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ABSTRACT OF THE DISSERTATION

An Advanced Deep Learning and Computer Vision Framework for Precipitation Retrieval
from Multi-spectral Satellite Information

By

Negin Hayatbini

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Irvine, 2020

Professor Soroosh Sorooshian, Chair

Among all natural phenomena, precipitation is the main driver of the hydrological cycle and

the challenging task of precipitation estimation is an essential element for hydrological and

meteorological applications. Recent developments in satellite technologies resulting in higher

temporal, spatial, and spectral resolutions, along with advancements in Machine Learning

(ML) algorithms and computational power, open the great opportunity to develop analytical

and data-driven tools to characterize such natural phenomena and their future behavior more

efficiently and accurately. In this dissertation, state-of-the-art data-driven frameworks are

proposed based on advanced deep learning algorithms and computer vision tools to extract

the most useful features from single or multiple spectral bands of satellite information.

Specifically, in the first part of the dissertation, a novel gradient-based cloud segmentation

algorithm is proposed to effectively identify clouds and monitor their evolution towards more

accurate quantitative precipitation estimation and forecast. This algorithm integrates mor-

phological image gradient magnitudes to separate cloud systems and patches boundaries

from single or multi-spectral imagery. This method improves rain detection and estimation

skills with an accuracy rate of up to 98% in identifying cloud regions compared to the existing

cloud-patch-based segmentation technique implemented in the operational PERSIANN-CCS
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(Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network

- Cloud Classification System) algorithm. Application of this method is extendable to hur-

ricanes simulations and synthetic satellite imageries simulated by high-resolution weather

prediction models.

In the second part, an end-to-end deep learning precipitation estimation framework is devel-

oped from multiple sources of remotely sensed information to provide half-hourly, 4-km by

4-km precipitation estimates over the CONUS. In the first stage, a Rain/No Rain (R/NR)

binary mask is generated by classification of the pixels and then a Fully Convolutional Net-

work (FCN), U-net, is used as a regressor to predict precipitation estimates for rainy pixels.

Due to the complex structure of precipitation, and inability of traditional objective functions

to capture the true rainfall distribution, a novel distribution matching approach is designed

and implemented. The network is trained using both the conditional Generative Adversarial

Network (cGAN), and the Mean Squared Error (MSE) loss terms to match the distribution of

the generated results and observed data, and to relax the strict assumptions of the traditional

and conventional loss function in DNNs. The newly developed precipitation estimation algo-

rithm is introduced as an augmentation for PERSIANN-CCS (Precipitation Estimation from

Remotely Sensed Information using Artificial Neural Network - Cloud Classification System)

algorithm for estimating global precipitation and is termed as PERSIANN-cGAN. Statistics

and visualizations of the metrics for PERSIANN-cGAN represent an improvement of the

precipitation retrieval accuracy compared to the operational PERSIANN-CCS product, and

a baseline model trained using the conventional MSE loss term.
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Chapter 1

Introduction

1.1 Precipitation Retrieval from Satellite Information

Effective water resources engineering and management is a necessity for the growing global

demand for water, energy and food security nexus. Therefore, continuous and accurate

measurement of precipitation on a global scale has become a top priority. There are sev-

eral precipitation measurement techniques, each with its own advantages and disadvantages.

Rain gauges are the traditional ground-based measures that are associated with drawbacks

such as calibration errors. They also fail to provide measures for remote areas with poor

accessibility. Ground-based radars are another source of information for precipitation mea-

surement and are available in higher temporal and spatial resolutions. However, they have

disadvantages such as beam blockage, attenuation, and calibration. Such limitations make

the remotely sensed information an ideal candidate for precipitation estimation tasks with

higher spatial and temporal resolution and with global coverage. Geostationary Earth Or-

bit (GEO) and Low Earth Orbit (LEO) satellite instruments are the most commonly used

sources of information for precipitation retrieval. The Passive microwave (PMW) information
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from sensors onboard Low-Earth-Orbiting (LEO) satellites is more relevant to the vertical

hydrometeor distribution and surface rainfall, due to the response of microwave frequencies

to ice particles or droplets associated with precipitation. Although PMW observations from

LEO satellites have broader spatial and spectral resolutions, less frequent sensing can result

in uncertainty for the spatial and temporal accumulation of rainfall estimation (Joyce et al.,

2004; Kidd et al., 2003; Marzano et al., 2004).

IR from GEO satellites is considered as unique means to provide cloud-rain information

continuously over space and time due to their placement into an orbit that rotates the same

direction as the earth does. GEO satellites sensors provide both visible (VIS) and long-wave

infrared (IR) relevant to cloud top temperature and albedo. Utilization of both GEO and

LEO satellites information in precipitation retrieval algorithms proven to be a strength for

this task. An example of using LEO-PMW satellite data along with the GEO-IR-based

data to provide global precipitation estimation at near real-time is the Global Precipita-

tion Measurement (GPM) mission. The NASA GPM program provides a key dataset called

Integrated Multi-satellite Retrievals for GPM (IMERG). IMERG has been developed to

provide half-hourly global precipitation monitoring at 0.1◦x0.1◦ (Huffman et al., 2015). The

satellite-based estimation of IMERG consists of three groups of algorithms including the Cli-

mate Prediction Center (CPC) morphing technique (CMORPH) from NOAA Climate Pre-

diction Center (CPC) (Joyce et al., 2004), the Tropical Rainfall Measuring Mission (TRMM)

Multi-satellite Precipitation Analysis from NASA Goddard Flight Center (TMPA) (Huffman

et al., 2007), and microwave-calibrated Precipitation Estimation from Remotely Sensed In-

formation using Artificial Neural Networks - Cloud Classification System (PERSIANN-CCS)

(Hong et al., 2004). PERSIANN-CCS is a data-driven algorithm that uses exponential re-

gression to estimate the precipitation from cloud patches at 0.04◦ by 0.04◦ spatial resolution

based on an unsupervised neural network (Hong et al., 2004).

Application of Deep Neural Networks in science and weather/climate studies is expanding

2



and has been implemented in many studies including but not limited to short term pre-

cipitation forecast (Akbari Asanjan et al., 2018), statistical downscaling for climate models

(Vandal et al., 2017), extreme weather detection (Liu et al., 2016), and precipitation esti-

mation (Tao et al., 2016, 2017). Significant advances of DNNs include Convolutional Neural

Networks (CNNs) (LeCun et al., 1989), Recurrent Neural Networks (RNNs) (Elman, 1990;

Jordan, 1997), and generative models. Variational AutoEncoder (VAE) (Vincent et al., 2008;

Pu et al., 2016) and Generative Adversarial Network (GAN) (Goodfellow et al., 2014) are

among the popular types of generative models. Each of the networks has strength in dealing

with different types of datasets. CNNs benefit from convolution transformation to deal with

spatially and temporally coherent datasets (LeCun et al., 1989; Krizhevsky et al., 2012).

RNNs can effectively process information in the form of time-series and learn from a range

of temporal dependencies in datasets. Generative models are capable of producing detailed

results from limited information and provide a better match to observation data distribution

by updating conventional loss function in DNNs.

1.2 Research Motivation and Objectives

The general motivation for this dissertation is to address the global need for a better un-

derstanding and management of water resources, which is particularly urgent as climate

change has begun to significantly alter climate patterns. Simultaneously, the world’s grow-

ing population requires increasing access to freshwater for drinking and sanitation. This

task requires precise, adaptive modeling of climate systems, as rainfall and other forms

of precipitation play an integral role in the worldwide water cycle. PERSIANN-CCS is

among global operational precipitation retrieval algorithms that are currently in use, to

produce rainfall estimates. The processing steps of PERSIANN-CCS algorithm include (1)

cloud image segmentation, (2) image feature extraction and classification, and (3) rainfall

3



mapping. Although PERSIANN-CCS has high spatial and temporal resolutions, it may

sometimes overestimate or underestimate rainfall amount due to some of its inherent limi-

tations (Behrangi et al., 2009a). Despite recent developments to advance PERSIANN-CCS

(Karbalaee et al., 2017; Tao et al., 2016; Nasrollahi et al., 2013; Mahrooghy et al., 2012;

Behrangi et al., 2009a), little attention is paid to improve the uncertainties associated with

its cloud segmentation algorithm. Cloud image segmentation is the first and one of the most

important steps in all precipitation retrieval algorithms.

The threshold-based segmentation methods are the most broadly applied techniques in cloud

detection for satellite-based precipitation retrieval algorithms because they are simple, fast

and have agreeable accuracy (Hagolle et al., 2010; Jedlovec et al., 2008; Zhu et al., 2015).

In threshold-based techniques, clouds are generally differentiated by a higher reflectance or

lower temperature than the background or earth surface. A major source of error for this

type of approach comes from the complex land surface composition and the high variability of

reflectivity in different cloud types. A threshold that is appropriate to a certain cloud type or

a certain geographical region may not be applicable for another (Sun et al., 2016). Moreover,

pixels defined by the threshold can only consider the radiometric and textural features of an

individual pixel rather than contextual information provided by the image regions as objects

(Blaschke et al., 2014). Hence, the implementation of an object-based approach designed

to segment the clouds into meaningful objects independent of the predetermined threshold

is superior to the threshold-based segmentation techniques in the context of patch-based

precipitation retrieval algorithms.

