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Abstract 

This paper addresses the issue of how to compute the intensity 

of surprise in an artificial agent. Resolution of this issue is 

important for the further specification of the computational 

model of surprise proposed by Macedo and Cardoso (2001) 

that was implemented in artificial agents “living” in a multi-

agent environment. This model of surprise is mainly rooted in 

the cognitive-psychoevolutionary model of surprise proposed 

by the research group of the University of Bielefeld (Meyer, 

Reisenzein, & Schützwohl, 1997) and in proposals by Ortony 

and Partridge. We propose several possible functions to 

compute the intensity of surprise. To assess their accuracy, 

they were evaluated in an experimental test that focused on 

the comparison of surprise intensity values generated by 

artificial agents with ratings by humans under similar 

circumstances. 

Introduction 
Considered by many authors a biologically fundamental 

emotion (e.g.: Ekman, 1992; Izard, 1991), surprise may play 

an important role in the cognitive activities of intelligent 

agents, especially in attention focusing (Izard, 1991; Meyer 

et al., 1997; Ortony & Partridge, 1987; Reisenzein, 2000b), 

learning (Schank, 1986) and creativity (Boden, 1995; 

Williams, 1996). Psychological experiments conducted by 

Meyer, Reisenzein and Schützwohl provide evidence that 

surprising-eliciting events initiate a series of mental 

processes that (a) begin with the appraisal of a cognized 

event as exceeding some threshold value of unexpectedness 

or schema discrepancy, (b) continue with the interruption of 

ongoing information processing and the reallocation of 

processing resources to the surprise-eliciting event, and (c) 

culminate in the analysis and evaluation of that event plus 

immediate reactions to it and/or schema (belief) 

updating/revision. According to these authors, surprise has 

two main functions, the one informational and the other 

motivational: it informs the individual about the occurrence 

of a schema-discrepancy, and it provides an initial impetus 

for the exploration of the unexpected event. Thereby, 

surprise promotes both immediate adaptive actions to the 

unexpected event and the prediction, control and effective 

dealings with future occurrences of the event. 

Ortony and Partridge's (1987) model of surprise shares 

several aspects with the one proposed by Meyer, Reisenzein 

and Schützwohl (1997), especially in that both models 

assume that surprise is elicited by unexpected events. The 

same is also true for Peters’ (1998) computational model of 

surprise, implemented in a computer vision system, that 

focuses on the detection of unexpected movements. Finally, 

models of surprise have also been proposed in the fields of 

knowledge discovery and data mining (e.g. Suzuki & 

Kodratoff, 1998). 

Macedo and Cardoso (e.g., Macedo & Cardoso, 2001)) 

developed a computational model of surprise that is an 

adaptation (although with several simplifications) of the 

models proposed by Meyer, Reisenzein and Schützwohl 

(1997) and by Ortony and Partridge (1987). In the present 

article, we elaborate and evaluate this model further by 

discussing different possible functions for the computation 

of surprise and by evaluating these functions in an empirical 

study. 

The following section describes Macedo and Cardoso’s 

surprise model in more detail, including an overview of its 

theoretical background models. Subsequently, we discuss 

several possible functions for computing the intensity of 

surprise. Finally, we describe an experimental test that was 

carried out to evaluate the accuracy of these surprise 

functions. 

Surprise Model 
As mentioned, the surprise model developed by Macedo and 
Cardoso (2001) is mainly based on Ortony and Partridge’s 
(1987) proposals and on those of Meyer, Reisenzein and 
Schützwohl (1997). Therefore, we first give an overview of 
these background theories and then explain the 
computational model proposed by Macedo and Cardoso, by 
comparing it with these two models. 
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Background Models 
Although Ortony and Partridge agree with Meyer, 
Reisenzein and Schützwohl and other authors that surprise 
is caused by events that are commonsensically called 
unexpected, they proposed that unexpectedness covers two 
cases. First, surprise results when prior expectations 
regarding an event are disconfirmed. Second, however, 
surprise can also be caused by events for which expectations 
were never computed. That is, according to Ortony and 
Partridge, there are situations in which one is surprised 
although one had no explicit expectations (either conscious 
or unconscious) regarding the surprising event. Ortony and 
Partridge also proposed that surprisingness is an important 
variable in artificial intelligence systems, particularly in 
attention and learning. 

