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Tetrapod limb and sarcopterygian fin regeneration
share a core genetic programme
Acacio F. Nogueira1,*, Carinne M. Costa1,*, Jamily Lorena1, Rodrigo N. Moreira1, Gabriela N. Frota-Lima1,

Carolina Furtado2, Mark Robinson3, Chris T. Amemiya3,4, Sylvain Darnet1 & Igor Schneider1

Salamanders are the only living tetrapods capable of fully regenerating limbs. The discovery of

salamander lineage-specific genes (LSGs) expressed during limb regeneration suggests

that this capacity is a salamander novelty. Conversely, recent paleontological evidence

supports a deeper evolutionary origin, before the occurrence of salamanders in the fossil

record. Here we show that lungfishes, the sister group of tetrapods, regenerate their fins

through morphological steps equivalent to those seen in salamanders. Lungfish de novo

transcriptome assembly and differential gene expression analysis reveal notable parallels

between lungfish and salamander appendage regeneration, including strong downregulation

of muscle proteins and upregulation of oncogenes, developmental genes and lungfish LSGs.

MARCKS-like protein (MLP), recently discovered as a regeneration-initiating molecule in

salamander, is likewise upregulated during early stages of lungfish fin regeneration. Taken

together, our results lend strong support for the hypothesis that tetrapods inherited a

bona fide limb regeneration programme concomitant with the fin-to-limb transition.
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T
he question of why urodele amphibians are the only
tetrapods capable of limb regeneration has intrigued
researchers for decades. Recent fossil evidence suggests

an ancient origin of limb regeneration in tetrapods, as
regeneration pathologies typically found among modern
salamanders such as duplication or bifurcation of metacarpals,
metatarsals and phalanges, as well as developmental asymmetry
between the limbs within an individual, were reported in 300
million-year-old temnospondyl1 and lepospondyl amphibians2,
B80 million years before the estimated origin of stem
salamanders. Recently, however, the notion of an ancient
limb regeneration programme has been challenged by reports
of salamander lineage-specific genes (LSGs) upregulated during
regeneration3–6. One salamander LSG in particular, the Prod1
gene, was shown to be required for proximodistal patterning
during limb regeneration7 and for ulna, radius and digit
formation during forelimb development8. The existence of
urodele LSGs expressed and involved in regeneration has lent
support to the hypothesis that limb regeneration is a derived
urodele feature5,6. Nevertheless, it remains unclear whether
urodele LSGs are causally linked to the origin of limb
regeneration or were integrated into a pre-existing regenerative
programme. Appendage regeneration is also observed in living
sarcopterygian (lobe-finned) fish such as the African lungfish
Protopterus9 and could have an even deeper origin, since basal
actinopterygian (ray-finned) fish of the genus Polypterus can fully
regenerate paired appendages, including the endochondral
skeleton10 (Fig. 1a). Nevertheless, the molecular bases of
Polypterus and lungfish fin regeneration remains unexplored.
Lungfishes, as the sister group to tetrapods11,12, constitute the
ideal model organisms to study the origin of limb regeneration in
tetrapods. Nevertheless, limited taxonomic representation and
scarce genetic resources have prevented in-depth comparisons of
lungfish and salamander regeneration programs.

To address this question, we have examined fin regeneration in
lungfishes, focusing on the morphological and molecular
mechanisms leading to blastema formation. We find that, at a
morphological and cellular level, lungfish fin regeneration is
strikingly similar to salamander limb regeneration. To compare
the genetic programs deployed during appendage regeneration
in lungfish and salamanders, we produced a de novo assembly of
the lungfish regenerating blastema, as well as additional
transcriptomes of fin blastemas (FBs) and non-regenerating fins
(NRFs). Our differential gene expression analysis reveals
remarkable parallels between lungfish and salamander appendage
regeneration, including strong downregulation of genes
encoding muscle proteins, and conversely, upregulation of genes
encoding matrix metalloproteinases, stem cell factors, and
those involved in oncogenesis and developmental processes.
Furthermore, we show that MARCKS-like protein (MLP), a
molecule upregulated shortly after wound healing and involved
in the initial steps of regeneration in salamanders, is also
upregulated during early lungfish fin regeneration stages.
Finally, we identify lungfish LSGs overexpressed during fin
regeneration and show that, as in salamanders, LSG expression is
not limited to regenerating tissues. Taken together, the shared
features of lungfish and amphibian appendage regeneration point
to a common evolutionary origin, with new genes integrated into
pre-existing regeneration programs.