In addition to the disadvantages of threshold-based algorithms, the IR-based rainfall esti-

mation algorithms including PERSIANN-CCS rely on the assumption that colder cloud-top

brightness temperature indicates higher precipitation probability (Kidd et al., 2003; Huff-

man et al., 2007; Levizzani et al., 2001). However, different types of clouds may have similar

cloud-top brightness temperatures in longwave IR channels (Sorooshian et al., 2000). Mea-
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surements from different channels can provide additional information about the structure

and vertical profile of clouds that lead to more accurate rain estimates (Xu et al., 2005).

Effective use of the available big data from multiple bands and sensors is of great importance

to improve the accuracy of precipitation estimation products (Tao et al., 2018). Recent

developments of Machine Learning (ML) techniques have been extended to the geosciences

community and is another motivation to improve the accuracy of satellite-based precipitation

estimation products (Bengio, others, 2009; Hinton, 2009; LeCun et al., 2015; Liu et al., 2015;

Tao et al., 2018; Rasp et al., 2018; Reichstein et al., 2019; Akbari Asanjan et al., 2018;

Hayatbini et al., 2019a; Pan et al., 2019). Deep Neural Networks (DNNs) are a specific

type of ML with great capability to handle a huge amount of data. DNNs are able to

train a multiple-stage neural network end-to-end, from raw input data to desired output

and proven to be capable of capturing sophisticated distribution of rainfall. This is an

important superiority of DNNs over simpler models to better extract and utilize the spatial

and temporal structures from huge amounts of geophysical data available from a wide variety

of sensors and satellites (Schmidhuber, 2015; Shen et al., 2017).

Specifically, this dissertation addresses the following objectives:

• Demonstrate application of computer vision techniques in cloud segmentation and

identification task.

• Provide a framework to capture warm clouds with higher brightness temperature and

lower heights that PERSIANN-CCS is not currently capable of capturing them.

• Infusion of multiple spectral bands as well as different sources of information as inputs

to the cloud segmentation and detection part of PERSIANN-CCS algorithm in order

to improve the accuracy of precipitation estimation.

• Demonstrate the effectiveness of deep learning algorithms for extraction of precipitation
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relevant information from multiple sources of information as input and comparing its

performance with operational products.

• Design a DL framework that provides a more sophisticated objective function capable

of capturing complex rainfall distributions.

The remainder of this dissertation is organized into 4 chapters. Chapter 2 summarizes related

background information on precipitation estimation and deep learning techniques. Chapters

3 and 4 describe the main novel contributions of this dissertation. Finally, summary, con-

clusions and future directions are discussed in Chapter 5.
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Chapter 2

Background

2.1 Overview of Satellite-Based Precipitation Estima-

tion and the Challenges

NASA Integrated Multi-satellite Retrieval is a key detest from Global Precipitation Mis-

sion (GPM) that provides half-hourly global precipitation monitoring at 0.1ox0.1o. This

algorithm - IMERG (Integrated Multi-satellitE Retrievals for GPM) - consists of three algo-

rithms including CMORPH, TRMM, PERSIANN-CCS (Huffman et al., 2015). CMORPH

(the Climate Prediction Center (CPC) morphing technique) from NOAA Climate Predic-

tion Center (CPC) (Joyce et al., 2004) tracks the precipitation motion patterns from IR

imagery and interpolates between microwave scans. TRMM (the Tropical Rainfall Measur-

ing Mission) is the Multi-satellite Precipitation Analysis from NASA Goddard Flight Center

(TMPA) and has different versions (i.e. AMSR-E, TMI, and SSM/I) (Huffman et al., 2007).

Microwave-calibrated Precipitation Estimation from Remotely Sensed Information using Ar-

tificial Neural Network-Cloud Classification System (PERSIANN-CCS) (Hong et al., 2004)

that is used as a baseline model throughout the dissertation.
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PERSIANN-CCS uses a cloud-patch based technique and applies artificial neural networks

to classify clouds. Precipitation is then estimated based on a relationship between precipi-

tation rates and the cloud top temperatures. Figure 2.1 demonstrates the PERSIANN-CCS

algorithm structure.

Figure 2.1: PERSIANN-CCS algorithm structure.

PERSIANN-CCS segmentation combines thresholding and Seeded Region Growing (SRG;

Adams, Bischof, 1994) algorithm to separate satellite images into distinctive cloud patches

(Hong et al., 2004). The minimum brightness temperature (Tbmin) of the cloud patches are

determined to use as seed. Then, the temperature threshold is raised to identify a new set of

pixels neighboring the seeded points. This procedure continues until reaching the borders of

other seeded regions or cloud-free regions. The temperature threshold is iteratively increased

to a maximum of 253 K. Afterward, a morphological operation is applied to merge tiny

regions (Hong et al., 2004). Further details of the segmentation process in PERSIANN-CCS

precipitation retrieval algorithm can be found in (Hong et al., 2003, 2006).
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2.1.1 Threshold as a Controlling Factor in Cloud Segmentation

PERSIANN-CCS algorithm is one of the precipitation retrieval algorithms that estimate

rainfall from clouds up to a certain brightness temperature threshold, assuming that no

rainfall is associated with clouds with temperature higher than 253k. In other words, pixels

with lower brightness temperature at the top of clouds have heavier precipitation on the

ground. The reason for this idealized assumption is to ensure that large values can be

predicted by the models (Arkin, Meisner, 1987; Hsu et al., 1997). However, such presumption

might cause the exclusion of warm clouds that are associated with a considerable amount of

rainfall. One main purpose of this dissertation is to introduce the segmentation technique

that is independent of threshold and is capable of extracting cloud types regardless of their

temperature and height.

2.1.2 Imbalance of Precipitation Data

Precipitation values in high spatiotemporal resolution are highly skewed toward smaller val-

ues due to the dominance of no-rain pixels, as well as, the rarity of pixels with heavy rain.

This imbalance of precipitation data is a great challenge in applying data-driven methods

specifically using simple and common objective measures to serve as the optimization ob-

jective for precipitation estimation. This means that using single objective loss functions

is insufficient in driving the model to capture the true underlying distribution of precipi-

tation values. In this dissertation, a new objective function consisting of multiple parts is

introduced to tackle the challenge of fitting the best distribution for the output from the

observation.
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2.1.3 Infusion of Multiple Sources of Remotely Sensed Informa-

tion as Input

Advancement of satellites and sensors on board, has provided an unprecedented opportunity

to extract relevant information from multiple sources of space-born information to provide

a more comprehensive understanding of natural phenomena. Precipitation estimation using

multi-channel information is expected to outperform algorithms that are using single spectral

bands. For example, (Behrangi et al., 2009b) used Multispectral Analysis to improve rain/no

rain detection capabilities. They found that combining any two IR channels in the rain

retrieval algorithm seems superior to the one using a single IR channel, and an improvement

on the rain rate statistics can be gained.

Many internationally sponsored satellite missions provide valuable information to estimate

precipitation including NASA (The National Aeronautics and Space Administration), NOAA

(National Oceanic and Atmospheric Administration), and EUMETSAT (European Organi-

zation for the Exploitation of Meteorological Satellites). This dissertation proposes frame-

works that are capable of infusing multiple types of information as inputs such as multiple

spectral bands, sensors, topography maps as well as observations and as a result, provide a

more realistic understanding of the problem.

2.2 Computer Vision Applications on Satellite Imageries

In the area of computer vision, Mathematical Morphology (MM) plays an essential role.

Mathematical morphology was originally developed at the Paris School of Mines as a set-

theoretical approach to image analysis Serra (1983) Matheron (1975). Morphological analysis

of an Image includes studying image transformation with simple geometrical interpretation,

as well as set operations to images and their operators Roerdink (1996).
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The importance and impact of image processing and mathematical morphology are well doc-

umented in areas ranging from automated vision detection and inspection to object recogni-

tion, image analysis, image augmentation, and pattern recognition. Among the applications

in the field of remote sensing Chen et al. (2014),Zhang et al. (2016), Zhu et al. (2017),

semantic segmentation to identify and extract clouds is the main focus of this dissertation.

2.3 Overview of Deep Neural Networks

Deep Neural Networks (DNNs) are the latest generation of Artificial Neural Networks (ANNs)

Schmidhuber (2015) with more complex mathematical modeling to process data in sophisti-

cated ways Goodfellow et al. (2016). ANNs consist of neurons or units with certain activation

and parameters with layers between input and output referred to as ”hidden” layers. DNNs

are considered as ANNs containing multiple hidden layers Ma et al. (2019). DNNs obtain

a representation of the input space by extracting high-level features from a large amount of

data using statistical learning. The deep architecture of DNNs results in their performance

superiority over human in term of accuracy for some domainsBengio, others (2009). However,

this comes with the cost of high-computational complexity which will become manageable

by efficient use of graphics processing units (GPU), rectified linear units (ReLUs), and many

other training techniques examples.

Application of DNNs are broadly expanded from tasks including but not limited to speech,

and image recognition Deng et al. (2013); Krizhevsky et al. (2012), weather or climate studies

Hayatbini et al. (2019b); Akbari Asanjan et al. (2018); Vandal et al. (2017); Tao et al. (2017);

Liu et al. (2016); Xingjian et al. (2015); Tao et al. (2016), autonomous driving Chen et al.

(2015), medical applications Esteva et al. (2017), game theories Silver et al. (2016) and etc.

Deep Learning (DL) algorithms have gained significant popularity for many applications

in the field of remote-sensing Zhang et al. (2016); Zhu et al. (2017); Chen et al. (2014).
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Some commonly used DL models in remote sensing include Convolutional neural networks,

Recurrent neural networks, Autoencoders (AEs) and stacked autoencoders, and Generative

adversarial networks that will be introduced in the remainder of this section.

