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Interstitial Cystitis-Associated 
Urinary Metabolites Identified 
by Mass-Spectrometry Based 
Metabolomics Analysis
Tobias Kind1, Eunho Cho2, Taeeun D. Park3, Nan Deng4, Zhenqiu Liu4, Tack Lee5, 
Oliver Fiehn1,6 & Jayoung Kim2,4,7,8

This study on interstitial cystitis (IC) aims to identify a unique urine metabolomic profile associated with 
IC, which can be defined as an unpleasant sensation including pain and discomfort related to the urinary 
bladder, without infection or other identifiable causes. Although the burden of IC on the American 
public is immense in both human and financial terms, there is no clear diagnostic test for IC, but rather 
it is a disease of exclusion. Very little is known about the clinically useful urinary biomarkers of IC, 
which are desperately needed. Untargeted comprehensive metabolomic profiling was performed using 
gas-chromatography/mass-spectrometry to compare urine specimens of IC patients or health donors. 
The study profiled 200 known and 290 unknown metabolites. The majority of the thirty significantly 
changed metabolites before false discovery rate correction were unknown compounds. Partial least 
square discriminant analysis clearly separated IC patients from controls. The high number of unknown 
compounds hinders useful biological interpretation of such predictive models. Given that urine analyses 
have great potential to be adapted in clinical practice, research has to be focused on the identification of 
unknown compounds to uncover important clues about underlying disease mechanisms.

More than 3–8 million women and 1–4 million men are diagnosed with Interstitial Cystitis (IC), also known 
as Painful Bladder Syndrome, in the US annually1. IC impacts health-related qualities of life immensely, and in 
some instances can be more debilitating than end-stage renal disease2,3. In spite of an increase in the number of 
diagnosed cases, objective diagnostic criteria are not consistently applied in general practice4. Some lower urinary 
tract symptoms, such as overactive bladder (OAB), have symptoms in common with IC, further complicating the 
diagnosis. Diagnosis of the disease has been dependent on clinical parameters (e.g. pain, urgency, and frequency) 
due to the lack of proper conventional markers (e.g. PSA for prostate cancer diagnosis)3,5. Diagnostic tests include 
urinalysis, urine culture, cystoscopy, bladder biopsy and hydrodistention of the bladder. Nonetheless, we still lack 
definite criteria for the disease. Estimates of the prevalence and natural history of IC still fluctuate widely because 
of different diagnostic standards, populations evaluated, and challenges inherent in following patients over time6. 
Thus, the identification of sensitive and non-invasive biomarkers has the potential to greatly improve the accuracy 
of an IC diagnosis. However, our current understanding of mechanisms involving pelvic pain is also unclear and 
fragmented.

Urinary metabolites represent a signature of a subject’s metabolic state and may convey critical information 
about the pathophysiology of disease. This may be especially true for pelvic disorders because urine is the body 
fluid most proximal to the urinary tract. Because metabolites vary in size, chemistry and physicochemical prop-
erties, a single platform has only a limited capacity to interrogate the entire metabolome in a given body fluid. Use 
of more than one platform spanning different technologies is the preferred means of performing comprehensive 
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metabolome analyses. Urine excretions represent a snapshot of many metabolic endpoints including those from 
food, drugs, nutrients and bacterial transformations. This renders urine analysis very challenging due to the com-
plexity, sources and numbers of metabolites.

In this study, we performed gas-chromatography time of flight mass spectrometry (MS)-based metabolomics 
analysis. Our goal here was to increase coverage of known metabolites that may play a role in IC and to gain new 
insight into disease mechanisms. Previous global metabolomics profiling of urine from IC patients suggests that a 
urinary metabolic signature for IC can be detected using platforms such as Nuclear Magnetic Resonance (NMR) 
and Liquid chromatography–mass spectrometry (LC-MS). The experimental results from this paper suggest that 
candidate metabolites were found to be associated with IC, and that the IC metabolic signature can be identified 
in patient urine. Using multiparametric models such partial least squares discriminant analysis IC metabolic 
signature can stratify patients from control subjects.

Results
Characteristics of the study subjects. A clinical diagnosis of IC was made by two independent urolo-
gists, according to NIDDK criteria (e.g. frequency, urgency, bladder pain, discomfort and the presence of glo-
merulations during cystoscopic hydrodistention), before any treatment or medication was given. Only subjects 
of > 2 month “free of treatment or medication” were included. In total, we enrolled 63 female subjects (42 IC 
patients and 21 normal controls) with a mean age of 51. Given that most of patients (over 80%) are women, we 
recruited only female patients for this particular study to seek potential sex-specific urine biomarkers for female 
IC patients. Population-based, age-matched controls were recruited from one clinic using the same standard 
operating procedures (SOPs) during the same research period (2010–2013).