Results
Fin regeneration in the South American lungfish. To gain
insight into the evolutionary origin of limb regeneration,
we examined morphological and molecular events underlying
fin regeneration in the South American lungfish, Lepidosiren

paradoxa. The phylogenetic position of lungfishes as the closest
living relatives of tetrapods11,12 makes them the ideal taxon to
address this question (Fig. 1a). The whip-like pectoral and pelvic
fins of Lepidosiren lack pre- and post-axial radial elements and
consist of a series of distinct cartilaginous elements, or mesomeres
(Supplementary Fig. 1a,b). Among our wild-caught specimens,
7 out of 37 (18.9%) displayed potential regeneration pathologies
consisting of bifurcations along the anteroposterior axis of
the fin (Supplementary Fig. 1c,d), not unlike those observed in
urodeles13. Furthermore, the percentage of pathological fins
observed was similar to rates reported in regeneration studies
on Protopterus under laboratory conditions (22%)14. These
observations suggest that fin regeneration is a common
occurrence in natural lungfish populations.

On monitoring pectoral fin regeneration after amputation, we
found that a blastema formed during the first 3 weeks
post-amputation (wpa), after which the regenerating fin
continued to extend distally (Fig. 1b). At 1 wpa, the injured area
was covered by a wound epidermis (WE) and bromodeoxyuridine
(BrdU) labelling revealed very few proliferating cells (Fig. 1c,f).
At 2 wpa, tissue disorganization and the loss of purple cartilage
staining indicated loss of cell–cell contact and breakdown of
extracellular matrix (ECM), consistent with histolysis (Fig. 1d).
Still at 2 wpa, the WE thickened to form an apical ectodermal
cap (AEC) and a blastema was formed immediately subjacent to
the WE. Cell proliferation in the 2 wpa blastema occurred in
epithelial cells, and in presumptive muscle cells flanking the
cartilage skeleton (Fig. 1g). At 3 wpa, new cartilage condensation
was apparent, an indication that cell differentiation and
repatterning of the fin tissue was underway (Fig. 1e). Cell
proliferation was detected in the blastema and in cells flanking the
cartilage proximal and distal to the amputation site (Fig. 1h).
At this stage, a basement membrane between the distal
epithelium and the underlying blastemal cells was not visible
(Supplementary Fig. 2). In salamanders, limb amputation
triggers formation of the WE, histolysis, loss of a basement
membrane underlying the AEC, dedifferentiation, subsequent
blastema formation and repatterning15, in a similar progression
as described here for lungfish. These observations suggest that the
cellular events involved in blastema formation in lungfishes and
salamanders are equivalent.

Differential gene expression in the lungfish fin blastema.
Previous studies have examined the genetic pathways controlling
limb regeneration using high-throughput DNA sequencing
methods16–25. Here, we generated a de novo assembly of the
3 wpa lungfish FB reference transcriptome (Supplementary
Table 1). To identify genes differentially expressed during
regeneration, we produced additional transcriptomes of FBs at
3 wpa and NRF tissues in biological triplicates, with Pearson
correlation coefficients among replicates 40.97 (Supplementary
Tables 2 and 3). In total, we obtained read counts (Supplementary
Data 1) and transcripts per million (TPM) values for 122,014
transcripts of our reference transcriptome (Supplementary
Data 2). Our analysis of 28,844 transcripts annotated to human
orthologs (Supplementary Data 3) revealed 12,810 unique genes,
from which 4,415 showed significant P values among replicates
(Student’s t-test and false discovery rate P value correction,
Po0.05). Among these, there were 2,034 genes that showed
greater than twofold expression change: 769 genes were
downregulated and 1,265 genes were upregulated in FB relative
to NRF (Supplementary Data 4).