Convolutional Neural Networks (CNNs) consist of convolution layers, pooling layers and

fully connected layers to better process multiple arrays of data LeCun et al. (2015). For

this reason, CNNs are popular tools to analyze multi-band remote-sensing image data. The

input image is convolved using a set of K kernels W = {W1,W2, ...,Wk} and added biases

γ = {b1, ..., bk} to aggregate the values of pixels within a neighborhood using the max or

mean operation. A new feature map Xk is generated for each convolutional layer

l : X l
k = σ(W l−1

k ∗X l−1 + bl−1
k ). (2.1)

Where σ(.) is the element-wise nonlinear transform that Xk is subjected to Ma et al. (2019).

Some popular CNN architectures include but not limited to ALEXNET Krizhevsky et al.

(2012), VGG NETWORKS (Simonyan, Zisserman, 2014), RESNET (He et al., 2016), Inception-

v4 (Szegedy et al., 2017).

Recurrent Neural Networks (RNNs) are widely used for sequential inputs. This capability

is due to a memory that is used to learn and store long-term dependency and information

(Bengio et al., 1994). long short-term Memory cell (Hochreiter, Schmidhuber, 1997) and

gated recurrent unit (Cho et al., 2014) are the examples of developed memory units. RNNs

have extensively applied on remote-sensing images for a variety of tasks (Minh et al., 2018;

Mou et al., 2017; Ienco et al., 2017; Lyu et al., 2016).

Autoencoders (AEs) consist of multiple layers of stacked AE layers, and the output of each
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layer is connected to the input of the following layer. They map the input to a latent repre-

sentation through one hidden layer with smaller number of hidden units than the input or

output (Zhu et al., 2017). This network is widely used for the processing of feature hierarchy

and has been implemented in the field of remote-sensing for the feature representation task

(Wang et al., 2018; Abdi et al., 2017; Hao et al., 2017; Chen et al., 2017; Gong et al., 2017).

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a popular category

of unsupervised models. The GAN is built of two networks competing with each other: a

generative network (generator) and discriminative network (discriminator). The generator

learns to map from a particular data distribution, and the discriminator tells the difference

between the real data and the generated data produced by the generator. These two networks

keep fooling each other by generator producing more realistic examples and the discriminator

by better detecting the real from generated examples. Both networks try to optimize a loss

function in a zero-sum game (Oliehoek et al., 2017). GANs have been popular in many

computer vision and image processing applications (Isola et al., 2017; Hayatbini et al., 2019b;

Lin et al., 2017; Zhan et al., 2018).
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Chapter 3

Cloud Detection and Segmentation

from Multi-spectral Satellite

Information

3.1 Introduction

The purpose of this study is to improve the state-of-the-art version of PERSIANN-CCS (Pre-

cipitation Estimation from Remotely Sensed Information using Artificial Neural Network-

Cloud Classification System) to support the NASA’s Integrated Multi-Satellite Retrievals for

Global Precipitation Measurement (IMERG) algorithm of the Global Precipitation Measure-

ment (GPM) mission for near real-time monitoring of global precipitation at 0.1◦x0.1◦resolution

over the chosen domain of 50N to 50S with 30 minutes time intervals (Huffman et al., 2015).

This study is motivated by the recognition of the disadvantages of threshold-based segmen-

tation techniques for patch-based precipitation retrieval algorithms as discussed in chapter

2. We introduce a mathematical morphology-based method that integrates the complemen-
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tary multi-spectral information from the gradient magnitudes of satellite images and is a

well fit in the context of PERSIANN-CCS segmentation algorithm. This Gradient-based

Multi-spectral Segmentation (GMS) algorithm comprises of several approaches that have

been developed to extract various types of clouds including warm clouds. In this study, the

algorithm is applied to model simulated GOES-16 ABI imagery. The simulated radiances for

different channels of GOES-16 ABI along with the accompanying model simulated horizontal

distribution of all clouds hydrometeors are used as the reference to validate the proposed

algorithm in detecting and segmenting clouds.

Although the GMS algorithm is applied to geostationary satellite imageries in this study, it

can be extended to other types of satellite dataset as well. This study will be the first step

toward the ultimate goal which is precipitation estimation from remotely sensed information.

In section 3.2, we explain the consisting steps of the developed GMS algorithm. Description

of dataset and the case studies used in the study are described in section 3.3. Results and

evaluation using both statistical scores and visual analyses are provided in section 3.4. Lastly,

the conclusions of this study are presented in section 3.5.

3.2 Methodology

3.2.1 GMS Framework for Cloud Detection and Segmentation

The GMS algorithm is built on a hierarchical structure as the flow diagram shown in Fig.

3.1. This algorithm mainly carries out the following steps: multi-scale gradient magnitude

computation, markers generation, and watershed segmentation. They will be explained in

the following subsections.
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Figure 3.1: Flow diagram of the proposed multi-spectral gradient-based segmentation algo-
rithm.

Multiscale Gradient Magnitude Computation

Gradient computation here means identifying the maximum change of each pixel’s intensity

in the neighborhood. The gradient highlights the sharp changes in intensity or the edges in

an image. In a grayscale morphology, the gradient can be attained by subtracting the eroded

image from the dilated image using a structuring element (Soille, Pesaresi, 2002). Gray-scale

image pixels’ value can be represented with the x and y coordinates as a three-dimensional

set (Parvati et al., 2008). With this concept, gray-scale dilation can be defined as follows:

Let f(s, t) represent an image and B(x, y) be the structuring element. The structuring

element (kernel) is a group of pixels of different sizes and shapes. In this study, a flat kernel,

which means a squared window of pixels with equal weights, is considered for simplicity.
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Gray-scale dilation of f by B is defined as below:

(f ⊕B)(s,t) = Max
{
f(s− x, t− y) +B(x, y) | (s− x), (t− y) ∈ Df ; (x, y) ∈ DB

}
(3.1)

Gray-scale erosion of f by B is defined as below:

(f 	B)(s,t) = Min
{
f(s+ x, t+ y)−B(x, y) | (s+ x), (t+ y) ∈ Df ; (x, y) ∈ DB

}
(3.2)

where Df and DB are the domains of f and B, respectively. The conditions that (s+x) and

(t+ y) have to be in the domain of f and (x, y) have to be in the domain of B is equivalent

to the condition in the binary description of dilation and erosion. Two sets have to at least

share one pixel in common in dilation, however, the structuring element has to be completely

contained by the set being eroded in erosion (Pahsa, 2006). For further details on the erosion

and dilation operations please refer to Gonzalez, Woods (1992).

The gradient image is calculated using equation (3.3) below from the original image, and it

corresponds to the sharpness of the intensity change for each pixel (Parvati et al., 2008):

MG(f) = (f ⊕B)− (f 	B) (3.3)

A multi-scale gradient algorithm capable of utilizing a varying scale-structuring element in

mathematical morphology is implemented to reduce the sensitivity to noise and to extract

various finenesses of the edges of the objects in remote sensing images (Wang, 1997):

MG(f) =
1

n

n∑
i=1

[((f ⊕Bi)− (f 	Bi))	Bi−1] (3.4)

Where Bi denotes the group of square structuring elements with the size of (2i + 1) ×
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(2i + 1) pixels and n is the scale which in this study is set to value of 5. Component-wise

and vector-based strategies can be used to extend mathematical morphology from a single-

channel grayscale image to a multichannel image (?). Component-wise strategy processes

each channel of the multispectral image separately, while the vector-based strategy uses a

vector approach to process the multispectral channels all at once (?). In this study, the

component-wise approach is used for multispectral gradient image computation, since it is

easy to implement and the results are satisfying. The morphological gradient is calculated

separately for each band, and the resulting gradient image values are combined via equal

weighted summation to generate a single gradient image to represent different channels. This

way the gradient values can be obtained by summing up the complementary measurements

from multiple channels of satellite imagery.

MG(f) =
n∑

i=1

MG(fi) (3.5)

Marker Generation and Local Minima Elimination

Markers are the selected regional minima of the input image, which are being used before wa-

tershed transform. The reason to employ so-called markers is to reduce redundant catchment

basins due to the high sensitivity of the watershed transformation algorithm to noise and

irrelevant local minima. The generation of pertinent markers is important to the successful

application of watershed segmentation (Soille, Pesaresi, 2002).

The markers are either single points or regions that are placed inside objects of interest

(Parvati et al., 2008). In this study, we generated markers through automatic thresholding

of gradient magnitudes. Clusters of image pixels are classified as seed or non-seed pixels

using the Otsu thresholding method (Otsu, 1979), which automatically selects an optimal
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threshold based on maximizing the separability of the group-wise pixel values in grey levels,

to generate the marker image. It selects a satisfactory threshold level to extract objects from

their background based on a gray-level histogram. The reason to implement this method is

based on the histogram plot of the gradient magnitudes shown in figure 3.2 that gradient

magnitudes of most pixels are confined to the lower value range, while the sharp edge pixels

with large gradient magnitudes are greater and separable from those within the background.

For further explanation of this thresholding method and examples, one can refer to Otsu

(1979) and Zhang et al. (2014).

Figure 3.2: Histogram plot of the gradient magnitude image. Horizontal axis is showing the
range of gradient magnitude values, and the vertical axis is the number of pixels with each
gradient magnitude value.

