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ABSTRACT OF THE DISSERTATION 

 

The Intestinal Gut Microbiome as a Biomarker and 

Driver of Obesity and Non-Alcoholic Fatty Liver Disease 

by 

Tien Sy Dong 

Doctor of Philosophy in Molecular, Cellular, and Integrative Physiology 

University of California, Los Angeles, 2020 

Professor Joseph R. Pisegna Committee Co-Chair 

Professor Jonathan P. Jacobs Committee Co-Chair 

Nonalcoholic fatty liver disease (NAFLD) affects almost 1 out of every 5 Americans. The 

development of NAFLD increases an individual’s risk for cardiovascular disease, cirrhosis, and 

cancer. Given that there are few treatments available for NALFD, it is imperative to understand 

the features that can prognosticate and alter the progression of NAFLD. One area of research that 

has gained significant traction is the role of the gut microbiome in the development and progression 

of NAFLD. By utilizing a multi’omics approach, we discovered that the gut microbiome can affect 

obesity through alterations of the brain-gut axis. In a study of over 100 patients, we saw that the 

gut microbiome was highly associated to food addiction. Patients with food addiction had 

significantly lower abundances of Bacteroides, Akkermansia, and Eubacterium, and a higher 

abundance of Megamonas. This was associated with a reduction in a neuroprotective tryptophan-

related metabolite, indolepropionate, and altered connectivity in the brain’s reward regions. This 
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data suggests that the gut microbiome plays a role in eating behavior and is likely a modifiable 

risk factor for obesity. Furthermore, research has shown that the microbiome and metabolite profile 

of patients with NAFLD differs at each stage of the disease. Using a machine learning algorithm, 

we created and validated a classifier based on the gut microbiome that highly predicts advanced 

fibrosis in patients with NAFLD. To explore the causal effects of the gut microbiome on the 

development of NAFLD, we utilized the microbiome of bariatric surgery patients and transplanted 

them into antibiotic treated mice. Through this model, we see that an obese phenotype microbiome 

is able to induce significant weight gain and hepatic steatosis. Associated with these changes we 

see a significant alteration of the expression levels of natural killer T-cells, cytotoxic T-cells, 

Kupffer cells, and monocyte-derived macrophages. The data shows that not only can the gut 

microbiome prognosticate NAFLD, it can also alter the progression of NAFLD through changes 

of the innate immune system of the liver. This work shows the feasibility of the gut microbiome 

both as a biomarker but also as a source for potential novel therapeutics against obesity and 

NAFLD.   



 

iv 

The dissertation of Tien Sy Dong is approved. 

Gregory A. Brent 

Charalabos Pothoulakis 

Jonathan P. Jacobs, Committee Co-Chair 

Joseph R. Pisegna, Committee Co-Chair 

 

 

 

 

 

 

 

 

University of California, Los Angeles 

2020 

  



 

v 

DEDICATION 

I would like to dedicate this body of work to my wife, for who’s unwavering support made this 

possible. 

  



 

vi 

TABLE OF CONTENTS 

 

Chapter 1: The Modern  Landscape of Nonalcoholic Fatty Liver Disease and the Intestinal 

Microbiome ..................................................................................................................................... 1 

Table 1-1: Bacteria genera and fecal/serum metabolites associated with different stages of non-

alcoholic fatty liver disease in human studies. .......................................................................... 17 

Table 1-2: Bacterial genera and fecal/serum metabolites associated with NAFL and NASH 

development in animal models .................................................................................................. 18 

Table 1-3: Summary of randomized control trials involving NAFLD and probiotics .............. 19 

REFERENCES .......................................................................................................................... 20 

Chapter 2: The Role of the Gut Microbiome on the Gut-Brain Axis in Relation to Obesity and 

Food Addiction ............................................................................................................................. 30 

Table 2-1: Baseline characteristics by food addiction .............................................................. 48 

Figure 2-1: Several taxa are associated with food addiction ..................................................... 49 

Figure 2-2: A distinct microbial profile differentiates subjects with obesity and food addiction 

from those without .................................................................................................................... 50 

Figure 2-3: Brain imaging and indolepropionate is associated with food addiction ................. 51 

Figure 2-4: Combining fecal metabolite with 16S and brain imaging data, a highly accurate 

classifier is created that identifies subjects with food addiction ............................................... 52 

Figure 2-5: Proposed schematic diagram that connects the gut microbiome to food addiction 

via changes in metabolite and changes in connectivity of the brain’s reward system. ............. 53 

REFERENCES .......................................................................................................................... 54 

Chapter 3: The Intestinal Microbiome Identifies Advanced Fibrosis in Patients with 

Nonalcoholic Fatty Liver Disease ................................................................................................. 57 

Table 3-1: Patient and healthy control characteristics .............................................................. 72 

Table 3-2: Validation cohort characteristics. ............................................................................ 73 

Figure 3-1: Patients with advanced fibrosis have distinct microbial composition and diversity 

compared to other liver disease patients or healthy controls .................................................... 74 

Figure 3-2: Taxonomic profiles categorized by etiology of chronic liver disease and fibrosis 

stage ........................................................................................................................................... 75 

Figure 3-3: Microbial communities differ by etiology of chronic liver disease ....................... 76 

Figure 3-4:  Microbial communities differ by fibrosis stage .................................................... 76 

Figure 3-5: Predicted metagenomic differences by fibrosis stage. ........................................... 77 

Figure 3-6: A distinct microbial signature can accurately identify patients with advanced 

fibrosis ....................................................................................................................................... 77 



 

vii 

Figure 3-7: Validation of an advanced fibrosis microbial signature in a prospective study of 

NAFLD patients ........................................................................................................................ 78 

REFERENCES .......................................................................................................................... 79 

Chapter 4: Bariatric Surgery Creates Long-term Changes in the Human Gut Microbiome and 

Alters the Progression of Nonalcoholic Fatty Liver Disease through Natural Killer T-Cell 

Expression ..................................................................................................................................... 82 

Table 4-1: Patient characteristics before and after bariatric surgery ......................................... 99 

Figure 4-1: Bariatric surgery leads to significant weight loss, improved insulin resistance, and 

reduce inflammation ................................................................................................................ 100 

Figure 4-2: Inflammatory cytokine are reduced after surgery ................................................ 101 

Figure 4-4: Microbiome is altered by bariatric surgery .......................................................... 103 

Figure 4-5: Heat map of differentially abundant serum metabolites as determined by DESEq2 

across time ............................................................................................................................... 104 

Figure 4-6: Baseline microbiome predicts sustained weight loss at 1-year post-bariatric surgery

 ................................................................................................................................................. 105 

Figure 4-7: Correlation network of bacterial taxa to serum metabolite and serum hormone . 106 

Figure 4-8: The gut microbiome of patients pre-bariatric surgery causes significant weight gain 

while on a standard diet or a high fat, high fructose, high cholesterol diet ............................. 107 

Figure 4-9: The gut microbiome of patients pre-bariatric surgery causes significant changes in 

insulin resistance and cholesterol while on a standard diet or a high fat, high fructose, high 

cholesterol diet ........................................................................................................................ 109 

Figure 4-10: The gut microbiome of patients pre-bariatric surgery causes significant steatosis 

in the liver of mice on both a standard diet or a high-fat, high-fructose, high-cholesterol diet

 ................................................................................................................................................. 110 

Figure 4-11: The gut microbiome of patients pre-bariatric surgery causes significant 

nonalcoholic steatohepatitis as measured by the NAFLD Activity Score on both a standard diet 

or a high-fat, high-fructose, high-cholesterol diet ................................................................... 111 

Figure 4-12:  The gut microbiome of patients pre-bariatric surgery reduces natural killer T 

(NKT)-cell and increases CD8+ T-cells in the liver ............................................................... 112 

Figure 4-13: The gut microbiome of patients pre-bariatric surgery increases kupffer cells and 

monocyte-derived macrophages in the liver ........................................................................... 114 

REFERENCES ........................................................................................................................ 116 

Chapter 5: Concluding Remarks and Future Directions ............................................................. 120 

REFERENCES ........................................................................................................................ 123 

 

  



 

viii 

LIST OF TABLES 

Chapter 1 

Table 1-1: Bacteria genera and fecal/serum metabolites associated with different stages of non-

alcoholic fatty liver disease in human studies 

Table 1-2: Bacterial genera and fecal/serum metabolites associated with NAFL and NASH 

development in animal models 

Table 1-3: Summary of randomized control trials involving NAFLD and probiotics 

Chapter 2 

Table 2-1: Baseline characteristics by food addiction 

Chapter 3 

Table 3-1: Patient and healthy control characteristics 

Table 3-2: Validation cohort characteristics 

Chapter 4 

Table 4-1: Patient characteristics before and after bariatric surgery 

Chapter 5 

None 

  



 

ix 

LIST OF FIGURES 

 

Chapter 1 

None  

Chapter 2 

Figure 2-1: Several taxa are associated with food addiction 

Figure 2-2: A distinct microbial profile differentiates subjects with obesity and food addiction 

from those without 

Figure 2-3: Brain imaging and indolepropionate is associated with food addiction 

Figure 2-4: Combining fecal metabolite with 16S and brain imaging data, a highly accurate 

classifier is created that identifies subjects with food addiction 

Figure 2-5: Proposed schematic diagram that connects the gut microbiome to food addiction 

via changes in metabolite and changes in connectivity of the brain’s reward system 

Chapter 3 

Figure 3-1: Patients with advanced fibrosis have distinct microbial composition and diversity 

compared to other liver disease patients or healthy controls 

Figure 3-2: Taxonomic profiles categorized by etiology of chronic liver disease and fibrosis 

stage 

Figure 3-3: Microbial communities differ by etiology of chronic liver disease 

Figure 3-4:  Microbial communities differ by fibrosis stage 

Figure 3-5: Predicted metagenomic differences by fibrosis stage 

Figure 3-6: A distinct microbial signature can accurately identify patients with advanced 

fibrosis 

Figure 3-7: Validation of an advanced fibrosis microbial signature in a prospective study of 

NAFLD patients 

Chapter 4 

Figure 4-1: Bariatric surgery leads to significant weight loss, improved insulin resistance, and 

reduce inflammation 

Figure 4-2: Inflammatory cytokine are reduced after surgery 

Figure 4-3: Leptin resistance decreases after bariatric surgery 

Figure 4-4: Microbiome is altered by bariatric surgery 

Figure 4-5: Heat map of differentially abundant serum metabolites as determined by DESEq2 

across time 

Figure 4-6: Baseline microbiome predicts sustained weight loss at 1-year post-bariatric surgery  

Figure 4-7: Correlation network of bacterial taxa to serum metabolite and serum hormone 



 

x 

Figure 4-8: The gut microbiome of patients pre-bariatric surgery causes significant weight gain 

while on a standard diet or a high fat, high fructose, high cholesterol diet 

Figure 4-9: The gut microbiome of patients pre-bariatric surgery causes significant changes in 

insulin resistance and cholesterol while on a standard diet or a high fat, high fructose, high 

cholesterol diet 

Figure 4-10: The gut microbiome of patients pre-bariatric surgery causes significant steatosis 

in the liver of mice on both a standard diet or a high-fat, high-fructose, high-cholesterol diet 

Figure 4-11: The gut microbiome of patients pre-bariatric surgery causes significant 

nonalcoholic steatohepatitis as measured by the NAFLD Activity Score on both a standard diet 

or a high-fat, high-fructose, high-cholesterol diet 

Figure 4-12:  The gut microbiome of patients pre-bariatric surgery reduces natural killer T 

(NKT)-cell and increases CD8+ T-cells in the liver 

Figure 4-13: The gut microbiome of patients pre-bariatric surgery increases kupffer cells and 

monocyte-derived macrophages in the liver 

Chapter 5 

None 

  



 

xi 

ACKNOWLEDGEMENTS 

Chapter 1 is a version of “Nonalcoholic Fatty Liver Disease and the Gut Microbiome: Are Bacteria 

Responsible for Fatty Liver?” The manuscript is published in Experimental Biology and Medicine, 

2019 Apr; 244(6): 408–418. The work was funded by the National Institutes of Health grant T32 

DK 07180 (TD) and Veterans Affairs grant CDAII IK2CX001717 (JJ). 

Chapter 2 is a version of “A Distinct Brain-Gut-Microbiome Profile Exists for Females with 

Obesity and Food Addiction.” The manuscript is in press in Obesity, May 2020. This research was 

supported by grants from the National Institutes of Health including K23 DK106528 

(AG),  T32 DK 7180-44 (TD), ULTR001881/DK041301 (UCLA CURE/CTSI Pilot and 

Feasibility Study; AG), R01 DK048351 (EAM); VA Career Development Award IK2CX001717 

(JPJ); and pilot funds provided for brain scanning by the Ahmanson-Lovelace Brain Mapping 

Center. U.S. Provisional Patent No.:  62/885,010. 

Chapter 3 is a version of “A Microbial Signature Identifies Advanced Fibrosis in Patients with 

Chronic Liver Disease Mainly Due to NAFLD.” The manuscript is published in Scientific Reports, 

10, 2771 (2020). https://doi.org/10.1038/s41598-020-59535-w. The work was funded by the 

National Institutes of Health grant T32 DK 07180 (TD), the UCLA GI Fellowship Seed Grant 

(TD), and Veterans Affairs grant CDAII IK2CX001717 (JJ). 

Chapter 4 is an ongoing work and collaboration effort with the UCLA Center for Obesity and 

Metabolic Health. We would like to thank Arpana Gupta, Emeran Mayer, Cathy Liu, Jean Steins, 

Anna Baliokova, Yijun Chen, Erik Dutson, and Claudia Sanmiguel for their significant 

contribution. The work was funded by the National Institutes of Health grant T32 DK 07180 (TD), 

ULTR001881/DK041301 (UCLA CURE/CTSI Pilot and Feasibility Study; CS), R01 DK048351 

(EAM), and the VA Career Development Award IK2CX001717 (JPJ). 



 

xii 

 

OMB No. 0925-0001 and 0925-0002 (Rev. 09/17 Approved Through 03/31/2020) 

BIOGRAPHICAL SKETCH 
Provide the following information for the Senior/key personnel and other significant contributors. 

Follow this format for each person.  DO NOT EXCEED FIVE PAGES. 

NAME:  Tien S. Dong 

eRA COMMONS USER NAME (credential, e.g., agency login): TSDONG 

POSITION TITLE: Gastroenterology/Hepatology Research Fellow 

EDUCATION/TRAINING 

INSTITUTION AND LOCATION 

DEGREE 

(if applicable) 

 

Completion Date 

MM/YYYY 

 

FIELD OF STUDY 

 

Stanford University B.S. 06/2008 Biological Sciences 

University of Chicago, Pritzker M.D. 06/2012 Medicine 

University of Chicago Residency 06/2015 Internal Medicine 

University of California, Los 

Angeles 

Fellowship 

 

6/2020 

 

Gastroenterology/ 

Hepatology 

 

Honors/Awards 

 

2008 Graduated with Distinction, Stanford University 

2008 Excellence in Teaching Award, Department of Biological Sciences, Stanford 

University 

2009 Joseph P. Kirsner Research Award for Excellence, University of Chicago 

2010 American Gastroenterology Association Student Abstract Prize 

2011 Gold Humanism Honor Society 

2012 Richard W. Reilly Award for Outstanding Aptitude in the Field of 

Gastroenterology, University of Chicago 

2012 Calvin Fentress Fellowship Award, University of Chicago 

2013 Resident Teaching Award, University of Chicago 

2015 AASLD Emerging Liver Scholars 

2018 ACG Governors Award for Excellence in Clinical Research 

2019 Specialty Training and Advanced Research (STAR) Innovator Award 
 

Publications 

1. Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, et al. (2011) The Microbe-Derived Short Chain Fatty 

Acid Butyrate Targets miRNA-Dependent p21 Gene Expression in Human Colon Cancer. PLoS ONE 

6(1): e16221. doi:10.1371/journal.pone.0016221 [Shared co-first authorship] 

2. Dong T, Te, H. “Post-Liver Transplant Management of Hepatitis C.” Current Hepatology Reports. 

September 2016, Volume 15, Issue 3, pp 167-177. 

3. Dong T, et al. “Rifaximin Decreases the Incidence and Severity of Acute Kidney Injury and Hepatorenal 

Syndrome in Cirrhosis.” Dig Dis Sci. 2016 Dec;61(12):3621-3626. 



 

xiii 

4. Dong T, et al. “Discharge Disposition as an Independent Predictor of Readmission among Patients 

Admitted for Community-Acquired Pneumonia.” IJCP. 71:3, e12935 March 2017. 

5. Dong T, et al. “Metabolic Syndrome Does Not Affect Sustained Virological Response of Direct-Acting 

Antivirals while Hepatitis C Clearance Improves Hemoglobin A1c.” World J Hepatol. 2018 Sep 

27;10(9):612-621. 

6. Aby E, Dong T, et al. “Impact of Sustained Virological Response on Chronic Kidney Disease 

Progression in Hepatitis C.” World J Hepatol. 2017 Dec 28;9(36):1352-1360. 

7. Benhammou J, Dong T, et al. “Race Affects SVR12 in a Large and Ethnically Diverse Hepatitis C 

Infected Patient Population Following Treatment with Direct Acting Antivirals: Analysis of a Single 

Center Department of Veterans Affairs Cohort.” Pharmacol Res Perspect. 2018 Feb 22;6(2):e00379. 

8. Jacobs, J, Dong T, et al.” Microbiome and Bile Acid Profiles in Duodenal Aspirates from Cirrhotics: 

The Microbiome, Microbial Markers and Liver Disease Study.” Hepatol Res. 2018 Jun 20. doi: 

10.1111/hepr.13207. [Dong TS wrote the manuscript and helped aid in the analysis] 

9. Weir RE Jr, Lyttle CS, Meltzer DO, Dong TS, Ruhnke GW. “The Relative Ability of Comorbidity 

Ascertainment Methodologies to Predict In-Hospital Mortality Among Hospitalized Community-

acquired Pneumonia Patients.” Med Care. 2018 Nov;56(11):950-955. doi: 

10.1097/MLR.0000000000000989. PubMed PMID: 30234766 

10. Dong TS, Pisegna J.  “Passing the ‘Acid Test’: Do Proton Pump Inhibitors Affect the Composition of 

the Microbiome? DDS. Sept 2018. DOI: 10.1007/s10620-018-5273-3. 

11. Dong TS, Gupta A. “Influence of Early Life, Diet, and the Environment on the Microbiome.” CGH. 

May 2018. DOI: 10.1016/j.cgh.2018.08.067 

12. Le LB, Rahal HK, Viramontes MR, Meneses KG, Dong TS, Saab S. Patient Satisfaction and Healthcare 

Utilization Using Telemedicine in Liver Transplant Recipients. Dig Dis Sci. Epub ahead of print 5 

December 2018. DOI: 10.1007/s10620-018-5397-5. 