We found many similarities between the expression profiles of
our lungfish data set and amphibian blastemas at or around
2 wpa17,19,23–25. Among the downregulated genes, the majority
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Figure 1 | Fin regeneration and blastema formation in the L. paradoxa. (a) Vertebrate phylogenetic tree, highlighting in green extant and extinct

taxonomic groups capable of complete appendage regeneration among actinopterygians (Polypterus), sarcopterygian fish (lungfish) and tetrapods

(salamanders, Micromelerpeton and Microbrachis). (b) Pectoral fin regeneration monitored for 30 wpa in an adult L. paradoxa specimen. (c,f) At 1 wpa,

formation of a WE occurs with minimal mitosis. (d,g) At 2 wpa, AEC forms and cells accumulate distally and form a blastema, cell proliferation occurs in

regions flanking the cartilage and in the blastema. (e,h) At 3 wpa, blastema extends distally, new cartilage is forming and cell proliferation intensifies.

Haematoxylin and eosin stained sections are shown (c–e). Proliferating cells during fin regeneration are shown (green), the nuclei of all cells is

stained (blue) (f–h). Dashed lines denote amputation planes. Asterisk denotes newly formed cartilage. Scale bars of 10 mm (b), 1 mm (c,f) and 0.5 mm

(d,e,g,h). Ca, cartilage; Bl, blastema; Ma, million years ago.
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of top 25 enriched gene ontology (GO) categories (Supplementary
Data 5) were associated with muscle function (Supplementary
Fig. 3a), a trend previously described for limb regeneration
in both salamanders and Xenopus tadpoles. Similarly, analysis
of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (Supplementary Data 6) of FB downregulated genes
showed that four of the five enriched terms were directly
related to muscle function (Supplementary Fig. 4a). Conversely,
upregulated GO categories were enriched for terms related
to ECM, morphogenesis and cell cycle (Supplementary Fig. 3b),
all consistent with cellular processes characteristic of limb
regeneration. Accordingly, KEGG pathway enriched terms
included cell cycle, ECM-receptor interaction, focal adhesion,
p53 signalling and pathways in cancer (Supplementary Fig. 4b).
Quantitative PCR (qPCR) profiles of 16 up or downregulated
targets corroborated the transcriptome expression data
(Supplementary Fig. 4c).

A closer inspection of the differentially expressed genes
revealed further commonalities between lungfish and amphibian
regeneration (Fig. 2). Several genes downregulated in axolotl
blastemas were also downregulated in lungfish blastemas, such as
those encoding proteins under the functional categories of
muscle (Des, Tpm1, Acta2, Actc1, Myl2, Ttn, Tnnc1, Smpx,
Myoz1, Tnnt3, Mybpc2 and Ckm), tight junction (Cldn10, Actn2
and Actn3) and calcium homeostasis (Ryr1, Casq1, Atp2a1 and
Sln). These expression changes are consistent with extensive
histolysis and muscle degeneration, which occur during wound
healing and are sustained until blastema formation and growth.
Among upregulated genes, the lungfish and salamander blastema
gene sets were highly congruent17,19,23,24. Our results showed
that genes encoding cell cycle components including Mcm2, Pcna,
Cdc20, Plk1 and Ccnb1, focal adhesion genes such as Itga8,
Itgb5 and Itga11, as well key genes encoding ECM components
and modulators Mmp8, Mmp9, Mmp13, Timp1, Col5a1, Col12a1,
Emilin1 and Fn1, all typically overexpressed in salamander
blastemas, were also upregulated in the lungfish blastema.