Watershed Segmentation on the Gradient Images

The watershed transformation (Vincent, Soille, 1991) is a powerful segmentation algorithm

from mathematical morphology and has been used in many segmentation problems (Hsu

et al., 2010; Zahraei et al., 2013; Lakshmanan et al., 2009). This approach is usually applied

to satellite images to extract regions (i.e., objects) that are identified as clouds. The basic

idea of the watershed algorithm is to consider the single channel image as a three-dimensional

topography map where the lower values are considered as valleys (local minima) and the

higher values are assumed to be hills. Each local minimum is then flooded to neighboring
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pixels until meeting an adjacent catchment. A ridgeline is then delineated along any two

regions’ borders, hence the catchment basins are delimited by watershed lines (Fig. 3.3).

Further information about the watershed segmentation algorithm can be found in Vincent,

Soille (1991).

Figure 3.3: Watershed Transformation Process Diagram. Each of the positive signs repre-
sents one watershed domain.

The morphology-based watershed transformation used in this study is applied to the gradi-

ent magnitude of satellite images. This is different from the traditional segmentation used in

PERSIANN-CCS algorithm that the watershed transformation is directly applied on temper-

ature values lower than a predefined threshold. Applying transformation on gradient images

can capture warm clouds without dependency on predefined temperature thresholds as a

controlling factor. Fig. 3.4A demonstrates how local minima associated with warmer cloud

regions will be disregarded by a predefined threshold applied to the values before implement-

ing the watershed algorithm. Increasing the temperature threshold in order to capture the

clouds with the higher temperature values (Fig. 3.4B) results in merging the local minima

which are representative of distinct clouds and causes misleading outcomes. Optimal results

are achieved when the watershed algorithm is applied to the gradient magnitude images that

delineate the boundaries of all types of clouds, regardless of their height or temperature. In

Figure 3C, high gradient magnitude values are representative of pixels with sharp inten-

sity transitions or cloud boundaries. Hence, the catchment basins are described as regions

between any two local maximum of the gradient magnitudes.
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Figure 3.4: Effect of increasing the threshold on the Watershed segmentation technique.
The positive (negative) signs are representing the seeds that are included (excluded) in the
segmentation process.

3.3 Description of the Dataset

3.3.1 GOES-16 ABI

The primary data sets collected and processed in this research include different channels of

geostationary weather satellite bands of GOES-16. The Advanced Baseline Imager (ABI;

Schmit et al., 2005) onboard GOES-16 can provide more accurate, detailed, and timely

detection of high-impact environmental phenomena by more spectral channels (2 visible, 4

near-infrared and 10 infrared channels), and higher spatial (2 km × 2 km at nadir for infrared

channels) and temporal (every 5 minutes for CONUS) resolutions over its predecessors.

The development of the ABI is being done as a collaborative effort between the National

Aeronautics and Space Administration (NASA) and NOAA. For readers interested in further

details, Schmit et al. (2005) is considered as the references.
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3.3.2 PSU WRF-EnKF Dataset

We used two simulated cases to examine the performance of the proposed algorithm. Both

two simulations are generated using the Weather Research and Forecasting (WRF) model

with its Advanced Research WRF (ARW) dynamical core (Skamarock et al., 2008), with

initial conditions generated by the WRF-based ensemble Kalman filter (EnKF) data assim-

ilation system developed at the Pennsylvania State University (Zhang et al., 2009, 2011).

The first case study is a simulation of hurricane Harvey (2017) which brought record-breaking

catastrophic rainfall in southern Texas. Harvey is the second costliest hurricane in history,

just below hurricane Katrina (2005), and it is also the first storm that was fully captured by

GOES-16. The simulation utilized version 3.6.1 of the WRF model with a 3-km horizontal

resolution. After assimilating brightness temperature observations from ABI every one hour

for several cycles, deterministic forecast is initialized from the EnKF analysis at 0600 UTC 23

August 2017. For the purpose of this study, we only used simulated brightness temperature

of the model outputs of a one-day period from 0000 UTC 26 August to 0000 UTC 27 August,

right after Harvey made its landfall. Further details of the simulation of hurricane Harvey,

including verifications of its track, intensity, and cloud forecasts with observations can be

found in Zhang et al. (2019).

The second case is a simulation of tornadic supercell thunderstorms across Wyoming, Ne-

braska and Colorado on 12 June 2017, which is one of the first severe thunderstorm event

captured by GOES-16. The simulation utilized version 3.8.1 of the WRF model with a 1-km

horizontal resolution. Brightness temperature observations from ABI are assimilated every 5

minutes, and deterministic forecast is initialized from EnKF analysis at 2000 UTC, 12 June

2017, when the thunderstorms were just initiated. The simulations were carried out till 0000

UTC, 13 June 2017, with outputs every 5 minutes. Further details of the simulation of this

severe thunderstorm event and the verifications of the thunderstorm predictions with the
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observations can be found in Zhang et al. (2018).

These two cases differ significantly in the strength and size of clouds. The tornadic supercell

thunderstorm case is one of the smallest organized cloud systems and occur mostly over

the mid-latitude continents, while hurricanes have the largest and most expansive cloud

systems originated from the tropical oceans. We can examine the strength and flexibility of

the proposed algorithms using these two distinctive situations to see if it can detect diverse

types of clouds effectively by utilizing fixed parameter values.

3.4 Results and Discussion

Experiments are carried out to validate the GMS algorithm by applying it to the model

simulated GOES-16 ABI imageries, and compare with accompanying synthetic cloud mask

from the horizontal distribution of all cloud hydrometeors known as the ‘ground truth’.

Visual comparisons and statistical evaluations are performed for both cases to obtain the ac-

curacy of the proposed segmentation algorithm in comparison to the single-channel, threshold-

based segmentation approach that is currently in use for PERSIANN-CCS. Although the

GMS algorithm is capable of integrating information from different spectral bands, the results

shown in this section are obtained from single-band IR cloud top brightness temperature in

order to be consistent with the PERSIANN-CCS single-band segmentation algorithm.

3.4.1 Visual Comparison

The final gradient-based segmentation results from simulated IR input along with gradient

magnitude imageries of hurricane Harvey and the Wyoming thunderstorm event are shown in

Fig 3.5 and 3.6, respectively. The gradient magnitudes are calculated from the IR images and
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the watershed segmentation is then applied to the gradient magnitude imageries based on the

generated markers to achieve the final cloud patch segmentation. Fig 3.5A and 3.6A, presents

a simulated IR longwave window band from GOES-16 ABI (The scale bar is temperature

in degree Kelvin). Fig 3.5B and 3.6B, presents normalized gradient magnitudes imagery

for the corresponding Simulated IR Channel (Scale bar is normalized gradient magnitude

values). Fig 3.5C and 3.6C, presents resulting cloud Segments (Each random color represents

a distinct segment).

Figure 3.5: Visualization of the gradient based segmentation result for simulated Hurricane
Harvey event on August 26th 2017 at 3:00 AM UTC.

Figure 3.6: Visualization of the gradient based segmentation result for the simulated
Wyoming tornado event at 21:20 UTC of the 12th of June 2017.
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Fig 3.7 and 3.8 show that in both cases the newly developed algorithm can capture more

clouds especially the warmer ones compared with the PERSIANN-CCS. This indicates that

the gradient-based segmentation algorithm is capable of overcoming the drawback associated

with threshold-based segmentation approaches implemented in patch-based precipitation

retrieval algorithms. Fig 3.7A and 3.8A, presents ’Truth’ Cloud Mask used as a reference.

Dark blue region is implying the cloud existence. Fig 3.7B and 3.8B, presents PERSIANN-

CCS segmentation result from single-IR channel. Fig 3.7C and 3.8C, presentsgradient-based

segmentation algorithm output based on only IR channel. In panels B and C each random

color identifies a distinct cloud patch.

Figure 3.7: Visual comparison of the two segmentation output (B and C) based on the ’truth’
mask as a reference for the simulated Hurricane Harvey event at 3:00 AM UTC of August
26th 2017.
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Figure 3.8: Visual comparison of the two segmentation output (B and C) based on the ’truth’
mask as a reference for the the simulated Wyoming tornado event at 21:20 UTC of the 12th
of June 2017.

As mentioned in the methodology section, the gradient-based segmentation algorithm is

capable of taking into account the complementary measurements from multiple channels.

In order to visually assess the effect of integrating information from other spectral bands,

channel 8 (lower-tropospheric water vapor channel) of GOES-16 ABI is also processed and

gradient magnitudes are calculated separately for this band. The gradient values from each

spectral bands are then summed up to generate a single-valued multispectral gradient magni-

tude image. The watershed segmentation is then applied to the combined gradient magnitude

imagery.

The segmentation results from each scenario (IR-only, and IR+ Water vapor) are shown in

Fig. 3.9 implying that integration of measurements from other spectral bands will provide

useful information for distinct delineation of the clouds and helps to discard cloud patches

that are mistakenly detected due to the background noise in the utilization of single channel

data. Adding additional channels provides useful information for better defining the cloud

segments and leads to a more accurate classification as the next step toward more robust

intensity estimation and areal delineation of rainfall. Panels in section A Fig. 3.9 are

showing final cloud segments from the gradient magnitudes of lower water vapor band.
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Panels in section B are showing final cloud segments from the gradient magnitudes of single

IR longwave window band. Panels in section C are showing final cloud segments from the

combined gradient magnitude image of both spectral bands (IR longwave window and water

vapor band).

