6.29 to 6.31, colored by temperature.

(a) Filled (b) Crushed

Figure 6.29: Frontal view of pebbles realized in LBM lattices (y-normal, fluid moving left to

right).
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(a) Filled (b) Crushed

Figure 6.30: Bottom view of pebbles realized in LBM lattices (z-normal, fluid moving into

page).

(a) Filled (b) Crushed

Figure 6.31: Side view of pebbles realized in LBM lattices (x-normal, fluid moving left to

right).

Streamlines from LBM results are given in Figures 6.32 to 6.34. In the pebble bed with

crushed fragments, the helium flow is clearly more tortuous than the pebbled bed with solid,
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well-packed pebbles.

(a) Filled (b) Crushed

Figure 6.32: Top view of streamlines generated along in a line parallel to x-axis (fluid moving

left to right).

(a) Filled (b) Crushed

Figure 6.33: Rear view of streamlines generated along in a line parallel to x-axis (fluid

moving into page).

(a) Filled (b) Crushed

Figure 6.34: Side view of streamlines generated along in a line parallel to x-axis (fluid moving

left to right).
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A quantitative description of the extra paths taken by fluid packets moving through the

crushed pebble bed is tortuosity. Tortuosity was first introduced to studies of porous media

by PC Carman in 1937.30 Tortuosity is described as the ratio between the effective length

of travel of a packet of fluid through a packed bed against the characteristic length of the

packed bed (the length the packet would travel in unimpeded flow),

T =
Leff

L
(6.10)

Matyka & Koza provide a method for calculating tortuosity from readily available nu-

merical data.128 Their formula reads,

T =
⟨u⟩
⟨ux⟩

(6.11)

where ⟨u⟩ is the average magnitude of the intrinsic velocity over the entire system volume.

And ⟨ux⟩ is the average of the component of velocity along the macroscopic flow direction.

Taking advantage of the regularly spaced lattices in LBM, tortuosity can then be calcu-

lated directly from LBM results along all nodes,

T =

∑
r u(r)∑

r ux(r)
(6.12)

Tortuosity is found for the filled pebble bed to be T = 1.245; for crushed pebble bed it

is calculated to be T = 1.329. The crushed pebble fragments caused an increase of 6.7% to

tortuosity of fluid flow.

In Figures 6.35 and 6.36, many contours of velocity, normalized against the inlet mag-

nitude, are shown for the filled and crushed pebble beds (u/U0). Redistribution of particles

from fragmentation result in clogging certain regions and thus localized increases in velocity,

compared to the well-packed pebble bed. The velocity jets manifest in regional averages in

the pebble bed as well. The results of LBM are integrated along z and y to provide profiles

along the direction of interest. Velocity profiles and void fraction are given in Figure 6.37

for the cases of well-packed and crushed pebble beds.

In Figure 6.38, velocity profiles as calculated with LBM and CFD-DEM models are given.

Comparisons of packing fraction calculated with the two modeling approaches are similarly

given in Figure 6.39.
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(a) Filled, height of 2dp (b) Crushed, height of 2dp

(c) Filled, height of 3dp (d) Crushed, height of 3dp

(e) Filled, height of 4dp (f) Crushed, height of 4dp

Figure 6.35: x-y-plane contours from heights of 2dp to 4dp show localized peaks of velocity

in crushed pebble beds.
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(a) Filled, height of 5dp (b) Crushed, height of 5dp

(c) Filled, height of 6dp (d) Crushed, height of 6dp

(e) Filled, height of 7dp (f) Crushed, height of 7dp

Figure 6.36: x-y-plane contours from heights of 5dp to 7dp show localized peaks of velocity

in crushed pebble beds.
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(a) Filled (b) Crushed

Figure 6.37: y-z-plane averages of normalized velocity (left) and packing fraction (right)

demonstrating the oscillatory behavior of flow from ordered packing forced by physical

boundaries.

(a) Filled (b) Crushed

Figure 6.38: y-z-plane averages of normalized velocity for LBM (dashed) and CFD-DEM

(solid).

Thermal dispersion is the spreading of heat caused by variations in velocity about a mean

in a fluid. In a packed bed with stagnant interstitial fluid, molecular thermal diffusion is

the dominant mode of heat transfer. Mechanical dispersion of heat and fluid flow becomes

significant with increased Reynolds number in pores, leading to additional heat transfer. We

will quantify thermal dispersion with a commonly-applied temperature-gradient assumption
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(a) Filled (b) Crushed

Figure 6.39: y-z-plane averages of normalized packing fraction for LBM (dashed) and CFD-

DEM (solid).

to calculated a dispersion conductivity.112,132,199

Applying volume-averaging-theory (VAT), the intrinsic energy equation for a fluid in

porous media in a representative elemental volume (REV) is given in Sbutega et al.,162

ϵρfCpf⟨u⟩f · ∇⟨Tf⟩f = ∇
(
kf,eff · ∇⟨Tf⟩f

)
+ hSw

(
⟨Ts⟩s − ⟨Tf⟩f

)
(6.13)

where ⟨Tf⟩f is the intrinsic volume average of fluid temperature and ⟨Ts⟩s is the intrinsic

volume average of solid phase temperature. h is a closure term for heat transfer coefficient

between solid and fluid phases which is applied over the volumetric interfacial surface area,

Sw = Afs/V , in the REV. The effective conductivity for the fluid is a tensor that is composed

of the stagnant thermal conductivity, including diffusive conductivity and the ‘tortuousity’

conductivty, and the dispersion conductivity,

kf,eff · ∇⟨Tf⟩f = ki,stag · ∇⟨Tf⟩f + ki,disp · ∇⟨Tf⟩f (6.14)

where

kf,stag · ∇⟨Tf⟩f = ϵkf∇⟨Tf⟩f +
1

V

∫
Afs

Tf dA (6.15)

kf,disp · ∇⟨T ⟩f = −ϵρfCpf⟨T ′
fu′

f⟩f (6.16)
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Figure 6.40: Temperature profiles in pebble beds that are fully filled (solid), and with 5%

crushed (dashed) using both CFD-DEM (blue) and LBM (orange) models.

Sbutega et al. and Kuwahara et al.113,162 show that the dispersion conductivity is negligi-

ble at low Peclet number but dominates at high Peclet. In the pebble beds of solid breeders,

low Peclet numbers are expected due to slow moving purge gas and small Prandtl number

of helium. As a consequence, we can expect that temperatures calculated via the lattice-

Boltzmann method should not be fundamentally different from CFD-DEM computations.

Nevertheless, data of the LBM model allow us to calculate dispersion conductivities; for

the well-packed bed we find the average of the y-component of dispersive conductivity to

be only kf,disp|y = 0.0043 W m−1 K−1; for the bed with crushed pebbles the y-componenet

of dispersive conductivity is kf,disp|y = 0.0053 W m−1 K−1; an increase of 23.2% for crushed

pebbles. Nevertheless, in both cases the amount of spreading due to dispersive conductiv-

ity is negligibly small. Therefore, in the beds we have analyzed with small Peclet number,

the results of CFD-DEM and LBM are predictably similar. Temperature profiles, averaged

in slices of y- and z-directions, calculated from LBM and CFD-DEM for well-packed and

crushed beds are given together in Figure 6.40.
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Figure 6.41: Over-estimates of contact area of fragments contributes to higher heat conduc-

tance in LBM model than CFD-DEM.

In Figure 6.40, we see extremely good agreement between CFD-DEM and LBM results,

particularly for well-packed pebble beds.. While the velocity profiles between the two meth-

ods showed only qualitative similiarties, the lack of mechanical dispersion of heat from the

⟨T ′
fu′

f⟩f term allows the volume-averaged approach of CFD-DEM to model heat transfer as

faithfully as LBM. In pebble beds with fragmentation, the agreement between CFD-DEM

and LBM is less. The temperatures from LBM are 6% higher at the midpoint. Lower tem-

peratures in LBM are, in part, not physical but attributable to the resolution when mapping

DEM pebbles into LBM. A resolution of 20 pixels was chosen to represent pebbles. Frag-

ments of size r∗ = 0.2 result in 4 pixels per diameter for fragments. As an example, a slice

of pebble bed (pebbles in black, fluid in white) is shown in Figure 6.41. In this cross-section,

the small fragments mapped into LBM have larger contact areas than Hertzian predictions

provide in DEM.

6.3.2 Conclusions

Much effort was made to accurately model the tortuous flow of helium in packed beds.