GC-TOF MS analysis of urine specimens from IC patients and controls. We investigated the metab-
olite profile of the individual urine samples using GC-TOF mass spectrometry. Our analysis and data requisition 
resulted in a total of 490 metabolites detected (200 known and 290 unknown metabolites).

Data were autoscaled and mean-centered. The scores plot for partial least squares (PLS) components showed 
differentiation of the IC samples from controls with good separation and dispersion (Fig. 1A). We assessed the 
accuracy of our predictive model using the leave-one-out cross-validation method as well as the randomized 
permutation (Fig. 1B). The observed statistic of this analysis using MetaboAnalyst 3.0 software1 was significant 
at p =  0.005, suggesting that the model significantly differentiate patients from healthy controls. A heat map also 
showed the distinct expression patterns of metabolites between IC and controls (Fig. 1C). These metabolites are 
responsible for the significant difference between IC and controls with fold change either greater than 1.20 or less 
than 0.83 and p-value less than 0.1.

Identification of differentially expressed metabolites in urine of IC patients. Given 490 detected 
metabolites, we investigated 52 differentially expressed metabolites, including both annotated and unannotated 
metabolites. In the volcano plot (Fig. 2A), annotated metabolites are presented as log2 fold change against the 
–log10 (p) of the differential expression between IC patients and healthy controls. 22 annotated differentially 
expressed metabolites above the threshold (FC >  1.20 or FC <  0.83, and P <  0.1) are marked and presented. 
Erythronic acid and histidine, were the most upregulated metabolites in the IC patient group compared to that in 
control, while tartaric acid were the most downregulated as shown in Fig. 2B and Table 1.

Network modeling derived from IC-associated metabolites. We performed analysis the histidine- 
associated differential module (subnetwork) using multilevel local graphical model7 (Fig. 3). The differential  
network represents the changes of correlation structure in IC when compared to the background network. Levels 
of two metabolites, valine and histidine (in red circle), are increased in IC. The interactions (correlations) among 
metabolites indicate that those metabolites may biologically function together. Generally, the variations of inter-
actions among metabolites under different clinical conditions are associated with IC status. Sparse local graphical 
model8 is used to construct both common and differential metabolite networks simultaneously. Treating each 
metabolite, in turn, as the response variable and the remaining annotated metabolites as predictors, and running 
the sparse regression built the network. In such an approach, for each metabolite xi, the regression model is 
defined as

α β ε= + +− −x X yX ,i i i i i i

where X−i are the metabolite expression values except for metabolite xi, and y (1/0) represents IC (1) or control 
(0). The common and differential networks are formed by collecting all of the αis and βis, respectively. Parameters 
(αi) determine the direct correlations between metabolite xi and the remaining metabolites, and αij ≠  0 indicate 
there is a partial correlation (edge) between metabolites xi and xj, giving the remaining metabolites. Moreover, 
βi measure y dependent associations and differential correlations across different clinical condition. Parameter 
βij ≠  0 indicates that there is a differential interaction between metabolites xi and xj in IC and control.

Cytoscape (www.cytoscape.org/) was used for differential network visualization and subnetwork identifica-
tion. The proposed approach identified the IC associated differential network efficiently (Fig. 3). For further 
understanding on our metabolite signature, software MetaboAnalyst was used for functional enrichment analysis. 
Metabolite enrichment analysis allows us to study the corresponding biological pathways of IC with metabolites 
on the differential network. We performed Metabolite Set Enrichment Analysis (MSEA) with the 18 metabo-
lites, which were derived from data in Fig. 3. We found that those 18 metabolites are highly enriched in Protein 
Biosynthesis and Ammonia Recycling with the FDR of 0.0000136 and 0.00557, respectively (Fig. 4).

http://www.cytoscape.org/
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Discussion
In this study we profiled 490 metabolites in human urine specimens for IC diagnosis using GC-TOF MS. 
Metabolites including histidine, erythronic acid, and tartaric acid were found to have the highest fold-changes. 
Power analysis and false discovery rate correction (FDR, Benjamini-Hochberg) suggests that the study sample 
size has to be increased to validate any findings. The present report has provided evidence that metabolic finger-
prints can predict IC patients using multiparametric models such as PLS-DA, however it remains to be deter-
mined whether these metabolites might have biological and mechanistic meanings. Especially the large number 
of unknown compounds is challenging (59% in this study), because without structural annotation, unnknown 
metabolites can only be partly assigned to larger biochemical modules through mass spectral similarity analysis. 
Some unknowns may even ultimately prove to be chemical contaminants and should be excluded from multipar-
ametric models. One solution to increase mass spectral library coverage is to use quantum chemical simulations 