Furthermore, as in urodeles, we observed overexpression of
genes associated with cellular reprograming, such as the stem
cell genes c-Myc, Sall4, Sox2, Jarid2, Sall1, Zic2, and limb
development genes, including Fgf1, Fgf10, Fgf16, Hoxd13,
Hoxa13, Tbx5, Wnt5a, Wnt5b, Tgfb1 and Tgfb217,23. Finally,
the 51 differentially expressed lungfish genes listed above were
compared with the expression profiles described in a recent
comprehensive microarray study of axolotl limb regeneration25.
Whereas 10 genes did not have corresponding probes, the
correlation between gene expression fold change in our lungfish
data set and the 2 wpa salamander blastema was B65%
(Supplementary Data 7).

Upregulation of Mlp expression during early fin regeneration.
Recently, the extracellularly released factor MLP was shown to
induce the initial proliferative response associated with
appendage regeneration in axolotls26. Expression of the axolotl Mlp
peaks during the first 24 h post-amputation, decreasing to basal
levels after 4 days. Here we identified the lungfish MLP ortholog
and showed that it contains the three conserved domains found in
other vertebrate MLPs, including the effector domain and its key
serines that are potential targets for phosphorylation by protein
kinase C (PKC)27 (Fig. 3a). Phylogenetic analysis showed that
lungfish MLP groups with other vertebrate MLPs (Fig. 3b). As
expected, in our 3 wpa FB, Mlp expression levels were similar to
those seen in NRF (Supplementary Data 4). However, qPCR using
two distinct Mlp primer sets revealed that, as seen in axolotls,
lungfish Mlp is highly expressed at 1 day post-amputation (dpa),
and expression levels gradually decrease at 7 and 14 dpa (Fig. 3c),
only reaching basal levels at 3 wpa (Supplementary Data 4). This
gradual decrease in Mlp expression is consistent with the slow
regenerative process observed in lungfish fins. In sum, the robust
early expression of Mlp, a key factor for initiation of limb
regeneration in salamanders, also occurs during lungfish fin
regeneration.
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Figure 2 | The genetic basis of lungfish fin regeneration. Volcano plot showing differentially expressed genes between NRF tissue and 3 wpa FB. In a

volcano plot, each dot represents a gene. Black dots are either below Student’s t-test P value (o0.05) or fold change (42) cutoffs. Grey dots are within

established limits of P value and fold change. Key genes are shown colour coded according to eight categories: muscle, tight junction, calcium homeostasis,

focal adhesion, cell cycle, limb development, ECM and stem cell. Fold change displayed in a log2 scale and P values in � log10. PV, P value; FC, fold change.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13364

4 NATURE COMMUNICATIONS | 7:13364 | DOI: 10.1038/ncomms13364 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Lungfish-specific genes expressed in the fin blastema. In
salamander, LSGs are overexpressed during regeneration4,6 and at
least in one instance (Prod1), acquired an essential role7,8.
Here we performed a pilot survey of lungfish putative LSGs
associated with fin regeneration. We searched in our data set
for transcripts with no annotation in the orthoMCL or
Metazoan UniProt databases (Supplementary Data 8) and
found 206 transcripts with complete open reading frames
of more than 500 bp, and with at least 10 mapped reads in
each of the 6 transcriptome replicates (Supplementary Data 9).
From this list we retrieved 35 transcripts, with 19 transcripts
significantly up or downregulated during fin regeneration
(Supplementary Data 10 and Fig. 4a). Based on the presence of
orthologs in the African lungfish Protopterus annectens11