Using the lattice-Boltzmann method, we looked into pore-scale influences of crushing on
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void fraction distribution and consequently velocity fields of pebble beds. We found that

when 5% of pebbles are fragmented, tortuosity of the pebble bed increased by nearly 7%

while the dispersive conductivity increased over 23%. In spite of the increase in dispersive

conductivity, the impact on temperature profile spreading remained negligibly small due to

the low Peclet number flow expected in tritium breeding blankets. The result, however, does

inspire a path of research toward allowing higher power density in solid breeders. The pebble

bed with crush fragments studied here can be considered as a low-porosity, polydisperse

pebble bed. Polydispersity in pebble beds can lead to very high packing fractions.

Yang & Nakayama provide a correlation for transverse dispersive conductivity in regu-

larized packings as a function of a modified Peclet number,199

kdiss

kf
= 0.0075

Pe2D
2 + 1.1

Pe0.6D

Pr0.27
(6.17)

where the Peclet number,

PeD = ρfCpf
⟨u⟩dp
kf

(6.18)

is based on the Darcian velocity, ⟨u⟩ = U0

ϵ
. Because the Darcian velocity increases with

more tightly packed beds (smaller void fraction), there appears to be some control over

dispersive conductivity by means of polydisperse packings. Using material properties for

helium and 1 mm pebbles (neglecting for a moment the influence of polydispersity), we can

calculate dispersive conductivity as a function of void fraction. In Figure 6.42, the example

calculation is shown as a function of packing fraction. Experimentally, packing fractions in

polydisperse beds can easily reach ϕ = 0.80.150 From Figure 6.42, dispersive conductivity

(again, calculated assuming single sized pebbles) increases by an order of magnitude for

packing fractions around ϕ = 0.88.

Large packing fractions are generally avoided in solid breeder blankets in order to avoid

their concomitant increase in pressure drop. However, from the investigation performed

with heat transfer in lattice-Boltzmann simulations, it is worth revisiting the topic from the

point of view of energy management and the ability for packed beds to sustain larger power

densities.
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Figure 6.42: Dispersive conductivity for pebble beds increases rapidly as packing fraction

approaches unity.

The lattice-Boltzmann method allowed us to study the tortuous path of helium through

packed beds of spheres with and without crush fragments. Unlike traditional CFD methods

for packed beds, no simplifications of contact regions was required and a direct mapping,

which maintained consistency of packing fractions, was performed when digitizing DEM

packing structures onto LBM lattice nodes. LBM simulations were run on a machine with

quad-core, 3 GHz Intel Xeon E6-1607. Computation times for the lattices with a resolution

of 20 voxels per diameter, up to 400 seconds of real time simulation were generally around 30

hours. On the same machine, CFD-DEM simulations generally concluded in approximately 4

hours. Scaling up to a full-size pebble bed would require significant computational expenses.

Yet, owing to the small Peclet number of pebble beds under consideration, there does not

appear to be any evidence that considerations of the entire helium flow field is necessary when

attempting to model thermomechanical interactions of solid breeders. The lattice-Boltzmann

technique can, however, help in studying novel concepts for increasing heat transfer in packed

beds in order to increase power density, such as the increase in dispersive conductivity due

to mixed pebble beds and high packing fractions.
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CHAPTER 7

Summary, Closing Remarks, & Future Work

7.1 Summary

Ceramic pebble beds as tritium breeding volumes in fusion reactors must endure high power

densities while maintaining both continued transport of high quality heat into coolants for

power production as well as ceramic temperatures within relatively-narrow prescribed op-

erating windows. The ceramic pebble beds, as non-cohesive granular material, exist with

metastable packing structures that will evolve from the external and internal forces acting

upon them during long-term operation as tritium breeders. As a consequence, predictive

models of solid breeder heat transfer characteristics must contend with transient packing

structures and the changing modes of heat transfer they present. To provide such predic-

tive modeling, microscale numerical models were developed to allow investigation of ther-

mal transport in pebble beds operating in environmental conditions relevant to planned

fusion reactors. Specifically, this involved development and validation of: transient, three-

dimensional, thermal DEM models of packed beds; fragmentation models to simulate pebble

crushing in ensembles; fully-coupled, transient, volume-averaged CFD-DEM models of fluid-

solid heat transfer; and one-way-coupled, transient DEM-LBM models of conjugate heat

transfer in packed beds.

In the course of validating DEM-formulations of heat transfer in packed bed ensembles,

new phenomenological descriptions of contact conductance and material properties were con-

structed. Experimental measurements of elastic response for individual pebbles showed a

wide scatter that violates a purely-Hertzian prediction of contact force based on the elastic

modulus measured of sintered ceramic blocks. However, it was shown that the force-travel
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response of individual pebbles follows the proper relationship predicted by Hertzian contact,

namely Fn ∝ s3/2. Therefore we introduced a statistical distribution with an apparent elastic

modulus fit to experimental measurements. The statistical spread was reproduced numeri-

cally in DEM simulations when applying elastic modulus to pebbles. In numeric simulations

of uniaxial compression of DEM packed beds, volumes with the distributed apparent elastic

moduli were seen to have nearly 40% more strain for the same stress state. Additionally, a

roughness model was introduced into DEM formulations of contact conductance. Comparing

DEM results of effective thermal conductivity, models with roughness parameters (estimated

from similar ceramic materials) reduced error by more than 120%.

A new phenomenological model of pebble crushing, which models fragmentation as as-

semblies of smaller spheres, was developed for DEM to simulate crushed pebbles and con-

comitant effects on pebble bed thermomechanics. The modeling approach inserts fragments

of chosen size into the system in an energy- and mass-conserving fashion. A parametric

study on fragment sizes revealed that smaller pebble fragments were seen to be capable of

traveling relatively long distances before re-settling; approximately 10% of pebbles traveled

more than the original pebble diameter. Redistribution of mass was seen in increased local

packing fractions of beds. Nuclear heating of the beds will also be affected by mass redistri-

bution and was one topic studied during applications of the models for ITER-relevant pebble

beds (to be discussed shortly).

The work of this thesis represents the first application of CFD-DEM modeling approach

to solid breeder research for which nuclear heat generation in solids, tight-packed structures,

and slow-moving purge gas fluid phase are dominate physical phenomena. Due to the unique

operating conditions of solid breeders, advancements to the CFD-DEM code were also re-

quired to complete the research objectives of this work. Using an exact analytic solution for

a single sphere with heat generation in a quiescent fluid, I showed that lumped capacitance,

an assumption inherent to DEM, remains valid for both transient and steady-state solutions

only after a so-called Jeffreson correction is used in the calculation of heat transfer coeffi-

cient. Without the Jeffreson correction, nuclear heating of low conductivity pebbles caused

error in both transient and steady-state calculations of temperatures in pebbles, even if a low
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Biot number indicates the validitiy of lumped capacitance assumption. The algebraic form

of Jeffreson correction was implemented in the coupling between CFD-DEM with negligible

computational overhead. Corrected versions of heat transfer coefficients compensated for

low-Biot number errors due to low solid conductivity with large volumetric heat sources.

Once the correction factor was implemented for calculations of inter-phase heat transfer

exchange coefficients, temperature predictions of CFD-DEM models were validated against

experimental measurements of effective conductivity with stagnant helium with excellent

agreement. Numeric predictions of effective thermal conductivity at 600 ◦C reported values of

1.05 W m−1 K−1 and 1.20 W m−1 K−1 for beds of 62% and 64% packing fractions, respectively.

Experimental measurements at similar temperatures ranged between 1.18 W m−1 K−1 and

1.3 W m−1 K−1. Furthermore, the pressure drop measured in CFD-DEM packed bed models

were shown to match the Kozeny-Carman correlation over the range of all Reynolds numbers

relevant to solid breeder designs.

This thesis is also the first application of the lattice-Boltzmann method for modeling

the conjugate heat transfer of flowing helium and volumetric heating of pebble beds in solid

breeders. As a first of its kind study, much attention was paid to the method’s ability to

faithfully reproduce hydrodynamics in a computationally tractable manner. It was shown

that proper selection of lattice spacing and resolution of digital mapping between DEM and

LBM lattices are important for LBM simulations of fluid flow and heat transfer. Recommen-

dations from literature suggest 4 nodes per throat are necessary for capturing hydrodynamics

of channel flow. It was shown that when a 1 mm pebble is represented by only 10 nodes,

nearly 90% of pore sizes were less than 4 nodes/pixels wide. For more reasonable resolutions

of 20 and 40 pixels per mm, the violation of 4 node criteria was compared to the error

in packed beds due to violating Knudsen criteria for continuum assumptions. The crite-

ria for a gas to act as a continuum is that Kn < 10−2, for slightly greater Kn, modified

slip-conditions will exist at solid-fluid interfaces, and at large values of Knudsen number,

fluids enter rarefied regimes. It was shown that the mean-free-path of helium from 400 ◦C to

900 ◦C results in packed beds violating Knudsen criteria in 22% and 41% of the void space,

respectively. Therefore, without a quantifiable method to determine if matching continuum
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hydrodynamics is critical when the fluid itself is not matching continuum conditions, and

for computational accessibility, resolutions of 20 and 40 pixels per mm were determined to

be currently acceptable. It was then shown that beds with a resolution of 20 provided nu-

merically stable solutions and error in velocity profiles for packed beds with a resolution of

20 were acceptable compared to res = 40 beds and that computational times for the former

beds were nearly 20 times faster. Ultimately, lattice-Boltzmann simulations applied in this

thesis maintained with lattices of 20 nodes per pebble diameter (i.e. 20 pixels per mm).