Figure 1. Differentiation of IC patients and healthy control groups using multivariate analysis. (A) Partial 
least square-discriminant analysis (PLS-DA) score plot of the IC and control groups. PLS-DA plot showed a 
clear separation of metabolites between patients and matched control subjects. Red: control samples; Green: 
IC patient samples. The model was established using three principal components. (B) For model evaluation, 
the class prediction results based on cross model validation predictions of the original labeling compared to 
the permuted data assessed using the separation distance. Histogram shows distribution of separation distance 
based on permutated data. Red arrow indicates observed statistic (P =  5e-04). (C) A heatmap of 52 differentially 
expressed metabolites in IC and control groups. Among 490 detected metabolites in total, 52 metabolites, 
including both annotated and unannotated metabolites, were significantly altered in IC patients compared to 
controls (FC >  1.20 or FC <  0.83 and P <  0.1).
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predict electron ionization mass spectra9 or to utilize novel machine learning methods to improve compound 
identification10. This can also include novel metabolic compounds that can be expected to exist from known 
metabolic transformations11.

Histidine, one of essential amino acids in humans, is a known precursor of the neurotransmitter histamine. 
Increased histidine level leads to increase of histamine level in blood, brain and possibly bladder, suggesting 
the possibility that histidine may have many other possible functions affecting human bladder sensory system. 
Previous work using IC rat model demonstrated that overexpression of monocyte chemo-attractant protein-1 
(MCP-1) in bladder tissues contributes histamine production and IC12. More recently, findings from animal 
model suggest that mast cell-derived histamine mediates IC-associated pain. Authors showed that histamine 
receptors 1 and 2 modulate pelvic pain and antihistamines attenuate bladder pain in their animal model. We 
believe the simplest explanation for this finding is that an increased secretion of histamine and histidine (pre-
cursor of histamine) may be associated with IC symptoms mediated by mast cells infiltrated in bladder. Other 
candidate metabolites from our study are summarized in Table 1.

Previous studies have suggested a series of IC biomarker candidates, including antiproliferative factor13,  
phenylacetylglutamine14, interleukin-6, histamines15, nerve growth factor et al. Our laboratory also found 
tyramine and 2-oxoglutarate as urinary biomarkers for IC diagnosis16. More recently, the Multidisciplinary  
Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network identified Etio-S (etiocholan-3α -ol-17 
-one sulfate) to discriminate IC patients from healthy controls17. This urinary sulfometabolome profiling study 
was performed using Liquid Chromatography–Mass Spectrometry (LC–MS) in female subjects who had high 
symptom scores as well as high pelvic pain/pressure/discomfort scores.

Metabolic fingerprints shown in a heatmap (Fig. 1C) consist of 22 annotated metabolites among 52 metab-
olites shown in a heatmap (Fig. 1C) including histidine, valine, tartaric acid, and erythronic acid et al. These 

Figure 2. A volcano plot showing differentially expressed metabolites in IC patients. (A) 22 annotated 
metabolites were significantly altered in IC patients compared to controls (FC >  1.20 or FC <  0.83 and P <  0.1). 
The red dots represent metabolites above the threshold. The further the metabolite’s position away from the  
(0, 0), the more significant the metabolite is. (B) A boxplot showing up-regulated and down-regulated 
metabolites that could be used to differentiate IC patients from normal subjects. The candidate metabolites, 
erythronic acid and histidine, were significantly increased in IC patients compared to that in controls, while 
tartaric acid was significantly decreased. All metabolites show statistical significance with p-value <  0.1.
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metabolites are listed in Table 1. This metabolic fingerprint might be applicable to segregate IC patients from 
healthy controls in the clinical setting, although it is out of scope of this study.

Urine analysis is certainly challenging due to its high biological variance, because urine is a sink for all water 
soluble metabolites coming from food sources, the microbiome, drugs, chemicals and generally the exposome. 
However urine can be collected non-invasively, across all age ranges and in large quantities compared to blood, it 
is also an excellent matrix for personalized clinical profiles.