(Supplementary Fig. 5), we selected four LSGs for
further analysis: two significantly upregulated and two that fell

below our statistical threshold (Supplementary Data 10
and Fig. 4a). The putative open reading frames of the four
LSGs ranged from 801 to 2,376 bp, displayed no hits on the
NCBI database or Sal-Site expressed sequence tag (EST) and gene
expression databases (www.ambystoma.org), and encoded no
known domains in c28232 and c29579 (Supplementary Fig. 5a,b),
except for signal peptide sequences in LSGs c19141 and c19958
(Supplementary Fig. 5c,d). The LSGs are corroborated by
extensive read coverage (Fig. 4b) and qPCR showed that
candidate LSGs are expressed in multiple tissues in addition to
the FB (Fig. 4c). We were able to confirm the four LSGs sequences
by reverse transcription PCR followed by sequencing, and the
bands obtained corresponded to the expected amplicon sizes
(Supplementary Fig. 5e). Our findings suggest that these genes
may have roles beyond those potentially associated with fin
regeneration.
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Discussion
Here we showed that Lepidosiren collected from natural
sources display a high percentage of pathological fins, similar
to regeneration pathologies found in natural salamander
populations28,29. Furthermore, the morphological steps leading
to blastema formation in the lungfish and salamanders

are strikingly similar and involve extensive histolysis, AEC
formation and a blastema that lacks a basement membrane.
The source of blastema cells, whether chiefly derived
from dedifferentiation (adult mode) or from resident stem
cells (larval mode), as recently demonstrated in newts30,
remains unclear.
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De novo assembly of the lungfish transcriptome and differential
gene expression analysis revealed notable parallels between
lungfish and salamander appendage regeneration17,19,23,24,
including strong downregulation of muscle proteins,
accompanied by upregulation of matrix metalloproteinases, stem
cell and developmental genes. In urodele blastemas, Tgfb1 and its
target fibronectin (Fn1) are thought to provide directional
guidance to blastema cells31. Likewise, we observed upregulation
of Tgfb1 and Fn1 in lungfish blastemas. In addition, we showed
that Mlp, a gene upregulated during early stages of limb
regeneration and recently proposed as a regeneration-initiating
molecule in salamanders26, is also upregulated during the
initial stages of lungfish fin regeneration. Altogether, our findings
strongly suggest that the morphological parallels between lungfish
and axolotl regeneration result from equivalent gene expression
profiles during regeneration.

In one FB and two NRF transcriptome replicas, no reads
were mapped to Ffg8, preventing differential gene expression
assessment (see Supplementary Data 4). Fgf8 is a typical apical
ectodermal ridge (AER) marker in the tetrapod limb, yet in
zebrafish it is expressed later in the apical fold (after 36 hpf),
whereas other Fgfs such as Fgf16 and Fgf24 are expressed earlier
in the AER (before 34 hpf)32–34. While an Fgf24 gene ortholog
was not found in our lungfish reference transcriptome, Fgf16 was
upregulated in the lungfish blastema. Therefore, it is possible that
FGF expression in the 3 wpa lungfish blastema is more
compatible to the early fin bud of teleosts.

Our pilot search for lungfish LSGs identified at least four genes
that, as in salamanders, are upregulated during fin regeneration.
In recent years, a large number of LSGs were found in various
organisms and in many cases shown to be integrated into existing
gene networks, including those involved in development35.
A study in Drosophila identified 195 LSGs and showed that
B30% of these new genes resulted in lethal phenotypes when
silenced by RNA interference36. Urodele LSGs, like those of
lungfish, also show expression in various organs other than
regenerating tissues6, indicating that their roles are not limited to
regenerating tissues. Within this framework, we propose that
salamander and lungfish LSGs may not be necessarily linked to
the origin of regeneration capacities. Alternatively, LSGs may
have been subsequently integrated into a pre-existing appendage
regeneration programme.

Complete fin regeneration observed in Polypterus suggests that
appendage regeneration may have evolved at the base of all bony
fish10, nevertheless, little is known of the molecular mechanisms
underlying Polypterus fin regeneration. Limited appendage
regeneration capacities are also observed in teleost fish and
mammals, which can regenerate fin rays and digit tips, respectively,
but not the endochondral elements31. Future studies comparing
the molecular programs deployed during regeneration across
various taxa may help determine how regeneration programs
evolved in lineage specific ways to accomplish the similar
functional outcomes.