Once the models and modeling approaches were established and validated, they were

applied to studying critical issues in solid breeder pebble beds. First, the thermomechanical

impact of irradiation damage on ceramic materials was studied. Effective thermal conductiv-

ity values were numerically measured for pebble beds with irradiation-induced reductions in

solid thermal conductivity. It was shown that effective thermal conductivity reduced linearly

at a rate of keff[W m−1 K−1] = 0.545η+0.458 with η = kirr/kunirr. Helium purge gas was seen

to help maintain thermal transport in packed beds as solid conductivity dropped. The trend

was compared with SBZ correlations for effective thermal conductivity, a correlation which

is itself a function of solid conductivity, and the numerical results agreed well for all values

greater than κ > 1. The fit to SBZ is another validation of the numeric formulations of

heat transfer in CFD-DEM, yet the models developed here can be expanded into predictive

spaces well beyond the limited applicability of SBZ correlations.

Next, CFD-DEM models were applied to study representative tritium-breeding ceramic

pebble bed volumes with altered packing structures as a result of crushed pebbles, with

a specific intent of understanding the presence, or lack thereof, of gap formation between

pebble beds and structural materials. The studies were performed with parametric variations

of: bed orientation with respect to gravity (χ or ζ configurations), pebble crushing amount

(η), initial packing fraction (ϕ), and crushed fragmentation size (r∗). One one general trend

was observed that reiterates past conclusions from solid breeder research. Namely, more

persistent behavior is witnessed in pebble beds with higher initial packing fractions. Total

mean temperatures of ϕ1 = 0.62 beds increased between 16 to 19% at η = 5%. Yet beds

initially packed to ϕ2 = 0.64 increased by only 10 to 13% at the same value of crushed
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pebble amount. We therefore conclude that manual densification, from either long-term

vibration packing or load-induced pre-compaction, should be performed on ceramic pebble

bed volumes to gain some temperature control during operation in a fusion reactor. To

achieve packing fractions of 64% in the relatively small sizes of this study, for example, a

load of over 1 MPa was necessary. In the assembly of tritium breeding modules, it must be

kept in mind that similar pre-compaction may need to be performed.

One purpose of the study was to identify the effects of breeder orientation on heat transfer

after pebble fragmentation. In configurations where heat transfer out of the pebble bed is in

parallel directions with gravity (ζ-configuration), concerns have always focused on develop-

ment of gap formation between pebble bed and upper walls. Over all the crush percentages

studied here, up to 5% total crushed pebbles, no gaps were detected at the upper wall. In

fact, this configuration of breeder bed demonstrated the lowest maximum temperatures for

beds with many crushed pebbles. We showed that freedom of fragments to travel between

zones in these beds prevented a build-up of loose fragments (and thereby avoided build-

up of heating) in the hottest regions. By comparison, beds with heat removal directions

perpendicular to gravity (χ-configuration) as η went above 3%, maximum temperature rise

jumped well-above the ζ-configurations. We showed that for these beds it was the inability

for fragments to move between zones which left many small fragments to settle in the hottest

region, further contributing to heating.

Lastly, using lattice-Boltzmann method simulations of helium flow through pebble beds,

we looked into pore-scale influences of crushing on void fraction distribution and conse-

quently velocity fields of pebble beds. We found that when 5% of pebbles are fragmented,

tortuosity of the pebble bed increased by nearly 7% while the effective dispersive thermal

conductivity increased over 23%. In spite of the increase in dispersive conductivity, the

impact on temperature profile spreading remained negligibly small due to the low Peclet

number flow, as expected in tritium breeding blankets. LBM models confirmed that packed

beds with low-Peclet flows were, in fact, well characterized by the considerably less compu-

tationally draining volume-averaging techniques of CFD-DEM, as measured by comparison

of temperature profiles between LBM-DEM and CFD-DEM. Therefore, CFD-DEM coupling
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is the preferred method for packed beds with low Reynolds flow.

In the course of model application, the issue of natural convection arose for configura-

tions which develop an adverse temperature gradient, such as in the EU HCPB. A short

investigation into natural convection in porous material was carried out and is given in Ap-

pendix F. The conclusion of the investigation was that the narrowness of the solid breeder

volume prevents buoyant and momentum terms from ever overcoming viscous and thermal

forces in helium. Natural convection simply has no space to develop convective cells in spite

of the extremely large temperature gradient (e.g. 500 K per cm).

7.2 Closing Remarks & Recommendation for Future Work

There were two main sources of inspiration for the microscale methodology chosen for ther-

mal, thermofluid, and fragmentation modeling in this thesis. The first came from results

of post-irradiation experiments and crush load measurements of early Li4SiO4 pebbles. In-

dications were that the brittleness of the pebbles may not allow them to survive the harsh

environment of fusion reactors without significant fragmentation. There was uncertainty on

both the effects of fragmentation and the extent to which it should be expected in solid

breeders. The second inspiration was the specter of gap formation between pebble beds

and the containing structure that has haunted solid breeder researchers from the beginning.

The fear was that if pebble bed settling (i.e. densification of the packing structure) were

to cause separation between bed and wall, heat transport out of the breeding zone could be

disastrously reduced. Both questions were addressed with the numerical models developed

in this thesis and thorough analyses of representative volumes were performed.

However, over the time of this thesis progression, fusion researchers have developed pro-

cesses which yield stronger pebbles – crush loads an order of magnitude larger than the early

Li4SiO4 pebbles – and our DEM models have suggested contact forces on these stronger peb-

bles will be low enough to avoid fragmentation initiation. Even so, this advantage has not

come without a price. Our recent pebble bed experiments at fusion-relevant temperatures

(>750 ◦C) and pressures (>2 MPa) have shown that pebbles, although not fragmenting, are
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displaying the effects of contact creep and forming sintered clumps. Creep/contact sintering

is the next major phenomena that must be considered in predictive models of temperature

distributions in pebble beds. Fortunately, the modular approach of DEM modeling, as imple-

mented in this thesis, allows all previous fragmentation modules to be implemented entirely

in tandem with future models describing the cohesive nature of contact creep.

In regards to studies on gap formation, we must review what it means to form a ‘gap’

between a pebble bed and its containing structure. For even in a well-packed (random-

packed) bed of spheres, void fraction (volume fraction of fluid in a porous media) is essentially

ϵ = 1 at the wall, dropping to a minimum of approximately ϵ = 0.2 at a distance of one pebble

radius. Solid-solid contact with a pebble bed and its container occurs only in extremely small

contact areas between the first layer of well-ordered pebbles in the ensemble. Therefore, what

does it mean to have a ‘gap’ between two material interfaces for which fluid volume is already

filling 100% of the space in the near-contact region? Moreover, as has been discussed in this

thesis, we have experimentally observed that effective conductivity of a granular medium in

vacuum is around 0.2 W m−1 K−1. When we add a fluid, with thermal conductivity of only

around 0.3 W m−1 K−1, the overall effective conductivity is not simply the superposition of

the two values, but instead the effective conductivity of the two phase medium increases to

nearly 1 W m−1 K−1! Thus, even in the ideal condition of a pebble bed, the task of heat

transfer from pebble to wall is facilitated in large part by helium. Gap formation, or, local

increases to the void fraction of helium, is simply a repartitioning of single modes of a multi-

mode heat transfer phenomena occurring at bed/structure interfaces. To conclude on the

topic, future work must not separate the issue of mechanical relief at interfaces without also

considering in detail the synergistic effects of helium alongside pebbles and structure.