13. Dong TS, Kalani A, Aby E, et al. “Machine Learning-based Development and Validation of a Scoring 

System for Screening High-Risk Esophageal Varices.” CGH. 2019 Jan 29. pii: S1542-3565(19)30072-

2. doi: 10.1016/j.cgh.2019.01.025. 

14. Dong TS, Jacobs JP. Nonalcoholic Fatty Liver Disease and the Gut Microbiome: Are Bacteria 

Responsible for Fatty Liver? Exp Biol Med. 2019 Apr;244(6):408-418. 

15. Dong TS, Jacobs J, Hussain S. “Microbial Profiles of Cirrhosis in the Human Small Intestine.” Current 

Gastroenterology Reports. 2019 Aug 23;21(10):50 

16. Hakimian J, Dong TS, et al. “Dietary supplementation with omega-3 polyunsaturated fatty 

acids reduces opioid-seeking behaviors and alters the gut microbiome.” Nutrients. Aug 14;11(8). 

17. Dong TS, Vu JP, Oh S, Sanford D, Pisegna JR, Germano P. “Intraperitoneal Treatment of Kisspeptin 

Suppresses Appetite and Energy Expenditure and Alters Gastrointestinal Hormones in Mice.” Dig Dis 

Sci. 2019 Nov 15;. doi: 10.1007/s10620-019-05950-7. PubMed PMID: 31729619. 

18. Dong TS, Hui-Hua Chang, Meg Hauer, et al. “Metformin Alters the Duodenal Microbiome and 

Decreases the Incidence of Pancreatic Ductal Adenocarcinoma Promoted by Diet-induced Obesity” 

AJP-GI. 2019 Sep 23. doi: 10.1152/ajpgi.00170.2019. 

19. Basak SK, Bera A, Yoon AJ, Morselli M, Jeong C, Tosevska A, Dong TS, Eklund M, Russ E, Nasser 

H, Lagishetty V, Guo R, Sajed D, Mudgal S, Mehta P, Avila L, Srivastava M, Faull K, Jacobs J, 

Pellegrini M, Shin DS, Srivatsan ES, Wang MB. A randomized, phase 1, placebo-controlled trial of 

APG-157 in oral cancer demonstrates systemic absorption and an inhibitory effect on cytokines and 

tumor-associated microbes. Cancer. 2020 Feb 5;. doi: 10.1002/cncr.32644. PubMed PMID: 32022261 

20. Dong TS, Katzka W, Lagishetty V, Luu K, Hauer M, Pisegna J, Jacobs JP. “A Microbial Signature 

Identifies Advanced Fibrosis in Patients with Chronic Liver Disease Mainly Due to NAFLD.” Sci 

Rep. 2020 Feb 17;10(1):2771. doi: 10.1038/s41598-020-59535-w. PubMed PMID: 32066758; 

PubMed Central PMCID: PMC7026172. 

21. Dong TS, Mayer EA, Osadchiy V, Chang C, Katzka W, Lagishetty V, Gonzalez K, Kalani A, Stains J, 

Jacobs JP, Longo V, Gupta A. “A Distinct Brain-Gut-Microbiome Profile Exists for Females with 

Obesity and Food Addiction.” In press. Obesity. 

https://www.ncbi.nlm.nih.gov/pubmed/29359019
https://www.ncbi.nlm.nih.gov/pubmed/29484189
https://www.ncbi.nlm.nih.gov/pubmed/29923681
https://www.ncbi.nlm.nih.gov/pubmed/30234766/
https://www.ncbi.nlm.nih.gov/pubmed/30234766/
https://www.ncbi.nlm.nih.gov/pubmed/30234766/
https://doi.org/10.1016/j.cgh.2018.08.067
https://www.ncbi.nlm.nih.gov/pubmed/31729619/
https://www.ncbi.nlm.nih.gov/pubmed/31729619/
https://www.ncbi.nlm.nih.gov/pubmed/32022261/
https://www.ncbi.nlm.nih.gov/pubmed/32022261/
https://www.ncbi.nlm.nih.gov/pubmed/32022261/
https://www.ncbi.nlm.nih.gov/pubmed/32066758/
https://www.ncbi.nlm.nih.gov/pubmed/32066758/


1 
 

Chapter 1 

The Modern  Landscape of Nonalcoholic Fatty Liver Disease and the Intestinal Microbiome 
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INTRODUCTION 

The human microbiome represents all microorganisms residing on or within the human 

body, including bacteria, archaea, fungi, protozoans, and viruses. The human microbiome has as 

the same number of cells and about 100 times more genes than the human body.1–3 These genes 

encode a wide array of pathways that produce bioactive molecules that are derived from dietary or 

metabolic precursors.4 While one of the main function of the gut microbiome is the fermentation 

and energy extraction of indigestible dietary fiber, many studies have connected the microbiome 

and its metabolites to the development of certain diseases such as obesity, metabolic syndrome, 

and nonalcoholic fatty liver disease (NAFLD).5 

The incidence of NAFLD is rapidly growing in conjunction with the epidemic of obesity 

and metabolic disorders.6 The risk factors associated with NAFLD include central obesity, insulin 

resistance, hyperlipidemia and metabolic syndrome.  Data has suggested that NAFLD is more 

prevalent in men as compared to women and more prevalent in patients with Asian or Hispanic 

heritage.7,8 NAFLD is now the one of the most common causes of chronic liver disease in the 

Western world and the top two reasons for cirrhosis and liver transplantation.9,10 NAFLD is a term 

that encompasses two distinct diseases: nonalcoholic fatty liver (NAFL) and nonalcoholic 

steatohepatitis (NASH). While patients with NAFL have only bland steatosis on liver biopsy, 

patients with NASH will also have lobular inflammation and/or hepatocyte ballooning, a sign of 

hepatocyte damage. Patients with NAFL will often remain stable for many years and will rarely 

ever progress further.11,12 Patients with NASH, however, are more likely to progress to fibrosis, 

cirrhosis, and hepatocellular carcinoma.11,13 Prior epidemiological studies have shown that patients 

with metabolic syndrome and insulin resistance were more likely to develop NASH than NAFL, 

and therefore are more likely to experience worse outcomes.14 Because of the interplay between 
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the microbiome and energy metabolism, there have been many recent research studies that have 

looked into the relationship between the human microbiome and NAFLD development and 

progression. 

In this chapter we will explore how diets associated with obesity and NAFLD affect the 

microbiome and how the microbiome in turn can influence the pathogenesis of these diseases. We 

will also review potential mechanisms and pathways that link the microbiome to the development 

and progression of NAFLD. Finally, we will discuss limitations of current research and explore 

potential future directions including therapeutic applications. 

METHODS 

A comprehensive literature review was performed from 1995 to the present using the 

following key terms in PubMed: Nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, 

cirrhosis, fibrosis, obesity, metabolic syndrome, diabetes, fat, adipose, bacteria, and microbiome. 

Emphasis was given for articles published within the last 5 years. 

DIET AND THE MICROBIOME 

Diet plays a critical role in the development of obesity, metabolic syndrome, and NAFLD. 

Epidemiological studies have consistently shown associations of diets high in fat and refined 

sugars with the incidence of obesity and NAFLD.15 In experimental models, such diets have been 

shown to increase adiposity, hepatic steatosis, and inflammation.16 Here we will discuss how the 

diets most commonly associated with NAFLD and obesity affect the gut microbiome. 

Western Diet. A Western diet is often defined as a diet that is high in sugar, fat, processed meats, 

simple grains, while being low in fiber.17 It has been linked to many negative health outcomes such 

as obesity, insulin resistance, metabolic syndrome, and NAFLD.17,18 Studies have shown that a 
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Western diet can affect many different cells including endocrine cells, adipocytes, and hepatocytes. 

However, there is also a growing body of evidence that links the negative effects of a Western diet 

to changes in the microbiome.17 Patients on this diet will often have a significantly lower microbial 

diversity and species richness than those on a more agrarian diet, features that are often associated 

with gut dysbiosis.19 The Western diet microbiome is often described as having a higher abundance 

of Firmicutes with a relatively lower abundance of Bacteroidetes.20 The high Firmicutes to 

Bacteroides ratio decreases in subjects who lose weight on either a carbohydrate-restricted or fat-

restricted diet.21 Ways by which the microbiome can cause metabolic changes in the host includes 

changes in short-chain fatty acid production, alterations in gut hormones like peptide YY and 

glucagon-like peptide, and activation of toll-like receptor signaling through the production of 

lipopolysaccharides or endotoxins. 22 At a genus level, a Western diet is associated with depletion 

of Bifidobacterium and Lactobacillus and enrichment of Enterobacter.23 The role of the 

microbiome in mediating the link between a Western diet and obesity has been examined 

extensively in several mice models. Colonization of germ-free mice with the microbiota of obese 

mice (induced by leptin-deficiency or a Western diet) results in increased body fat accumulation 

compared to colonization with microbiota from lean controls.24,25 Similarly, germ-free mice 

colonized with feces from obese humans had increased adiposity on a high fat diet compared to 

germ-free mice colonized with feces from lean humans in weight discordant twin pairs.26 

Moreover, mice deficient in Toll-like receptor 5 and inflammasome components develop 

susceptibility to Western diet-induced obesity that can be transmitted to other mice by fecal 

transplantation.26 

High Saturated Fat. Similar to the Western diet, diets high in saturated fats can also have 

deleterious effects on health and the microbiome.  Epidemiological studies have shown that diets 
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that are high in saturated and trans-fat are associated with obesity, cardiovascular disease, and 

NAFLD.27,28 Mice that are fed a diet high in saturated fat develop similar hepatic steatosis and 

inflammation as seen in patients with NAFLD.28 However, not all fats have similar results. Diets 

high in polyunsaturated fats, such as those seen in a Mediterranean diet, have been associated with 

reduced cardiovascular events and a lower prevalence of obesity.26–28 To examine the role of 

different fats on the microbiome, one study of 88 patients with risk factors for metabolic syndrome 

were fed either saturated or monosaturated fats.32 The authors found that a diet high in saturated 

fats led to a reduction of bacterial species richness and an overabundance of Faecalibacterium 

prausnitzii, changes that were not seen in patients taking monounsaturated fats.32 However, this 

association with F. prausnitzii should not be construed as negative since the introduction of F. 

prausnitzii was protective against hepatic steatosis and adipose tissue inflammation in mice fed a 

high fat diet.33 In one of the largest study examining the role of saturated and polyunsaturated fats, 

Menni et al demonstrated in 876 women that a diet higher in polyunsaturated fats were associated 

with a higher microbial diversity that was predominated by members of the Lachnospiraceae 

family.34 These findings suggest that the specific composition of fat may be more critical than the 

total amount of fat. This idea is corroborated in a recent animal study. Mice that were fed on a lard 

fat diet had a greater abundance of Bacteroides and Bilophila, and a lower abundance of 

Lactobacillus and Akkermansia.35 Mice on a lard fat diet also had higher toll-like receptor 

signaling, white adipocyte inflammation, and insulin resistance as compared to mice fed on a fish-

oil based diet.35 The fecal transplantation of the lard fat-associated microbiome into germ-free 

animals was able to replicate the donor’s metabolic phenotype, suggesting that these pathways are 

in part mediated by the microbiome.35 

ROLE OF THE MICROBIOME IN OBESITY AND INSULIN RESISTANCE 
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One of the early pivotal studies that linked the microbiome to the development of obesity 

came from Turnbaugh et al. in 2006.24 They used 16s rRNA sequencing to demonstrate an 

increased ratio of Firmicutes to Bacteroidetes in obese humans and experimental mice on a high 

fat diet, and found that colonization of germ-free mice with this obesity-associated microbial 

profile could induce an obese phenotype in their germ-free animals. Since then, several other 

studies have shown that the microbiome was able to influence weight gain by affecting host gene 

expression, metabolic pathways, and even the gut-brain-axis.36–39 These pathways include short-

chain fatty acid signaling and lipopolysaccharide activation of toll-like receptors.40 All of which 

can lead to altered gene expression, hormone secretion, and energy consumption in adipocytes and 

eventual changes in host metabolism.40 Additionally, several papers have shown that the efficacy 

of surgical weight loss interventions may be in part mediated by shifts in the gut microbiome.41 

For example, a study in mice found that gastric bypass led to a persistent increase in Escherichia 

and Akkermansia, and that the microbial transplant from these mice into non-operated germ-free 

mice successfully transferred the donor phenotype.42 

While obesity is a major risk factor for the development of NAFLD, another major risk 

factor is insulin resistance. As such a small double blind randomized trial was performed to 

examine the effects of probiotics and metformin on patients with NASH.43 Sixty-four NASH 

patients were randomized to either a commercially available probiotic mixture with metformin or 

metformin alone for 6 months. The author showed that the addition of a probiotic led to a 

significantly greater reduction in serum liver enzymes and hepatic steatosis as determined by 

ultrasound. Similarly, another randomized control trial with 66 NASH patients showed that the 

oral supplementation with Bifidobacterium longum improved both liver enzymes and insulin 

resistance metrics.44 This association between the microbiome and insulin resistance led Wu et al 
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to examine the effects of metformin on the microbiome of diabetic patients.45 They found that not 

only does metformin greatly alters the microbiome, some of metformin’s effects on the host was 

recapitulated by transferring this altered microbiome into germ-free animals. Wu’s and prior 

studies provide support that the microbiome may play a role in insulin sensitivity and demonstrates 

how the microbiome can potentially alter the course of NAFLD through related pathways. 

MICROBIOME ASSOCIATIONS ACROSS THE SPECTRUM OF NALFD 

The growing evidence linking the microbiome to obesity spurred interest in the potential 

role of the microbiome in other metabolic diseases including NAFLD. Here we will review 

evidence from human studies for microbiome associations with NAFL, NASH, and NAFLD-

related advanced fibrosis. 

NAFL. Studies that have examined the microbiome profile of patients with NAFL as compared to 

either healthy controls or weight-matched controls have yielded variable results. Pediatric NAFL 

patients have been reported to have more Prevotella and less Oscillospira than matched 

controls.46–48 In studies of adult NAFL patients, Lactobacillus and Escherichia have been enriched 

while Coprococcus and Prevotella have been depleted (Table 1-1).49–52 These studies utilized 16s 

rRNA sequencing, which can only provide insight into composition (what bacteria are there) but 

not function (what products are made by bacteria that may affect disease). Three studies took a 

multi’omics approach combining microbiome sequencing with metabolomics analysis to evaluate 

potential microbial metabolic pathways promoting the development of NAFL.51–53 Raman et al 

found 18 differentially abundant stool metabolites associated with NAFL in adults, including 

elevated levels of derivatives of butanoic, propanoic, and acetic acid.53 Similarly, Da Silva et al 

found enrichment of propionate and isobutyric acid in the feces of NAFL patients.51 These 

differences were associated with an increase in serum 2-hydroxybutyrate and L-lactic acid. The 



 

8 

most convincing data to date that links the microbiome to the development of NAFL comes from 

Hoyles et al.52 This study assessed the hepatic transcriptome, gut metagenome, along with serum 

and urine metabolome of a cohort of non-diabetic obese women. NAFL was associated with 

increased serum levels of several branched-chain and aromatic compounds. Administration of one 

of these, phenylacetic acid, to mice colonized with human fecal microbiota triggered hepatic 

steatosis. 

NASH. Studies characterizing the microbiome profile of NASH compared to NAFL or obese 

controls have found more consistent differences than has been seen for NAFL; however, there is 

still variability in the findings.54 In children, patients with NASH generally had more 

Ruminococcus, Dorea, Streptococcus and Escherichia as compared to their obese counterparts.46–

48,55 In adults, patients with NASH had lower levels of Faecalibacterium, Ruminococcus and 

Bifidobacterium51,56 and a higher level of Lactobacillus.57 Few studies have examined fecal or 

serum metabolites distinguishing NASH from simple NAFL, most likely due to the fact that a 

diagnosis of NASH often requires a liver biopsy in order to distinguish it from NAFL. Del Chierico 

et al showed higher levels of 4-methyl-2-pentanone and 2-butanone in the serum of children with 

NASH.47 Higher levels of 2-butanone was seen in the serum of adults with NAFL52 but the 

functional significance of this metabolite is still unknown. In a cohort of 16 adults with biopsy 

proven NASH, patients with NASH had an increased ratio of primary to secondary bile acids, 

which the author correlated to an increased risk of hepatic injury.58 

NAFLD-related Advanced Fibrosis. In contrast to NAFL and NASH, which have data from both 

children and adults, NAFLD-related fibrosis has only been studied in adults due to the slow 

progression of fibrosis. Advanced fibrosis, defined as a fibrosis stage > 2, is associated with a 

higher incidence of mortality and liver cancer.59 Microbiome association studies of NAFLD-
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related advanced fibrosis usually reports a decrease in microbial diversity, often due to an increase 

in gram-negative bacteria.60–62 Multiple studies have found an association between advanced 

fibrosis and an overabundance of Bacteroides and Escherichia,60–63 while associations with other 

genera such as Prevotella have been less consistent.61,64  Utilizing metagenomic sequencing, which 

allows for species level resolution, Loomba et al showed that Escherichia coli and Bacteroides 

vulgatus were higher in patients with NAFLD-related advanced fibrosis.62 They also examined 

serum metabolites and showed that 3-phenylproanoate was the metabolite with the highest fold 

increase in advanced fibrosis, though it did not reach significance. Recently, Caussy et al found 

an association between 3-(4-hydroxyphenyl)lactate, a microbial metabolite involved in amino acid 

metabolism, to patients with NAFLD-related advanced fibrosis.63 This metabolite was also 

strongly correlated with several bacterial species that were also associated with hepatic fibrosis, 

including Escherichia coli, Bacteroides caccae and Clostridium sp.62 

POTENTIAL MECHANISMS THAT LINKS THE MICROBIOME TO FATTY LIVER 

DISEASE 

While recent human studies have provided meaningful insights into the composition and 

possible function of the microbiome in each stage in the development and progression of NAFLD, 

the findings are largely correlative and do not provide conclusive evidence of whether the 

microbiome is a critical driver of NALFD or simply responds to the altered diet and host 

environment associated with NAFLD. Mechanistic investigation supporting a causative role for 

the microbiome in NAFLD pathogenesis has largely depended upon animal models. The results of 

studies evaluating microbial composition and metabolites in animal models of NAFLD are 

summarized in Table 1-2.24,65–72 Overall, studies involving inflammatory pathways such as toll-

like receptor signaling, choline deficiency and bile acid metabolism have been linked to NASH 
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while pathways associated with short chain fatty acid and amino acid metabolism have been linked 

more to NAFL.  Here we will review the potential mechanisms by which the microbiome 

influences NAFLD development. 

