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p-Hacking can undermine the validity of empirical research. The central focus of this

dissertation is on analyzing existing and developing new statistical methods for detecting p-

hacking based on the empirical distribution of reported results across studies.

In Chapter 1 we theoretically analyze the problem of testing for p-hacking based on

distributions of p-values across multiple studies. We provide general results for when such

distributions have testable restrictions (are non-increasing) under the null of no p-hacking. We

find novel additional testable shape restrictions for p-values based on t-tests. These testable

restrictions result in more powerful tests for the null hypothesis of no p-hacking. When there is

also publication bias, our tests are joint tests for p-hacking and publication bias. A reanalysis of
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two prominent datasets shows the usefulness of our new tests.

Chapter 2 provides a careful understanding of the power of methods used to detect

different types of p-hacking discussed in Chapter 1. We theoretically study the implications

of likely forms of p-hacking on the distribution of reported p-values and the power of existing

methods for detecting it. Power can be quite low, depending crucially on the particular p-hacking

strategy and the distribution of actual effects tested by the studies. We relate the power of the

tests to the costs of p-hacking and show that power tends to be larger when p-hacking is very

costly.

Chapter 3 studies Caliper tests that are widely used to test for the presence of p-hacking

and publication bias based on the distribution of the z-statistics across studies. We show that

without additional restrictions on the distribution of true effects, Caliper tests may suffer from

substantial size distortions. We propose a modification of the existing Caliper test, referred to as

the Robust Caliper test, which is shown to control size irrespective of the true effect distribution.

We also propose a way of correcting the regression-based version of the Caliper test that allows

for the inclusion of additional covariates.
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Chapter 1

Detecting p-hacking

Abstract

We theoretically analyze the problem of testing for p-hacking based on distributions of

p-values across multiple studies. We provide general results for when such distributions have

testable restrictions (are non-increasing) under the null of no p-hacking. We find novel additional

testable restrictions for p-values based on t-tests. Specifically, the shape of the power functions

results in both complete monotonicity as well as bounds on the distribution of p-values. These

testable restrictions result in more powerful tests for the null hypothesis of no p-hacking. When

there is also publication bias, our tests are joint tests for p-hacking and publication bias. A

reanalysis of two prominent datasets shows the usefulness of our new tests.

1.1 Introduction

A researcher’s ability to explore various ways of analyzing and manipulating data and

then selectively report the ones that yield better-looking results, commonly referred to as p-

hacking, compromises the reliability of research and undermines the scientific credibility of

reported results. Absent systematic replication studies or meta analyses, a popular approach for

assessing the extent of p-hacking is to examine distributions of p-values across studies, referred

to as p-curves (Simonsohn et al., 2014); see Section 2 in Christensen and Miguel (2018) for a
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review.1

We consider the problem of testing the null hypothesis of no p-hacking against the

alternative hypothesis of p-hacking and provide theoretical foundations for developing tests for

p-hacking. We characterize analytically under general assumptions the null set of distributions

of p-values implied in the absence of p-hacking and provide general sufficient conditions under

which, for any distribution of the true effects, the p-curve is non-increasing and continuous in

the absence of p-hacking. These conditions are shown to hold for many, but not all popular

approaches to testing for effects.

For the leading case where p-curves are based on t-tests, we derive additional previously

unknown testable restrictions. Specifically, the p-curves based on t-tests are completely mono-

tone in the absence of p-hacking, and their magnitude and the magnitude of their derivatives

are restricted by upper bounds. These restrictions are particularly useful when p-hacking fails

to induce an increasing p-curve—for example when researchers engage in specification search

across independent tests. In such cases tests based on non-increasingness have no power.

Our theoretical results allow us to develop more powerful statistical tests for p-hacking,

which we apply to two large datasets of p-values. We find evidence for p-hacking in settings

where the existing tests do not reject the null of no p-hacking.

When there is publication bias, our results characterize the p-curve under the null

hypothesis of no p-hacking and no publication bias. Our tests become joint tests for p-hacking

and publication bias, complementing available methods for identifying publication bias (see,

e.g., Andrews and Kasy, 2019, and the references therein).