Up to this point, pebble bed modeling has been focused on prediction and potential

avoidance of negative consequences to pebble bed heat transfer during operation. These

efforts are unquestionably important, but they miss the fact that a pebble bed with effective

thermal conductivity of, at best, around 1 W m−1 K−1 will never be able to handle heat

loads of DEMO reactors without substantial impact on tritium breeding capabilities due to

increased structure volume. Based on the level of sophistication of the models presented
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in this thesis, their future application should move beyond consideration of current-bed

technologies and toward studying methods for increasing heat transfer capabilities of solid

breeders.

For example, pebble beds of mixed breeder/multiplier, such as Japanese-proposed tita-

nium beryllides (e.g. Be12Ti), have received attention from the point of view of chemical

stability, higher operating temperature, better oxidation, and acceptable swelling. Mixed

volumes of both neutron multiplier and tritium breeder may have high tritium breeding

ratios with acceptable tritium inventory of the beryllides. Moreover, the dense packing

available from potentially large differences of pebble radii in conjunction with high solid

conductivity of beryllides can have advantageous impacts on heat transfer in pebble beds.

DEM/CFD-DEM models can play a leading role in the exploration of thermomechanical per-

formance of mixed breeder/multiplier volumes, and any issues associated with them such as

contact forces, contact conductance, and possible segregation of material after many thermal

cycles, before experimental campaigns are launched.

Another potential for increased heat transfer in pebble beds springs from the DEM-LBM

study on the serpentine helium purge flow. Large packing fractions are generally avoided

in solid breeder blankets in order to prevent their concomitant increase in pressure drop.

However, the investigation performed with heat transfer in lattice-Boltzmann simulations

suggests it is worth revisiting the topic from the point of view of energy management and

the ability for packed beds to sustain larger power densities. We observed that transverse

thermal dispersion was negligible at low Peclet numbers and with mono-sized pebble packings

in the LBM-based study. Increasing flow velocity will increase Peclet number and pressure

drop, though at different rates. On the one hand, pressure drop is linearly proportional to

uf until about Re = 100. As an example, the Korean TBM design has a particle Re ≈ 1.

This could allow a hundred-fold increase in velocity with only a linearly similar increase

in pressure drop. On the other hand, Kuwahara et al. fit a correlation for kdisp to be

proportional to Pe1.4, and thus u1.4f and ϵ−1.4. As a consequence, dispersive conductivity

increases at a much more rapid rate than pressure drop and heat transfer enhancements due

to dispersive conductivity may overwhelm the negative effects of increased pressure drop.
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Therefore, there is potential to study packed beds with high packing fraction and increased

Reynolds number to ascertain the benefits of higher dispersion on overall effective thermal

conductivity.

The suggestions for future work provided in this section are based on observations I’ve

made over the course of this thesis development and my current understanding of the com-

plicated modes of heat transfer in lithium ceramic pebble beds. But it is also my sincere

hope that the tools developed for this thesis will find their way into the hands of future

researchers. And that they use the tools to come at fusion problems with fresh eyes and

fresh ideas to forge paths into new and fruitful veins of research. For, as the great Bob Dylan

says ”strike another match, go start anew. And it’s all over now, Baby Blue.”
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APPENDIX A

Solution of Steady State Energy Equation for One

Dimensional Slab with Heat Generation

Before considering the heat equation in a sphere, it is instructive to first consider the simpler

problem of a one-dimensional slab with volumetric heat generation, q′′′g and convective cooling

at the surfaces.

Assuming we can find the Nusselt number for the convective cooling, we write the heat

flux from the surface to the fluid as

q′′s = h(Ts − Tf ) (A.1)

where Tf is the bulk fluid temperature and Ts is the surface temperature. At steady-state

the amount of heat moved across the fluid-surface interface must necessarily be equal to the

total amount of heat generated into the slab. Therefore,

q′′w = q′′′g L = h(Tf − Ts) (A.2)

where L is the half-width of the slab. For the sake of discussion, we re-write the above

in terms of the temperature delta from surface to fluid in terms of nuclear heating,

Tf − Ts =
q′′′g L

h
(A.3)

Inside the slab, at steady-state the energy equation is simply a balance of heat conduction

and nuclear generation.
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0 = k
d2T

dx2 + q′′′g (A.4)

The boundary conditions are symmetry about the centerline and known surface temper-

ature

qL=0 = 0 (A.5a)

T (L) = Ts (A.5b)

The ODE of Eq.A.4 is solved with simple separation and integration. When the boundary

conditions are applied we have

T (x) =
q′′′g L

2

2k

(
1− x2

L2

)
+ Ts (A.6)

We can find the temperature at the centerline of the slab, x = 0 as

Tcl =
q′′′g L

2

2k
+ Ts (A.7)

Or,

Tcl − Ts =
q′′′g L

2

2k
(A.8)

From Eqs. A.3 and A.8, we see that the temperature differences between the surface and

the fluid or the centerline and the surface are dictated by the heat generation rate relative to

the speed at which that heat can be transported, via convection or conduction, respectively.

We will divide Equation (A.8) by Equation (A.3),

Tcl − Ts
Tf − Ts

=
1

2

hL

k
(A.9)

Careful observation of this equation can tell us much about the relative importance of

the different modes of heat transfer to/from the surface. If the thermal transport away
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from the surface occurs at a much slower pace than thermal transport of energy through

the solid to the surface, then the change in temperature across the solid Tcl − Ts will be

small compared to the change in temperature from the interface of solid to the bulkd fluid

temperature, Ts − Tf . If the temperature across the solid is negligibly small in comparison

to the surface-fluid difference, we are safe in the assumption that the solid is isothermal.

The group of terms on the right-hand-side of Equation (A.9) is recognized as the Biot

number,

Bi = hL

k
=
Rcond

Rconv

(A.10)

whose value is used to quantify the importance of internal conduction in the analysis of

the solid interacting with convective heat transfer. If Bi << 1, it is safely assumed that

there is no temperature gradient in the solid material. A conclusion that will prove helpful

in later analysis.

It is interesting to note that in this derivation of Biot number, we had considered nuclear

heating as the source for temperature gradients across the pebble yet the rate of nuclear

heating still does not appear in the Biot number. This implies that traditional assumptions of

the validity of the lumped capacitance method hold even when dealing with a heat generation

term in our energy balance.
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APPENDIX B

Hertzian Contact

In § 3.1.1, we will lay out the contact interaction mechanics implemented in the discrete

element method which include normal and tangential forces and damping. While all the

mechanics are important for the fidelity and stability of the DEM simulation, we will focus

here purely on the normal elastic contact of two interacting bodies, the analysis which was

first performed by Heinrich Hertz in 1882. The results of the so-called Hertzian contact law

is vital to many other sections of this work so it is instructive to have the analysis laid out.

We consider two non-conforming solids approaching and then contacting under load.

Picture a line connecting the center points of the two bodies and an x − y plane existing

at the midpoint between the bodies and oriented normal to their connecting line. On that

surface, there is a radius, r extending from the connecting line that is related to the x − y

coordinates as r2 = x2 + y2.

Because we are restricting ourselves to two spheres, the surface of curvature of the two

bodies may be written as

z1 =
1

2R1

r2 (B.1a)

z2 =
1

2R2

r2 (B.1b)

respectively. As the two bodies approach, just before the surfaces are in contact, points

on the two surfaces are separated by a distance h(r),
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h = z1 − z2

h =

(
1

R1

+
1

R2

)
r2

2
(B.2)

Noticing this term in the separation, we define the relative radius of curvature as

1

R∗ =
1

R1

+
1

R2

(B.3)

and then the separation is simply h = (1/2R∗)r2.

Figure B.1: Geometry of interacting bodies in Hertzian formulation

The two bodies continue their approach towards each other until finally, under an external

load F , come into contact. The cross-section of these bodies after contact are shown in
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Figure B.1. If we first imagine that the two surfaces do not interact and their surfaces pass

through each other unimpeded, their surfaces would be overlapped to a distance δ. In such

a case, we examine two points deep within the bodies, along the axis of contact, calling

them T1 and T2. These points will have moved δ1 and δ2, respectively. The total overlap is

obviously related to these displacements by δ = δ1 + δ2.

However, under actual interaction, the two surfaces are going to deform as the load

F presses them into contact. So now we consider two points on the surfaces, such as S1

and S2. Before contact, these two points are initially are separated by a distance h (from

Equation (B.2)), then displace by ūz1 and ūz2 due to contact pressure.