In more detail, Ortony and Partridge's model of surprise 

assumes a system (or agent) with an episodic and semantic 

propositional memory whose elements may be immutable 

(propositions that are believed to be always true) or typical 

(propositions that are believed to be usually but not always 

true). Furthermore, they distinguish between practically 

deducible propositions and practically non-deducible 

propositions. Practically deducible propositions comprise 

all propositions that are explicitly represented in memory, as 

well as those that can be inferred from these by few and 

simple deductions. Hence, practically deducible 

propositions are that subset of formally deducible 

propositions that don’t require many and complex 

inferences. Furthermore, practically deducible propositions 

may be either actively or passively deduced. In the former 

case, their content corresponds to actively expected or 

predicted events; in the latter case, to passively expected 

(assumed) events. 

Based on these assumptions, Ortony and Partridge 

proposed that surprise results when the system encounters a 

conflict or inconsistency between an input proposition and 

preexisting representations or representations computed 

“after the fact”. More precisely, surprise results in three 

situations (Table 1 presents the corresponding range of 

values): (i) active expectation failure: here, surprise results 

from a conflict or inconsistency between the input 

proposition and an active prediction or expectation; (ii) 

passive expectation failure (or assumption failure): here, 

surprise results from a conflict or inconsistency between the 

input proposition and what the agent implicitly knows or 

believes (passive expectations or assumptions); and (iii) 

unanticipated incongruities or deviations from norms: here, 

surprise results from a conflict or inconsistency between the 

input proposition (which in this case is a practically non-

deducible proposition) and what, after the fact, is judged as 

normal or usual (Kahneman & Miller, 1986), that is, 

between the input proposition and practically deducible 

propositions (immutable or typical) that are suggested by 

the unexpected fact. Note that, in this case, prior to the 

unexpected event there are no explicit expectations (passive 

or active) with which the input proposition could conflict. 

In their cognitive-psychoevolutionary model, Meyer, 

Reisenzein and Schützwohl also assume that surprise 

(considered by them as an emotion) is elicited by the 

appraisal of unexpectedness. 

 

Table 1:  Three different sources of surprise and 

corresponding value ranges (adapted from (Ortony & 

Partridge, 1987)). 
 

Related Cognition Confronted 

proposition Active Passive 

Immutable [1]; SA=1; Prediction [2]; SP=1; Assumption 
Typical [3]; 0< SA<1; Prediction [4]; SP<SA; Assumption 

Immutable [5]; ∅ [6]; SP=1; none 
Typical [7]; ∅ [8]; 0< SP<1; none 
 

More precisely, it is proposed that surprise-eliciting 

events give rise to the following series of mental processes: 

(i) the appraisal of a cognized event as exceeding some 

threshold value of unexpectedness (schema-discrepancy) - 

according to Reisenzein (2001), this is achieved by a 

specialized comparator mechanism, the unexpectedness 

function, that computes the degree of discrepancy between 

“new” and “old” beliefs or schemas; (ii) interruption of 

ongoing information processing and reallocation of 

processing resources to the investigation of the unexpected 

event; (iii) analysis/evaluation of that event; and (iv) 

possibly, immediate reactions to that event and/or updating 

or revision of the “old” schemas or beliefs. 

Overview of the Computational Model of Surprise 
Macedo and Cardoso (e.g., Macedo & Cardoso, 2001) 
developed a multi-agent environment in which, in addition 
to inanimate agents (objects such as buildings), there are 
two main kinds of animate, interacting agents: the “author-
agents” or creators, whose main function is to create things 
(objects, events), and the “jury-agents” or explorers whose 
goal is to explore the environment by analyzing, studying 
and evaluating it. An agent can also show both of these 
activities (creation and exploration). 

The computational model of surprise is integrated into the 

motivations module of the architecture of the artificial 

agents (see Figure 1). The other modules of this architecture 

are: sensors/ perception; memory; goals/desires; and 

reasoning/decision-making. This last module and the 

module motivations are provided with information from the 

world obtained through sensors/perception, as well as with 

information recorded in memory. The reasoning/decision-
making module then computes the current state of the world. 

Afterwards, probability theory is applied to predict possible 

future states of the world for the available actions, and a 

utility function (which makes use of the intensity of the 

generated emotions) is applied to each of these world states. 

Finally, the action that maximizes the utility function is 

selected. 

The computational model of surprise incorporated in this 

agent system is an adaptation (although with some 

simplifications) of the surprise model proposed by Meyer, 

Reisenzein and Schützwohl in which the above-mentioned 

four mental processes elicited by surprising events are 
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present. The suggestions by Ortony and Partridge are 

mainly concerned with the first of these steps, and are 

compatible with the Meyer, Reisenzein and Schützwohl 

model. Accordingly, in our model, we drew on the 

assumptions of Ortony and Partridge for the implementation 

of the appraisal of unexpectedness and the computation of 

the intensity of surprise, as well as for the selection of 

knowledge structures. 