Epithelial Barrier Function, Toll-Like Receptor Signaling and Endotoxemia. In adult patients with 

NAFLD as well as healthy patients on a Western diet, studies have shown that these patients were 

more likely to have a “leaky gut” characterized by higher intestinal permeability and altered tight 

junctions.73,74 This disruption in the epithelial gut barrier leads to an increased translocation of 

bacterial products, like lipopolysaccharide (LPS), into the portal circulation, potentially inducing 

hepatic inflammation. One of the very first studies to causally link the microbiome to NAFLD 

demonstrated that mice lacking inflammasome components – which are important to intestinal 

barrier defense – developed dysbiosis and NASH. Transfer of this dysbiosis to wild-type recipients 

could induce NASH via an influx of toll-like receptor (TLR) agonist, specifically TLR4 and TLR9, 

into the portal circulation.68  Rahman et al showed that fibrotic steatohepatitis induced by a high 

fat, high cholesterol and high fructose diet was exacerbated in mice lacking a gene involved in 

junctional adhesion molecules, an important component of the intestinal barrier. Administration 

of antibiotics improved liver histology in these knockout mice, suggesting that products of 

microbial metabolism crossing an impaired intestinal barrier mediated the phenotype.75 There is 

also a significant role of the host immune system in modulating gut permeability. Beta7 integrin-

deficient mice, which are deficient in intestinal immune populations requiring this integrin for 

chemotaxis, show decreased insulin resistance on a high fat diet.77 Treatment of wild-type 

C57BL/6 mice on a high fat diet with a local gut anti-inflammatory medication, 5-aminosalicyclic 

acid, reversed diet-induced bowel inflammation and improved metabolic parameters.77 The 

downstream effects of LPS translocation are mediated through induction of TLR signaling in the 
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liver. In several studies, LPS has been shown to induce TLR4, leading to increased NF-κB 

activation and cytokine production important to the progression from NAFL to NASH.78,79 

Unfortunately, a recent phase 2 trial did not show any significant benefit from TLR4 antagonism 

in NASH patients. Therefore, the clinical relevance of this pathway in remains unclear.80 

Choline Deficiency. The relationship between choline deficiency and NAFLD development has 

been well established.81 Deficiency in choline leads to abnormal phospholipid synthesis and 

alterations in VLDL secretion, eventually leading to hepatic steatohepatitis.81 Recently, dietary 

choline bioavailability was shown to be reduced by the gut microbiome through the production of 

metabolites such as trimethylamine (TMA).82 Several gut microbes are high utilizers of choline 

and only low abundance of these microbes is required to greatly reduce host choline levels.83 Mice 

fed a high fat diet have been shown to have increased levels of gut microbes that metabolize 

choline and produce TMA.84 TMA is converted to trimethylamine-N-oxide (TMAO) by liver 

flavin containing monooxygenase 3.85 Elevated levels of TMAO are associated with 

cardiovascular disease, which potentially links the extrahepatic manifestations of NAFLD to 

microbial derived metabolites.86 However, the role of circulating TMAO in NAFLD has not been 

well studied. 

Short-Chain Fatty Acids. One of the major functions of the human microbiome is the fermentation 

of indigestible carbohydrates (e.g. fiber) to produce short-chain fatty acids (SCFAs). These SCFAs 

include acetate, propionate, and butyrate, and they act as a major energy source for intestinal 

epithelial cells. SCFAs also facilitate a wide array of biological activities including hormone 

production and gene regulation.87 Obese individuals as well as individuals with NAFL have higher 

total levels of gut SCFAs as compared to lean controls.51,53,88 The administration of inulin-type 

fructan prebiotics was associated with a reduction in SCFAs in obese women along with a 
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reduction of other metabolic markers.89 Conversely, certain SCFAs may be beneficial against 

obesity and NAFLD. One mechanism by which SCFAs can affect the host is by binding to highly 

specific G-protein coupled receptors (GPR), which mediate distinct effects of each SCFA.  For 

example, in a mouse model of diet-induced obesity, a mixture of SCFA predominantly made up 

of butyrate reduced hepatic expression of GPR41 and GPR43, two receptors that have been shown 

to promote hepatic lipid accumulation.90,91 The positive effect of butyrate was further highlighted 

by Mattace Raso et al when they demonstrated that butyrate supplementation was able to improve 

hepatic steatosis induced in mice by a high fat diet.92 Furthermore, fecal microbial transplantation 

from lean human donors to obese patients resulted in improved insulin sensitivity, which was 

associated with increased abundance of butyrate-producing bacteria.93 The inconsistent findings 

on SCFAs is most likely due to the distinct biological effects of individual SCFAs on host 

metabolism.  

Bile Acid Metabolism. The recent development and marketing of obeticholic acid, a farnesoid X 

receptor (FXR) agonist, underscores the importance of bile acids for host metabolism and health. 

Gut microbes play a critical role in the regulation of the bile acid pool through conversion of 

primary bile acids to secondary bile acids, which have distinct functional properties mediated by 

differential binding to bile acid receptors including FXR and G-protein coupled bile acid receptor 

1 (GPBAR1).94 In a murine model of NAFLD, animals with intestine-specific FXR disruption 

developed changes in their gut microbiome that were associated with reduced triglyceride 

accumulation in response to a high fat diet as compared to controls.95 In mice treated with 

antibiotics, there was an increase in conjugated bile acid metabolites that inhibited intestinal FXR 

signaling.95 GPBAR1 signaling was also found to be necessary for sustained weight loss and 

improved fatty liver in mice undergoing sleeve gastrectomy.96 In humans, a phase 2 clinical trial 
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with obeticholic acid in patients with NASH showed improved NASH by histology after 72-weeks 

of treatment.97 The administration of obeticholic acid also led to a reversible induction of gram-

positive bacteria in the human small intestine and increased proportion of Firmicutes in mice.98  

While initial results are promising, ongoing studies and phase 3 trials are underway in order to 

better understand the complex relationship between the gut microbiome, bile acid synthesis, and 

FXR signaling. 

Amino Acid Metabolism. The gut microbiome can also affect the synthesis and metabolism of 

aromatic and branched-chain amino acids (BCAAs). In patients with insulin resistance, Prevotella 

copri and Bacteroides vulgatus were identified as the main species associated with increased 

BCAAs and insulin resistance.99 The authors also showed that mice gavaged with P. copri 

developed increased insulin resistance when fed a high fat diet as compared to controls.99 In a 

recent study, Hoyles et al. demonstrated that phenylacetic acid, an aromatic amino acid derived 

from microbial metabolism, was strongly associated with hepatic steatosis in humans.52 They also 

showed that the addition of phenylacetic acid in both primary human hepatocyte cultures and in 

mice models could trigger hepatic steatosis, implying a causal effect in NAFL.52 

THERAPEUTIC IMPLICATIONS, LIMITATIONS, AND FUTURE DIRECTIONS 

The growing evidence that links the human microbiome to NAFLD progression has 

motivated interest in the development of novel microbiome-related therapies for NAFLD. 

Microbiome-related interventions include gut-specific antibiotics, probiotics, prebiotics, and fecal 

microbial transplant (FMT).54 However, large well-designed clinical studies examining 

microbiome-related interventions in NAFLD are lacking. Several randomized controlled trials 

involving probiotics in NAFLD have yielded conflicting results due to the lack of standardization 

across studies.100 As of yet, no randomized controlled trial involving probiotics has shown any 
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significant changes in BMI.100 But several small trials have shown a potential benefit of probiotics 

on such important markers as insulin resistance, ALT, AST, and even histology grade (Table 1-

3).43,44,101–103  For example, a small randomized trial with 66 patients showed that supplementation 

with Bifidobacterium longum and fructo-oligosaccharides improved insulin resistance, hepatic 

steatosis and NASH activity index after 24 weeks of treatment.44  Whether these changes would 

hold up in larger trials is still unclear. There is also no data available yet about the role of FMT on 

NAFLD, but there are two actively recruiting clinical trials designed to address this question.104,105 

However, until there is a better understanding of the key mechanistic pathways by which the 

microbiome promotes NAFLD, the development of microbiome-related therapies will be limited. 

Nonetheless, a recent multi’omics study has provided initial support for the potential application 

of microbes and their metabolites as noninvasive biomarkers for diagnosis and prognostication of 

NAFLD.62 

Despite major recent advances in microbiome research, the field is still in its infancy with 

many areas that can be improved upon. One of the main issues that have made it challenging to 

interpret the existing literature on the microbiome and NAFLD is variation in study design. Some 

studies utilize healthy controls, while others select BMI-matched controls. There is also a wide 

age range, including separate studies of pediatric populations and adults. In addition, there is wide 

variation in how diet is incorporated into the analysis (if at all) and how samples are collected and 

processed. This makes comparisons across all NAFLD studies difficult to perform. Moreover, 

early studies examining the gut microbiome and NAFLD were predominantly association studies. 

These studies are unable to differentiate whether the microbial profile described was a potential 

cause of NAFLD or rather a byproduct of the environment. Furthermore, relevant microbial 

metabolites that reach the liver may be produced primarily in the small intestine and/or proximal 
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colon, which may not be well represented by the microbiome and metabolome of feces. At this 

time, studies are shifting away from these types of analysis and are moving towards studies 

focusing on mechanistic pathways by utilizing humanized animals and multi’omics analysis.106 By 

transplanting human microbiota into germ-free or antibiotic treated animals, researchers can 

establish causal relationship of dysbiosis with NAFLD development.  By using a multi’omics 

approach that combines microbiome analysis with other fields like proteomics and metabolomics, 

for example, researchers can better dissect mechanistic pathways that may lead to NAFLD 

development and progression. 

At this time, 16S rRNA sequencing is the most common method for microbiome 

analysis.106 It is effective for defining microbial composition and taxonomy to the genus and to 

some extent species level, but does not provide functional data (i.e. presence of bacterial genes 

and their expression level). In order to achieve this level of specificity, shotgun metagenomic 

sequencing is required. Unfortunately, due to its high cost, the sequencing of bacterial 

metagenomes and transcriptomes is still out of reach for many. But with ongoing advances in 

sequencing technology, it is likely that the cost of this service will be low enough for more 

widespread use in the future, similar to the widespread adoption of 16s rRNA sequencing after the 

dramatic decrease in sequencing costs early this decade.108 

CONCLUSIONS 

In summary, both animal models and human studies have supported the relationship between the 

gut microbiome and development and progression of NAFLD. By affecting gut barrier function, 

TLR signaling, choline metabolism, bile acid synthesis, SCFA and amino acid production, the gut 

microbiome appears to play a critical and multifactorial role in NAFLD development. But despite 

the advances in technology and bioinformatics analysis, specific mechanistic pathways are not yet 
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clearly defined. Future large, longitudinal, prospective studies incorporating multi-omics analysis 

and germ-free animals are needed to better define the multifactorial host-microbiome relationship 

involved in fatty liver pathogenesis. 
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NAFLD Subtypes Community Composition (Genera) Fecal Metabolites Serum Metabolites 

NAFL ↑↓pBifidobacterium46,52 

↑p↓Lactobacillus46,50,51,53 

↑↓pOscillobacter47,50,52,53 

↑p↓Prevotella48,49 

↑Roseburia53 

↑p↓Ruminococcus47,49,51 

↑Blautia47,49 

↑Clostridium50 

↑pDorea47,53 

↑Escherichia49,52 

↑Streptococcus50 

↓Alistipes50 

↓Coprococcus5152 

↓Faecalibacterium51 

↓Odoribacter50 

↓pOscillospira47 

↑Acetic Acid53 

↑Butanoic Acid53 

↑Cholic Acid58 

↑pEthanol48 

↑Isobutyric Acid51 

↑Propanoic acid53 

↑Propionate51 

↓2-butanone53 

↑p2-butanone47 

↑2-hydroxy-butyrate51 

↑Isoleucine52 

↑Leucine52 

↑L-lactic Acid51 

↑Phenylacetic Acid52 

↑Valine52 

NASH ↑p↓Ruminococcus46,51,57 

↑Allisonella56 

↑Blautia47,49 

↑Clostridium58 

↑Dorea46 

↑Escherichia48 

↑Lactobacillus46,57 

↑Parabacteroides56 

↓Bifidobacterium46,57 

↓Coprococcus51 

↓Faecalibacterium51,56,57 

↓Oscillospira46 

↑Chenodeoxycholic 

acid58 

↑Cholic Acid58 

↑Lithocholic Acid58 

↑p2-butanone47 

↑p4-methyl-2-

pentanone47 

↑Ethanol48 

NAFLD-Related 

Advanced Fibrosis 

↑↓Prevotella60,61 

↑↓Ruminococcus60–62 

↑Bacteroides60–63 

↑Blautia61 

↑Enterococcus61 

↑Escherichia62,63 

↑Klebsiella60 

↑Lactobacillus61 

↑Parabacteroides61 

↑Roseburia61 

↑Streptococcus61 

↓Akkermansia61 

 ↑3-(4-hydroxyphenyl)-

lactate63 

↑3-phenyl-

propanoate62 

Table 1-1: Bacteria genera and fecal/serum metabolites associated with different stages of non-

alcoholic fatty liver disease in human studies. p Denotes an association that has been reported only 

in pediatric cases of NAFLD. 
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NAFLD Animal 

Models 

Community Composition 

(Genera) Fecal Metabolites Serum Metabolites 

NAFL (high fat diet 

or leptin deficient 

mice) 

↑Bacteroides70 

↑Barnesiella72 

↑Bilophila7169 

↑Dorea71 

↑Helicobacter70 

↑Oscillospira70 

↑Roseburia72 

↑Sutterella71 

↓↑Allobaculum72 

↓↑Lactobacillus67,72 

↓Akkermansia69–71 

↓Bifidobacterium71 

↓Flavobacterium70 

↓Marinitoga70 

↓Parabacteroides70,71 

↓Ruminococcus71 

↑Butyrate24 

↓Deoxycholic acid 

(relative 

abundance)71 

↓Hyodeoxycholic 

acid (relative 

abundance)71 

Taurine conjugated 

bile acid71 

NASH (NASH 

inducing diet, i.e. 

methionine-choline 

deficient diet) 

↑(f) Bacteroidaceae68 

↑(f) Erysipelotrichaceae68 

↑(f) Porphyromonadaceae68 

↑(f) Clostridiaceae68 

↑Alistipes65 

↑Bacteroide65,66,68 

↑Bilophila66 

↑Blautia66 

↑Parabacteroides68 

↑Turicibacter68 

↓Akkermansia66 

↓Bifidobacteriu65,66 

↓Desulfovibrio66 

↓Enterorhabdus66 

↓Lactobacillus68 

↑Hexadecane65 

↑Tetracosane65 

↓Arachidic acid65 

↓Cholic acid65 

↓Stearic acid65 

 

Table 1-2: Bacterial genera and fecal/serum metabolites associated with NAFL and NASH 

development in animal models. Wild-type mice on a control diet serve as the reference group. 
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Study Number of 

Patients 

Intervention Major Findings 

Aller et al.101 30 Lactobacillus bulgaricus + 

Streptococcus thermophilus vs 

placebo for 3 months 

Decrease in ALT, 

AST, GGT 

Alisi et al.102 44p VSL#3 vs placebo for 4 months Ultrasound 

improvement in 

fatty liver 

Eslamparast et al.103 19 Synbiotic vs placebo for 28 weeks Decrease in ALT, 

AST, GGT, CRP, 

TNFα, fibrosis 

score by transient 

elastography 

Malaguarnera et al.44 66 Bifidobacterium longum + fructo-

oligosaccharides + life-style 

modification vs life-style 

modification alone 

Decrease in AST, 

LDL, CRP, TNFα, 

HOMA-IR, 

steatosis, and 

NASH activity 

index 

Shavakhi et al.43 64 Protexin + Metformin vs 

Metformin alone 

Decrease in ALT, 

AST, ultrasound 

grading of steatosis 

Wong et al.109 20 Lepicol vs nothing Decrease in 

intrahepatic 

triglyceride content 

as measured by 

proton-magnetic 

resonance 

spectroscopy 

Table 1-3: Summary of randomized control trials involving NAFLD and probiotics. p Denotes a 

pediatric trial. 
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Chapter 2 

The Role of the Gut Microbiome on the Gut-Brain Axis in Relation to Obesity and Food 

Addiction 
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INTRODUCTION 

Obesity has reached global epidemic proportions and has become the leading preventable 

cause of death, both in the United States and worldwide. Current estimated global prevalence rates 

are as high as 500 million adults who are considered obese, and these numbers continue to rise 

dramatically.1 Obesity is associated with many comorbidities including numerous cancers and 

musculoskeletal disorders, diabetes, and premature mortality from cardiovascular disease (CVD).2 

In addition to health detriments, economic and social consequences of obesity are compounding. 

In 2011, medical costs associated with treatment of preventable diseases associated with obesity 

were estimated to increase by $48-66 billion/year in the U.S. alone, with an estimated 65 million 

more adults to become obese by 2030.3 

Food addiction (FA) is a potential driver of obesity where the hedonic aspect of ingestive 

behaviors overrides the homeostatic mechanisms.4 Overeating and sedentary lifestyles result in a 

positive energy imbalance, leading to adipose tissue accumulation. According to the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-IV), criteria for the diagnosis of substance 

addiction includes: 1) taking the substance in larger amounts than was intended, 2) inability to 

control its use, 3) taking the substance for a longer period of time than was intended, and 4) 

continued use despite adverse consequences.5 For those that study FA, the Yale Food Addiction 

Scale (YFAS) has been developed and validated as a psychometrically sound measure to 

operationalize human cases of FA using the DSM-IV criteria for substance abuse.4 While many 

believe that FA is a distinct entity from other behavioral eating disorders, the concept of food 

addiction is still a controversial issue even within the newest update of the DSM-V.6 

Both obesity and FA can affect the connectivity of the brain. In several human cross-

sectional studies, obesity has been shown to be significantly associated to alterations of the brain’s 
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dopaminergic pathways in the brain’s reward system (i.e. striatum, prefrontal cortical regions and 

amygdala).7 These alterations are associated with dysregulation of reward sensitivity, motivation, 

and impulse control associated with unregulated ingestive behaviors.7 FA has been shown to be 

correlated with neural activation in key reward brain regions which are activated in other addiction 

disorders and contributes to increased cravings, reduced inhibitory control related to ingestive 

behaviors, and higher levels of obesity.8 Recent evidence has shown that obesity with hedonic or 

disinhibited eating patterns is associated with increased dopaminergic and GABA signaling both 

in animal and human models of food addiction and obesity.6 

The gut microbiome is also another area that is gaining recognition as a significant player 

in the etiology of many diseases as well as obesity. Research has shown that deviation from a core, 

lean gut microbiome profile is reflective of obesity.9 In addition to reduced bacterial diversity, 

there is alteration in bacterial gene representation and phylum-level modifications.9 Obesity-

associated gut microbiomes also show altered pathways of food metabolism. Correlations between 

obesity pathophysiology and the gut microbiome have been observed through metagenomic and 

biochemical analyses, demonstrating that obese gut microbiomes absorb energy at higher 

efficiencies than lean gut microbiomes.10 This superfluous harvesting of energy results in 

accumulation of body fat. Existing studies have focused on the effect of short chain fatty acids 

(SCFAs) on ingestive behavior in animal models.11 However, given our current understanding of 

the gut microbiome and obesity, there are very few studies that have examined the relationship 

between the gut microbiome and its metabolites with ingestive behaviors in obesity, especially in 

humans. Among these very few studies, tryptophan metabolites have been most closely implicated 

in modulating brain-gut-microbiome interactions within this context.12 
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Given these relationships, we aimed to test the hypothesis that the role of microbial profiles 

and tryptophan metabolites were significantly associated with food addiction as well as key reward 

regions of the brain in females with high BMI. 