It has been over 40 years since fin regeneration in lungfishes was
documented and its significance in the context of tetrapod limb
regeneration has remained underappreciated. Similar to urodeles,
lungfishes can also fully regenerate tails14, suggesting that this and
other remarkable salamander-like regenerative capacities could
have an ancient evolutionary origin. Our study shows deep
morphological and molecular similarities between urodele and
lungfish regeneration, establishing the lungfish as a valuable model
for future studies on the evolution of regeneration in vertebrates.

Methods
Animals and surgical procedures. This study was approved by IBAMA/SISBIO
under license number 47206–1. All experimental procedures and animal care were

conducted in accordance to the Ethics Committee for Animal Research at the
Universidade Federal do Pará, under the approved protocol number 037-2015.
A total of 37 adult Lepidosiren paradoxa specimens, ranging from 64 to 95 cm in
length and 0.9 to 3.71 kg in weight, were obtained from natural sources in the state
of Pará, Brazil. No statistical methods were used to predetermine sample size.
In vivo L. paradoxa experiments were not randomized and no blind tests were
applied. Animals were kept in individual tanks with regular water changes and fed
once a day. For fin regeneration studies, animals were anaesthetized in 0.1% clove
oil diluted in system water. Pectoral fins were bilaterally amputated at B1 cm
distance from the body. FBs were sampled at 1, 2 or 3 wpa and stored in RNAlater
(Sigma-Aldrich) for RNA extraction or embedded in Tissue Tek O.C.T compound
(Sakura Finetek) in dry ice, and then maintained in � 80 �C freezer for
cryosectioning.

External morphology and histology of fin regeneration. Pectoral fins were
photographed weekly to document the changes on external morphology during
regeneration. Photos were taken during a period of 30 weeks. For histology, frozen
tissues were allowed to equilibrate to cryostat temperature (� 20 �C) for 30 min and
then 20mm longitudinal sections were obtained on ColorFrost Plus microscope slides
(Thermo Fisher Scientific). Sections were fixed in 3% paraformaldehyde for 5 min,
rinsed twice in 0.01 M PBS, and dehydrated in graded ethanol series (70, 95 and
100%), for 2 min each. After drying at room temperature, slides were stored in
� 80 �C ultrafreezer. Sections stained with haematoxylin (Sigma-Aldrich) and eosin
(Sigma-Aldrich) were imaged on a SMZ1000 stereoscope (Nikon). Pectoral fin was
cleared and stained following standard protocol with modifications37. The fixation
was performed using formaldehyde solution (10%) for 24 h. Samples were
dehydrated using serial dilutions of ethanol (50, 70 and 95%) for 12 h each and
absolute alcohol for 12 h (2 times). Cartilage staining was performed using 30 mg of
Alcian blue in 100 ml of a 40% solution of glacial acetic acid and 60% absolute
ethanol for 12–24 h, and a saturated solution of borax was used for neutralization for
48 h. Subsequent bleaching was performed using 10% solution of H2O2 in 0.5%
KOH solution for 12 h.

Cell proliferation. For cell proliferation studies, BrdU was injected
intraperitoneally into anesthetized lungfish (80 mg kg� 1 of body weight), 24 h
before tissue collection. For BrdU immunolocalization, sections were permeabilized
in 1N and 2N HCl solutions, followed by 0.1 M borate buffer and in PBS tween
(0.1% tween in 0.01M PBS). Unspecific labelling was blocked with 5% normal goat
serum diluted in 0.01 M PBS with 0.3% TritonX-100 for 1 h at room temperature.
Sections were then incubated with mouse anti-BrdU primary antibody (1:200,
Sigma-Aldrich, cat. number B8434) in 0.01 M PBS with 1% bovine serum albumin
and 0.3% TritonX-100 overnight at 4 �C. On the next day, sections were incubated
with the fluorochrome-conjugated secondary antibody (1:400, Sigma-Aldrich, cat.
number SAB4600238) for 2 h at room temperature and slides were mounted and
counterstained with Fluoroshield with DAPI (Sigma-Aldrich).