In Macedo and Cardoso’s model, knowledge is 

exclusively of an episodic kind (for an example, see Figure 

2), rather than being both semantic and episodic in nature 

(although this will be considered in future work), as in 

Ortony and Partridge’s model. In this respect, the 

knowledge structure of our model also differs from the 

schema-theoretic framework of the Meyer, Reisenzein and 

Schützwohl model that also assumes both episodic and 

semantic knowledge. In our model, an input proposition (or 

new belief) is therefore always compared with episodic 

representations of objects or events (or their properties) (for 

instance an object with squared windows, rectangular door, 

etc.). Besides, the agent has in its episodic memory explicit 

representations of similar objects. Following Ortony and 

Partridge, we also distinguish between deducible and non-
deducible, active and passive, immutable and typical 
propositions as well as between different possible sources of 

surprise (see Table 1). The immutability of a proposition 

can be extracted from the absolute frequency values 

associated with the cases stored in episodic memory (see 

Figure 2). For instance, in the example shown in Figure 2, 

the proposition “houses have square facades” is immutable 

(since all the houses in memory have squared facades), 

whereas “houses have square windows” is a typical 

proposition with a probability (immutability) value of 0.50 

(as implied by Ortony and Partridge’s model, in our model 

immutability is a continuous variable). 

 

World

Agent

Deliberative Reasoning /
Desicion-making

Motivations

Memory Sensors

Efectors

Goals, Desires

 
Figure 1:  Architecture of an agent. 

 

50 40 5 5Abs. Freq.

Behavior

Function

Structure

C1 C2 C3 C4
CaseField

House House Church Hotel

Static Static Static Static

  
Figure 2:  Example of an episodic memory in the domain of 

buildings. 

 

The usual activity of the agents consists of moving 

through the environment hoping to find interesting things 

(objects or events) that deserve to be investigated. We 

assume that this exploratory behavior is ultimately in the 

service of other (e.g., hedonic) motives, although this issue 

is not explicitly addressed in the present model. When one 

or more objects/events are perceived, the agent computes 

expectations for the missing information (e.g., “it is a house 

with 67% of probability”, “it is a hotel with 45% of 

probability”, etc.; note that the function of a building 

becomes available to the agent only when its position and 

that of the building are the same). On the basis of the 

available information (e.g., the visible structure of an 

object) and the computed expectations (e.g., predictions for 

the function of an object), the agent then determines the 

intensity of surprise that may be caused by the object/event 

(these computations, which correspond to the “appraisal of 

unexpectedness” in the Meyer, Reisenzein and Schützwohl 

model, are described in more detail below). Subsequently, 

the object/event with the maximum estimated surprise is 

selected to be visited and investigated. This corresponds to 

the “interruption of ongoing activity” and the "reallocation 

of processing resources" assumed in the Meyer, Reisenzein 

and Schützwohl model. The previously estimated value of 

surprise may subsequently be updated on the basis of the 

additional information acquired about the object/event. The 

object/event is then stored in memory and the absolute 

frequencies of the affected objects/events in memory are 

updated. This is a simplification of the fourth step of the 

Meyer, Reisenzein and Schützwohl model (for alternative 

approaches to belief revision, see, for instance, (Gärdenfors, 

1988)). 

The different surprise-eliciting situations distinguished by 

Ortony and Partridge are dealt with in our model in the 

following way. As said above, when an agent perceives an 

object, it first computes expectations (deducible, active 
expectations) for missing information (e.g., “it is a hotel 

with 45% of probability”). If, after having visited that 

object, the agent detects that the object is different from 

what was expected (e.g., if it is a post office), the agent is 

surprised because its active expectations conflict with the 

input proposition (note that, in our model, belief conflicts 

may be partial as well as total). This is thus an example of 

the first source of surprise distinguished by Ortony and 

Partridge. In contrast, when an agent perceives an aspect or 

part of an object with particular properties (e.g., a building 

with a window of a circular shape) that were not actively 

predicted, it may still be able to infer that it expected 

something (e.g., a rectangular-shaped window with, 45% 

probability, a square-shaped window with 67%, etc.). This 

is an example of a deducible, passive expectation: although 

the expectation was not present before the agent perceived 

the object, it was inferred after the object had been 

perceived. This case is therefore an example of the second 

source of surprise distinguished by Ortony and Partridge, 

where an input proposition conflicts with an agent’s passive 
expectations. Finally, when an agent perceives an object 

with a completely new part (e.g., a building with no facade), 

it has neither an active nor a passive expectation available. 
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The reason is that, because there are no objects of this kind 

(e.g., buildings with no facade) stored in the agent’s 

memory, the agent cannot predict that such objects might be 

encountered. The perception of an object with a completely 

new part is thus an example of a non-deducible proposition. 