 

METHODS 

Subject population 

The prevalence of FA differs by sex, with females with obesity having a higher prevalence 

(15-30%) than males with obesity (~5%).6  Due to the higher prevalence of FA in females,6 we 

focused our analysis to female subjects. The sample was comprised of 105 right-handed female 

subjects, between the age of 18-50 years old without significant medical or psychiatric conditions. 

Medical and psychiatric conditions were screened using a standardized screening sheet and a 

physical exam by a trained registered nurse. Subjects were excluded for the following reasons: 

pregnant or lactating, substance use disorder, abdominal surgery, tobacco dependence (half a pack 

or more daily), extreme strenuous exercise (>8h of continuous exercise per week), current or past 

psychiatric illness and major medical (including inflammatory bowel disease, active malignancy, 

organ failure, and diabetes) or neurological conditions (including Alzheimer’s disease, Parkinson’s 

disease, history of stroke, traumatic brain injury, or seizure disorder). Subjects taking medications 

that interfere with the central nervous system or regular use of analgesic drugs were excluded. 

Since female sex hormones such as estrogen are known to effect brain structure and function, we 

only included females who were premenopausal. Subjects with hypertension, diabetes, metabolic 

syndrome or eating disorders were excluded to minimize confounding effects. No subjects 

exceeded 400lbs due to magnetic resonance imaging scanning weight limits. Subjects were also 

excluded if they had been on antibiotics or probiotics with 3 months of recruitment. 
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Multimodal magnetic resonance brain imaging (MRI), anthropometrics (height, body 

weight, and waist-hip ratio measurements, body mass index), measures of appetite and FA, and 

stool samples for 16S ribosomal RNA gene sequencing and metabolomics were collected. 

All procedures complied with the principles of the Declaration of Helsinki and were 

approved by the Institutional Review Board at our institution (IRB # 16-000187). 

Food Addiction Questionnaire 

FA was assessed using the Yale Food Addiction Scale (YFAS) questionnaire, a 25-item 

scale developed to assess food addiction by assessing signs of substance-dependence symptoms in 

eating behavior.13 This scale is based upon the substance dependence criteria as found in the DSM-

4 (e.g., tolerance [marked increase in amount; marked decrease in effect], withdrawal [agitation, 

anxiety, physical symptoms], and loss of control [eating to the point of feeling physical ill]).13 The 

YFAS questionnaire is a 25-question survey that measures several aspects of FA behavior: food 

dependence, withdrawal, tolerance, continued use despite problems, time spent eating, loss of 

control, inability to cut down, and clinically significant impairment. Food addiction was defined 

as having a YFAS symptom count >3 with clinically significant impairment or distress. Clinically 

significant impairment or distress was defined as having a at least one positive response to the 

following two questions in the YFAS questionnaire: “My behavior with respect to food and eating 

causes significant distress” and “I experience significant problems in my ability to function 

effectively (daily routine, job/school, social activities, family activities, health difficulties) because 

of food and eating,” similar to previously published works.6 The YFAS has displayed a good 

internal reliability (Kuder–Richardson α=0.86).13 

Intestinal Microbial 16S rRNA Gene Sequencing 
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Stool was collected within 1 week of the patient’s brain MRI scan. All samples were stored 

at -80oC before 16S rRNA sequencing. DNA was extracted from frozen fecal samples using the 

PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA) with bead beating following 

the manufacturers protocol. The V4 hypervariable region of the 16S rRNA gene was amplified 

using the 515F and 806R primers. PCR products were purified by a commercial kit and sequenced 

on the Illumina HiSeq 2500 platform. The base pair reads were processed using QIIME v1.9.1 

with default parameters. The taxonomic assignments of sequences were performed using closed 

reference operational taxonomic unit (OTU) picking in QIIME against the Greengenes database 

pre-clustered at 97% identity. OTUs were removed if they were present in less than 10% of 

samples. 

Fecal metabolomics 

Fecal samples were aliquoted under liquid nitrogen and shipped to Metabolon for 

processing and analysis as a single batch on their global metabolomics and bioinformatics 

platform. Data was curated by mass spectroscopy using established protocols and software as 

previously described. Because of our interest in the gut-brain axis in obesity, only tryptophan 

derived metabolites were examined. 

Brain Magnetic Resonance Imaging 

Whole brain structural and anatomical connectivity (diffusion tensor imaging; DTI) data 

was acquired using a 3.0T Siemens Prisma MRI scanner (Siemens, Erlangen, Germany). DTI 

measures the microscopic properties of white- matter and fiber track connectivity. Detailed 

information on the standardized acquisition protocols, quality control measures, and image 

preprocessing are provided in previously published studies.14 

Acquisition: 
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Structural MRI. High resolution T1-weighted images were acquired: echo time/ repetition 

time (TE/TR) =3.26ms/2200ms, field of view (FOV)=220×220mm slice thickness=1mm, 176 

slices, 256×256 voxel matrices, and voxel size=0.86×0.86×1mm. 

Diffusion-weighted MRI. Diffusion-weighted magnetic resonance imaging was acquired 

according to two comparable acquisition protocols, in either 61 or 64 noncolinear directions with 

b=1000 s mm−2, with 8 or 1 b=0 s mm−2 images respectively, TE/TR= =88ms/ TR=9500 ms, and 

FOV =256 mm with an acquisition matrix of 128x128, and a slice thickness of 2 mm, resulting in 

DTI data with 2mm isotropic resolution. 

Quality Control and Preprocessing of images: 

Structural images were included based on compliance with acquisition protocol, full brain 

coverage, minimal motion (Gibbs ringing), absence of flow/zipper, and minor atrophy/vascular 

degeneration. Preprocessing for quality control involved bias field correction, co-registration, 

motion correction, spatial normalization, tissue segmentation, Fourier transformation for 

frequency distribution, and specific quantitative checks for DTI images (apparent diffusion 

coefficient and fractional anisotropy [FA]) as previously described.15 Preprocessing for diffusion-

weighted imaging included visually checking for artifacts and motion on the raw diffusion 

weighted and b0 images, visual assessment of FA and mean diffusivity (MD) map quality, as well 

checking for physiologically feasible FA and MD values (FA of 0–0.1 and MD of 3–4 μm2/ms in 

ventricles, and FA of 0.6–0.9 and MD of 0.6–0.9 μm2/ms in splenium of corpus callosum). 

Maximum relative motion thresholds for translation and rotation for each direction (x, y, and z) 

were set at 2mm and 2°, respectively. No subjects presented with serious adverse imaging artifacts 

and no subjects exceeded motion thresholds. 

Structural Image Parcellation and Anatomical Pairwise Network Construction: 
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T1-image segmentation and regional parcellation were conducted using FreeSurfer 

v.5.3.016,17 following the nomenclature described in the Destrieux and Harvard-Oxford subcortical 

atlas.18 This parcellation results in the labeling of 165 regions, 74 bilateral cortical structures, 7 

subcortical structures, the midbrain, and the cerebellum.19 

Regional parcellation and tractography results were combined to produce a weighted, 

undirected connectivity matrix. The final estimate of white matter connectivity between each of 

the brain regions was determined based on the number of fiber tracts intersecting each region. 

Weights of the connections were then expressed as the absolute fiber count divided by the 

individual volumes of the two interconnected regions.20 

Brain Regions of Interest 

Based on previous research,14 regions of interest were restricted to core regions of the 

reward network (basal ganglia: caudate nucleus, globus pallidum, putamen, thalamus, nucleus 

accumbens (NAcc), amygdala, and brainstem [including the substantia nigra/SN and ventral 

tegmental area/VTA]), as these regions have been implicated in brain-gut axis alterations 

associated with obesity.21 

Statistical Analysis 

Baseline demographic characteristics differences were compared using student’s test for 

continuous variables and chi-squared test for categorical variables. Means are expressed with their 

respective standard deviation. Multilevel sparse partial least square linear discriminant analysis 

(sPLS-DA) was done to analyze microbiome data using the Mixomics package in R 

(http://www.R-project.org). sPLS-DA identifies OTUs that discriminated subjects with no FA 

from those with FA by simultaneously performing feature selection and modeling using lasso 

penalization. sPLS-DA operates using a supervised framework to find linear combinations of a 
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limited set of variables, here OTUs, that predicts FA status, similar to prior published works.22 

Microbial alpha diversity (i.e. diversity within a sample) were calculated in QIIME using OTU-

level data rarefied to 34,222 sequences. The significance of differences in alpha diversity metrics 

- Faith’s phylogenetic diversity (Faith’s PD), Chao1, and Shannon index - was calculated by 

analysis of variance. Association of microbial genera with or without FA were evaluated using 

DESeq2 in R, which employs an empirical Bayesian approach to shrink dispersion and fit non-

rarified count data to a negative binomial model. P-values for differential abundance were 

converted to q-values to correct for multiple hypothesis testing (< 0.05 for significance). 

Metabolomics data were normalized and then fitted to a gaussian model with the limma package 

in R. Brain imaging data was compared between individuals without FA as compared to those with 

FA using a generalized linear model in R and p-values adjusted using false discover rate for 

multiple comparisons. Because obesity is closely related to FA, microbial analysis, metabolomics, 

and brain imaging analysis was all adjusted for obesity by doing subgroup analysis of obese 

patients with or without FA, and normal weight individual versus patients with obesity without 

FA. A BMI of <25 was considered normal, a BMI > 30 as obese. To determine microbial 

associations with brain imaging data and metabolomics, significant variables were dichotomized 

based on their median values before being applied to DESEq2 in R. 

Random Forest Classifier 

A random forest classifier was created in R to identify obese subjects with FA using the 

randomForest package (https://cran.r-project.org/web/packages/randomForest) with 1001 trees 

and mtry=2. The number of trees were varied from 100 to 10,000 at intervals of 500, and 1000 

trees were selected as the parameter as it minimized the out-of-bag estimate of error. An odd 

number was used to prevent theoretical ties that may occur from forest generation. Similarly, 

https://cran.r-project.org/web/packages/randomForest
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various mtry were selected and an mtry of 2 was used as it gave the highest area under the receiver 

operating curve (AUC). Features in the random forest classifier included OTUs that were 

significantly different by DESeq2 analysis and metabolites and brain imaging data that was 

statistically different in obese subjects with FA. The accuracy of the random forest classifier was 

estimated using a 5-fold cross-validation. 

 

RESULTS 

Patient Characteristics 

105 female subjects were enrolled in the study. The average age was 32.4 years + 10.2. 

Based on a YFAS symptom count of >3 with clinically significant impairment or distress, 

indicating the presence of FA, 19 subjects (18.1%) were identified with FA (Table 2-1). There 

was no statistical difference by age in subjects with FA as compared to those without FA. 89.5% 

(17/19) of the subjects with FA were obese as compared to 39.5% (34/86) of subjects without FA. 

The average BMI in subjects with FA was 35.6 + 5.3 and the average BMI in subjects without FA 

was 29.1 + 5.4 (p-value=0.0001). There were no statistical differences between subjects with FA 

or without FA in regards to race or ethnicity (p-value =0.55). 

Gut microbial signature as it relates to food addiction 

There were no statistical differences in beta-diversity using Bray-Curtis dissimilarity 

between obese subjects with or without FA. There were also no statistical differences in any alpha 

diversity metrics between the microbial samples of obese subjects with FA as compared to those 

without FA. However, there was a significant difference in alpha diversity metrics by 

race/ethnicity with Caucasians and African-Americans having higher diversity than Hispanics. 

After adjusting for race/ethnicity there were no differences in subjects with a BMI of >25 to normal 
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weight individuals by any alpha diversity metric. The taxonomic profiles of subjects with FA 

compared to subjects without FA on a phylum and genus level are summarized in Figure 3-1a 

and 3-1b, respectively. DESEq2 analysis of patients without FA identified 22 distinct OTUs that 

were associated with obesity as compared to normal weight individuals (Figure 3-1c). Six OTUs 

were negatively correlated and 16 OTUs were positively correlated to obesity. The four highest 

abundant OTUs belong to the genera Bacteroides, and Prevotella. The OTU with the greatest 

negative fold change was Akkermansia muciniphila. DESEq2 analysis of patients with obesity 

identified 15 OTUs that were associated with FA (Figure 3-1d). Ten OTUs were negatively 

associated with FA and 5 OTUs were positively associated with FA. The largest abundant OTU 

belonged to the genus Bacteroides, while the OTU with the largest positive fold change was 

Megamonas and the OTU with the largest negative fold change was Eubacterium biforme. 

Similarly to patients with obesity without FA as compared to normal weight patients, Akkermansia 

muciniphila was negatively associated with FA in patients with obesity. 

Supervised learning methods were applied to identify a distinct microbial signature that 

differentiated between obese subjects and normal weight subjects without FA (Figure 3-2a and 

3-2b) as well as obese subjects with or without FA (Figure 3-2c and 3-2d). Through the model, 

patients with normal BMIs were separated from patients with obesity by differences in OTUs 

belonging to such taxa as Bacteroides, Blautia, Lachnospiraceae, Ruminococcaceae, Roseburia, 

Faecalibacterium and Clostridium.  In patients with obesity, over 30 different OTUs separated 

patients with FA from those without FA. Notable OTUs that distinguished patients without FA 

included Eubacterium biforme and Bacteroides. Streptococcus was the taxa with the largest 

contribution for obese subjects with FA. 

Brain reward networks and food addiction 
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DTI pairwise MRI showed greater anatomical connectivity between the putamen (a key 

reward region) and the brain stem (Cohen’s d =1.12, p.adj value= 0.0415) and intraparietal 

sulcus/transverse parietal sulcus (IntPS/TrPS) (Cohen’s d=0.89, p.adj value=0.002) in obese 

subjects with FA compared to those subjects without FA (Figure 3-3a, 3-3b, 3-3c). Using DESEq2 

analysis and dichotomizing the brain imaging data based on their respective median values, 17 

OTUs were associated with an increase communication between the brain stem and the putamen 

(Figure 3-3e). Similarly, 10 OTUs were associated with an increase communication between the 

putamen and the IntPS/TrPS (Figure 3-3f). The OTU belonging to the genus Megamonas was 

positively associated with increase connectivity in both of these brain regions. Conversely, OTUs 

that belonged to Bacteroides and Eubacterium were negatively associated with the connections of 

both of these brain regions. Akkermansia was also negatively associated with the connection 

between the putamen and the IntPS/TrPS but was not associated with the connection between the 

putamen and the brain stem. There were no significant differences in DTI pairwise MRI brain 

imaging of patients with obesity without FA as compared to normal weight individuals. There 

were also no significant differences when comparing obese and overweight patients without FA to 

normal weight individuals. 

Indolepropionate is associated with food addiction 

By analyzing fecal metabolites that were related to tryptophan metabolism, we found that 

indolepropionate was negatively associated with FA in patients with obesity (Cohen’s d, 0.74, p-

value=0.045) (Figure 3-3d). By analyzing the level of indolepropionate with fecal microbiome 

data, we discovered 14 OTUs that were correlated with indolepropionate (Figure 3-3g). The 

highest abundant OTU that positively correlated to indolepropionate belonged to the genus 

Bacteroides. The highest abundant OTU that was negatively correlated to indolepropionate 
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belonged to the genus Prevotella. All the OTUs that were positively associated with 

indolepropionate belonged to Akkermansia muciniphila and Bacteroides. There were no 

significant differences in fecal tryptophan metabolites of patients with obesity without FA as 

compared to normal weight individuals. There were also no significant differences in fecal 

metabolites when comparing obese and overweight patients without FA to normal weight 

individuals. 

 

Random forest classifier based on brain imaging, fecal metabolite, and 16S sequencing 

accurately identifies subjects with food addiction 

Using the significant findings on brain imaging, fecal metabolite, and DESEq2 analysis of 

the fecal microbiome, a random forest classifier was created with a high accuracy for predicting 

obese subjects with FA behaviors. The AUC in 5-fold cross-validation was 0.81 (Figure 3-4a). 

The contribution of each variable was expressed with a variable importance score, which measures 

the decrease in accuracy of the classifier if that feature was removed. The variables with the highest 

scores were those pertaining to brain imaging and indolepropionate. Seven OTUs also contributed 

significantly to the classifier and those OTUs belonged to Barnesiellaceae, Ruminococcaceae, 

Desulfovibrio, Bacteroides, Eubacterium, and Megamonas (Figure 3-4b). 

 

DISCUSSION 

To our knowledge, this is the first study to utilize a systems biology approach to 

demonstrate associations between FA and changes in brain-gut-microbiome interactions by 

analyzing fecal microbes, metabolites, and anatomical connectivity (DTI) brain data. FA behaviors 

in females were associated with a distinct microbial profile, increased connectivity with the 
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putamen of the reward center of the brain, and a decrease in indolepropionate, a tryptophan derived 

microbial metabolite. 

The study results indicated a strong negative association between Bacteroides, Akkermansia, and 

Eubacterium with FA. Bacteroides is the major genus belonging to the phylum Bacteroidetes. In 

both human and mouse studies, a rise in Bacteroidetes is often associated with a leaner 

phenotype.10 In bariatric studies, subjects that had the most significant weight loss were those that 

had higher levels of Bacteroides and lower levels of Prevotella.23 In a prospective study, 

Bacteroides species were higher in lean individuals and those subjects who were able to achieve 

weight loss as compared to subjects with obesity.24 Whether the associations noted between 

Bacteroides and obesity are causative is still an area of active research. In our data, Bacteroides 

was positively associated with indolepropionate and negatively associated with brain regions 

related to FA. 

Akkermansia was also another genus that was significantly associated with FA, brain 

imaging, and fecal metabolites. Akkermansia is a mucin-degrading bacterium that has been 

extensively studied for its protective role in metabolic syndrome and insulin sensitivity both in 

human and mouse studies.25 In a study of 41 females with obesity undergoing calorie restriction, 

an increase in relative abundance of Akkermansia was associated with improved fasting glucose, 

waist-to-hip ratio, and subcutaneous adipocyte diameter.26 This led to a recent phase 1 randomized 

double-blind, placebo- controlled clinical trial showing that Akkermansia supplementation in 

obese/overweight volunteers led to improved insulin sensitivity, reduced plasma cholesterol, and 

a trend towards decreased body weight and fat mass.27 

However, unlike Akkermansia and Bacteroides, Eubacterium biforme has not been as well 

studied with regards to obesity or metabolic syndrome. In our study we show Eubacterium to be 
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negatively associated with FA as well as key areas of the brain reward network. Similar to 

Bacteroides, Eubacterium is known to be a significant producer of short-chain fatty acids.28 Short-

chain fatty acids is the by-product of bacterial fermentation of indigestible dietary fiber. The most 

abundant short-chain fatty acid is butyrate and several animal studies have shown that butyrate can 

be protective against obesity by increasing GLP-1, leptin release, and increasing fatty acid 

oxidation.28 Butyrate is also able to communicate directly with the central nervous system by 

crossing the blood-brain barrier and activating the vagus nerve and hypothalamus. 28 

While Akkermansia, Bacteroides, and Eubacterium were negatively associated with FA, 

Megamonas was one of the few bacteria that was both positively associated with FA and an 

increased activity of the reward network of the brain. In human studies, Megamonas has been 

associated with an increase prevalence of prediabetes 29 and childhood obesity.30  In context, these 

associations between the gut microbiome and obesity may be mediated through interactions 

involving the gut-brain axis. 