If the points S1 and S2 are inside of the contact region under load, these distances are

related by

ūz1 + ūz2 + h = δ (B.4)

Then using Equation (B.2), we have an expression for the elastic displacements as

ūz1 + ūz2 = δ − 1

2R∗ r
2 (B.5)

Alternatively, if after deformation the points S1 and S2 are outside of the contact region,

this is simply

ūz1 + ūz2 > δ − 1

2R∗ r
2 (B.6)

It now is necessary to find a pressure distribution that satisfies these boundary condi-

tions of displacement. Hertz’s great contribution was to simplify the solution of expressions

Eqs. B.5 and B.6 by regarding each body as an elastic half-space upon which the load is

applied over a small, elliptical region (the contact area). This simplification allows for treat-

ment of the highly concentrated stresses near the region of contact without consideration of

either the general response of stresses in the bulk of the body or the manner in which they

are supporting the load. This assumption is justifiable if the dimensions of each body as
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well as the relative radii of curvature are very large compared to the contact area. These

assumptions are sufficient to proceed with the analysis, but the curious are pointed to an

excellent discussion and background of Hertz’s theory as given in KE Johnson’s textbook.105

For solids of revolution, a distribution of pressure to satisfy the displacements of Equa-

tion (B.6) is proposed by Hertz as

p = p0

[
1−

(r
a

)2]1/2
(B.7)

where a is the radius of the contact area.

The total load, F is found from the pressure distribution as

F =

∫ a

0

p(r)2πr dr

F =
2

3
p0πa

2 (B.8)

From the distributed load over the circular region, stresses and deflections are found

from superposition of point loads. The pressure is integrated (see Ref.105) to find the normal

displacement for either solid body as

ūz =
1− ν2

E

πp0
4a

(
2a2 − r2

)
(B.9)

This is applied to both bodies and plugged into Equation (B.5) to yield

πp0
4aE∗

(
2a2 − r2

)
= δ −

(
1

2R∗

)
r2 (B.10)

where we have introduced the now-common term of pair elastic modulus,

1

E∗ =
1− ν21
E1

+
1− ν22
E2

(B.11)

for simplification.
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With the solution of Equation (B.10), if we consider r = a and δ(a) = 0, we find the

radius of the contact circle is

a =
πp0R

∗

2E∗ (B.12)

and when r = 0, we find the overlap as

δ =
πap0
2E∗ (B.13)

and alternatively we find the pressure as a function of overlap

p0 =
2E∗δ

πa
(B.14)

The radius, overlap, and pressure relations are inserted into Equation (B.8) to find the

force (from now on referred to as the Hertz force) as a function of overlap, relative radius,

and pair elastic modulus,

F =
4

3
E∗

√
R∗ δ3/2 (B.15)

as a last step, to differentiate the force from other terms to be derived later, we specify

it as the normal force between sphere i and sphere j as

Fn,ij =
4

3
E∗

ij

√
R∗

ij δ
3/2
n,ij (B.16)

Equation B.16 defines the normal contact forces between any two contacting, elastic

spheres. This extremely important result acts as the basis of all discrete element method

codes since the concept was first introduced for granular materials by Cundall & Strack in

1979.42

It is very appealing to use the Hertz force in a numerical model such as DEM because

there are very few assumptions built in to the theory; the material must be elastic and satisfy
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a

R∗ ≪ 1 (B.17)

In which case the force of Equation (B.16) is calculated from material and geometric

properties alone and no phenomenological, empirical fits are necessary.
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APPENDIX C

Calculating Critical Strain Energy

It is impractical, if not impossible, to experimentally measure accurate contact forces be-

tween all the pebbles in a densely-packed, three-dimensional ensemble. In investigating the

probability of pebbles becoming damaged (i.e. crushed or cracked) in a packed bed, we

therefore rely on the combined information gained from indirect measurements of the entire

pebble bed, crush experiments of individual pebbles, and the predictive capabilities of DEM

simulations. With the rise of micro-mechanical tools and computing power, attempting to

predict when ceramic pebbles will crush in an ensemble, based on inter-particle contact

forces, has received considerable attention.126,143 Research on pebble damage has also been

taken up by others in the fusion community to predict the onset of pebble crushing as a

function of an external pressure and the resulting changes to mechanical properties such as

the stress-strain of the pebble bed.12,211,212

Statistical probability arguments were applied to the study of packed beds of brittle

grains by Marketos and Bolton.126 The fundamental assumption in their predictive method

was the independence of crushing events. They used their model to predict the initiation

of crushing as well as the evolution of the packing after crushing. They created somewhat

arbitrary probability distributions of the strength of their granular particles,

h(Φ) =
0.0395√

Φ
(C.1)

where Φ is a characteristic strength parameter falling between 160 and 640 N. The form of

their distribution was based on single crushing tests on quartz particles from Nakata et al..

A common alternative distribution is to use a form first proposed by Weibull for a material

239



under uniform stress.114,131,143,212,213 The form, as written by Zhao et al. is,

Ps = 1− exp
[
−
(

Wc

Wmat

)m]
(C.2)

where Wc is the energy absorbed by the pebble and Wmat and m characterize the material.

An important note is how to calculate the critical strain energy for the pebble. Refs.126

and213 note the necessity to consider the coordination number dependence on total strain

energy. In other words, the total strain energy is the cumulative total of strain energy at

every contact. Zhao et al. give the critical strain as

Wc =
Z∑
i=1

(
9

80R∗
ij

)1/3(
1

E∗
ij

)2/3

F
5/3
n,ij (C.3)

where Z is the coordination number of pebble i.

However, Russell et al., analyzed simple, ideal granular assemblies for which they could

find analytical solutions to stress distributions inside of pebbles.160 In their work, failure of a

granular particle initiates at the location of maximum stress invariant ratios. In the contact

of elastic spheres, the stress fields near the contact areas are highly localized. Because of

the highly localized effects, Russell et al. find that in granular assemblies the contributions

to failure initiation are not additive. They discovered that the initiation of failure is always

located adjacent to the largest force irrespective of the material properties or geometric size

of the pebbles in an ensemble. Russell et al. conclude: the largest contact force acting upon a

particle is the primary agent driving the damage of the individual.160 Based upon the failure

criterion developed for brittle materials, crushing of an individual does not directly depend

upon the presence or magnitude of any lesser contact forces acting on the particle. Although

their results were obtained for idealized assemblies, the results are generally true for any

situation where multiple contact forces are present.

Based on the compelling arguments of Russell et al., we define a pebble in an ensem-

ble to crush when a single contact force surpasses a defined critical value for that pebble.

The definition of the critical force is an empirical value derived from experiments on single

pebbles. Because the normal force between two elastic objects is a function of the material

properties of the interacting objects (see, e.g., Equation (B.16)), we cannot directly compare
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the forces between the pebble and test stand with pebble-pebble contacts in an ensemble.

An alternative is to integrate the force along displacement, resulting in strain energy of the

contact. The strain energy can then relate the contact forces between different material

interactions, in a similar manner to Refs.12,212

We begin by integrating the Hertzian force along the overlap of contact to find the strain

energy Wϵ, of contact between any two materials,

Wϵ =

∫ δc

0

Fn(δ
′) dδ′ (C.4)

where the upper limit of the integration is the critical overlap δc. Inserting the Hertzian

relation of Equation (B.16) into Equation (C.4) gives,

Wϵ =

∫ δc

0

4

3
E∗

√
R∗ δ′3/2 dδ′ (C.5)

Wϵ =
8

15
E∗

√
R∗ δc

5/2 (C.6)

We call the strain energy of the pebble compressed between platens as the lab strain

energy, Wϵ,L. In pebble crushing experiments, we record the strain energy absorbed up to

the point of crushing, the data for Li4SiO4 and Li2TiO3 pebbles are shown in Figure C.1

and Figure C.2, respectively. The strain energy of two particles in contact will be the bed

strain energy, Wϵ,B. The assumption is made that, if each contact interaction computed in

DEM simulations is integrated to the proper critical overlap, the strain energies will be equal

at that contact. Thus lab strain energy is equated to bed strain energy to find the critical

ensemble overlap value, δc,B, in terms of experimental values,

Wϵ,L = Wϵ,B =
8

15
E∗

B

√
R∗

B δc,B
5/2 (C.7)

the critical pebble bed overlap is therefore,

δc,B =

[
15Wϵ,L

8E∗
B

√
R∗

B

]2/5
(C.8)

This overlap can be reinserted to the Hertz force of Equation (B.16) to find the critical

force (crush force) of the interacting particles in the numeric ensemble as a function of the
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critical strain energy of the lab. Doing this, we find,

Fc,B = CE∗
B
2/5R∗

B
1/5W

3/5
ϵ,L (C.9)

where C = 4
3

(
15
8

)3/5.

Figure C.1: Histogram of the absorbed strain energy at the moment of crushing for

Li4SiO4 pebbles as measured in single pebble crush experiments.