This is an example of the third source of surprise 

distinguished by Ortony and Partridge: there is a conflict 

between the input proposition (e.g., “the house has no 

facade”) and what after the fact is judged to be normal or 

usual (e.g., “buildings have a facade”). 

The Computation of Surprise Intensity 
We now address the question of how the intensity of 
surprise should be computed in the model. In humans, this 
problem has already been successfully solved by evolution; 
therefore, a reasonable approach is to model the agent's 
surprise function according to that of humans. Experimental 
evidence from human participants summarized in 
(Reisenzein, 2000b) suggests that the intensity of felt 
surprise increases monotonically, and is closely correlated 
with, the degree of unexpectedness. On the basis of this 
evidence, we propose that the surprise “felt” by an agent 
elicited by an object/event X is proportional to the degree of 
unexpectedness of X (which in the model is based on the 
frequencies of objects/events present in the memory of the 
agent). According to probability theory, the degree of 
expecting an event X to occur is its subjective probability 
P(X). Accordingly, the improbability of X, denoted by 1-
P(X), defines the degree of not expecting X, or for short its 
unexpectedness. The intensity of surprise elicited by X 
should therefore be an (at least weakly) monotonically 
increasing function of 1-P(X). As a first approach, this 
function (S1) could simply be taken to be the identity 
function, that is, the intensity of surprise could simply be 
equated with the degree of unexpectedness: 

 
)(1),(1 XPXAgtS −=  

 

However, on second thought, S1 does not seem to 

faithfully capture the relation between unexpectedness and 

surprise. For example, consider a political election with 

three candidates A, B and C, where the probability of being 

elected is P(A) = P(B) = P(C) = 0.333. In this case, one 

would not be surprised if either A, B or C is elected. 

Therefore, in this situation at least, S1 fails. 

To arrive at a more adequate surprise function, consider 

the case where there are only two mutually exclusive and 

exhaustive alternative events, X and Y (i.e., not X). Here, 

intuition suggests that X is not surprising as long as P(X) ≥ 

0.5, whereas X is surprising for P(X) < 0.5, and increasingly 

more so the more P(X) approaches 0. This intuition is 

captured by the following surprise function (S2): 

 

⎩
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To deal with sets of more than two mutually exclusive 

events, S2 could be generalized as follows (S3, where n  

denotes the number of events in the set): 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥⇐

<⇐−
=

n
XP

n
XPXP

XAgtS
1

)(0

1
)()(1

),(3  

 

However, it may be more adequate to set the upper limit 

of surprise not to 1, but to 
n
1

 (see S4): 
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Yet another possible surprise function, suggested by 

further reflection on the above election example, is the 

following (S5): 

 
)()(),(5 XPYPXAgtS −=  

 

In this formula, Y is the event with the highest probability 

of a set of mutually exclusive events. S5 implies that, within 

each set of mutually exclusive events, there is always one 

(Y) whose occurrence is entirely unsurprising, namely the 

event with the maximum probability in the set (P(Y)). For 

the other events X in the set, the surprise intensity caused by 

their occurrence is the difference between P(Y) and their 

probability P(X). This difference can be interpreted as the 

amount by which P(X) has to be increased for X to become 

unsurprising. For instance, in the election example 

considered earlier, where P(A) = P(B )= P(C) = 0.333, S5 

correctly predicts that one would not be surprised if either 

A, B or C is elected. By contrast, if P(A) = 0.55, P(B) = 0.40 

and P(C) = 0.05, S5 predicts that the surprise caused by B is 

0.15 and for C is 0.50, whereas for A it is 0. S5 also implies 

that maximum surprise, that is, S(X) = 1, occurs only if 

P(Y) = 1 and hence, by implication, P(X) = 0. (In the 

Ortony and Partridge model, this corresponds to situations 

[1], [2], [5] and [6], where the disconfirmed event Y is 

immutable, i.e., its probability is 1). Therefore, S5 seems to 

correctly describe surprise in the election example. 