Figure 3.9: Visualizing the effect of integrating complementary information from lower-level
water vapor for the Wyoming tornado case at 21:05 UTC of the 12th of June 2017.
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3.4.2 Statistical Evaluation

A reference cloud mask is needed in order to perform an accuracy assessment and to compare

the outcomes of the proposed segmentation algorithms. The model simulated mixing ratios

combining all hydrometeors, including cloud water, cloud ice, rainwater, snow, and graupel,

are used as ‘truth’ observation mask to determine whether a grid point is covered by cloud

or not. These hydrometeor mixing ratios are prognostic model variables simulated by the

microphysics scheme and evolve in correspondence with the dynamical and thermodynamical

processes within the WRF model. After summing them all together and taking the vertical

maximum value within each column, a threshold of 10e−6 kg kg−1 is applied to the horizontal

hydrometeor mixing ratio map. This value is a widely-used threshold for cloud top and

cloud base identification from model simulations beginning from Otkin, Greenwald (2008).

The grid point is cloudy if hydrometeor mixing ratio at this location is greater than the

threshold and is clear sky if it is lower than the threshold. The model-derived horizontal

distribution of clouds is used as the “truth” to verify and compare the two different cloud

identification algorithms. The situations of whether the segmentation algorithm detects

the clouds successfully or not are shown with the verification indices used along with their

application listed in Table 3.2.

Table 3.1: The four possible diagnosis results of testing.

Detected Not detected Probability

Existing

True positive (TP)

The existing defect is detected

(hit)

False negative (FN)

The existing defect is not detected (miss)
TP + FN = 100 %

Non-existing

False positive (FP)

Defect is detected but not exists

(False Alarm)

True negative (TN)

No defect is detected, no defect exists

(Correct Rejection)

FP + TN = 100 %

Total FP + TP FN + TN Total =TP+ FN+TN+FP
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Table 3.2: Verification Metrics

Verification

Metrics

Formulation Range Application

Undetected Er-

ror Rate

Ur= Misses/Number of observed events
(0 ≤ Ur ≤ 1)

Perfect score: 0
The rate of error in detection of hit events

Probability of

Detection

POD =Hits/ Number of observed events
(0 ≤ POD ≤ 1)

Perfect score: 1
The likelihood of correct detection

False Alarm

Ratio

Fr = False Alarm/Number of Not Observed

Events

(0 ≤ Fr ≤ 1)

Perfect score: 0
The number of false alarms per total number

of alarms

Bias Score Bias=(Hits+False alarms)/ Number of ob-

served events

(0 ≤ BI)

Perfect score: 1

How similar were the frequencies of

Existing and Detected events?

Equitable

Threat Score

(ETS)

ETS=Hits-Hitsrandom/(Hits+Misses

+False alarms-Hitsrandom)

(-1/3 < ETS < 1)

Perfect score: 1

How well did the Existing events

correspond to the Detected events

Constant improvements in segmentation skill using the GMS algorithm is evident for both

events with their cloud systems evolve considerably in structure and morphology (Fig. 3.10,

3.11). The improvement is pronounced when only IR data are used to keep the consistency

between the proposed segmentation algorithm and the one used in PERSIANN-CCS. The

only metric that is not showing the performance enhancement is the False Alarm Ratio

(FAR; with the best score of zero), with non-zero but insignificant average value of 0.03 (Fig.

3.10 B, 3.11 B). This higher value of FAR is in compensation of the higher POD that we

obtained in comparison to the PERSIANN-CCS segmentation algorithm. The conventional

segmentation algorithm misses the clouds with higher temperatures than the manually set

temperature threshold and only captures the colder clouds. Therefore, low or zero FAR is

expected. The gradient-based segmentation algorithm, on the other hand, can cover both

warm and cold clouds with potentially higher FAR.
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Figure 3.10: Statistical comparison of two different segmentation algorithms for Hurricane
Harvey case.
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Figure 3.11: Statistical comparison of two different segmentation algorithms for Wyoming
Tornado case.

3.5 Summary and Conclusions

A gradient-based multispectral segmentation algorithm for cloud detection and segmenta-

tion using satellite imageries is developed and presented. The goal is to provide a more

effective and flexible method to overcome the shortcomings associated with the traditional
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patch-based cloud segmentation approaches towards more reliable precipitation retrievals.

This algorithm is based on mathematical morphology, and image processing techniques de-

veloped to extract information from single or multiple channels of satellite imagery. Due

to the unique characteristics of each spectral band, accumulation of additional sources of

information from multi-channel satellite imagery became viable by using the gradient mag-

nitudes instead of directly utilizing each channel’s values. This gradient-based cloud image

segmentation method integrates morphological image gradient magnitudes to separable cloud

systems and patches boundaries using a convolution operation. As a result, a wider range

of cloud types regardless of their temperature and height can be detected and segmented.

The proposed algorithm, as well as the conventional threshold-based segmentation approach

used in the PERSIANN-CCS algorithm, are applied on the simulated GOES-16 ABI im-

ageries from high-resolution numerical weather simulations accompanied with their modeled

horizontal distribution of hydrometeors as the reference to examine their performance. Re-

sults from visual and statistical comparison indicate a constant improved performance of the

gradient-based segmentation technique over the traditional approaches specifically in terms

of extracting warm cloud regions. More accurate extraction of cloud patches provides the

opportunity for a more effective cloud tracking towards dynamic analysis of precipitation

estimation. This algorithm is the first step towards reducing the uncertainty associated with

precipitation retrieval from remotely sensed information.
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Chapter 4

Rain/Norain Detection and Rainfall

Estimation from Multispectral

Satellite Information

4.1 Introduction

Near-real-time satellite-based precipitation estimation is of great importance for hydrolog-

ical and meteorological applications due to its high spatiotemporal resolution, and global

coverage. The accuracy of precipitation estimates can likely be enhanced with implementa-

tion of the recent developments in technologies and data with higher temporal, spatial, and

spectral resolution. Another important factor to more efficiently and accurately characterize

these natural phenomena and their future behavior is the use of the proper methodologies to

extract applicable information and exploit it in the precipitation estimation task (Sorooshian

et al., 2011).

This study explores the application of the conditional GANs as a type of Generative Neural
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Networks to estimate precipitation using multiple sources of inputs including multispectral

geostationary satellite information. This is an investigation for the development of an ad-

vanced satellite-based precipitation estimation product driven by state-of-the-art deep learn-

ing algorithms and using information from multiple sources. The objectives are to report on:

1) application of CNNs instead of fully connected networks in extracting useful features from

GEO satellite imagery to better capture the spatial and temporal dependencies in images, 2)

demonstrating the advantage of using more sophisticated loss function to better capture the

complex structure of precipitation, 3) evaluating the performance of the proposed algorithm

considering different scenarios of multiple channel combinations and elevation data as input,

and 4) evaluate the effectiveness of the proposed algorithm by comparing its performance

with PERSIANN-CCS as an operational product and a baseline model with a conventional

type of loss function. The remainder of this section is organized as follows. Section 4.2

briefly describes the study region and the datasets used for this study. Section 4.3 explains

the methodologies and details about the experiments in each step of the process. Section

4.4 presents the results and discussion and finally, section 4.5 discusses the conclusions.

4.2 Materials and Study Region

The primary data sets used in this research include different channels and combinations of

bands from the Advanced Baseline Imager (ABI) onboard GOES-16 (NOAA/NASA). GOES-

16 is the next generation of the Geostationary Operational Environmental Satellite (GOES)

with the Advanced Baseline Imager (ABI; Schmit et al., 2005), with 16 channels. Compared

to five spectral bands available on the preceding generations of GOES, the ABI provides

four times higher spatial resolution, and almost five times faster temporal coverage than

the previous system. Providing much greater detail, ABI enables more accurate monitoring

of weather and climate. Each of the bands from GOES satellite is most sensitive to a
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certain part of clouds and will give a better insight on structure, and properties of cloud

patches and might have different applications. In this study, the emissive bands of GOES-

16 satellite with approximate central wavelengths of 3.9, 6.18, 6.95, 7.34, 8.5, 9.6, 10.35,

11.2, 12.3, 13.3 µm are implemented due to their continuous availability both for daytime

and nighttime. The data covers the time period from 2017 to the present at the temporal

resolutions of 30 seconds to 15 minutes and are hosted by NOAA’s Comprehensive Large

Array-data Stewardship System. More information about GOES-16 can be found in Schmit

et al. (2010).

The target data in this study is the National Severe Storms Laboratory (NSSL) Multi-Radar

Multi-Sensor (MRMS) system which is developed by NSSL and recently activated by NOAA’s

National Weather Service (NWS). MRMS data is obtained from GPM Ground Validation

Data Archieve. In this work, the MRMS data is processed to be used over the United States

(24.35 ◦ to 49.1 ◦ N, -124.4 ◦ to -66.7 ◦ W) for every 30 minutes with 4 km spatial resolution

in order to match with PERSIANN-CCS product. To keep the consistency of the nadir

spatial resolution of the ABI channels and MRMS data implemented in this study with the

PERSIANN-CCS operational product all the measurements mapped to the same resolution

of 4 km. In our experiments, we also include elevation data from the Global 30 Arc-Second

Elevation Data Set (GTOPO30) provided by the USGS (Danielson, Gesch, 2011).

4.3 Methodology and Model Setup

With the constellation of a new generation of satellites, an enormous amount of remotely

sensed measurements is available. However, it is still a challenge to understand how these

measurements should best be used to improve the precipitation estimation task. Specifically,

here we explored the application of CNNs and GANs in step-by-step phases of our experiment

to provide a data-driven framework for near real-time precipitation estimation. Figure 4.1
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illustrates an overview of our framework, which consists of three main components: data

pre-processing, deep learning algorithms, and evaluation.

Figure 4.1: The proposed framework for the Precipitation Estimation.