In our study, we also saw that alpha diversity did not differ between subjects with or 

without FA but it was seen that alpha diversity did differ by race and ethnicity, which may be a 

reflection of dietary differences across these groups. Larger samples will allow for future analyses 

to account for cultural factors and for race and ethnicity differences. 

Analysis of fecal metabolites revealed a negative association between indolepropionate and FA. 

Microbial analysis showed that Bacteroides and Akkermansia was positively correlated with 

indolepropionate while bacteria belonging to the phylum Firmicutes were negatively associated. 

This finding is in line with the numerous studies that have shown an increase in Firmicutes and a 

decrease in Bacteroides in patients with diabetes, metabolic syndrome and obesity.31 

Indolepropionate belongs to a larger class of tryptophan-derived metabolites termed “indoles.” In 
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contrast to other tryptophan derived metabolites (serotonin, kynurenine), which have also been 

implicated in brain-gut-microbiome interactions in obesity, indoles are the result of exclusively 

microbial metabolism, in which most undigested dietary tryptophan in the gut is converted to 

indoles.32 The results we present here are consistent with our previously published work, where 

we describe associations between indoles on key regions of the extended reward network and both 

obesity and FA.12 Indoles play an important role in modulating kynurenine synthesis, reducing 

central nervous system inflammation, improving the mucosal intestinal barrier, and altering GLP-

1 secretion33,34 all of which have been shown to be disrupted in states of obesity. Although 

indolepropionate has been less extensively studied, previous work has demonstrated a 

neuroprotective role of indolepropionate against Alzheimer’s disease and neural oxidative stress.35 

Furthermore, a Finnish study of 200 subjects showed that a higher level of serum indolepropionate 

acid was associated with a reduce risk of type 2 diabetes.36 This data suggests that indolepropionate 

may have both local protective effects on intestinal barrier function as well as remote effects on 

preserving β-cell function and central nervous system inflammation. 

In this study we were also able to demonstrate that decreased fecal indolepropionate was 

associated with not only increased FA behaviors, but that this was related to increased connectivity 

between key reward regions involving the putamen. In line with the previous fecal microbiome 

data in FA and indolepropionate, we see a negative association of Bacteroides and Akkermansia 

to the connectivity between the putamen and the intraparietal sulcus. Normal eating behavior is 

under the control of the brain’s homeostatic system and hedonic system, which includes regions 

involved in the processing of food-seeking behavior, inhibition, and integrating information to 

make decisions regarding food intake.37,38 However, in both FA and obesity, activity within the 

extended reward network can override the homeostatic system.8,37 This dominance of hedonic over 
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homeostatic influences on eating behavior has been related to the ubiquitous presence of cheap, 

highly palatable, high caloric foods, which are enhanced for taste and salience. This hedonic 

dominance not only leads to increases in cravings and ingestion of these foods, but environmental 

factors such as stress and adversity can serve as conditional cues for future food intake and long-

term weight gain.39 Some studies have indicated that overconsumption of highly palatable foods 

rich in calories, fat, and sugar reduce the reward thresholds of such foods when ingested, and 

therefore require a higher intake to generate the same satisfaction.40 

Integrating the significant findings on brain imaging, fecal metabolites, and the fecal 

microbiome, we created a random forest classifier, which demonstrated a high accuracy for 

predicting obese individuals with FA behaviors. Next to indolepropionate and connectivity of key 

reward network region (the putamen), the bacterial genera with significant contribution to the 

classifier that were also significant in other analysis belonged to Bacteroides, Eubacterium, and 

Megamonas. 

There are several limitations to our study. Because of the cross-sectional design the results 

only show associations between behavior, gut microbiome and brain structure. However, in the 

absence of a truly valid food addiction model in animals and the challenges of doing studies in 

humans that address the bidirectional BGM interactions, cross sectional studies are essential first 

steps to identify correlations within the BGM axis in humans. Another limitation is that this study 

enrolled only females, and due to the lower prevalence rates of FA in males compared to females, 

it would require larger sample sizes to observe the same effects in males. Lastly, this data should 

be validated in an external cohort to confirm the accuracy of the classifier. 

In conclusion, food addiction refers to maladaptive ingestive behaviors resulting from a 

shift from primarily homeostatic to hedonic regulatory mechanisms of food intake which 
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primarily occurs in individuals with obesity. This shift reflects alterations at all levels of the BGM 

axis. The results of our study suggest that FA behavior may be mediated via effects of the gut 

microbiome and their metabolites on the reward centers of the brain (Figure 3-5). If confirmed in 

follow up studies, these findings suggest the possibility of targeting the brain-gut-microbiome axis 

to combat FA behavior and obesity. 
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Table 2-1: Baseline characteristics by food addiction 

  

No Food Addiction 

(No FA) (n=86) 

Food Addiction (FA) 

(n=19) p-value 

Age (mean +/- SD) (yrs) 33.19 + 10.31 28.57 + 8.66 0.07 

BMI (mean +/- SD) 29.1 + 5.4 35.6+ 5.3 0.0001 

Normal Weight (n=16) 

% 18.60 0.00 

0.0001 

Overweight (n=38) % 41.86 10.52 

Obese (n=51) % 39.53 89.47 

YFAS Symptom Count 

(mean +/- SD) 1.15 + 0.77 3.63 + 1.16 <0.0001 

Race/Ethnicity 

Hispanic (n=41) % 36.05 52.63 

0.55 

Caucasian (n=28) % 23.26 42.11 

African American 

(n=13) % 12.79 10.53 

Asian (n=21) % 20.93 15.79 

Other (n=2) % 2.33 0 

SD: Standard deviation 
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Figure 2-1: Several taxa are associated with food addiction. Taxonomic profiles between subjects 

with No Food Addiction (No FA) and Food Addiction (FA) on a (a) phylum and (b) genus level. 

Only taxa > 1% relative abundance are shown. (c) DESEq2 analysis of patients without FA 

comparing those with obesity and those with normal BMI showing several OTUs associated with 

Obesity. (d) DESEq2 analysis of only patients with obesity showing several OTUs that are 

associated with FA. 
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Figure 2-2: A distinct microbial profile differentiates subjects with obesity and food addiction 

from those without. A) Plot of the partial least square discriminant analysis of the gut microbiome 

composition between subjects with obesity without food addiction versus those with normal BMI 

and without FA along with their 95% confidence ellipses and B) contributing OTUs to component 

1. C) Plot of the partial least square discriminant analysis of the gut microbiome composition 

between obese subjects with food addiction versus those without FA along with their 95% 

confidence ellipses and D) contributing OTUs to component 1. 
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Figure 2-3: Brain imaging and indolepropionate is associated with food addiction. DTI pairwise 

showed that the communication between the intraparietal sulcus/transverse parietal (IntPS/TrPS) 

sulcus and brain stem to the putamen was positively associated with Food Addiction (FA) in 

patients with obesity. A) Schematic diagram of the significant brain region associated with food 

addiction and its quantification (B and C). D) Levels of fecal indolepropionate in obese subjects 

with or without food addiction (FA). E) DESEq2 analysis in obese subjects showing several OTUs 

associated with increase connectivity between the brain stem and the putamen. F) DESEq2 

analysis in obese subjects showing several OTUs associated with increase connectivity between 

the IntPS/TrPS to the putamen.  G) The OTUs that are correlated to fecal indolepropionate by 

DESEq2 in patients with obesity. IntPS/TrPS: intraparietal sulcus/transverse parietal sulcus. Pu: 

Putamen. 
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Figure 2-4: Combining fecal metabolite with 16S and brain imaging data, a highly accurate 

classifier is created that identifies subjects with food addiction (FA). A) ROC curve for the random 

forest classifier (AUCROC =0.81). B) Variable importance plot of each factor on the accuracy of 

the classifier. IntPS/TrPS: intraparietal sulcus/transverse parietal sulcus. Pu: Putamen. 
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Figure 2-5: Proposed schematic diagram that connects the gut microbiome to food addiction (FA) 

via changes in metabolite and changes in connectivity of the brain’s reward system. 
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Chapter 3 

The Intestinal Microbiome Identifies Advanced Fibrosis in Patients with Nonalcoholic Fatty 

Liver Disease 
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INTRODUCTION 

Chronic liver disease is one of the most common medical conditions worldwide that affects 

as many as 840 million people with an estimated rate of mortality of 2 million deaths per year.1 

From 1999 to 2016, deaths from chronic liver disease in the US increased by 65 percent and deaths 

from liver cancer doubled.2 This escalation has been attributed to factors such as increased alcohol 

use in younger Americans, increased intravenous drug use and rapidly rising rates of obesity in 

our society.2  

One of the most challenging aspects of chronic liver disease is the identification of patients 

with liver fibrosis. The development of advanced fibrosis is a major predictor of liver-related 

morbidity and mortality.3-5  Early identification of advanced fibrosis using non-invasive testing is 

a growing area of research in the field of hepatology.4,6,7 The characterization of gut microbial 

biomarkers for advanced fibrosis has been a novel area of ongoing research. For example, Qin and 

colleagues in 2014 reported that an intestinal microbial signature was present in individuals with 

cirrhosis in a Chinese cohort as compared to healthy controls.8 This study included different causes 

of cirrhosis including hepatitis C, hepatitis B, NAFLD, and alcoholic liver disease.  Loomba et al 

in two separate studies was able to identify and validate a distinct microbial signature that was 

related to advanced fibrosis in patients with NAFLD.9,10 However they did not explore other 

etiologies of chronic liver disease, so it is unclear at this time if this signature holds true for other 

causes of liver disease in western society. Given the association of the microbiome with chronic 

liver disease and cirrhosis, the aim of this study was to determine if specific fecal microbial profiles 

can be used as non-invasive biomarkers for advanced fibrosis in patients with varying etiologies 

of chronic liver disease. 

METHODS 
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Patient Recruitment and Stool Collection 

Patients with a diagnosis of chronic liver disease and undergoing ultrasound elastography 

were recruited prospectively from the VA Greater Los Angeles Healthcare System (VA) from 

6/2017 to 6/2018. Chronic liver disease included patients with chronic hepatitis C virus (HCV) 

infection, chronic hepatitis B virus (HBV) infection, liver disease due to chronic alcohol use, 

primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), Wilson’s disease, 

autoimmune hepatitis, hemochromatosis, and NAFLD. Patients were excluded if they were treated 

with antibiotics or probiotics within 3 months of enrollment, had only acute liver injury without 

any underlying chronic liver disease, treated HCV infection with sustained virologic response 

without any other forms of chronic liver disease, were on a specialized diet (e.g. gluten free, vegan, 

vegetarian, high protein), had a personal history of GI surgeries, irritable bowel syndrome or 

inflammatory bowel disease. Stool was collected within 7 days of their ultrasound elastography 

and placed into 95% ethanol and stored at -80oC until processing. Patient information including 

age, gender, race/ethnicity, and comorbidities were also collected. For race and ethnicity, there 

were 5 categories with Hispanic as a separate category (i.e. non-Hispanic white, non-Hispanic 

black, Hispanic, Asian, and other). Co-morbidities were collected in order to calculate the Charlson 

comorbidity index, a validated score that assesses overall health and risk of 1-year all-cause 

mortality.11  Stool samples from heathy control patients without any evidence of chronic liver 

disease were also collected. The study was approved by the Veteran’s Affair Greater Los Angeles 

Healthcare System Institutional Review Board. All methods herein were performed in accordance 

with relevant guidelines and regulations. Verbal and written informed consent for study 

participation was obtained from all patients. 

Liver Ultrasound Elastography 
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All patients with chronic liver disease underwent an ultrasound elastography using the FibroScan 

touch 502 machine (Echosens, MA, USA). All ultrasound elastographies were performed by 

trained technicians with over 100 scans of experiences each. Medium (M) and extra-large (XL) 

probes were utilized depending on the patient’s body habitus according to manufacturer’s protocol. 

Controlled attenuation parameter (CAP) score and liver stiffness were collected as non-invasive 

measurements of hepatic steatosis and fibrosis, respectively. All measurements were done at least 

10 times at the same spot with interquartile range/median value less than 30% as per manufacturers 

guidelines.  A CAP score of between 238 and 260 was given a steatosis grade of S1 representing 

11-33% of fatty change in the liver, a score between 260 and 290 was given a grade of S2 

representing 34-66% of fatty change, and a score higher than 290 was given a grade of S3 

representing 67% or more of fatty change as per manufacturer’s guideline. Standard cutoffs of 

liver stiffness as measured in kilopascals based on etiology of liver disease was used to determine 

extent of liver fibrosis (F0/F1 to F4).12 Minimal fibrosis was defined as a score consistent with F0-

F2 and advanced fibrosis was defined as a score consistent with F3-F4, similar to prior published 

studies.10 

16S rRNA Sequencing 

DNA was extracted from ethanol preserved stool using the Powersoil kit as per the manufacturer’s 

instructions (MO BIO, Carlsbad, CA, USA). The V4 region of 16S ribosomal RNA was amplified 

and underwent paired end sequencing on an Illumina HiSeq 2500 (San Diego, CA, USA) as 

previously described.13 The 253 base-pair reads were processed using QIIME 1.9.1 (San Diego, 

CA, USA) with default parameters.14 The average sequence depth per sample was 45,560. 

Operational taxonomic units (OTUs) were picked against the May 2013 version of the Greengenes 

database, prefiltered at 97% identity. After removing OTUs that were present in fewer than 10% 
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of all samples, 1479 OTUs remained for analysis. Raw 16S rRNA sequence data were deposited 

under National Center for Biotechnology Information BioProject PRJNA542724. 

Statistical Analysis 

For demographic data, means are expressed along with their standard deviations and comparisons 

between means were performed using the Student’s t-test. Categorical data were compared using 

the Pearson’s chi-squared test. 

For 16s rRNA sequencing data, alpha diversity metrics that included Chao1 (a metric for species 

richness), Faith’s phylogenetic diversity, and Shannon Index (a metric that incorporates both 

species richness and species evenness) were computed using QIIME. The statistical significance 

of differences in alpha diversity metrics was calculated using a two-tailed t-test. Beta diversity, a 

metric of differences between samples, was calculated using the square root of the Jensen-Shannon 

divergence and visualized by principal coordinates analysis in R.15 Univariate Adonis, a 

permutational analysis of variance, was performed using 10,000 permutations to test for 

differences in the square root of the Jensens-Shannon divergence across the following variables: 

age, gender, race/ethnicity, BMI, control/patient cohort, fibrosis as a binary categorical variable, 

steatosis grade, etiology of liver disease, and Charlson’s comorbidity index. Only variables with a 

p-value <0.1 were used for the final multivariate analysis. This included steatosis grade, Charlson’s 

comorbidity index, and fibrosis. Differential abundance testing was evaluated using DESeq2 in R, 

which employs an empirical Bayesian approach to shrink dispersion and fit non-rarified count data 

to a negative binomial model.16 Variables listed in the multivariate analysis of DESeq2 were the 

same variables listed above for the multivariate Adonis analysis. P-values for differential 

abundance were converted to q-values to correct for multiple hypothesis testing (< 0.05 for 
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significance). All authors had access to the study data and had reviewed and approved the final 

manuscript. 

Random Forests Classifier 

A random forests classifier to predict advanced fibrosis was created in R using the 

randomForest package (https://cran.r-project.org/web/packages/randomForest) with 1001 trees 

and mtry = 2.17 Features inputted into the random forest classifier were those associated 

significantly with advanced fibrosis as determined by multivariate DESeq2 models. The accuracy 

of the random forest classifier was estimated using a 10-fold cross-validation. 

Predicted Metagenomics 

Metagenomic data of each sample was inferred from 16S rRNA sequencing data by using 

PICRUSt 1.1.3 (http://picrust.github.io/picrust), a well validated tool designed to impute 

metagenomic data from 16S rRNA compositional data.18  16S rRNA sequencing data was inputted 

into PICRUSt and normalized by copy number using default parameters. The subsequent 

metagenes were then categorized by function using the KEGG database. Differences in predicted 

metagenes by advanced fibrosis were identified using DESeq2 with p-values adjusted for multiple 

hypothesis testing. 

Validation Cohort 

The findings of the random forest classifier were validated in a separate cohort of NAFLD 

patients recruited at the VA from January 1st, 2019 to October 1st, 2019. Inclusion and exclusion 

criteria were the same as above. All patients underwent stool collection and liver ultrasound 

elastography as described above. Demographic data, race, ethnicity, and comorbidities were 
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collected. In addition, all patients within this cohort filled out a validated diet questionnaire, the 

NIH Diet History Questionnaire III (DHQIII), at the time of their stool collection.19 

RESULTS 

Patient and Healthy Control Characteristics 

Fifty patients with chronic liver disease and 25 healthy controls were recruited. Etiologies for liver 

disease included non-alcoholic liver disease (58.0%), hepatitis C (26.0%), hepatitis B (10.0%), 

and alcohol (6.0%) (Table 1). Nineteen patients had advanced fibrosis and 7/19 (36.8%) had F4 

fibrosis. The healthy control cohort were younger on average than the patients with chronic liver 

disease and comprised of more females (p-value <0.001). The average Charlson’s Comorbidity 

Index for the liver disease cohort was 4.33 + 2.31. There was no difference in Charlson’s 

Comorbidity Index between patients with advanced fibrosis as compared to those without 

advanced fibrosis. There was no difference in race/ethnicity between any groups and there was no 

statistical difference in etiologies of chronic liver disease by fibrosis stage. 

Microbial Profiles Differs by Fibrosis Stage and Etiology of Liver Disease 

In univariate analysis of beta diversity, only 3 variables had a p-value <0.1: steatosis grade, 

Charlson’s comorbidity index, and the presence of advanced fibrosis. Therefore, these variables 

were used for the multivariate analysis. As demonstrated in the principal coordinates analysis plot 

(Figure 1A), the microbial profile of patients with advanced fibrosis differed significantly as 

compared to those with minimal or no fibrosis or healthy controls (p=0.003), while adjusting for 

the other covariates. In regards to alpha diversity metrics, patients with NAFLD and minimal or 

no fibrosis had a lower Chao1 index (species richness) and a lower Faith’s Phylogenetic Diversity 

as compared to healthy controls and NAFLD patients with advanced fibrosis (Figure 1B). There 
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was no statistically significant difference in the Shannon Index (species richness/evenness) in any 

of the group comparisons. 