Equation (C.9) is a generic translation between lab materials and packed bed materials.

We will use the equation as the basis for our pebble crushing prediction in DEM simulations.

During the DEM run, we can find the maximum normal force acting on each pebble,

Fc = maxFn,ij (C.10)

We then define in a straightforward way a pebble crushing event as occurring when the peb-

ble’s maximum normal force is greater than the critical bed force defined in Equation (C.9),

Fc > Fc,B =
4

3

(
15

8

)3/5

E∗
B
2/5R∗

B
1/5W

3/5
ϵ,L (C.11)

Example values of critical crush forces, predicted from Equation (C.11) are given in

Figure C.3. From § 3.2, elastic Modulus was seen to vary widely among tested pebbles; for

this calculation a range of 10 GPa to 100 GPa is used along with a generic Poisson ratio of

0.24 for finding E∗. A constant pebble radius of Rp = 0.5 mm is used. A large variation of

measured strain energy was seen between Li4SiO4 and Li2TiO3; a range of 0.1 µJ to 1 µJ is

chosen for this calculation.
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(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure C.2: Histogram of the absorbed strain energy at the moment of crushing for

Li2TiO3 pebbles as measured in single pebble crush experiments.

Figure C.3: Contour map of critical crush force values as a function of elastic Modulus and

micro strain energy.
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For implementation in DEM, the crush force prediction becomes probabilistic naturally

due to the distribution of strain energies measured in experiments; therefore imparting a

distribution shape to the Fc,B prediction. Cumulative distribution functions are generated

for the experimental strain energy data for which we fit Weibull distribution curves, of the

form

Ξ = λ [− ln(Wϵ)]
1/σ (C.12)

where the shape parameter, σ, is fit to the specific curve of each set of experimental data

and the second parameter, λ is defined as

λ = W̄ϵ − minWϵ

In Figure C.4 and Figure C.5 we see the experimental data and the Weibull fits specific to

the ceramic material and batch. The figures illustrate goodness of Weibull fits. The Weibull

distribution functions are recreated numerically in the assignment of each pebbles ‘critical

bed force’ value.

Figure C.4: Cumulative distribution function for strain energy with a Weibull distribution

fit with shape parameter specific for the Li4SiO4 pebbles. The shape parameters are used in

numeric replications.

In this section we have proposed a numerical basis for predicting pebble crushing in

a ceramic pebble bed based on translations of strain energy distribution functions of ex-

perimental data. Implementation in DEM simulations requires defining an array of strain

energies, the distribution of which must satisfy Weibull distributions matching experimental
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(a) d̄p = 1 mm (b) d̄p = 1.5 mm

Figure C.5: Cumulative distribution function for strain energy with a Weibull distribution fit

with shape parameter specific for the two batches of Li2TiO3 pebbles. The shape parameters

are used in numeric replications.

data for the specific pebble under consideration. The array of strain energies is loaded as a

dictionary variable with the DEM pebble identification number as key and strain energy as

value. Then we loop through all pebble IDs in the ensemble and check the criteria defined

in Equation (C.11). If a pebble’s maximum force exceeds the crush criteria, the pebble is

flagged for fragmentation. Similar to implementation of thermal expansion, it is possible

at every time step to check for broken pebbles. However, the stress on pebbles is due to

thermal expansion and is therefore nonsensical to check for broken pebbles more frequently

than updating pebble diameters with thermal expansion; therefore the same timestep is used

in both of these custom numerical routines.

The equations established here present the framework for implementing crush prediction

in DEM models. However, there is currently no experimental data with which to validate

or calibrate the model. A parametric study of pebble crushing in uniaxial compression tests

could be performed, as has been done by others (See Refs.12,212). But without necessary

experimental data, the impact of their results is also somewhat lacking.
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APPENDIX D

Solution of Transient Energy Equation for Sphere with

Heat Generation

We solve for the temperature distribution inside a single sphere of constant thermal con-

ductivity with constant heat generation with a convective heat transfer boundary condition.

To simplify to homogeneous boundary conditions, the temperature we solve for will be in

reference to the fluid temperature, T = T − Tf .

The energy equation in spherical coordinates with axial symmetry is,

1

r

∂2

∂r2
(rT) +

g

k
=

1

α

∂T
∂t

(D.1)

which is subject to the boundary conditions of a constant heat transfer coefficient at the

surface, h,

[
∂T
∂r

+
h

k
T
]
r=b

= 0 (D.2)

and an axisymmetry at the center,

[
∂T
∂r

]
r=0

= 0 (D.3)

The sphere will be at an isothermal initial temperature,

T(r, 0) = T0 (D.4)
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D.1 Transformations

We first transform the system into the nondimensional forms as defined in § 4.2,

θ =
T
T0

ρ =
r

b

τ =
t

b2/α

The energy equation is then,

1

ρ

∂2

∂ρ2
(ρθ) +G =

∂θ

∂τ
(D.5)

where G = gb2

kT0

The next transformation will be to introduce U(ρ, τ) = ρθ(ρ, τ) as a transformation

variable to simplify the differential equation of energy conservation. In the new variable

formulation, the energy equation is,

∂2U

∂ρ2
+Gρ =

∂U

∂τ
(D.6)

The boundary conditions are likewise transformed into,

[
∂U

∂ρ
+ (Bi − 1)U

]
ρ=1

= 0 (D.7)

and

U
∣∣
ρ=0

= 0 (D.8)

with initial condition

U(ρ, 0) = U0 = θ0r
∗ = r∗ (D.9)
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D.2 Solution approach

Because of the non-homegeneous form of the energy equation (due to the heat generation

term), we will solve Equation (D.6) by breaking it up into two simpler problems,

1. A non-homogeneous, steady-state problem defined by Uss(r)

2. A homogeneous, time-dependent problem defined by Uh(r, t)

The steady-state distribution Uss is found from the solution of

∂2Uss

∂ρ2
+Gρ = 0 (D.10)

subject to the same boundary condition given by Eqs. D.7,D.8. Separation and integra-

tion gives.

Uss = −G
6
ρ3 + C1ρ+ C2 (D.11)

Applying Equation (D.8) directly gives C2 = 0 and, with some algebra Equation (D.7)

gives,

C1 =

(
G

6
+

G

3Bi

)
valid for Bi > 0. Thus the steady-state distribution of our transformed variable is

Uss =

(
G

6
+

G

3Bi − ρ2
)
ρ (D.12)

The next step is to find the homogeneous solution of

∂2Uh

∂ρ2
=
∂Uh

∂τ
(D.13)

Again, subject to Eqs. D.7,D.8, but now with a modified initial condition of
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Uh,0 = U0 − Uss

=

[
1−

(
G

6
+

G

3Bi − ρ2
)]

ρ (D.14)

This is a standard homogeneous partial differential equation. The solution is of the form

Uh = R(ρ)Γ(τ) (D.15)

The solution for Γ is given as

Γ = exp(−ζ2τ) (D.16)

The space-variable function R(ζ, ρ) satisfies the following eigenvalue problem:

d2R

dρ2 + ζ2R = 0 (D.17)

subject to

Rρ=0 = 0 (D.18)

and

[
dR
dρ + (Bi − 1)R

]
ρ=1

= 0 (D.19)

This eigenvalue problem is a special case of the Sturm-Liouville problem. The solution

for Uh can be constructed from known eigenvalue solutions,

Uh(ρ, τ) =
∞∑
n=1

cnR(ζn, ρ) exp(−ζ2τ) (D.20)

Application of the initial condition gives,
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F (ρ) =
∞∑
n=1

cnR(ζn, ρ) (D.21)

where F (ρ) is the initial condition defined from Eq D.9,

F (ρ) =

[
1− G

6

(
1 +

2

Bi − ρ2
)]

ρ (D.22)

The coefficients of cn can be determined by applying the operator
∫ 1

0
R(ζn, ρ) dρ and

utilizing the orthogonality property of eigenfunctions. The coefficients are found in the form

cn =
1

N(ζn)

∫ 1

0

R(ζn, ρ
′)F (ρ′) dρ′ (D.23)

The norm, N is a function of the eigenvalues,

N(ζn) =

∫ 1

0

[R(ζn, ρ)]
2 dρ (D.24)

The eigenfunctions for Equation (D.17) are

R(ζn, ρ) = sin(ζnρ) (D.25)

where the eigenvalues are the root of the following transcendental equation,

ζn cot(ζn) = −H (D.26)

the roots of which will be found numerically. The normalization integral is then solved

as

1

N(ζn)
= 2

ζ2n +H2

ζ2n +H2 +H
(D.27)

where H = (Bi − 1).