Confirming this impression, S5 also acknowledges the 

intuition behind S2: if there are only two alternative events 

X and Y (= not X), S5 predicts, like S2, that X should be 

unsurprising for P(X) ≥ 0.5, for in this case X is also the 

event with the highest probability in the set. By contrast, for 

P(X) < 0.5, S5 predicts that X should be surprising and 

increasingly so the more P(X) approaches 0, with maximum 

possible surprise (S(X) = 1) being experienced for P(X) = 0. 

Yet another possible surprise function (S6) is suggested 

by Information Theory (Shannon, 1948): 

 

)(

1
log),(6 2 XP

XAgtS =  
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According to S6, surprise about X is 0 when P(X) = 1 and 

increases monotonically with decreasing P(X). In these 

respects, then, S6 is similar to S1. However, in contrast to 

S1, S6 is a nonlinear function of P(X), and it is not 

normalized. For instance, for P(X) = 0.3, S6(X) = 1.7 (bits), 

for P(X) = 0.01, S6(X) = 6.6, and for P(X) = 0.001, S6(X) = 

9.9. In fact, there is no upper limit of S(X): for P(X)=0, 

S6(X) = +∝. To overcome this problem, we propose the 

following normalized function S7 (stipulating the upper 

limit to be 10): 

 

10

)(

1
log

),(7

2 XPXAgtS =  

 

Finally, yet another surprise function (S8), a nonlinear 

modification of S5, is suggested by the results of the 

experiment, reported below, performed with humans in the 

domain of elections and sport games: 

 
))()(1(log),(8 2 XPYPXAgtS −+=  

 

This function retains the essential features of S5: when X 

is the most expected event (X = Y), then S8(X) = 0; when X 

is different from Y, S8(X) > 0 and increases monotonically 

with the difference between P(Y) and P(X); and S8(X) is 

maximal (= 1) if P(Y) = 1 and P(X) = 0. In addition, 

however, S8 also captures the nonlinearity of the surprise 

function suggested by the experiments with humans 

reported below. 

Experiment 
To test the validity of the proposed surprise functions, we 
conducted an experiment that involved two steps. In step 1, 
we collected ratings of probability and surprise intensity 
from humans in two domains, political elections and sports 
games. In step 2, artificial agents that implemented the 
different surprise functions were provided with the 
probability judgments obtained from the humans and, on 
this basis, computed surprise intensity values. These 
predicted surprise values were then compared with the 
actual surprise ratings provided by the human participants. 

Step 1 was conducted with ten participants (mean age, 29 

years). They were presented with 20 brief scenarios, 10 of 

which described political elections with 2-4 candidates (see 

Figure 3), whereas the other 10 scenarios described sports 

games with 2-4 teams or players (see (Reisenzein, 2000a) 

for a conceptually similar experiment using knowledge 

questions). Political elections and sports games were chosen 

because we thought that these domains are familiar to most 

people and that the participants would have no problems to 

state their probabilities and their surprise about outcomes. In 

addition, in contrast to the domain of buildings used in a 

previous study reported in (Macedo & Cardoso, 2001), 

elections and sport games allow for an easier matching of 

the knowledge of artificial agents with that of humans. Part 

of the scenarios did not include information about the actual 

outcome of the election or game, whereas the remaining 

scenarios included this information. For scenarios without 

outcome information, the participants were asked to first 

state their expectations for all possible outcomes and to rate 

their probability on a 1-100 scale. Subsequently, they were 

informed about the outcome of the election or game and 

rated their surprise about the outcome first on a qualitative 

intensity scale and then again on a quantitative intensity 

scale within the chosen qualitative level. By contrast, for the 

scenarios that included outcome information, participants 

first rated the intensity of surprise about the outcome and 

subsequently their (passive) expectations regarding the 

outcome. An example of a scenario is shown in Figure 3. 

 

Figure 3:  Example of a test item. 

Given the following prognosis for the election of candidate A,

B and C for a political position: 

 

Victory of A=45%; Victory of B=45%; Victory of C=10% 

 

a) What are your personal expectations regarding the victory

of candidates A, B and C? 

b) Assume that candidate A won the election and rate the

intensity of surprise that you would feel. 

 

In step 2 of the study, the probability ratings obtained 

from each participant in step 1 were delivered to eight 

artificial agents, each of which implemented one of the eight 

surprise functions S1-S8 described earlier. Using these 

functions, the agents computed surprise intensity values 

from the probabilities. These predicted surprise values were 

then compared with the surprise ratings of the humans 

obtained in step 1. 