The average taxonomic composition of chronic liver disease patients divided by etiology 

is summarized in Figure 2A on a phylum and genus level. The composite taxonomic summary of 

all patients with advanced fibrosis, minimal or no fibrosis, or healthy controls is shown in Figure 

2B. Patients with alcoholic liver disease with F0-F2 fibrosis had a higher relative abundance of 

Bacteroidetes than any other group. Examining all patients with advanced fibrosis, there was a 

statistically higher abundance of Prevotella as compared to either healthy control or patients with 

F0-F2 disease as determined by differential abundance analysis adjusting for covariates. 

Differential abundance analysis adjusting for covariates was also performed to compare 

patients with different etiology of liver disease to healthy controls (Figure 3). Because patients 

with alcoholic liver disease and patients with HBV infection only comprised of 8 patients, the 

analysis only focused on patients with chronic HCV infection and NAFLD adjusting for fibrosis 

and the other covariates listed above. Patients with HCV disease as compared to controls differed 

significantly across 25 different OTUs (a taxonomic unit roughly corresponding to species). An 

undefined species belonging to the family Rikenellaceae, two undefined species in the genus 

Bacteroides, and an undefined species in the genus Dialister made up the OTUs with the largest 

relative abundance (Figure 3A). NALFD patients had 34 separate OTUs that were differentially 

abundant from healthy controls (Figure 3B). The species with the highest relative abundance 

included Prevotella copri, an undefined species in the family Ruminococcaceae and an undefined 

species in the family Rikenellaceae. All 3 of these species were underrepresented in patients with 

NAFLD.  Comparing NAFLD to HCV patients, there were 10 OTUs that were differentially 

abundant between the two groups. Prevotella copri, an undefined species belonging to the genus 
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Bacteroides, and an undefined species of the order Clostridiales made three most abundant OTUs. 

Prevotella copri was higher in patients with NAFLD adjusting for fibrosis stage, while the other 

two OTUs were higher in patients with HCV (Figure 3C). 

Between patients with advanced fibrosis vs. minimal or no fibrosis, 26 OTUs were 

differentially abundant. The two most highly abundant differential OTUs were Prevotella copri 

and an undefined species belonging to the genus Bacteroides, both of which were elevated in 

patients with advanced fibrosis (Figure 4A). Examining differences between fibrosis stage within 

patients with HCV and with NAFLD, there were 12 OTUs and 23 OTUs that were differentially 

abundant, respectively. While Prevotella copri did have a higher relative abundance in HCV 

patients with advanced fibrosis, it did not reach statistical significance. Instead, two undefined 

species in the family Ruminococcaceae and Akkermansia muciniphila were the three differential 

OTUs with the highest abundance; all three were elevated in patients with HCV with advanced 

fibrosis (Figure 4B). In NAFLD patients, Prevotella copri was the predominant species and it was 

elevated in patients with advanced fibrosis (Figure 4C). 

Predicted Metagenomic Profile Differs by Fibrosis 

Metagenomic profiles were predicted for each sample from 16S rRNA compositional data 

using PICRUSt. The predicted metagenomic profile that differed between patients with advanced 

fibrosis as compared to those patients with minimal or no fibrosis is summarized in Figure 5. The 

average weighted Nearest Sequenced Taxon Index (NTSI) per sample was 0.08. Low scores 

indicate availability of closely related reference genomes and thus a higher quality of predictions.18 

While there was no overall large difference of the predicted metagenome between samples by 

fibrosis stage as represented by the principal coordinates analysis in Figure 5A (p=0.34), patients 

with advanced fibrosis did have a trend to have more bacterial genes present per sample (Figure 
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5B, p=0.09). From 16S rRNA compositional data, DESEq2 analysis of PICRUSt predicted 

metagenes showed 168 metagenes that were statistically differentially expressed in patients with 

advanced fibrosis as compared to those with minimal or no fibrosis. Categorizing these metagenes 

into functional categories showed 9 pathways that are different between the two groups. The 

pathways that were most different between the two groups were those involved in mineral 

absorption, arachidonic acid metabolism, carbohydrate digestion and absorption, and linoleic acid 

metabolism (Figure 5C). 

A Microbial Signature Predicts Advanced Fibrosis 

Using the 26 OTUs that were differentially abundant between patients with advanced fibrosis and 

patients with minimal or no fibrosis, a random forest classifier was created with high accuracy for 

predicting advanced fibrosis. The area under the receiver operating characteristic curve (AUROC) 

was 0.90 in 10-fold cross-validation (Figure 6A). The contribution of each OTU to the classifier 

was expressed as variable importance score, which measures the decreased accuracy of the 

classifier if that feature was removed (Figure 6B). The species with the greatest variable 

importance score was Prevotella copri followed by two undefined OTUs belonging to the genus 

Lachnobacterium and family Ruminococccaceae. 

A Separate Cohort Validates the Finding that a Distinct Microbial Signature Predicts 

Advanced Fibrosis 

In the validation cohort, there was no statistical difference between patients with advanced 

fibrosis as compared to minimal or no fibrosis in regards to age, gender, comorbidities, race, or 

dietary patterns (Table 2). Similar to the original cohort, a distinct microbial profile exists for 

patients with advanced fibrosis as compared to those with minimal or no fibrosis (Figure 7).  In 
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univariate analysis of beta diversity, only age and advanced fibrosis had a p-value <0.1. Therefore, 

these two variables were used for multivariate analysis. Adjusting for age, the microbial profile of 

patients with advanced fibrosis differed significantly as compared to those with minimal or no 

fibrosis as demonstrated in the principal coordinate analysis plot (p=0.002). There was no 

statistical difference in Shannon index between patients with advanced fibrosis or those with 

minimal to no fibrosis in the validation cohort. 

The average taxonomic composition by fibrosis category is summarized in Figure 7D and 

7E, highlighting increased Prevotella in the advanced fibrosis group. Differential abundance 

testing demonstrated that 7 OTUs differed between patients with advanced fibrosis vs. minimal or 

no fibrosis. Of these, Prevotella copri was the most abundant and it was the only one that was 

enriched in those with advanced fibrosis. Applying the same random forest classifier trained on 

the initial cohort, microbiome composition had an AUROC of 0.82 for differentiating advanced 

vs. minimal or no fibrosis based on 10-fold cross-validation (Figure 7C). 

DISCUSSION 

This study yielded several important findings.  In patients with chronic liver disease, we 

show that those with advanced stages of fibrosis have a distinct microbiome signature compared 

to those with lesser stages of fibrosis.  This held true regardless of etiology of the liver disease and 

after adjusting for other covariates. These differences are characterized by an increase in the genus 

Prevotella and a decrease in Bacteroides. Furthermore, by using these microbial differences, a 

highly accurate model based on stool analysis can be created to identify those with advanced 

fibrosis. 
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We also show that microbial signatures differ across different etiologies of chronic liver 

disease. Similar to prior published works,20,21 chronic HCV infection is associated with a decrease 

in the order Clostridiales and family Ruminococcaceae in patients with advanced fibrosis. This 

study also builds on prior data from NAFLD patients. Within our cohort the most abundant species 

that were significantly different between healthy controls and NAFLD patients while adjusting for 

the level of fibrosis were Prevotella copri, an undefined species in the family Ruminococcaceae, 

and an undefined species in the family Rikenellaceae. This is similar to other prior works showing 

a reduction of Ruminococcus and Prevotella in non-cirrhotic NAFLD patients.9,22 Prevotella’s 

reduction in non-cirrhotic NAFLD patients as compared to healthy controls is likely related to diet. 

Diets that are high in fats and animal protein as compared to diets that are rich in fiber has been 

shown to increase Bacteroides and decrease Prevotella.23,24 This finding is therefore in line with 

previous works that has linked the gut microbiome to diet and non-cirrhotic fatty liver disease. 

Though the idea of using stool as a novel biomarker for advanced fibrosis was recently 

explored and validated, it was only done in patients with NAFLD and did not include other 

etiologies.9 In our cohort of racially diverse patients with varying etiologies of chronic liver 

disease, we show that the idea of using stool analysis to identify patients with advanced fibrosis is 

not only feasible but potentially highly accurate. While several other non-invasive methods are 

currently available for the diagnosis of advanced fibrosis including magnetic resonance 

elastography (MRE), transient elastography, and lab-based models, these modalities can have 

reduced accuracy in patients with diabetes or severe obesity.25,26 Therefore, we propose that stool 

analysis can be a potentially accurate method when other modalities are limited. Combination of 

stool testing with other non-invasive tests including Fib-4 and NAFLD fibrosis scoring may also 
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prove to be an important clinical tool to identify those patients who are more likely to progress to 

advanced fibrosis or cirrhosis. 

In our model, we show that Prevotella copri was the predominant species predictive of 

advanced fibrosis. This was also true in our validation cohort as well. While Prevotella copri is 

still present in normal healthy controls, it is significantly higher in patients with advanced fibrosis, 

a trend that is consistent across all etiologies of chronic liver disease. This is similar to Qin et al 

who showed that Prevotella was enriched in patients with cirrhosis as compared to healthy 

controls.8 Prevotella copri is of great interest as it has been extensively studied in other 

inflammatory diseases.27 It encodes a unique superoxide reductase which may provide resistance 

to or even the use of host-derived reactive oxygen species produced during inflammation.28 Mice 

colonized with P.copri have increased inflammation in a colitis model induced by dextran sulfate 

sodium.29 In vitro models have shown that P. copri can stimulate IL-6, IL-23, and IL-17, all 

cytokines associated with pro-inflammatory Th17 responses.30 This has led many to believe that 

P. copri is a potential driver of inflammation and can even induce such inflammatory diseases as 

rheumatoid arthritis.27 In a recent publication, Prevotella copri was also seen as the main bacteria 

associated with advanced fibrosis in NAFLD pediatric patients.31Our analysis also shows a distinct 

bacterial metagenomic profile for patients with advanced fibrosis. In our analysis, we show that 

the pathways that were most different between patients with advanced fibrosis compared to those 

without were related to mineral absorption, arachidonic acid metabolism, carbohydrate digestion 

and absorption, and linoleic acid metabolism. In mouse models of liver steatosis, linoleic acid was 

shown to be protective against inflammation by affecting PPAR-α and NF-κβ signaling.32  The 

observed associations of P. copri and these functional pathways with advanced fibrosis provide 

preliminary evidence that the gut microbiome may contribute to the progression of liver fibrosis. 
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Therefore, it can be both a useful non-invasive biomarker as well as a potential target for future 

interventions. 

We acknowledge that there were several limitations to this study.  For example, we relied 

on FibroScan rather than liver histology to make the diagnosis of hepatic fibrosis.  With the wide 

adoption of non-invasive testing for fibrosis, the use of liver biopsy is becoming less frequent. 

However, FibroScan is becoming a more widely accepted and accurate method for detecting the 

presence of hepatic fibrosis.26 While other papers have mentioned that obesity might be a limitation 

of FibroScan, our facility and technicians had access to and were familiar with the XL probe, which 

has been proven to have improved diagnostics in obese patients.26 Another limitation is that this is 

a single center VA study and so the generalizability of this study in other settings is still uncertain. 

While the multivariate analyses did not control for all factors that could affect the microbiome, 

including diet and medications, the corroboration of our findings in a separate validation cohort 

that accounted for diet strengthens the findings of our study. Furthermore, while we did attempt to 

represent a wide array of chronic liver disease, the majority of our patients had chronic HCV or 

NAFLD.  A complete representation of all etiologies of chronic liver disease was unable to be 

accomplished due to the rarity of less common etiologies including autoimmune disease, Wilson’s 

disease, hemochromatosis, PSC, PBC, and alpha-1 antitrypsin deficiency. Therefore, future studies 

will be needed in order to confirm that these findings apply to other chronic liver disease etiologies. 

Because this study is cross-sectional, it is unable to establish causality between the gut microbiome 

and hepatic fibrosis. Planned future studies will include the use of fecal metabolomics to examine 

the differential pattern of microbial derived metabolites in patients with advanced fibrosis and the 

use of animal models with microbial transplant or single bacteria gavage to understand the causal 

relationship between the gut microbiome and hepatic fibrosis. 
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In conclusion, there is a distinct microbial signature for patients with advanced fibrosis 

independent of liver disease etiology and other comorbidities. These results suggest that microbial 

profiles can be used as a non-invasive marker for advanced fibrosis and support the hypothesis 

that microbes and their metabolites contribute to hepatic fibrosis. Future studies should focus on 

the mechanism by which these microbial differences may contribute to the progression of fibrosis 

and if the models presented here are valid in other clinical subgroups. 
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Control 

(n=25) F0-F2 (n=31) F3/F4 (n=19) p-value 

Age (yr) (SD) 35.7 (3.5) 58.7 (16.3) 66.2 (6.8) <0.001 

Male (%) (n=62) 52% (n=13) 88.9% (n=28) 100% (n=19) <0.001 

Charlson Comorbidity Index (SD) N/A 3.9 (2.6) 5.1 (1.5) 0.13 

Race/Ethnicity 

Caucasian (%) (n=26) 32.0% (n=8) 38.7% (n=12) 31.6% (n=6) 

0.89 

African American (%) (n=26) 32.0% (n=8) 32.3% (n=10) 42.1% (n=8) 

Hispanic (%) (n=10) 8.0% (n=2) 16.1% (n=5) 15.8% (n=3) 

Asian (%) (n=7) 16.0% (n=4) 6.5% (n=2) 5.3% (n=1) 

Other/Unknown (%) (n=6) 12.0% (n=3) 6.5% (n=2) 5.3% (n=1) 

Etiology of Liver Disease 

EtOH (n=3) 

N/A 

6.5% (n=2) 5.3% (n=1) 

0.18 

HBV (n=5) 12.9% (n=4) 5.3% (n=1) 

HCV (n=13) 16.1% (n=5) 42.1% (n=8) 

NAFLD (n=29) 64.5% (n=20) 47.4% (n=9) 

Table 3-1: Patient and healthy control characteristics. Fibrosis stage labeled from F0-F4. 

Minimal/no fibrosis: F0-F2; Advanced fibrosis: F3/F4; SD: standard deviation; EtOH: Alcohol, 

HBV: Hepatitis B virus, HCV: Hepatitis C virus, NAFLD: nonalcoholic fatty liver disease 
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Validation Cohort F0-F2 (n=27) F3/F4 (n=10) p-value 

Age (yr) (SD) 55.9 (11.0) 60.1 (6.7) 0.27 

Male (%) (n=29) 77.8% (n=21) 80.0% (n=8) 0.63 

Charlson Comorbidity Index (SD) 2.7 (1.3) 2.9 (0.9) 0.99 

Race/Ethnicity 

Caucasian (%) (n=11) 29.6% (n=8) 30.0% (n=3) 

0.23 

African American (%) (n=12) 40.7% (n=11) 0% (n=1) 

Hispanic (%) (n=12) 25.9% (n=7) 50.0% (n=5) 

Asian (%) (n=0) 0% (n=0) 0% (n=0) 

Other/Unknown (%) (n=2) 3.7% (n=1) 10.0% (n=1) 

Dietary Data (intake per day) 

Alcohol (g) 1.81 (2.92) 1.59 (1.73) 0.82 

Protein (g) 83.2 (42.4) 90.2 (44.5) 0.66 

Total fat (g) 79.7 (50.9) 92.7 (63.1) 0.52 

Total saturated fatty acids (g) 25.8 (16.0) 37.1 (33.5) 0.17 

Total monounsaturated fatty acids (g) 29.4 (18.6) 31.4 (18.3) 0.78 

Total polyunsaturated fatty acids (g) 17.4 (13.6) 16.0 (8.3) 0.78 

Cholesterol (mg) 295.6 (197.0) 388.5 (221.0) 0.23 

Carbohydrate (g) 244.9 (169.2) 247.9 (142.3) 0.96 

Total sugars (g) 118.5 (97.0) 129.6 (88.9) 0.75 

Dietary fiber (g) 21.6 (14.1) 20.8 (10.4) 0.87 

Table 3-2: Validation cohort characteristics. SD: standard deviation   
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Figure 3-1: Patients with advanced fibrosis have distinct microbial composition and diversity 

compared to other liver disease patients or healthy controls. A) Beta diversity visualized by 

principal coordinates analysis plot of all patients colored by fibrosis stage or control group. B) 

Alpha diversity metrics by etiology of chronic liver disease and fibrosis stage. Chao1 is a metric 

of species richness, Faith’s Index is a metric of phylogenetic diversity, and Shannon index is a 

metric of species richness/evenness. * represents comparison with p-value <0.05. 
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Figure 3-2: Taxonomic profiles categorized by etiology of chronic liver disease and fibrosis stage. 

A) Taxonomic profiles at the phylum and genus levels, divided by etiology of chronic liver disease 

and fibrosis stage. B) Taxonomic profiles by phylum and genus of patients with advanced fibrosis 

(F3/F4), liver patients with minimal/no fibrosis (F0-F2), and healthy controls. EtOH: Alcohol, 

HBV: Hepatitis B virus, HCV: Hepatitis C virus, NAFLD: nonalcoholic fatty liver disease 
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Figure 3-3: Microbial communities differ by etiology of chronic liver disease. DESEq2 

differential abundance analysis comparing A) HCV patients to control, B) NAFLD patients to 

control, and C) NALFD patients to HCV patients controlling for fibrosis. HCV: Hepatitis C virus, 

NAFLD: nonalcoholic fatty liver disease 

Figure 3-4:  Microbial communities differ by fibrosis stage. DESEq2 differential abundance 

analysis comparing A) advanced fibrosis patients to minimal/no fibrosis patients, B) HCV patients 

with advanced fibrosis (F3/F4) to HCV patients without advanced fibrosis (F0-F2), and C) 

NAFLD patients with advanced fibrosis to NAFLD patients without advanced fibrosis. HCV: 

Hepatitis C virus, NAFLD: nonalcoholic fatty liver disease 
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Figure 3-5: Predicted metagenomic differences by fibrosis stage. A) Principal coordinates analysis 

plot of predicted metagenomic profiles between samples by fibrosis stage. B) Number of predicted 

genes present per sample by fibrosis stage. Solid bar represents the mean and the box represents 1 

standard deviation. *p=0.09. C) Differential abundance analysis (q<0.05) of predicted metagenes 

for advanced fibrosis categorized by KEGG pathways predicted by PICRUSt from 16S rRNA data. 

Figure 3-6: A distinct microbial signature can accurately identify patients with advanced fibrosis. 

A) Receiver operating characteristic curve of the random forests classifier for identifying patients 

with advanced fibrosis. B) Importance scores for features included in the random forests classifier 

for predicting advanced fibrosis. 