We substitute the coefficients of Equation (D.23), they can be substituted back into

Equation (D.20) and we have a solution for the homogeneous, transient distribution,
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Uh(ρ, τ) =
∞∑
n=1

exp(−ζ2τ)R(ζn, ρ)
N(ζn)

∫ 1

0

R(ζn, ρ
′)F (ρ′) dρ′ (D.28)

In order to explicitly express the solution, we will first set the integral equal to a function

Z(ζn) and evaluate as,

Z(ζn) =

∫ 1

0

R(ζn, ρ
′)F (ρ′) dρ′

=

∫ 1

0

sin(ζnρ′)
[
1−

(
G

6
+

G

3Bi − ρ
′2

)]
ρ′ dρ′

=

[
1−

(
G

6
+

G

3Bi

)]∫ 1

0

sin(ζnρ′)ρ′ dρ′ +
G

6

∫ 1

0

sin(ζnρ′)ρ
′3 dρ′ (D.29)

The two unique integrals are evaluated as

Cn =

∫ 1

0

sin(ζnρ′)ρ′ dρ′ =
sin ζn − ζn cos ζn

ζ2n

Kn =

∫ 1

0

sin(ζnρ′)ρ
′3 dρ′ = 3(ζ2n − 2) sin ζn − ζn(ζ

2
n − 6) cos ζn

ζ4n

Thus our Z function is

Z(ζn) =

[
1−

(
G

6
+

G

3Bi

)]
Cn +

G

6
Kn (D.30)

The homogeneous solution is then written in a compact form as,

Uh(ρ, τ) =
∞∑
n=1

exp(−ζ2τ) sin(ζnρ)
Z(ζn)

N(ζn)
(D.31)

The complete solution is then a superposition of Equation (D.12) and Equation (D.31),

U(ρ, τ) =

(
G

6
+

G

3Bi − ρ2
)
ρ+

∞∑
n=1

exp(−ζ2τ) sin(ζnρ)
Z(ζn)

N(ζn)
(D.32)

We now transform back to our dimensionless temperature,
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θ(ρ, τ) =

(
G

6
+

G

3Bi − ρ2
)
+

∞∑
n=1

exp(−ζ2τ)sin(ζnρ)
ρ

Z(ζn)

N(ζn)
(D.33)

D.3 Energy

We will want to compare the solution of Equation (D.33) to that of a sphere with the lumped

capacitance assumption. To facilitate comparison, we look to a measure of the energy of the

sphere (with radial dependence removed via integration of Equation (D.33)). The energy

will be nondimensionalized as,

E∗(τ) =
E(τ)

E0

(D.34)

where E0 is the initial energy of the sphere,

E0 = ρrCrV T0 (D.35)

Thus the nondimensional energy of the sphere at a given time, τ is

E∗(τ) =

∫
ρrCrT(ρ, τ)dV
ρrCrV T0

E∗(τ) =
1

V

∫
θ(ρ, τ) dV (D.36)

For a circle in spherical coordinates:

dV = r2 sin(ϕ)drdϕdθ (D.37)

For our sphere, this becomes:

dV = 4πb3ρ2dρ = 3V ρ2dρ (D.38)

The integral for dimensionless energy of our sphere is then,
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E = 3

∫ 1

0

[
G

6

(
1 +

2

Bi − ρ2
)
+

∞∑
n=1

exp(−ζ2τ)sin(ζnρ)
ρ

Z(ζn)

N(ζn)

]
ρ2 dρ (D.39)

This ultimately reduces to,

E∗ =

(
G

15
+

G

3Bi

)
+ 3

∞∑
n=1

exp(−ζ2τ)Z(ζn)
N(ζn)

Cn(ζn) (D.40)
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APPENDIX E

DEM Time Integration and Stability

The force field defined by Equation (3.1a) is rewritten in terms of the acceleration of the

particle. Note that the per-particle subscripts (i, j, etc.) will be temporarily omitted and

instead, time-varying quantities will have a subscript to refer to their temporal location t.

Equation (3.1a) becomes

at = g +
ft
m

(E.1)

The first step in the velocity-Verlet algorithm is to integrate the position of the particle

by a full time step based on the current time step’s velocity and acceleration. Note that the

initial condition of the particle must specify both position and velocity for this step to be

evaluated at the start, from then on the velocity is explicitly updated.

rt+∆t = rt + vt∆t+
1

2
at∆t

2 (E.2)

The particles at new positions interact as a function of their overlaps (see Eqs. 3.4). Ac-

celeration at the full time step is then calculated from the updated forces (of Equation (E.1)).

In the last computational step, the velocity at the full time step is found from an average

acceleration,

vt+∆t = vt +
at + at+∆t

2
∆t (E.3)

The velocity-Verlet algorithm is an efficient means of explicitly integrating the kinematic

equations for all the particles in the ensemble. The algorithm is stable with a global error of

approximately O(∆t2) for displacement.83 But, as an explicit method, the size of the time

step must be carefully chosen to avoid instabilities in the system.
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As mentioned when the integration algorithm was introduced in § 3.1.1, the velocity-

Verlet algorithm is a computationally efficient, second-order accurate means of updating the

kinematics of all the particles in the ensemble.111 The time step of the integration, however,

must often be very small to ensure that it is less than the time taken for a pressure wave

to propagate through the particle. The time step is further constrained by the quasistatic

assumption used to derive the Hertzian contact force such that inertial and relaxation effects

may be neglected.26 We will also show that, in order to avoid heat energy to propagate

further than a single pebble during a single time step, the thermal time step requirement is

orders of magnitude larger than the mechanical time step equivalent. And that the overall

minimum time step is thus driven by the mechanical stability.

In tandem with the requirement on very small time step, the thermal time-constants in

the ceramic breeder zones can be many hundreds of seconds. These two conditions seem

to conspire to force an unacceptably large requirement on the number of time steps for a

thermal DEM simulation and thus make numerical experiments impractical.

In this section we will analyze the calculation of a critical time step based on the speed

of a Rayleigh wave propagating along the surface of a particle. Then, with that knowledge

in hand, we will argue for scaling certain physical properties to allow for faster simulations

without sacrificing fidelity to the real physics of the problem.

E.1 Critical Dynamic time step

If we wish to choose a time step sufficiently small such that a pressure wave originating from

the contact of one particle does not propagate to other neighboring particles during the time

step, we must choose a time step smaller than the critical time step defined by Rayleigh

wave traveling through the solid.

When a force is applied to the surface of an elastic body, the force propagates along the

surface at the wave speed first solved by John William Strutt, 3rd Baron Rayleigh149 (when

he wasn’t discovering the scattering phenomenon explaining why the sky is blue or winning

the Nobel prize for discovering Argon),
255



uRa = K

√
G

ρ
(E.4)

where, again, G is the shear modulus and ρ is the density of the elastic material. The

K coefficient is a complicated function coming from Rayleigh’s solution but can be approx-

imated as165

K = 0.1631ν + 0.876605 (E.5)

which is valid for realistic values of Poisson’s ratio, ν, of elastic materials. From the

inverse of the Rayleigh wave frequency, we can directly find a time step for Rayleigh waves

on a sphere of radius, R,

δtRa =
πR

uRa
(E.6)

When we write this for any particle, i in the ensemble (exchanging the shear for elastic

modulus),

(δtRa)i =
πRi

0.1631νi + 0.876605

√
2(1 + νi)ρi

Ei

(E.7)

We allow for the particles in the system to have varying density, elastic modulus, and

size. Therefore the critical time step for the entire system is governed by the minimum value

of any particle’s Rayleigh time step.

δtc = min
∀i

[(δtRa)i] (E.8)

The ceramic materials identified for breeders have relatively high elastic moduli, on the

order of 10 × 1010 Pa. The smallest radius will be on the order of 10 × 10−4 m. The ceramic

density is approximately on the scale of 10 × 104 kg m−3. These values lead to a necessary

time step of
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δtc ∝ 10 × 10−7 s (E.9)

For a simulation that may last several hundreds of seconds of real time, this then requires

more than 10 × 109 time steps. If we have 10 × 104 particles in the simulation, each having

their position integrated over a billion times, it becomes obvious that computational time

is a major issue for our simulations of nuclear heating of ceramic breeder pebbles. If we

are able to reduce the critical time step (while perhaps decreasing the simulation time), the

simulations will be much more practical for research use.