Data pre-processing is an essential part of our framework as measurements collected from

different spectral bands have different value ranges. For example, 0.86 µm (”reflective”)

band contains measurements ranging from 0 to 1 while 8.4 µm (”cloud-top phase”) band

contains measurements ranging from 181 to 323. Normalizing the input is common practice

in machine learning as models tend to be biased towards data with the largest value ranges.

We make the assumption that all remotely sensed measurements are equally important, so

we normalize the data of each channel to range from 0 to 1. Observations of each channel

are normalized using the parameters as shown in Table 4.1, by subtracting the min value
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from the channel value and dividing by the difference between the min and max values.

Moreover, all the datasets are matched in terms of spatiotemporal resolution to qualify for

image-to-image translation. As a result, both the MRMS and imageries from GOES-16 were

up-scaled to match the PERSIANN-CCS as the baseline with 30 minutes temporal and 4

km by 4km spatial resolution.

Table 4.1: Parameters for channel normalization applied using the formula: value−min
max−min

Band Number - Wavelength (µm) min max
8 – 6.2 187 260
9 – 6.9 181 270
10 – 7.3 171 277
11 – 8.4 181 323
13 – 10.3 181 330
14 – 11.2 172 330

The pre-processed data is then used as input for deep learning algorithms. In this study,

we explore the application of CNNs to learn the relation between input satellite imagery

and target precipitation observations. Specifically, we use the U-net architecture that has

become popular in recent years in the computer vision—with applications ranging from

image-to-image translation to biomedical image segmentation. An illustration of the U-

net architecture is presented in Figure 4.2, which shows an encoder-decoder network but

with additional ”skip” connections between the encoder and decoder. The bottle-necking of

information in the encoder helps capture global spatial information, however, local spatial

information is lost in the process. The idea behind the U-net architecture is that decoder

accuracy can be improved by passing the lost local spatial information through the skip

connections. Accurately capturing local information is important for precipitation estimation

as rainfall is generally quite sparse—making pixel-level accuracy that much more important.

For more information regarding U-nets please refer to Ronneberger et al. (2015).

U-net is used to extract features from the pre-processed input data, which are then used to
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Figure 4.2: Visualized structure of U-net network.

predict the quantity of rainfall and the classification of rain/no-rain for each pixel. Each

extracted feature is the same height and width as the input and target data, and is a single

channel; the number of channels was selected through separate cross-validation experiments

not discussed in this study. The single channel feature is then fed into a shallow regression

network that predicts a quantity of rain for each pixel. The specific details of each network

are shown in Table 4.2. In this table, each layer of the encoder feeds sequentially into the

next layer, from top to bottom (i.e., ”conv1” top, so the output of the ”conv7” layer feeds

into the ”convt1” layer. Additionally, ”convt2” and ”conv8” layers take not only as input the

output from their previous decoder layers, but also concatenates the output of the encoder

layer of the same row (skip connection). This means the input of the ”convt2” layer is the

concatenated outputs of the ”conv5” and ”convt1” layers. The output of the ”conv8” layer

is the input for the classifier and regressor. C represents number of input channels.

Performance verification measurements for precipitation amount estimation and rain/no-rain

(R/NR) classification are presented in Table 4.3 and Table 4.4 respectively. TP denotes the

number of true positive events, MS denotes the number of missing events, FP denotes the

number of false-positive events, TN denotes the number of true-negative events.
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Table 4.2: Details of network architectures.

Feature Extractor
Encoder Decoder

layer kernel size, stride, padding activation batch norm layer kernel size, stride, padding activation batch norm
conv1 3× 3× C × 64, 1, 1 ReLU Yes
conv2 3× 3× 64× 64, 1, 1 ReLU Yes conv8 5× 5× 65× 1, 1, 2 None No
conv3 3× 3× 64× 64, 2, 0 ReLU Yes
conv4 3× 3× 64× 128, 1, 1 ReLU Yes
conv5 3× 3× 128× 128, 1, 1 ReLU Yes convt2 3× 3× 129× 1, 2, 0 None No
conv6 3× 3× 128× 128, 2, 0 ReLU Yes
conv7 3× 3× 128× 128, 1, 1 ReLU Yes convt1 3× 3× 128× 1, 2, 0 None No

Classifier Regressor
layer kernel size, stride, padding activation batch norm layer kernel size, stride, padding activation batch norm
conv1 3× 3× 1× 1, 1, 1 Sigmoid No conv1 3× 3× 1× 1, 1, 1 ReLU No

Table 4.3: Description of the verification metrics.

Verification measures Formulas Range and desirable value

Probability of Detection POD = TP
(TP+MS) Range: 0 to 1; desirable value: 1

False Alarm Ratio FAR = FP
(TP+FP) Range: 0 to 1; desirable value: 0

Critical Success Index CSI = TP
(TP+FP+MS) Range: 0 to 1; desirable value: 1

Two baselines are used to be compared to the output of our framework. The first one is the

operational product of PERSIANN-CCS and the other one is a framework with the same

structure as the proposed one, except that the loss term is calculated using only MSE. The

reason to pick this baseline model is to show the superiority of the application of cGAN term

in the objective function to better train the network for the task of precipitation estimation.

First phase of the methodology considers the most common scenario: one channel of IR from

GOES-16 satellite is used as input to predict target precipitation estimates. In this phase,

the networks in our framework (feature extractor and regressor) are trained using the mean

squared error (MSE) loss, optimizing the objective:

min
Greg

Ex,y∼Pr

[
‖y −Greg(x)‖2

2

]
, (4.1)

where Pr is the data distribution over real sample (x and y), Greg is the feature extractor and
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Table 4.4: Common verification measures for the satellite-based precipitation estimation
products.

Verification measures Formulas Range and desirable value
Bias Bias = x̄− ȳ Range: −∞ to +∞; desired value: 0
Mean Squared Error MSE = 1

N

∑
(xi − yi)2 Range: 0 to +∞; desired value: 0

Pearson’s Correlation Coefficient COR =
∑

(xi−x̄)(yi−ȳ)√∑
(xi−x̄)2

√∑
(yi−ȳ)2

Range: −1 to +1; desired value: 1

regressor, x is the input GOES satellite imagery, and y is the target precipitation observation.

According to this phase experiments, the regressor predicts small quantities of rain when

the target indicates no-rain pixels. Instead of deciding on an arbitrary threshold to truncate

values with, we follow the work of Tao et al. (2018) and use shallow classification network to

predict a rain/no-rain label for each pixel—a binary mask. Tao et al. (2018) applied Stacked

Denoising Autoencoders (SDAEs) to delineate the rain/no-rain precipitation regions from

bispectral satellite information. SDAEs are common and simple DNNs consisting of an

autoencoder to extract representative features and learn from input to predict the output.

The binary mask in our study is used to update the regression network’s prediction—pixels

where the classification network predicts no-rain is updated to zero. The classifier uses the

same single channel feature from the feature extractor as the regressor (details of the classifier

are shown in Table 4.2). This gives us an updated objective of:

min
Greg ,Gcls

Ex,y∼Pr

[
‖y −Greg(x) ·Gcls(x)‖2

2

]
+ (4.2)

Ex,ŷ∼Pr

[
ŷ · log(Gcls(x)) + (1− ŷ) · log(1−Gcls(x))

]
,

where Gcls is the feature extractor and classifier and ŷ is the binarized version of y. Here

the feature extractor in Gcls share the same weights as those in Greg.

As mean squared error (MSE) is a commonly used objective for the task of precipitation

estimation, we use it as our optimization objective in the first phase. Using MSE, however,
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we find the outputs from precipitation estimators to be highly skewed toward smaller values

due to the dominance of no-rain pixels, as well as, the rarity of pixels with heavy rain. This

means that MSE by itself is insufficient in driving the model to capture the true underlying

distribution of precipitation values. And since one of the main purposes of satellite-based

precipitation estimation is to specifically track extreme events with negative environmental

consequences, this behavior is problematic.

The second phase of our methodology looks to address this problematic behavior. We follow

along the same line as Tao et al. (2018), who tried to remedy this behavior with the addition

of a Kullback-Leibler (KL) divergence term to the optimization objective. KL divergence

measures how one probability distribution p diverges from a second expected probability

distribution q:

DKL(p‖q) =

∫
x

p(x) log
p(x)

q(x)
dx (4.3)

DKL achieves the minimum zero when p(x) and q(x) are equal everywhere. It is noticeable

according to the formula that KL divergence is asymmetric. In cases where p(x) is close

to zero but q(x) is significantly non-zero, then the effect of q is disregarded. This makes

optimizing difficult when using gradient methods as there is no gradient to update parameters

in such cases(Arjovsky et al., 2017).

We consider instead a different measure, the Jensen-Shannon (JS) divergence:

DJS(p‖q) =
1

2
DKL(p‖p+ q

2
) +

1

2
DKL(q‖p+ q

2
) (4.4)

41



Figure 4.3: Schematic conditional Generative Adversarial Network Structure.

JS divergence is not only symmetric but is a smoother function compared to KL divergence,

making it better suited to use with gradient methods. Huszár (2015) have demonstrated the

superiority of JS divergence over the KL divergence for quantifying the similarity between

two probability distributions. An implementation of JS divergence is a generative adversarial

network (GAN), which adds a discriminator network that works against a generator network.

The discriminator network discriminates whether the given input is a real sample from the

true distribution (ground truth) or is a fake sample from a fake distribution (output from the

generative network), and the generator network attempts to fool the discriminator. The GAN

concept is illustrated in Figure 4.3, where G is a generator network and D is a discriminator

network. For further detail on GANs structure please refer to the papers by Goodfellow

et al. (2014) and Goodfellow (2016).