The data obtained in the first step of the experiment 

suggested two qualitative conclusions. First, the occurrence 

of the most expected event of the set of mutually exclusive 

and exhaustive events did not elicit surprise in humans. For 

example, when the expectations for the election of three 

political candidates A, B and C were P(A) = 0.55, P(B) = 

0.40, and P(C) = 0.05, the participants felt no surprise about 

the election of candidate A. This was also true when two or 

more candidates had equal maximal probabilities. For 

example, when P(A) = 0.40, P(B) = 0.40 and P(C) = 0.20, 

participants were not surprised when either A or B was 

elected. Second, beyond the point of zero surprise, the 

surprise function appeared to be nonlinear. For example, 

relatively high surprise was indicated when candidate C 

won the elections in both of the above situations, although it 

was still higher for P(C) = 0.05 than for P(C) = 0.20. 

To compare the surprise values generated by the artificial 

agents and the surprise ratings provided by the human 

judges, the following fit indices were used: the root mean 

squared difference, the mean absolute difference, and the 

Pearson correlation. The results of these comparisons are 

shown in Table 2, separately for the 10 participants (H1, …, 

H10) and for six of the eight artificial agents (A1,…,A8) 

(the surprise functions S6 and S7 were not included because 
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they have a different range than the human ratings and 

therefore computation of the absolute and squared 

differences is not meaningful). It can be seen from Table 2 

that, regardless of which fit index is used, agent A8 (which 

implemented surprise function S8) was the one with the best 

fit to the human ratings: it had on average, the lowest root 

mean squared differences (Ms= 0.10), the lowest absolute 

differences (Md= 0.06), and the highest correlation to these 

ratings (Mr= 0.98). A8 was closely followed by A5 (Ms = 

0.21; Md = 0.08; Mr = 0.97), whereas agents A1 and A2 had 

the comparatively worst fit values (for instance, A1 had Ms 

= 0.35; Md = 0.26; Mr = 0.81). A main reason for the bad 

performance of A1 was apparently that it failed in the case 

of the occurrence of the most expected event of the set: A1 

still predicts a positive surprise value (1-P(X)) for this case, 

whereas humans do not feel surprised by the occurrence of 

this event. However, in other situations, A1 performed well. 

 
Table 2:  Statistical comparison of the surprise values 

computed by the artificial agents and those provided by the 
humans (s = root mean squared difference, d = mean 

absolute difference, and r = Pearson correlation). 
 

  H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 M 
s .35 .36 .34 .35 .35 .34 .35 .36 .35 .36 .35 
d .25 .26 .25 .25 .26 .24 .27 .27 .26 .27 .26 

A1 

r .82 .80 .82 .82 .80 .82 .81 .80 .82 .82 .81 
s .30 .33 .29 .32 .32 .30 .33 .32 .31 .31 .31 
d .18 .21 .16 .20 .21 .18 .22 .19 .19 .19 .19 

A2 

r .82 .79 .82 .81 .79 .83 .80 .80 .81 .81 .81 
s .22 .30 .24 .21 .30 .22 .18 .19 .19 .16 .22 
d .07 .15 .09 .07 .17 .09 .09 .09 .08 .08 .10 

A3 

r .95 .85 .89 .94 .81 .92 .93 .92 .92 .94 .91 
s .43 .41 .45 .43 .43 .43 .44 .46 .46 .45 .44 
d .29 .28 .30 .29 .29 .28 .28 .28 .29 .27 .28 

A4 

r .93 .92 .88 .96 .90 .95 .91 .91 .93 .94 .92 
s .22 .16 .19 .16 .23 .20 .21 .24 .24 .24 .21 
d .07 .06 .11 .06 .09 .05 .08 .10 .09 .09 .08 

A5 

r .97 .98 .96 .98 .95 .99 .97 .96 .96 .96 .97 
s .09 .07 .13 .08 .12 .06 .11 .13 .12 .12 .10 
d .05 .05 .09 .05 .08 .04 .06 .08 .07 .07 .06 

A8 

r .98 .99 .98 .99 .97 .99 .98 .07 .07 .97 .98 

Conclusions 
The empirical study of the surprise functions suggests S8(X) 
=  as the most appropriate surprise 
function for the domains of political elections and sport 
games, although S5 (the linear counterpart of S8) is a very 
close contender. However, before more definitive 
conclusions can be drawn, additional tests need to be 
performed in other domains, as well as with yet other 
possible surprise functions (e.g., Shackle, 1969). 
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