Library preparation and Illumina sequencing. Total RNA extraction from FB or
NRF tissue for transcriptome or qPCR was achieved using TRIzol Reagent
(Life Technologies) according to the manufacturer’s protocol. RNA samples were
further purified using RNeasy Mini Kit (Quiagen) and treated with DNaseI
(Quiagen), according to the manufacturer’s protocol. Total RNA (0.3 or 0.5 mg) was
reverse transcribed using the SuperScript III First-Strand Synthesis SuperMix
(Life Technologies). To establish a lungfish blastema reference transcriptome, a
HiSeq Illumina run was obtained from a blastema library of 100 bp paired-end
reads (SRX1411314). Transcript abundance was estimated based on six
independent Illumina 50 bp single-end runs, three runs from FB libraries
(SRX1411321, SRX1411322 and SRX1411324) and three runs from NRF libraries
(SRX1411325, SRX1411326 and SRX1411327).

Bioinformatic analysis. De novo assembly of lungfish transcriptome was performed
using Trinity with default parameters38 and the data set was registered under
Bioproject PRJNA301439 in NCBI database. The functional annotation was
performed with BLASTx comparison against Metazoan data set of UniProt proteins
and retrieving GO terms using Blast2GO (ref. 39). CLC genomic workbench was used
to map reads on transcripts with default parameters (CLC bio, Aarhus, Denmark).

For further lungfish transcriptome characterization, transcripts were clustered
by human orthologs using BLASTx against Human NCBI Refseq database
(11/2014), with an e-value of 10� 10, as described for a previous axolotl
transcriptome10. For each human homologue gene cluster (HHGC), expression was
calculated in TPM for the six conditions based on the read count sum of lungfish
transcripts included in the cluster. The differential gene expression test was
performed using t-test of CLC genomic workbench software, considering two
conditions (NRF and FB) and three independent biological replicates. The HHGCs
were analysed in GO terms and KEGG pathway enrichment using web-based tool
DAVID40. GO terms and KEGG pathways were first selected based on a Bonferroni
corrected P value cut-off of 0.01 and then ranked according to enrichment score.
GO word clouds were generated using the online tool Wordle (www.wordle.net).
The comparison between differentially expressed lungfish HHGCs and axolotl
regenerating limb microarray probes25 was based probe annotation. A linear
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regression was used to determine the correlation between the fold changes of
microarray probes (t0 versus t14) and lungfish RNA-seq (NRF versus FB), in log2
scale. The four lungfish LSGs identified, c19141_g1_i1, c19958_g1_i1,
c28232_g1_i1 and c29579_g2_i1, correspond to transcript isoforms of the
contigs c19141, c19958, c28232 and c29579, respectively. In the main text and
figures, for simplicity, LSGs were referred to only by their contig identification
numbers.

Reverse transcription-PCR verification of lungfish LSGs. Total RNA was iso-
lated from heart tissue using TRIzol Reagent (Life Technologies) according to the
manufacturer’s protocol. Total RNA (0.3 mg) was reverse transcribed using the
SuperScript III First-Strand Synthesis SuperMix (Life Technologies). The four
lungfish LSGs selected for further analysis were PCR amplified (Life Technologies)
in final volume of 50 ml under the following cycle conditions: 10 min at 95 �C
followed by 35 cycles of 30 s at 95 �C, 30 min at 58 �C, and 3 min 72 �C. PCR
products were cloned into PCR4-TOPO TA cloning vector (Life Technologies) and
verified by direct sequencing. The following oligonucleotide sequences were used:
c28232-F: 50-TATGCAGAATGGCATCAGACA-30 ; c28232-R: 50-TCACCCTCC
ACATAATTCACC-30 ; c19958-F: 50-TTTTGCTGGCAGTCAGTGTC-30 ;
c19958-R: 50-TGTGTCCCAGCCACACTATT-30 ; c29579-F: 50-GGAAGTCCCCA
AAAGGATACA-30; c29579-R: 50-CACCCTGTTAGCTGTTGCATT-30 c19141-F:
50-CCCCAGATCATACCAGGAAAT-30 ; c19141-R: 50-CTTGTGCCAACCCTA
AGGAAT-30 .