In our setup, the generator consist of the previously mentioned networks (feature extrac-

tor, classifier, and regressor), and a fake sample is an output from the regressor that has

been updated using the binary mask from the classifier. Updating Eq. 4.2 to include the

discriminator network for GAN gives the following equation:
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min
Greg ,Gcls

max
D

Ex,y∼Pr

[
‖y −Greg(x) ·Gcls(x)‖2

2

]
+ (4.5)

Ex,ŷ∼Pr

[
ŷ · log(Gcls(x)) + (1− ŷ) · log(1−Gcls(x))

]
+

Ex,y∼Pr

[
log(D(x, y))

]
+ Ex∼Pr

[
log(1−D(x,Greg(x) ·Gcls(x)

]
,

where D is the discriminator. Unlike the previously discussed discriminator that only looks

at the target y or simulated target Greg ·Gcls, here we use a discriminator that also looks at

the corresponding input x as reference. This is known as a conditional generative adversarial

network (cGAN), as now the discrimination of the true or fake distribution is conditioned

on the input x. cGANs have been shown to perform even better than GANs but requires

paired x, y data, which is not always readily available Mirza, Osindero (2014). However, in

this study, the paired data is provided by spatiotemporal resolution matching of the inputs

(GOES-R bands) and the observation data (MRMS). Our setup follows closely to that of

Isola et al. (2017) as we consider pixel-wise precipitation estimation from satellite imagery

as the image-to-image translation problem from computer vision. The notable differences

between our setup and that of Isola et al. (2017) are the generator network structure and

objective function. While the objective function of Isola et al. (2017) contains only two

parts: L1 on the generator and binary cross-entropy on the discriminator, our final objective

function (Eq. 4.5) contains three parts: L2 on the generator, binary cross-entropy on the

discriminator, and binary cross-entropy on the output of the classifier. The optimal point

for the min-max equation is known from game theory, which is when the discriminator and

the generator reach a Nash equilibrium. That’s the point when the discriminator is not able

to tell the difference between the fake samples and the ground truth data anymore.

The last phase of the methodology considers the infusion of other channels of GOES-16

satellite data and GTOPO30 elevation information as an ancillary data. We first evaluate
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selected channels of GOES-16 individually with and without inclusion of elevation data to

establish a baseline for how informative each individual channel is for precipitation estima-

tion. We then evaluate combinations of GOES-16 channels to see how well different channels

complement each other.

4.4 Results and Discussion

In this section, we evaluate the performance of the proposed algorithm over the verification

period for the continental United States. We compare the operational product PERSIANN-

CCS, in addition to a baseline model that is trained using conventional and commonly used

metric MSE as its objective function. The MRMS data is used as the ground truth data

to investigate the performance improvement in both detecting the rain/no-rain pixels and

the estimates. Table 4.5 provides the overall statistic performances of the cGAN model

compared to PERSIANN-CCS with reference to the MRMS data. Multiple channels are

considered stand-alone and as the input to the proposed model including channel 13 with

similar wavelength to PERSIANN-CCS to make the comparison fair.

Table 4.5: Statistical evaluation metrics values for different scenarios using single spectral
bands

Sc. Band number/Wavelength (µm) MSE (mm h−1)2 COR BIAS POD FAR CSI MSE COR BIAS POD FAR CSI
cGAN Model Output

Without Elevation With Elevation
1 8 – 6.2 1.410 0.270 -0.030 0.356 0.734 0.174 1.096 0.311 -0.017 0.363 0.726 0.180
2 9 – 6.9 1.452 0.271 -0.044 0.371 0.725 0.182 1.107 0.317 -0.032 0.428 0.736 0.190
3 10 – 7.3 1.536 0.281 -0.090 0.474 0.755 0.188 1.105 0.313 -0.037 0.450 0.727 0.200
4 11 – 8.4 1.310 0.271 -0.034 0.507 0.714 0.219 1.053 0.326 -0.047 0.599 0.726 0.229
5 13 – 10.3 1.351 0.262 -0.041 0.518 0.718 0.220 1.037 0.323 -0.039 0.594 0.731 0.224

PERSIANN-CCS
MSE COR BIAS POD FAR CSI

10.8 µm 2.174 0.220 -0.046 0.284 0.622 0.193

The elevation data is also considered as another input to the model along with single bands

of ABI GOES-16 to investigate the effect of infusing elevation data as auxiliary informa-

tion. All evaluation metrics show improved results for the proposed cGAN model over the

operational PERSIANN-CCS product during the verification period using band number 13.
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Specifically, the application of elevation data combined with single spectral bands indicates

further performance improvement. Beside channel 13 as input to the model, utilization of

channel 11 (”Cloud Top Phase”) as a stand-alone input to the model also shows good per-

formance due to the statistics from evaluation metrics. It could be concluded that channel

11 is also playing an important role as channel 13 in providing useful information for the

task of precipitation estimation either utilized as stand-alone or combined with elevation

information.

Multiple scenarios are considered as shown in Table 4.6 to investigate the benefit that chan-

nels 11 and 13 provide for the model in combination with some other spectral bands including

different levels of water vapor. The evaluation metrics values indicate that the utilization of

more spectral bands as input to the proposed model (Sc. 9), leads to lower MSE and higher

correlation and CSI.

Table 4.6: Statistical evaluation metrics values for different scenarios using multiple spectral
bands

Sc.
Band number/Wavelength

(µm)
MSE (mm h−1)2 COR BIAS POD FAR CSI

cGAN Model Output
1 8,11 – 6.2, 8.4 1.349 0.353 -0.094 0.635 0.683 0.266
2 9,11 – 6.9, 8.4 1.317 0.345 -0.088 0.627 0.667 0.275
3 10,11 – 7.3, 8.4 1.385 0.343 -0.119 0.668 0.681 0.274
4 8,9,10,11 – 6.2, 6.9, 7.3, 8.4 1.170 0.319 -0.064 0.601 0.658 0.275
5 8,13 – 6.2, 10.3 1.350 0.348 -0.100 0.644 0.689 0.264
6 9,13 – 6.9, 10.3 1.410 0.344 -0.124 0.661 0.678 0.275
7 10,13 – 7.3, 8.4 1.408 0.337 -0.129 0.665 0.676 0.277
8 8,9,10,13 – 6.2, 6.9, 7.3, 10.3 1.258 0.317 -0.077 0.594 0.655 0.274

9
8,9,10,11,12,13,14 – 6.2, 6.9,

7.3, 8.4, 9.6, 10.3, 11.2
1.178 0.359 -0.086 0.706 0.681 0.278

PERSIANN-CCS
MSE (mm h−1)2 COR BIAS POD FAR CSI

10.8 µm 2.174 0.220 -0.046 0.284 0.622 0.193

Visualization of predicted precipitation values for the proposed cGAN model and oper-
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Figure 4.4: a) Channels 10 and b) 13 from ABI GOES-16 imagery, c) cGAN model half
hourly output, d) PERSIANN-CCS half hourly precipitation values, and e) The MRMS
data for July 31, 2018 at 22:00 UTC over the CONUS. Black circles on GOES-16 satellite
imageries are presenting regions with warm clouds and the red circles are the corresponding
regions with the rainfall associated with the warm clouds.

ational PERSIANN-CCS product are shown in Figure ?? to emphasize the performance

improvement specifically over the regions covered with warm clouds. Capturing clouds with

higher temperature associated with rainfall is an important issue that is considered as the

main drawback for precipitation retrieval algorithms such as PERSIANN-CCS. This inher-

ent shortcoming is associated with the temperature threshold based segmentation part of

the algorithm incapable of fully extracting warm raining clouds (Hayatbini et al., 2019a).

Figure 4.4 is showing two sample IR band types and the half-hourly precipitation maps from

the proposed model using the inputs listed in the scenario number 9 in Table 4.6 for July 31

at 22:00 - UTC along with the PERSIANN-CCS output and MRMS data for the same time

step.
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Figure 4.5: Daily (left panel) and monthly (right panel) precipitation values for a&d)
PERSIANN-CCS, c&f) cGAN model output compared to the b&e) Reference data - MRMS.
Red circles are highlighting regions with most of the differences.

Daily and monthly values for all the models are also provided in Figure 4.5. As shown in the

red circled regions for the precipitation values with daily scale in the left panel, the proposed

cGAN model output is capturing more of the precipitation as compared to PERSIANN-CCS

output. Although both models are showing overestimation compared to MRMS in monthly

scale, precipitation values from the proposed model are closer to the ground truth extreme

values than PERSIANN-CCS.

Figure 4.6 presents R/NR identification results for the proposed cGAN model and the

PERSIANN-CCS models for the 20th of July 2018. It is obvious that only small sections

of rainfall are correctly identified by PERSIANN-CCS while cGAN model is able to reduce

the missing rainy pixels and shows a significant improvement in delineating the precipitation

area, represented by green pixels. More pixels with false detection of rainfall are observed
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Figure 4.6: Visualization of precipitation identification performance of PERSIANN-CCS vs
cGAN model output over the United States for July 20th, 2018.

in cGAN model output than PERSIANN-CCS which are insignificant compared to much

higher detection and lower miss of rainy pixels.