 

78 

Figure 3-7: Validation of an advanced fibrosis microbial signature in a prospective study of 

NAFLD patients.  A) Principal coordinate analysis plot of beta diversity between patients with 

minimal to no fibrosis (F0-F2) versus patients with advanced fibrosis (F3/F4) within the validation 

cohort. B) Shannon index of the validation cohort between patients with F0-F2 fibrosis and F3/F4 

fibrosis. C) Validation of the random forests classifier as depicted by a receiver operating 

characteristic curve. D-E) Taxonomic profiles by phylum and genus of patients with minimal/no 

fibrosis (F0-F2) and patients with minimal/no fibrosis (F0-F2) within the validation cohort. F) 

DESEq2 differential abundance analysis comparing advanced fibrosis patients to minimal/no 

fibrosis patients in the validation cohort. 
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Chapter 4 

Bariatric Surgery Creates Long-term Changes in the Human Gut Microbiome and Alters the 

Progression of Nonalcoholic Fatty Liver Disease through Natural Killer T-Cell Expression 
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INTRODUCTION 

Alongside obesity, the prevalence of nonalcoholic fatty liver disease continues to rise and 

it is estimated to now affect nearly 1 out of every 4 Americans.1 To date, however, there are no 

well-established treatment for nonalcoholic fatty liver disease other than weight loss. While dietary 

interventions are important, many patients have difficulty maintaining a diet long enough in order 

to achieve sufficient weight loss. For that reason, bariatric surgery is one of the few proven 

treatments available for long-term weight loss in patients with obesity.2  Bariatric surgery induces 

changes in the gastrointestinal tract anatomy, physiology and luminal environment, which in turn 

significantly affect the gut microbiome.3,4 Roux-en-Y gastric bypass (RYGB) and laparoscopic 

sleeve gastrectomy (LSG) have similar effects on weight loss, despite the fact that they entail very 

different rearrangements of the GI tract anatomy and physiology.5,6 This may reflect a shared 

mechanism via the gut microbiome, which plays an important role in regulating body weight and 

insulin resistance. Both gastric bypass and sleeve gastrectomy are associated with reduced hunger 

scores and changes in food preferences including a marked reduction in preference for high-calorie 

foods.6 Bariatric surgery is also associated with a marked reduction in cytokines such as 

interleukin-8 and tumor necrosis factor-α (TNF-α).7,8 Several studies performed in mouse models 

have shown that the gut microbiome affects feeding patterns and satiety signaling to the brain.9-11 

To date, the handful of studies in animal models and humans have consistently shown 

changes in microbiota composition after RYGB and LSG, including increased abundance of 

Proteobacteria and decreased Firmicutes.4,12 However, it is still not well understood how these 

shifts in gut microbiota composition contribute to weight loss and improvement in hepatic 

steatosis, inflammation, and fibrosis. 
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One potential pathway that can connect the gut microbiome to fatty liver disease is the host 

innate immune system. While the liver is a key player in lipid metabolism and detoxification, it is 

also an important regulator in host inflammation. The liver is known to house a myriad of immune 

cells including natural killer T-cells, macrophages, lymphoid and other non-lymphoid cells.13 

Being the first organ upstream to the GI tract, the liver is exposed to numerous antigens, pathogens, 

and bacterial signaling molecules. The dysregulation of this cross-talk between the gut, liver, and 

the host immune system has been implicated as a potential driver of insulin resistance and fatty 

liver disease progression.13 

In this study, we will examine the effects bariatric surgery on the gut microbiome in 

humans and host inflammation. We will then explore the causal link between the gut microbiome 

after bariatric surgery on the pathogenesis of nonalcoholic fatty liver disease via the host immune 

system by employing the use of antibiotic-treated mice. 

METHODS 

Patient Recruitment 

The basis of the human data is based on a pre-established cohort of female patients who 

were about to undergo laparoscopic sleeve gastrectomy (LSG). The cohort included only adult 

obese female patients who met clinical criteria for bariatric surgery. Prior to LSG, fecal and blood 

samples were collected before surgery and every 6 months post-surgery up to 1 year.  Fecal and 

blood samples were collected while fasting as well as 30-minutes and 60-minutes post-feeding of 

a standardized 500 calorie meal. Clinical criteria for bariatric surgery were having a BMI > 40, or 

more than 100 pounds overweight, or a BMI > 35 with at least one obesity-related comorbidities, 

including type 2 diabetes, hypertension, hyperlipidemia, obstructive sleep apnea, nonalcoholic 
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fatty liver disease, gastric acid reflux, asthma, debilitating arthritis, and severe urinary 

incontinence due to obesity.14 Patients were excluded from the study if they were not deemed a 

good surgical candidate or if they did not consent for blood or fecal sampling. 

16S rRNA Sequencing 

DNA extraction was performed using the ZymoBIOMICS DNA Microprep Kit (Zymo 

Research, Irvine, CA, USA) per the manufacturer’s protocol. PCR amplification of the V4 region 

of the 16S ribosomal RNA gene was followed by a 250x2 paired-end read on an Illumina HiSeq 

(Illumina, San Diego, CA, USA), as previously described.15 The sequences were processed using 

the DADA2 pipeline in R, and SILVA 132 database was used for taxonomy assignment. Next, 

data were incorporated into QIIME 2 version 2019.10. Amplicon sequence variants were filtered 

out if they were not present in at least 15% of all samples. Sequence depths ranged between 4,398 

and 335,645 per sample with a median value of 183,882. 

Metabolomics 

Fecal and serum samples were aliquoted under liquid nitrogen and shipped to Metabolon 

for processing and analysis as a single batch on their global metabolomics and bioinformatics 

platform. Data was curated by mass spectroscopy using established protocols and software as per 

Metabolon. 

Gastrointestinal Hormones and Serum Cytokines 

Plasma levels of gastrointestinal metabolic hormones were measured using a human 

metabolic hormone magnetic assay kit (Millipore) according to the manufacturer's instructions. 

The hormones in the panel included amylin, c-peptide, gastric inhibitory peptide, glucagon-like 

peptide-1 (GLP-1), glucagon, insulin, leptin, peptide YY (PYY), Resistin, ghrelin, and pancreatic 
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polypeptide. Each sample was assayed in duplicate on a 96-well plate. All samples were processed 

in one batch and read via a Luminex 100 reader (Luminex, Austin, TX). Analysis of quality control 

standards provided in the kit matched expectations, and the assay had an inter-assay precision of 

<25% and an intra-assay precision of <7%. A similar assay was done for serum cytokines. The 

panel for serum cytokines included interleukin-6 (IL-6), tumor-necrosis factor alpha (TNF-α), and 

monocyte chemoattractant protein-1 (MCP-1), IL-8, IL-1 beta, hepatocyte growth factor, and 

nerve growth factor. 

Animal Study 

Antibiotic Treatment: Because germ-free animals are born and raised in a germ-free 

environment, their native immune system is innately different than the immune system of wild-

type animals.16 For this reason, antibiotic-treated C57Bl/6 mice and not germ-free C57Bl/6 mice 

were chosen as the model for fecal transplantation. Four human donors (pre- and post-bariatric 

surgery) from the above cohort were selected for fecal transplantation into antibiotic treated mice. 

The donors were selected as each one of them had documented fatty liver disease either by clinical 

notes or by radiology before bariatric surgery that improved after bariatric surgery. Two cocktails 

of antibiotics were used and placed into their drinking water at a concentration of 1 mg/ml per 

antibiotics. The first cocktail was a cocktail that was designed to have minimal systemic absorption 

(non-absorbable) that consisted of ertapenem, neomycin, and vancomycin. The second cocktail 

consisted of antibiotics with higher systemic absorption (systemic) which included ampicillin, 

cefoperazone, and clindamycin. Four-week-old weight-matched mice were treated with a 7-day 

period of non-absorbable antibiotics, followed by a 7-day period of systemic antibiotics, and then 

again by a 7-day period of non-absorbable antibiotics. After each 7-day period, the mice were 

given 2 days of rest with sterile water. This protocol was shown to give stable long-term 
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engraftment of human microbiome samples into mice comparable to germ-free animals.17 After 2 

days of rest after the last cycle of antibiotics, the mice were then gavaged with human fecal samples 

as previously described every other day for a total of three transfers.18 The samples used were 

samples before surgery and samples 6-months post-surgery. A total of 6-10 mice were used per 

fecal sample. Immediately after gavage, the mice were given either a high fat (40% by kcal), high 

fructose (20% by weight), high cholesterol (2% by weight) (HF diet) (Research Diets, 

#D18061301) or a standard diet (10% fat by kcal, 0% fructose, and 0% cholesterol) (Research 

Diets, #D19082701) (SD) for 12 weeks. A negative control group was also present in each food 

group. These group of mice (n=4 each) were gavaged with only media without any fecal material. 

Food was double irradiated and packaged into individual 1-kg bags. A new bag was used at each 

cage change. All mice were housed on a single rack and only one person could change the food, 

water, and bedding of these mice over the 12 weeks to minimize cross-contamination. 

Glucose Tolerance and Body Composition Testing: At the end of the 12 weeks, glucose 

tolerance testing was performed on each mouse by administering 2 grams/kg of glucose 

intraperitoneally and measuring serum glucose via a glucometer (Aimstrip plus, Fisher Scientific) 

at time 0, 30 minutes, 60 minutes, and 90 minutes. Two days after the glucose tolerance testing, 

the mice were then placed into an EchoMRI machine to measure total body fat and lean body mass. 

Tissue and Blood Collection: Portal vein blood was collected by dissecting the portal vein 

and drawing up the blood via a capillary tube (Fischer, catalogue #22260950). Serum was then 

collected via heart puncture. The liver was then collected after perfusing the liver with 15 ml of 

sterile PBS via the inferior vena cava. The GI tract, spleen, gonadal fat, mesenteric fat, and 

dorsolumbar subcutaneous fat were also collected. 
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Cholesterol Testing: Cholesterol assay was performed using a total cholesterol-HDL and 

LDL/VLDL kit as per manufacturer’s protocol (Abcam, catalogue #ab65390). 

Staining and Quantification: Oil red O (Abcam) staining was done on frozen OCT 

embedded tissue as previously described.19 Oil red O quantification was performed by using 

ImageJ and averaging the percent of area stained across 4 liver sections per mice. Hematoxylin 

and eosin staining were performed by the histology core at the University of California, Los 

Angeles. NAFLD activity score based on the hematoxylin and eosin staining was calculated by a 

blinded pathologist for each mice. 

Flow cytometry: Immune cells were isolated from the liver through mechanical disruption 

as previously described.20 Briefly, a section of the liver was pressed through a 70-micron filter into 

freshly prepared RPMI media with 10% fetal bovine serum.  This solution was then wash and 

pelleted at 2000 rpm for 5 minutes at room temperature. The pellet was then placed into a 35% 

Percoll solution with RPMI and centrifuged at 2000 rpm for 20 minutes without any program 

deceleration. The pellet was then resuspended in 15 ml tubes with 3-5 ml of red cell lysis buffer 

for 5 minutes. RPMI with 10% fetal bovine serum was then added and the solution was then 

washed and pelleted again. The pellet was then resuspended with a 1:1 solution of PBS and FACS 

buffer and passed through a 30-micron filter for cell surface staining. Spleen tissue was processed 

similarly except without the Percoll gradient. Cells were first blocked with Fc block for 30 minutes 

at 4 degrees Celsius. The following antibodies were used for cell surface staining: AF488-Ly6C, 

AF647-F4/80, APC/Cy7-CD45.2, BV650-CD3, BV750-CD11b, PE-Nk1.1, PE/Dazzle-NKp46, 

PerCP/Cy5.5-CD4, BV421-CD45R, BV510-CD8a. All antibodies were purchased from 

BioLegend and were used at a dilution of 1:1000. Cells were stained for 30 minutes at 4 degrees 
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Celsius. Flow cytometry was performed on a BD Bioscience LSRII and data was analyzed using 

FlowJo. 

Statistical Analysis 

Human demographic data were expressed as means with standard deviation or as 

percentages. Differences in means were calculated using the Student’s t-test. Differences in 

categorical data was performed using the fisher’s exact test. Sustained weight loss at 1-year was 

defined as having at least a 20% reduction in body weight from baseline. 

Plasma levels of hormones, cytokines, and cholesterol were compared using analysis of 

variance. All p-values were adjusted for false discovery rate. 

Microbiome data was analyzed after sequence variant generation and filtering. Beta 

diversity was calculated using the DEICODE plugin in QIIME2. DEICODE uses a robust 

Aitchison distance metric that has been shown to have higher discriminatory power than other 

metrics such as Bray-Curtis or UniFrac.21 Alpha diversity was also calculated via QIIME2 by using 

the Shannon index (a metric of evenness) with data rarefied to 4397 sequences. The differences in 

beta diversity was calculated using a permutation multivariate analysis of variance via the Adonis 

package in R. Statistical testing for alpha diversity was performed by using analysis of variance. 

Differential abundance testing was evaluated using DESeq2 in R, which employs an empirical 

Bayesian approach to shrink dispersion and fit non-rarified count data to a negative binomial 

model. P-values for differential abundance were converted to q-values to correct for multiple 

hypothesis testing (< 0.05 for significance). 

For metabolomics, the data was normalized by using the scaled imputed data as provided 

by Metabolon. Differential abundance testing was performed using multiple analysis of variance 

corrected for false discovery rate. 
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Correlations between metabolomics, hormone profile, cytokine data, and microbiome analysis 

were performed using spearman’s correlation and corrected for false discovery rate. Correlation 

networks were visualized using Cytoscape (Systems Biology, Seattle). 

RESULTS 

Outcomes After Bariatric Surgery: Eighteen female patients were recruited for the study. The mean 

age was 37.1 + 9.36 years old (Table 4-1). The mean BMI before surgery was 44.7 + 4.9 kg/m2 

and the mean weight before surgery was 118.5 + 18.8 kg. Unsurprisingly, there was a significant 

decrease in both weight and BMI post-surgery as compared to their baseline with an average 

weight loss of 28.8 kg (Figure 4-1). The average patient lost 24.3 + 5.4 % of their body weight at 

6-months and 25.4 + 5.8% at 1-year. In addition to weight loss, patients also had significant 

improvements in regard to their fasting glucose, c-reactive protein (CRP), and lipopolysaccharide 

binding protein (LBP) as compared to baseline (Figure 4-1). Other inflammatory markers such as 

TNF-α and IL-6 were also significantly decreased after bariatric surgery as compared to their 

baseline values (Figure 4-2). There was no significant differences pre- or post-surgery regarding 

MCP-1, IL-8, IL-1 beta, hepatocyte growth factor, and nerve growth factor. The only 

gastrointestinal hormone that had a significant difference after bariatric surgery was leptin (Figure 

4-3), with leptin showing significantly lower levels post-surgery. 

Microbiome Analysis: The gut microbiome of patients pre- and post-surgery differed significantly 

(Figure 4-4A) across time (p-value <0.001) after adjusting for individual variations. There was no 

statistical difference across time in regard to alpha diversity. The taxonomic profiles of patients 

pre- and post-surgery staggered by sustained weight loss at 1-year is summarized in Figure 4-4C. 

Because most of the weight loss occurred at 6-months, we focused our analysis by comparing 

samples from 6-months post-surgery to baseline values. In patients that did not achieve sustained 
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weight loss (i.e. non-responders), a group belonging to Ruminococcus was overrepresented and a 

group belonging to Lachnospiraceae was underrepresented in patients 6-months post-surgery as 

compared to baseline. Conversely, in patients that did have sustained weight loss (i.e. responders), 

Sutterella and Streptococcus were overrepresented at 6-months. Similar to the non-responders, a 

group belonging to Lachnospiraceae family was underrepresented (Figure 4-4D). 

Metabolomics Profiles Changed After Surgery: Forty-six serum metabolites were significantly 

different between the three different time points as determined by DESEq2: Pre-surgery, 6-months 

post-surgery, and 1-year post-surgery. These metabolites are summarized in Figure 4-5. Thirty-

one of these metabolites belong to pathways involving lipid metabolism. 

Baseline Microbiome Profile Predicts Sustained Weight Loss After Bariatric Surgery: While there 

was a significant difference in the gut microbiome of patients across time, there was also a 

significant difference when you examined the baseline gut microbiome of patients who had 

sustained weight loss and those that did not (Figure 4-6) (p-value=0.018). There was no difference 

in alpha diversity between these two groups. DESEq2 analysis shows that patients with sustained 

weight loss had 18 bacterial taxa that were overrepresented and 18 bacterial taxa that were 

underrepresented as compared to those without sustained weight loss. Of the 18 bacterial taxa that 

were overrepresented, Blautia caecimuris, Parabacteroides distasonis, and Bacteroides vulgatus 

were the three taxa with the highest relative abundance. Of the 18 bacterial taxa that were 

underrepresented, Alistipes obesi, Ruminococcaceae UCG-002, Phascolarctobacterium 

succinatutens, Alistipes ihumii, and Lachnospiraceae NK4A136 group were the taxa with the 

highest relative abundance. By using a random forest classifier, the microbiome had an area under 

the receiver operator curve (AUROC) of 0.98. The classifier that was based on microbiome data 

had the highest accuracy at predicting sustained weight loss at 1-year as compared to a classifier 
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based solely on baseline fasting hormone data (AUROC 0.68), baseline cytokine data (AUROC 

0.61), and demographic information (AUROC 0.55). Lachnospiraceae NK4A136 group was the 

taxa with the greatest importance value in the classifier. A correlation network between microbial 

data and serum metabolite and hormones is summarized in Figure 4-7. 

Microbial Transplant from Patients Pre- and Post-Bariatric Surgery Induces Significant Weight 

Changes in Antibiotic-Treated Mice: Not surprisingly, mice fed on a HFHF diet had significantly 

higher weight gain than mice fed on a SD. However, mice that were transplanted with the fecal 

microbiome of patients before bariatric surgery gained significantly more weight both on a SD and 

a HFHF diet as compared to mice that were transplanted with fecal material from the same patient 

post-surgery (Figure 4-8). This weight gain was not associated with any significant changes in 

cumulative food intake over the same period. Consistent with the weight gain, EchoMRI results 

showed that the mice on a HFHF diet had a significantly higher percentage of body fat and a lower 

percentage of lean body mass. Mice that were transplanted with the fecal microbiome of patients 

before bariatric surgery had significantly higher body fat and lower mean body mass a SD and a 

HFHF diet as compared to mice that were transplanted with fecal material from the same patient 

post-surgery. Mice fed on a HFHF diet also had higher liver mass as compared to those with SD. 

There was no significant difference in liver weights of any group while on a SD, but while on a 

HFHF diet, the mice with pre-bariatric microbiome had significantly heavier livers than the mice 

with post-bariatric microbiome. 

Microbial Transplant from Patients Pre- and Post-Bariatric Surgery Alters Insulin 

Resistance and Cholesterol: Mice who were fed on a HFHF diet, had significantly worse glucose 

tolerance than the mice on a SD. In line with the human study, the mice with pre-bariatric 

microbiome had worse glucose tolerance than the mice with post-bariatric microbiome. This 
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difference, however, only occurred on the SD and not on the HFHF diet (Figure 4-9). This was 

similar to the results with cholesterol. Mice who were fed on a HFHF diet, had significantly higher 

cholesterol levels than the mice on a SD. The mice with pre-bariatric microbiome had higher levels 

of total cholesterol and higher levels of LDL/VLDL than the mice with post-bariatric microbiome. 

This difference, however, only occurred on the SD and not on the HFHF diet. 