Phylogenetic analysis. Sequence alignments were performed using ClustalW and
edited in Jalview 2.9.0b2, using similarity matrix BLOSUM62 score. The
evolutionary history was inferred using the Neighbour-Joining method41. The
percentage of replicate trees in which the associated taxa clustered together in the
bootstrap test (1,000 replicates) are shown next to the branches42. The evolutionary
distances were computed using the p-distance method43 and are in the units of the
number of amino acid differences per site. The analysis involved 13 amino acid
sequences and all positions containing gaps and missing data were eliminated,
resulting in a total of 135 positions in the final data set. Evolutionary analyses were
conducted in MEGA7 (ref. 44). The accession numbers used for alignments and
phylogeny of MARCKS and MLP proteins, respectively, were as follows: Homo
sapiens, (NP_002347.5 and AAH66915.1), Gallus gallus, (NP_990811.1 and
NP_001074187.1), Xenopus laevis (NP_001080075.1 and NP_001108274.1),
Ambystoma mexicanum (AMO27486.1), Latimeria chalumnae (XP_006004411
and XP_005995649.1). L. paradoxa sequences were obtained from the current
study and P. annectens sequences from publically available RNA-seq run17.

qPCR. qPCR of NRF and FB tissue was performed on biological replicates in
triplicate (and triplicate technical qPCR replicates). Lungfish LSG analysis was
performed on triplicate technical replicates and utilizing different tissues (lung,
kidney, heart, brain, eye, NRF and FB). LSG expression in NRF was used as a
reference to obtain relative expression levels the other tissues assayed. Mlp relative
expression levels were assessed in triplicate technical replicates at 1, 7 and 14 dpa,
and compared to expression levels in NRF. All experiments were performed using
SYBR Green PCR Master Mix (Applied Biosystems) in final volume of 10 ml.
Lungfish gene specific oligos for qPCR assays were designed using Primer Express
Software Version 3.0 (Applied Biosystems) and used in final concentration of
2 mM to each primer. qPCR reactions were performed in the 7,500 real-time
PCR System (Applied Biosystems) under the following cycle conditions: 2 min at
50 �C, 10 min at 95 �C followed by 40 cycles of 15 s at 95 �C, 1 min at 60 �C.
Relative messenger RNA expressions were calculated using the 2�DDCT

method45. Oligonucleotides used are listed in Supplementary Data 11. The DCTs
were obtained from CT normalized with POLR1C levels in each sample
(Supplementary Data 12).

Statistical analysis. Digital gene expression was based on t-test with mean TPM
value between NRF and FB conditions, for each transcript and HHGC. A transcript
or HHGC is considered as differentially expressed if its fold change is superior to 2
or inferior to –2 and P value is inferior to 5%. GO and KEGG pathway enrichment
analyses were performed using DAVID, based on a modified Fishers Exact P value,
the EASE Score Threshold33. qPCR analysis data were analysed by Student’s t-test
(P valueo0.05), parametric, two-tailed test and was performed using GraphPad
Prism version 5.0 for Windows (GraphPad Software, San Diego California USA,
www.graphpad.com.).

Data availability. Sequence data that support the findings of this study have been
deposited in GenBank with the following BioProject accession numbers:
PRJNA301439, three from FB libraries (SRX1411321, SRX1411322 and
SRX1411324) and three from NRF libraries (SRX1411325, SRX1411326 and
SRX1411327). The four lungfish LSG sequences obtained from cDNA have been
deposited in GenBank under the following accession numbers: KX534208 (c19141),
KX534209 (c29579), KX534210 (c19958) and KX534211 (c28232). The authors
declare that all other relevant data supporting the findings of this study are
available on request.
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