Figure 4.7 presents the maps of POD, FAR, and CSI values for the cGAN model compared to

PERSIANN-CCS and the baseline model with MSE as the loss function. As explained in the

methodology section, the cGAN model’s loss term consists of an additional part other than

MSE that has to be optimized as a min-max problem in order to better capture complex

precipitation distribution. Figure 4.7 indicates the common verification measurements in

Table ?? for regression performance of all three models during the verification period. High

measurement values are represented by warm colors and low measurement values are indi-

cated by cold colors. Note that high values are desirable for POD and CSI, while lower values

are desirable for FAR. Figure 4.7 shows that the cGAN model outperforms the PERSIANN-

CCS almost all over the CONUS and is showing better performance over the baseline model

as well. For FAR, higher values observed for cGAN model are negligible considering the sig-

nificant improvement of POD over the baseline model and PERSIANN-CCS. An ascending

order can be observed in the maps of CSI of PERSIANN-CCS, the baseline model, and the

cGAN model.

Correlation and MSE values are also visualized to help to better explain the performance
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Figure 4.7: POD (top row), FAR (middle row), and CSI (bottom row) of PERSIANN-CCS
(left column), the baseline model (middle column), and the cGAN model (right column) over
the United States for July 2018.

improvement of the cGAN model over PERSIANN-CCS over the verification period in Fig-

ure 4.8.

4.5 Conclusion

This study takes advantage of advanced deep learning techniques, to investigate their ca-

pability of effectively and automatically learning the relation between multiple sources of

inputs and observation. A two-stage framework using a more complex objective function

for training a CNN from multiple channels of latest generation of geostationary satellites

is introduced to better capture the complex properties of precipitation. The effectiveness

of the proposed model is investigated by comparing it with an operational satellite-based

precipitation product (PERSIANN-CCS), and a baseline model with a conventional type of
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Figure 4.8: The Correlation and MSE values (mm h−1)2 for the cGAN and PERSIANN-CCS
model over the CONUS and during the validation period (month of July 2018).

objective function. The first stage is based on a classification model to delineate precipita-

tion regions and the second stage is a precipitation amount estimation model. The model is

calibrated and evaluated over the continental United States.

The evaluation metrics are compared for different scenarios defined to investigate the benefit

that each channel provides for the model individually or in combination with other spectral

bands. The experimental results demonstrated the general effectiveness of the cGAN two-

stage deep learning framework over the PERSIANN-CCS and the baseline model. The

proposed model shows the best performance with the application of most of the emissive

channels from GOES-16, listed in scenario 9 in Table 4.6 over the verification period which

is July 2018 in this study.

The overall performance is improved compared to the baseline model and operational prod-

uct of PERSIANN-CCS even with the application of IR channel solely as the input of cGAN

model to make the comparison fair. The model is capable of capturing the relationship
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between the satellite information and the precipitation even at locations covered with warm

clouds, which is an important drawback associated with satellite-based precipitation estima-

tion products with global coverage. Moreover, the application of elevation data combined

with low number of spectral bands used as input showed performance improvement. We con-

clude that the model’s performance will be improved using the elevation data as an ancillary

information to each channel of the satellite and helps the precipitation estimation task to be

more accurate and generalized on a larger scale.
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Chapter 5

Summary and Conclusion

5.1 Dissertation Summary and conclusion

Precipitation retrieval with high spatiotemporal resolution has always been an important

task and an essential element for hydrological and meteorological applications. Improving the

accuracy of precipitation estimation from remotely sensed data is more achievable with recent

advancements in satellite remote sensing technologies. The availability of large amounts of

data also known as big data offers unprecedented opportunities to improve or develop more

advanced and reliable precipitation estimation algorithms. One path to reach this goal is

to utilize more up-to-dated tools and methodologies for the extraction and exploitation of

relevant information linked to precipitation. In this dissertation, state-of-the-art data-driven

frameworks are proposed based on deep learning and computer vision tools to extract the

most useful features from single or multiple spectral bands of geostationary satellites.

Specifically, a novel gradient-based cloud-image segmentation algorithm is proposed to ef-

fectively identify clouds and monitor their evolution towards more accurate quantitative

precipitation estimation and forecast. The proposed algorithm integrates morphological im-
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age gradient magnitudes to separate cloud systems and patches boundaries from single or

multi-spectral imagery. This method improves rain detection and estimation skills with more

accurately identifying cloud regions compared to the existing cloud-patch-based segmenta-

tion technique implemented in the PERSIANN-CCS as baseline model. The application of

this method is extendable to synthetic satellite imageries and hurricanes simulations.

Moreover, a state-of-the-art precipitation estimation framework is developed from multiple

sources of information and using advances in deep learning. A Fully Convolutional Network

(FCN) is used as a regressor to predict precipitation estimates for rainy pixels that are

previously classified using a rain/norain binary mask generated by classification of the pixels.

The conditional Generative Adversarial Network (cGAN), and the Mean Squared Error

(MSE) loss terms are used to train a network to generate results that better learn the

complex distribution of precipitation from the ground truth data. The accuracy of both

R/NR classification and real-valued precipitation estimates are evaluated using metrics such

as Probability Of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI),

Mean Square Error and Correlation. Statistics and visualizations of the evaluation metrics

represent improvement in the accuracy of the proposed algorithm compared to the baseline

models.

At a high level, the main contributions of this dissertation are as follows:

• Developed and introduced a novel cloud segmentation technique to present

cloud types based on their boundaries and regardless of their temperature

and height.

• Introduced application of CNNs instead of fully connected networks in

extracting useful features from GEO satellite imagery to better capture the

spatial and temporal dependencies in satellite-based images.

• Demonstrated the advantage of using a more sophisticated loss function to
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better capture the complex distribution of precipitation.

• Proposed a new precipitation retrieval algorithm called PERSIANN-cGAN

as a near-real-time high-spatiotemporal rainfall estimation algorithm.

• Evaluated different scenarios of implementing multiple channels of satellite

data combinations along with the auxiliary source of information - elevation

data - as input to the proposed precipitation retrieval algorithm.

5.2 Future Directions

The algorithms developed in this research have unique capabilities and provide the potential

opportunity for future directions and extension. Some potential directions are discussed

below.

5.2.1 Additional Data Sources

Data related to precipitation estimation come from a variety of sources, including satellite

platforms, radars, and ground-based measurements, each with their strengths and weak-

nesses. Obviously, the combination of multiple satellite-based observation systems is more

potential to provide a more comprehensive and realistic output.

GOE satellite observations, and more particularly Level 2 Cloud and Moisture Imagery Prod-

ucts (CMIP) from the Advanced Baseline Imager (ABI) onboard GOES-16 (NOAA/NASA)

are the main source of data used in this research. The CMIP data covers the time range

from 2017 to the present with a temporal resolution of 30 seconds to 15 minutes and includes

all sixteen channels from the ABI. The algorithms presented in this dissertation are flexible

to be extended to other new-generation GEO sensors (Himawari 8/9 AHI, MTG-I/S FCI,
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and FY-4 AGRI spectral bands).

Another valuable source of information to better detect the vertical distribution of hydrom-

eteors and the structure of clouds is NASA’s CloudSat Level 2 Cloud Scenario Classification

Product. The unique cloud profiling radar (CPR) instrument on NASA’s CloudSat LEO

satellite is useful to provide most tropospheric cloud types, along with precipitation identi-

fication and the likelihood of mixed-phase conditions. The GPM Microwave Imager (GMI)

passive microwave instrument is another candidate to provide microwave radiometric bright-

ness measurements from thirteen channels (Draper et al., 2015).

Numerical weather prediction models are also good supplements for a comprehensive esti-

mation of cloud and precipitation processes. They provide reliable wind profile estimation

for solid extrapolation of cloud imagery and demonstrate remarkable accuracy in predicting

weather from short to medium range. As shown in chapter 3 of the dissertation, synthetic

satellite imagery derived from numerical models may be beneficial for necessary data fusion

and algorithm evaluation. Both the operational forecast and the reanalysis product from

the Global Forecast System (GFS) from the National Centers for Environmental Predic-

tion (NCEP) are ideal for use in combination with high-resolution atmospheric analysis and

prediction.

5.2.2 Model Development

Throughout this dissertation, Convolutional Neural Networks (CNNs), as well as computer

vision techniques, are served as the base for the model structures. Computer vision tools and

CNNs are great candidates for extracting high-level patterns from images and are suitable

for processing satellite imageries. However, there is room for further research on network

design (such as hyper-parameters tuning, activation function selection, etc.).
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Recurrent Neural Networks (RNNs) are other important tools that can be used to enhance

temporal consistency and coordinate differences between different data sources in precipita-

tion estimates. The application of a well-trained RNN model provides prior knowledge of

changes in location and surface rainfall rates, which can improve the accuracy of precipi-

tation acquisition. Generative adversarial network and its application in improving DNNs

calibration for the task of precipitation estimation are elaborated in chapter 4 of the disser-

tation. Presented results showed that generative models can further address the complexity

existing in the Earth sciences phenomena by matching the distribution of model outputs

with the true distribution of the phenomena, thus resulting in a sophisticated understanding

of the process and more accurate results. The application of a generative model to com-

bine both CNN and RNN blocks into a unified framework that is trained jointly could be

a great direction to maximize the distribution matching process and better simulation of

atmospheric dynamics and precipitation distribution.

5.2.3 Operational Application

The current investigation is a preliminary step as a proof of concept for global applications

and toward supporting NASA’s GPM mission to develop effective multi-satellite precipitation

retrieval algorithms for the fusion of precipitation information from multi-satellite platforms.

Future works include organizing a data-driven software package that leverages NASA data

sets and can be used in different research areas and other geoscience applications. Further

experiments are required for the preparation of the model to serve as an operational product.
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