E.2 Critical Thermal time step

In § 3.1.2, we introduced the dynamics of heat transfer between contacting particles in

an ensemble. As we integrate the energy of an individual particle in time, we must also

ensure that energy would not propagate through a particle faster than a single time step can

capture. In analogy to the critical time step for mechanical stability (e.g. Eq.E.6), we write

for particle i,

δtBi =
ρiCiVi
Hc

(E.10)

where ρiCiVi represents the inertial resistance to changing the temperature of Ti and

the conductance, Hc represents the speed at which energy is delivered to Ti from contact

conduction. Then from the definition of Hc we have given for smooth elastic spheres, this is

also written as

δtBi =
(4/3)πR2

i ρiCi

2k∗
Ri

a
(E.11)

For the material properties of lithium ceramics, as discussed for mechanical stability, we

can expect
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(4/3)πR2
i ρiCi

2k∗
≈ (10−4)2104103

100
= 10−1

But from the requirements on Hertz theory in appendix B, we have required that a
Ri

≪ 1.

Thus the time step for stability in the energy calculation is utterly negligible compared to

the mechanical stability.

Vargas and McCarthy187 make similar arguments, giving the criteria as,

dTi
Ti − Tj

≪ 1 (E.12)

and too note that the time step requirement for thermal calculations are orders of mag-

nitude less restrictive than the analogous restriction of the particle dynamics.

Thus we can be confident that any time step chosen for dynamic stability in the DEM

simulation will automatically satisfy the time step for thermal stability.
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APPENDIX F

Considering Natural Convection

Consider the simplest case of stagnant fluid in a packed bed, the momentum equation is

−∇P + ρg = 0 (F.1)

Taking the curl of the above yields

∇ρ× g = 0 (F.2)

In the Boussinesq approximation, density is only a function of temperature, thus we may

say

∇T × g = 0 (F.3)

Which shows the numerical condition for stability in a fluid is a vertical temperature gradient.

In horizontally-configured solid breeder volumes such as the European HCPB design, large

adverse temperature gradients exist from breeder zone center-line to the coolant structure

above, see the illustration of the EU HCPB in Figure F.1. Therefore it is worth considering

whether natural convective cells will arise in the purge helium flow.

Intrapore natural convection may increase effective conductivity of a medium and has

therefore received attention in the engineering field since the 1940s. The problem can be

considered as a porous medium analog to the Rayleigh-Benard problem and the solution for

a simple duct to be shown next follows similar mathematical constructs.

We consider a duct such that the upper boundary is at z = H and lower boundary at

z = 0, with respective temperatures of T0 and T0 +∆T . The adverse temperature gradient

∆T/H will give rise to natural convection under certain circumstances. Assuming that the

medium in this duct is homogeneous, isotropic, Darcy’s law is valid, and the Boussinesq
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Figure F.1: breeder units in EU design of HCPB feature breeding zones layered horizontally

with coolant above and below.

approximation is valid, the governing equations reduce to

∇ · v = 0 (F.4)

caρ0
dv
dt = −∇P − µ

K
v + ρfg (F.5)

(ρc)m
dT
dt + (ρcP )fv · ∇T = km∇2T (F.6)

where ca is an acceleration coefficient, unique to porous media. Its definition is described in

more detail in Ref.133 . Temperature dependence enters density via ρf = ρ0[1− β(T − T0)].

K is the permeability of the packed bed, its calculation will be shown later.
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For any variable with subscript as ψm, it is calculated as the two-phase average,

ψm = (1− ϵ)ψs + ϵψf (F.7)

One solution to Equation (F.4) is the stagnant, pure-conduction condition,133

vb = 0 (F.8)

Tb = T0 +∆T (1− z

H
) (F.9)

Pb = P0 − ρ0g

[
z +

1

2
β∆T

(
z2

H
− 2z

)]
(F.10)

Natural convection may be considered an instability in the conduction solution. Therefore

we consider the sensitivity of the above to small perturbations. The variables are then

v = vb + v′ (F.11)

T = Tb + T ′ (F.12)

P = Pb + P ′ (F.13)

which, when inserted back into the conservation equations and higher order perturbation

terms are neglected, yield

∇ · v′ = 0 (F.14)

aρ0
dv′

dt = −∇P ′ − µ

K
v′ − βρ0T

′g (F.15)

(ρc)m
dT ′

dt − (ρcP )f
∆T

H
w′ = km∇2T ′ (F.16)

We next nondimensionalize Equation (F.14) with the following dimensionless variables,

x∗ =
x

H
(F.17)

t∗ =
αmt

σH2
(F.18)

v∗ =
Hv′

αm

(F.19)

T ∗ =
T

∆T
(F.20)

P ∗ =
KP ′

µαm

(F.21)
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where σ is a heat capacity ratio,

σ =
(ρc)m
(ρcp)f

(F.22)

With nondimensional parameters, we arrive at the following form of nondimensionalized

equations

∇ · v∗ = 0 (F.23)

γa
dv∗

dt = −∇P ∗ − v∗ + RaT ∗k (F.24)
dT ∗

dt − w∗ = ∇2T ∗ (F.25)

where k is the unit vector in the z direction. The dimensionless parameters arising in the

momentum equation are

Ra =
ρ0gβKH∆T

µαm

(F.26)

γa =
caK

σPrmH2
(F.27)

Prm =
ν0
αm

(F.28)

Ra is the Darcian Rayleigh number, differentiated from the standard Rayleigh number by

the contribution of permeability, K. Prm is the overall Prandtl number of the two-phase

medium. And γa is a dimensionless acceleration coefficient of the fluid.

From Equation (F.24), we see the strength of the coupling between energy and momentum

is dependent on the magnitude of Ra; above a critical value, temperature gradients in the

medium will induce motion in the fluid.

Nield & Bejan provide a solution for the set of equations Equations (F.23) to (F.25)

assuming the acceleration parameter is negligibly small, γa = 0.133 The Darcy number,

K/H2 is generally quite small and is, in the case of ceramic breeder beds indeed small, and

their assumption is applicable. The homogeneous equations form an eigenvalue system for

which the eigenvalue is Ra. Ultimately, a stable and real solution is determinable provided

that

Ra =
(j2π2 + ω2)2

ω2
(F.29)
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where ω is an overall horizontal wavenumber and j = 1, 2, 3, . . . .133 The minimum of the

above occurs when j = 1 and ω = π and thus the critical Rayleigh number is Rac =

4π2 ≈ 39.48. This result suggests that conduction state remains stable for cases of Darcian

Rayleigh number less than 4π2, i.e. Ra < 39.48. For Rayleigh numbers larger than this

value, convective cells of cellular motion will appear in the porous media fluid.

Combarnous and Bia experimentally studied buoyancy-induced secondary flows through

a porous medium in rectangular duct.41 They found that in cases of large horizontal to

vertical aspect ratios, axial flow did not affect the critical Rayleigh number predicted by

linear stability theory. In horizontally-configured solid breeder volumes, aspect ratios are on

the order of A ≈ 30 and thus the critical Rayleigh number defined from perturbation theory,

Ra < 39.48, is applicable.

Thus we must finally calculate the Darcian Rayleigh number for a condition such as the

European HCPB. Permeability is defined from the relationship to the superficial velocity,

viscosity, and pressure drop,

Ū = −K
µ
∇P (F.30)

or

K = − Ūµ

∇P
(F.31)

where the pressure gradient of a spherical-packed bed can be determined from the Cozeny-

Karman relation given in Equation (2.48). Therefore, we write

K = Ūµ
d2p

180Ūµ

ϵ3

(1− ϵ)2
(F.32)

which reduces to

K =
d2p
180

ϵ3

(1− ϵ)2
(F.33)

For a well-packed bed, ϵ = 0.36, of 1 mm pebbles, the permeability is found to be K =

6.33 × 10−10 m2.

Taking a half-width of the EU HCPB of 1 cm with a temperature gradient of 400 K, we

may take fluid properties at an average value across the bed to ultimately find that the

Darcian Rayleigh number is Ra = 1.23 × 10−5 which is significantly less than the critical
263



Rayleigh number, 1.23 × 10−5 ≪ 39.5. We may therefore conclude that under standard

operating conditions of ITER-like solid breeder pebble beds natural convection will not

occur.

We may also consider the situation when there is no porous medium present in the duct.

In the condition of pure helium, standard Rayleigh number may be calculated,

Raf =
ρ0gβH∆T

µα
(F.34)

which, for helium between two constant temperatures separated by 1 cm results in a Rayleigh

number of only Raf = 4.86. For Rayleigh-Benard convective cells to form, the critical

Rayleigh number is around Raf = 1000, which is significantly higher than what we have

found. Ultimately, the narrowness of the solid breeder volume prevents buoyant forces from

ever overcoming viscous forces in the two-phase form of helium and lithium ceramic.
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