For robust statistical analysis many confounding factors such as age, race, geographical location or food intake 
have to be considered. Subject meta-data may be collected through questionnaires at time of sample collection in 
the clinic, but it can also be assessed through thorough chemical profiling analyses, called exposome screening 
(e.g. for pharmaceutical agents or food biomarkers). For example the compound 2-furoylglycine can be used to 
diagnose fatty acid beta-oxidation disorders, but is also found in food prepared by strong heating (http://www.
hmdb.ca/metabolites/HMDB00439). Cotinine is a known marker for exposure to cigarette smoke, and other 
metabolites are known food markers such as caffeine and theobromine for coffee consumption. Such markers can 
be easily collected along with metabolomic analyses and could be used to stratify patient cohorts or to adjust for 
exposure parameters during data analysis.

Urine metabolite levels are currently collected from published reports18. However individual urinary metab-
olite levels are currently not collected in large databases. Therefore it is difficult to determine minimum, mean, 
maximum levels of specific metabolites or to perform correlations to dietary intake, which would affect the valid-
ity of certain biomarkers. Here efforts have to be undertaken to collect such profiles, similar to personalized 
efforts that will sequence individual humans or collect individual metabolic profiles from blood.

In summary, our GC-TOF MS analysis suggested a number of metabolite candidates associated with IC. Large 
cohorts have to be utilized to validate predictive biomarkers or models. This method may provide novel opportu-
nities for better diagnosis and clinical management of IC, particularly in a non-invasive manner. A major clinical 
challenge remains the early diagnosis of IC. Given that these current findings from this study, although it is out 
of scope of this study, however we will aim to test whether abnormal metabolism is a key hallmark of IC as a next 
step. Our metabolic biomarker panel provides the prospect for assisting predictive factor to determine severity of 
urinary symptoms and pain/discomfort of IC patients.

Num Name Fold-change p-value FDR

1 Unknown BB_31554 2.56 0.000132 0.064576

2 Unknown BB_34163 0.55 0.000514 0.12586

3 oleic acid 0.63 0.001933 0.315675

4 2-deoxytetronic acid 1.26 0.008732 0.571396

5 Unknown BB_17651 0.66 0.009136 0.571396

6 saccharic acid 0.80 0.012642 0.571396

7 Unknown BB_17140 1.44 0.015588 0.571396

8 phosphate 0.70 0.016252 0.571396

9 trehalose 1.79 0.017026 0.571396

10 Unknown BB_5900 0.81 0.017487 0.571396

11 erythronic acid 2.25 0.018393 0.571396

12 Unknown BB_109809 0.56 0.018576 0.571396

13 oxalic acid 0.48 0.018665 0.571396

14 Unknown BB_34027 0.44 0.019904 0.571396

15 Unknown BB_1704 0.63 0.020865 0.571396

16 sulfuric acid 0.31 0.021197 0.571396

17 Unknown BB_23635 0.69 0.02138 0.571396

18 cystine 1.47 0.021607 0.571396

19 Unknown BB_3029 0.70 0.022156 0.571396

20 Unknown BB_12330 2.19 0.02596 0.614149

21 Unknown BB_31549 0.37 0.026702 0.614149

22 lyxitol 1.42 0.028288 0.614149

23 Unknown BB_31756 1.74 0.028827 0.614149

24 lysine 1.49 0.034624 0.706901

25 histidine 1.79 0.040576 0.743323

26 Unknown BB_31359 0.81 0.043988 0.743323

27 Unknown BB_5121 0.64 0.045462 0.743323

28 Unknown BB_100869 1.58 0.046685 0.743323

29 Unknown BB_3294 1.37 0.046907 0.743323

30 Unknown BB_31764 1.33 0.048566 0.743323

Table 1.  A list of metabolites differentially expressed in IC, compared to controls (p-level = 0.005, FDR 
(Benjamini Hochberg).

http://www.hmdb.ca/metabolites/HMDB00439
http://www.hmdb.ca/metabolites/HMDB00439
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Materials and Methods
Ethics statement. The Ethics Committee of Inha University Hospital in South Korea approved this study. 
The Institutional Review Board of Inha University Hospital approved collection, curation and analysis of all sam-
ples. All subjects participated in this study provided written informed consent, and all experiments were per-
formed in accordance with relevant guidelines and regulations.

Subjects and urine specimen collection. IC patients and healthy control subjects were diagnosed and 
recruited from an outpatient urology clinic at Inha University Hospital. Work-up included symptom assessment, 
cystoscopic evaluation, physical examination, urodynamics, and/or urine culture. Patients with a history of other 
diseases (such as any types of cancer, inflammation, or diabetes, etc.) were excluded. All subjects were of Asian 
female descent resident in South Korea. To avoid possible contamination with vaginal or urethral cells, first 
morning urine specimens were obtained using clean catch methods in a sterile environment. The de-identified 
specimens were sent to clinical laboratory and were centrifuged to remove cell debris. Supernatants were pro-
cessed into individual aliquots of 1 ml/tube, before storage at − 80 °C until further analysis.