Microbial Transplant from Patients Pre- and Post-Bariatric Surgery Significantly Altered 

the Progression of Nonalcoholic Fatty Liver Disease: Mice on a HFHF diet had significantly worse 

steatosis (Figure 4-10) as determined by oil red o staining as well by NAFLD activity score 

(Figure 4-11). The mice with pre-bariatric microbiome had worse steatosis both on a SD and a 

HFHF diet as compared to their pos-bariatric counterparts. These mice also had worse NAFLD 

activity score both on a SD and a HFHF diet, but it only reached significance while on a HFHF 

diet. 

The Microbial Differences Present in Pre- and Post-Bariatric Surgery Significantly Alters 

the Immunophenotype of the Liver: A HFHF diet significantly decreases the levels of NKT cells 

within the liver as compared to a SD alone (Figure 4-12). Furthermore, the microbiome of pre-

bariatric surgery patients significantly lowers the expression levels of NKT cells in the liver as 

compared to their post-bariatric counterparts. This was seen in both on a SD as well as a HFHF 

diet. The microbiome of pre-bariatric surgery patients also significantly increases the expression 

levels of CD8+ CD4- T cells in the liver as compared to their post-bariatric counterparts both on 

a SD and a HFHF diet. A HFHF diet also significantly increases the expression level of Kupffer 

(CD11b (intermediate +) F4/80+) cells in the liver as well the levels of monocyte-derived 

macrophages (CD11b (High +) F4/80 +) (Figure 4-13). While a HFHF diet increased the levels 
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of these immune cells, the microbiome of post-bariatric patients was able to decrease them both, 

though this was only seen in the HFHF diet. 

DISCUSSION 

Bariatric surgery remains one of the best long-term treatment for obesity. Similar to prior published 

data, bariatric surgery provides long-term weight loss and reduces the pro-inflammatory state that 

is associated with obesity.22 In our study we show that patients who undergo laparoscopic sleeve 

gastrectomy was able to achieve on average 25.4% of total body weight loss at 1-year. This was 

associated with a decrease in CRP, LBP, TNF-α, and IL-6. The likely decrease in these 

inflammatory markers is most likely due to a decrease in adipose tissue. Previous studies 

examining adipose tissue have shown that IL-6 and TNF-α expression is higher in adipose tissue 

of obese patients as compared to lean adipose tissue.23,24 In other prospective studies examining 

bariatric surgery, researchers have found that with bariatric surgery and a decrease in adiposity IL-

6 and TNF-α decreases both in the serum as well as in the adipose tissue.22  Severe obesity is also 

marked by severe insulin resistance and leptin resistance.25 Here we show that with a reduction in 

weight as caused by bariatric surgery, insulin resistance is improved and basal leptin levels are 

lowered. 

While laparoscopic sleeve gastrectomy may not alter the GI tract as much as a Roux-en-Y gastric 

bypass, it is still able to cause significant long-term shifts in the gut microbiome. In our study we 

see that patients that did not meet the criteria for sustained weight loss, had less Lachnospiracea 

than at baseline and patients that had sustained weight loss had less Lachnospiraceae and more 

Sutterella and Streptococcus than at baseline. We also see a trend of increasing Bacteroides over 

time in the patients with sustained weight loss. In studies examining the gut microbiome and 

obesity, both Bacteroides and Sutterella have been shown to be negatively associated with obesity, 
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while bacteria like Lachnospira have been positively associated with obesity.26,27 Therefore, the 

reduction of Lachnospiraceae over time with an increase in Bacteroides and Sutterella are within 

line with previously published microbial data. The exact mechanism by which the gut microbiome 

can cause obesity is still an active area of research. It is likely multifactorial that includes bile acid 

modulation, farnesoid X receptor signaling, alterations in the brain-gut axis, and increase energy 

extraction.28-30 

However, a novel area by which the gut microbiome is gaining traction is in its role as a potential 

biomarker. Here we show that gut microbiome at baseline is an extremely accurate biomarker at 

predicting sustained weight loss of at least 20% body weight at 1-year post-bariatric surgery. We 

see that patients who are likely going to have sustained weight loss as compared to those that are 

not have very distinct gut microbiome at baseline. At baseline, those that had a better response to 

bariatric surgery had higher levels of Bacteroides and Parabacteroides and lower levels of 

Alistipes. Both Bacteroides and Parabacteroides have been shown to be anti-inflammatory by being 

able to promote regulatory T-cells and IL-10.31,32 Conversely, Alistipes has been shown to be 

associated with type 2 diabetes.33 The high accuracy of the gut microbiome to predict response to 

bariatric surgery suggests the idea that a person’s innate microbiome can potentially enhance the 

effect seen by bariatric surgery. This suggests that the gut microbiome may be used as a potential 

biomarker for success with bariatric surgery. But it also suggests that the gut microbiome could be 

potentially altered before surgery as a method to increase the effectiveness of bariatric surgery. 

Future interventional trials will be needed to test this hypothesis. 

We then showed the causal link between the gut microbiome with obesity and nonalcoholic fatty 

liver disease by transplanting the microbiome of 4 donors before and after their surgery into 

antibiotic treated mice. The results clearly show that the microbiome of patients before bariatric 
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surgery was able to increase the weight and body fat as compared to the microbiome after surgery. 

These changes were also associated with worse nonalcoholic fatty liver disease, worse insulin 

resistance, and worse cholesterol profile. In a landmark paper by Tremaroli et al they showed 

similar results of weight gain in germ-free mice transplanted with pre-bariatric microbiome and 

weight loss in germ-free mice transplanted with post-bariatric microbiome while on a standard 

diet.34 In their study, there was no difference in food intake, respiratory quotient, or activity level 

in mice transplanted with control microbiome versus those transplanted with post-laparoscopic 

sleeve gastrectomy microbiome.34 Our study corroborates that finding. Therefore, without changes 

in food intake or energy expenditure to explain the differences in weight gain, we propose that the 

differences are due to changes in energy extraction between the two microbiome populations. This 

idea is corroborated by the finding that the microbiome of pre-bariatric surgery patients and obese 

patients have a higher capacity to extract energy from the diet as evident from an increase 

concentration of fecal short chain fatty acids.34,35 Furthermore differences in the microbiome can 

also lead to differences in bile acid concentration. Previous studies have shown that leaner 

phenotypes and patients who have undergone bariatric surgery have higher levels of bile acids.34 

These bile acids in turn can bind to such receptors like the Farnsenoid X receptor (FXR), which 

has been of great interest lately with the introduction of obeticholic acid (an FXR agonist) for the 

potential treatment for NAFLD.36 We postulate that these differences in energy extraction and bile 

acid composition are contributing factors to the differences in weight seen in mice transplanted 

with pre-bariatric microbiome versus those transplanted with post-bariatric microbiome. 

However, NAFLD is not merely a disease of increase fat. It is a disease that often requires multiple 

hits that usually involves increased inflammation.37 Many studies to date have shown that an obese 

microbiome is often associated with increased gut permeability.38,39 This “leaky gut” can lead to 
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increased bacterial translocation and antigen presentation in the gut as well as in the portal 

circulation leading to the liver.39 This is one of the few studies that have looked into the connection 

between the gut microbiome and the immune system of the liver. Here we show that pre-bariatric 

surgery microbiome leads to an increase in adiposity in the liver and a significant decrease in NKT 

cells and an increase in cytotoxic T cells, Kupffer cells, and monocyte derived macrophages. This 

is in line with several other studies that have examined the immune system of the liver in regards 

to NAFLD.40 In animal models of obesity, CD8+ T cells are often increased in visceral adipose 

tissue and may even proceed the infiltration of inflammatory macrophages.41 In liver disease, 

cytotoxic T-cells are categorized as proinflammatory and their activation is often a hallmark of the 

progression from bland steatosis to steatohepatitis.40 The pro-inflammatory state of the pre-

bariatric microbiome is further exemplified by the increase level of Kupffer cells and monocyte-

derived macrophages in the liver. One potential mechanism that can link the gut microbiome to 

the activation of Kupffer cells is toll-like receptor (TLR) signaling. TLR are part of a family of 

pattern recognition receptors that recognize bacterial, viral, and fungal ligands.42 TLR can be 

activated by LPS and this activation can lead to an increase in nuclear factor κβ and Kupffer cell 

activation.43 Furthermore, Kupffer cells can directly lead to the depletion of NKT cells via IL-12 

expression.44 The reduction of NKT cells in the liver of mice transplanted with pre-bariatric 

microbiome is in line with several obesity-related animal models.40 NKT cells almost exclusively 

respond to lipid antigens and can be both proinflammatory or anti-inflammatory in nature.44 In 

previous studies regarding both humans and mice, NKT cells are often depleted in favor of pro-

inflammatory macrophages.45 Many other studies have shown that NKT cells can have an 

attenuating effect on the development of NAFLD by both reducing steatosis as well as 

inflammation.40,45,46 Future studies are needed to examine if these effects on the immune system 
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of the liver are mediated by increase adiposity or mediated by increase inflammatory signaling 

from the gut microbiome or both. 

Our study shows that the gut microbiome is a critical player in the development and progression 

of obesity and NAFLD. The gut microbiome at baseline highly predicts the level of response to 

bariatric surgery and that the changes in the gut microbiome via bariatric surgery is sufficient to 

induce changes in steatosis and inflammation in the liver irrespective of diet. This implies that 

targeting either the gut microbiome or its downstream effects is a feasible and valid method for 

the treatment of both obesity and NAFLD. 
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Average (SD) (n=18) Pre-Surgery Post-Surgery (6 mo) P-value 

Age (yr) 37.1 (9.36) 37.1 (9.36) NA 

BMI 44.7 (4.9) 33.9 (4.8) <0.001 

Weight (kg) 118.5 (18.8) 89.7 (16.9) <0.001 

Race/Ethnicity 

Non-Hispanic White (%) 44.4 

 NA 

African American (%) 5.6 

Asian (%) 11.1 

Hispanic (%) 38.9 

Table 4-1: Patient characteristics before and after bariatric surgery 
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Figure 4-1: Bariatric surgery leads to significant weight loss, improved insulin resistance, and 

reduce inflammation. Weight change before and after bariatric surgery by (A) absolute weights, 

(B) percent weight loss from baseline and (C) BMI. Sustained weight loss was defined as at least 

20% weight loss at 1-year post surgery. D) Fasting glucose before and after surgery. E) C-reactive 

protein (CRP) serum levels before and after surgery. F) Lipopolysaccharide binding protein (LBP) 

serum levels before and after surgery. *Signifies p-values <0.05. 
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Figure 4-2: Inflammatory cytokine are reduced after surgery. A) Tumor necrosis factor (TNF) 

alpha and (B) IL-6 serum levels before and after surgery. *Signifies p-values <0.05. 

  



 

102 

Figure 4-3: Leptin resistance decreases after bariatric surgery. A) Serum leptin levels before and 

after surgery as measured while fasting (-30) and post-prandially starting at 0 min time point. B) 

Area under the curve (AUC) for the graph. *Signifies p-values <0.05. 
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Figure 4-4: Microbiome is altered by bariatric surgery. A) Prinicipal coordinate plot colored by 

sustained weight loss with lines connecting patient samples across time. B) Alpha diversity as 

measured by Shannon Index which measures species evenness and abundance. C) Taxonomic plots 

by sustained weight loss over time. D) DESEq2 analysis showing taxa that are differentially 

abundant at 6 months as compared to baseline in patients with sustained weight loss (Responder) 

and those without sustained weight loss (Nonresponder). 
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Figure 4-5: Heat map of differentially abundant serum metabolites as determined by DESEq2 

across time. 
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Figure 4-6: Baseline microbiome predicts sustained weight loss at 1-year post-bariatric surgery. 

A) Principal coordinate plot of the gut microbiome at baseline colored by patients achieving 

sustained weight loss. B) Alpha diversity as measured by Shannon Index which measures species 

evenness and abundance. C) Taxonomic plots by sustained weight loss D) DESEq2 analysis 

showing taxa that are differentially abundant between those with sustained weight loss and those 

without. Only those with a relative abundance of >0.0006 are shown. E) Receiver operator curves 

for random forrest classifier for classifier based on microbiome data, fasting hormone data, 

cytokine data, and demographic data. F) Variable importance plot of microbial random forest 

classifier. 
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Figure 4-7: Correlation network of bacterial taxa to serum metabolite and serum hormone. Red 

color indicates a negative correlation. Blue indicates a positive correlation. 
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Figure 4-8: The gut microbiome of patients pre-bariatric surgery causes significant weight gain 

while on a standard diet (SD) or a high fat, high fructose, high cholesterol (HFHF) diet. Weight 

change over time of mice transplanted with pre- or post-bariatric surgery microbiome or mice 
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given negative control on a (A) SD or (B) HFHF diet. Cumulative food intake of the different mice 

on a (C) SD or (D) HFHF diet. EchoMRI results of mice as measured by (E) percent body fat or 

by (F) percent lean body mass. Liver weight of the different groups on a (G) SD or (H) HFHF diet. 

*Signifies p-value <0.05. 
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Figure 4-9: The gut microbiome of patients pre-bariatric surgery causes significant changes in 

insulin resistance and cholesterol while on a standard diet (SD) or a high fat, high fructose, high 

cholesterol (HFHF) diet. Glucose tolerance testing (GTT) of the different mouse groups on a (A) 

SD or (B) HFHF diet. (C-D) Area under the curve (AUC) of the respective graphs in A and B. 

Serum cholesterol level of the different mouse groups on a (E) SD or (F) HFHF diet. *Signifies p-

value <0.05. 
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Figure 4-10: The gut microbiome of patients pre-bariatric surgery causes significant steatosis in 

the liver of mice on both a standard diet (SD) or a high-fat, high-fructose, high-cholesterol (HFHF) 

diet. Oil red o staining of liver tissue of mice transplanted with pre-bariatric surgery microbiome 

or post-surgery microbiome on a (A) SD or a (C) HFHF diet. B,D) is the percent of oil red o (ORO) 

staining. *Signifies p-values <0.05. 
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Figure 4-11: The gut microbiome of patients pre-bariatric surgery causes significant nonalcoholic 

steatohepatitis as measured by the NAFLD Activity Score on both a standard diet (SD) or a high-

fat, high-fructose, high-cholesterol (HFHF) diet. Hematoxylin and Eosin staining of liver tissue of 

mice transplanted with pre-bariatric surgery microbiome or post-surgery microbiome on a (A) SD 

or a (C) HFHF diet. B,D) is their respective NAFLD activity score colored by the different sections 

that make up the score: steatosis, inflammation, ballooning. *Signifies p-values <0.05. 
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Figure 4-12:  The gut microbiome of patients pre-bariatric surgery reduces natural killer T (NKT)-

cell and increases CD8+ T-cells in the liver. A-D) Representative flow cytometry plots of CD4 

and NK1.1 gated from CD3+B220- population. E) Graph showing percent of NKT cells as a 
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percentage of CD45.2+ cells across the different groups. F-I) Representative flow cytometry plots 

of CD4 and CD8 gated from CD3+B220- population. J) Graph showing percent of CD8+ T-cells 

as a percentage of CD45.2+ cells across the different groups.  *Signifies p-value<0.05.  
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Figure 4-13: The gut microbiome of patients pre-bariatric surgery increases kupffer cells and 

monocyte-derived macrophages in the liver. A-D) Representative flow cytometry plots of CD11b 

and F4/80 gated from CD45.2+ Macrophage population. E) Graph showing percent of Kupffer 

cells as a percentage of CD45.2+ cells across the different groups. F-I) Representative flow 
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cytometry plots of CD11b and F4/80 gated from CD45.2+ Macrophage population. J) Graph 

showing percent of monocyte-derived macrophages as a percentage of CD45.2+ cells across the 

different groups.  *Signifies p-value<0.05. 
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 In these series of studies, we have shown that the gut microbiome is a highly accurate 

predictor for several stages of obesity and NAFLD. Many studies before have shown that the gut 

microbiome of obese individuals is very distinct from those with leaner phenotype.1-3 In our study 

we show for the first time how the gut microbiome may also be distinct in patients with specific 

eating disorders. We show that the gut microbiome is part of a classifier that is highly accurate at 

predicting food addiction in obese individuals. This particular microbiome profile is characterized 

by an underrepresentation of Bacteroides, Akkermansia, and Eubacterium, with an 

overrepresentation of Megamonas. Furthermore, the dysbiosis of the gut microbiome is associated 

with a significant decrease in a tryptophan-related metabolite, indolepropionate. This metabolite, 

as mentioned earlier has been implicated as being neuroprotective by potentially reducing 

antioxidants, DNA damage, and the production of β-amyloid fibrils.4 These changes noted in the 

microbiome and fecal metabolite profile was associated to an increased connectivity between two 

regions of the brain’s extended reward network, suggesting that these alterations in the brain-gut-

microbiome axis may be important to the sometimes maladaptive eating behaviors of obese 

individuals.  

 Furthermore, research has shown that the microbiome and metabolite profile of patients 

with NAFLD differs at each stage of the disease, from bland steatosis to advanced fibrosis. By 

using a novel approach that incorporated machine learning, we were able to create and validate a 

classifier that was highly accurate at identifying NAFLD patients with advanced fibrosis. The main 

bacteria that was the most important in the classifier was Prevotella copri. The prevalence of this 

inflammatory bacteria in patients with advanced fibrosis suggests that it may play a role in the 

progression from steatosis to steatohepatitis and fibrosis through the production of reactive oxygen 

species.  
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 We explored this causal link of the gut microbiome in fatty liver disease by utilizing an 

antibiotic-treated mouse model of microbial transplantation. In the human data set, we show that 

bariatric surgery induces long-term changes in the gut microbiome. We also show that the baseline 

gut microbiome of patients before surgery highly predicts their level of response to bariatric 

surgery. By taking the microbiome of these patients and transplanting them into antibiotic-treated 

mice we show a causal relationship between the gut microbiome to obesity and NAFLD. We show 

that the microbiome of patients before bariatric surgery is able to induce significant weight gain 

that is accompanied with significant steatosis and inflammation in the liver. We propose that 

through a combination of increased intestinal permeability and antigen presentation to the portal 

vein, along with increase inflammatory signaling, the gut microbiome can cause the shift that 

occurs from NAFL to NASH. 

Overall, it is clear that obese individuals have a very distinct microbiome from lean 

individuals, and this difference is sufficient enough to induce weight, metabolic, and inflammatory 

changes in the host. Our studies have shown that the microbiome can be used accurately as a 

noninvasive biomarker for early detection of patients with NAFLD. The data also suggests that 

the signaling pathways related to the gut microbiome can be used to generate novel therapeutics 

against NAFLD and potentially fibrosis. Future studies will include the analysis of the portal 

venous metabolite of the antibiotic-treated animal model as well as serum and adipocyte hormone 

and cytokine levels. If a metabolite is found that correlates to the findings of NASH in the liver, 

future studies will involve analyzing its potential effects and signaling pathways.  

 We are just beginning to understand the role of the gut microbiome in health and disease. 

Through advances in sequencing technology and better animal modeling, a microbial-based 

therapy for obesity and NAFLD is potentially on the horizon.  
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