GC TOF-MS analysis of urine. The gas-chromatography/mass-spectrometry (GC-MS) analysis was  
performed19,20. Normally, 10 ul of urine are dissolved in 1 ml − 20 °C cooled acetonitrile, isopropanol and water 
(3:3:2 v/v) mixture at pH 7. In this case the urine volume was adjusted between 2 and 10 ul to externally measured 
creatinine levels using a linear calibration curve. Then the solution was vortexed at 4 °C for 5 minutes in 1.5 ml 
Eppendorf tubes. Samples were centrifuged for 2 min at 14,000 rcf and 500 ul were aliquoted. The aliquot was 
the evaporated in a Labconco Centrivap cold trap to complete dryness. The methoximation step was performed 
with 10 ul of a solution of 40 mg/ml O-methylhydroxylamine hydrochloride (CAS: [593-56-6]; Formula CH5NO.
HCl) and 90 minutes shaking at 30 °C. Then 90 ul of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) was 
added and shaken at 37 °C for 30 min. Then a mix of 1 ul fatty acid methyl esters (FAME) retention time markers 
was added. The mixture was transferred to amber crimp autosampler vials. Measurements were performed on a 
Leco Pegasus IV TOF coupled to an Agilent 6890GC with Agilent 6890 split/splitless injector. The column was a 
Restek RTX-5Sil MS (95% dimethyl/5% diphenyl polysiloxane) with 30 m length, 0.25 mm i.d. and 0.25 um film 
thickness with 10 m guard column. Injection volume was 1 ul at 250 °C. The GC parameters were set to 1 ml/min  
constant flow Helium and an oven ramp of 50 °C (1 min hold) to 330 °C at 20 °C/min, 5 min hold before 
cool-down. The transfer line temperature was 280 °C and spectra were recorded in electron ionization mode at 
70 eV with a filament temperature of 250 °C TOF and scan range of 85–500 u. All the raw data was deposited to 
the Metabolomics Workbench repository under study ID ST000381.

Figure 3. Network modeling derived from IC-associated metabolites. Histidine associated differential 
module (subnetwork) is shown, where the red nodes indicate upregulated metabolites and light blue nodes 
represents non-differentiated metabolites.
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Annotation and ID of compounds. The peak and compounds detection or deconvolution was performed 
with the Leco ChromaTOF software. Spectra were matched against the FiehnLib mass spectral and retention 
index library20. Post-curation and peak replacements were performed with the in-house developed BinBase soft-
ware and the sample matrix with all known and unknown compounds exported to a Microsoft EXCEL sheet. A 
total of 490 compounds were detected. 200 compounds were annotated as known compounds by retention index 
and mass spectral matching and 290 compounds remain unknown.

Data processing. We excluded one subject from the IC patient group and three subjects from controls 
because their spectra were outliers based on PCA analysis. To identify potential metabolites as marker candidates 
that can discriminate IC patients from healthy subjects, we applied the following steps. Data was normalized and 
the t-test was applied on the log2 of the processed data. The Student’s t-test was performed to extract significant 
metabolites from the normalized GC-MS data. 30 metabolites had levels of p-value threshold <0.05. Twelve of 
these were known metabolites, the remainder unknown metabolites. After false positive correction (FDR) using 
Benjamini–Hochberg procedure none of the p-values remained significant on the chosen level of 0.05.

The volcano plot shows the fold change and the significance of each annotated metabolite. The significant 
metabolites were selected by volcano plot with fold change threshold > 1.20 (or <0.83) and t-tests p-value 
threshold < 0.1. Second, the resultant profiles, which contain profiles of 22 annotated differentially expressed 
metabolites, were imported into MetaboAnalyst version 3.01. Log transformation and mean-centered with 
auto scaling were performed prior to multivariate statistical analysis. Partial least square discriminant analysis 
(PLS-DA) was performed, and model evaluation with permutation strategy was carried out according to a 
published protocol21.

Figure 4. Differential network in IC is identified with multilevel local graphical model7. The differential 
network represents the changes of correlation structure in IC when compared to the background network. 
Two metabolites (in red) are also upregulated in IC. The interactions (correlations) among metabolites indicate 
those metabolites may function together biologically. Metabolite Set Enrichment Analysis (MESA) with the 18 
metabolites shows that those metabolites are highly enriched in Protein Biosynthesis and Ammonia Recycling 
with the FDR of 0.0000136 and 0.00557, respectively. The following is the result of MSEA.
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