1Examples include: Masicampo and Lalande (2012), Leggett et al. (2013), Simonsohn et al. (2014, 2015), Head
et al. (2015), de Winter and Dodou (2015), and Snyder and Zhuo (2018). Another strand of the literature uses the
distribution of t-statistics to test for p-hacking (e.g., Gerber and Malhotra, 2008a; Brodeur et al., 2016b, 2020a;
Bruns et al., 2019; Vivalt, 2019).
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1.2 The p-curve based on general tests

Here we provide general sufficient conditions under which the p-curve is non-increasing

under the null hypothesis of no p-hacking. These results are useful because tests for p-hacking

often assume non-increasingness of the p-curve (e.g., Simonsohn et al., 2014, 2015; Head et al.,

2015). This assumption has been justified through analytical and numerical examples, which rely

on specific choices of tests and distributions of true effects being tested (e.g., Hung et al., 1997;

Simonsohn et al., 2014; Ulrich and Miller, 2018). However, such analyses are not sufficient

for guaranteeing size control of statistical tests for p-hacking since the true effect distribution

is never known. Instead, what is required for size control in a wide range of applications is a

characterization of the shape of the p-curve for general tests and effect distributions.

1.2.1 Setup

Consider a test statistic T that is distributed according to a distribution with cumulative

distribution function (CDF) Fh, where h indexes parameters of either the exact or asymptotic

distribution of the test. We assume that the parameters h only contain the parameters of interest.

This is suitable for settings with large enough samples and asymptotically pivotal test statistics,

which are prevalent in applied research.

Suppose researchers are testing the hypothesis

H0 : h ∈ H0 against H1 : h ∈ H1, (1.1)

where H0 ∩H1 = /0. Let H = H0 ∪H1. Denote as F the CDF of the chosen null distribution

from which critical values are determined. We assume that the test rejects for large values of the

test statistic and denote the critical value for a level p test as cv(p). We will focus on settings with

a continuous and strictly increasing F (see Assumption 1.1 below) and set cv(p) = F−1(1− p).

For any h, we denote by β (p,h) = Pr(T > cv(p) | h) = 1−Fh (cv(p)) the rejection rate of a

3



level p test with parameters h. For h ∈ H1, this is the power of the test, and we refer to β (p,h)

as the power function.

For the remainder of the paper, we focus on settings where the tests generating the

p-values satisfy Assumption 1.1. This allows us to work with a well-defined density function

and provide general results.

Assumption 1.1 (Regularity). F and Fh are twice continuously differentiable with uniformly

bounded first and second derivatives f , f ′, fh and f ′h. f (x)> 0 for all x ∈ {cv(p) : p ∈ (0,1)}.

For h ∈ H , supp( f ) = supp( fh).2

Assumption 1.1 holds for many tests with parametric F and Fh, including t-tests and

Wald-tests. A necessary condition for Assumption 1.1 is the absolute continuity of F and Fh.

This is not too restrictive since, in many cases, F and Fh are the asymptotic distributions of test

statistics, which typically satisfy this condition. Further, in cases where the test statistics have a

discrete distribution, size does not typically equal level, which could lead to p-curves that violate

non-increasingness.

Consider the distribution of the p-values across studies, where we compute p-values from

a distribution of T given values of h, which themselves are drawn from a probability distribution

Π. We refer to Π as the distribution of true effects. The CDF of the p-values is

G(p) =
∫
H

Pr(T > cv(p) | h)dΠ(h) =
∫
H

β (p,h)dΠ(h). (1.2)

Under Assumption 1.1, define the p-curve as follows.

Definition 1.1 (P-curve). The density of the p-values, the p-curve, is defined as

g(p) :=
∫
H

∂β (p,h)
∂ p

dΠ(h).

2For a function ϕ , we define supp(ϕ) to be the closure of {x : ϕ(x) ̸= 0}. Boundedness on {cv(p) : p∈ (0,1−ε]}
for any ε ∈ (0,1) is sufficient for our results.
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In Section 1.2.2, we analyze the shape of g for general tests and distributions Π.

1.2.2 Properties of p-curves based on general tests

Here we derive conditions under which the p-curve is non-increasing in the absence of

p-hacking for any distribution of true effects. We show that this property holds for most but not

all popular statistical tests.

Under Assumption 1.1, the curvature of the p-curve follows from

g′(p) :=
dg(p)

d p
=
∫
H

∂ 2β (p,h)
∂ p2 dΠ(h).

The sign of g′(p) is determined by the second derivative of the rejection probability, ∂ 2β (p,h)/∂ p2.

As we will show in the proof of Theorem 1.1 below, the following condition implies that

∂ 2β (p,h)/∂ p2 is non-positive for all h ∈ H .

Assumption 1.2 (Sufficient condition). For all (x,h) ∈ {cv(p) : p ∈ (0,1)}×H ,

f ′h(x) f (x)≥ f ′(x) fh(x).

Assumption 1.2 is a restriction on how the power function changes when the critical

value changes, which is governed by the shape of the density. When H0 = {0} and F = F0 (as,

for example, for one-sided t-tests), Assumption 1.2 is of the form of a monotone likelihood ratio

property, which relates the shape of the density of T under the null to the shape of the density of

T under alternative h. The next lemma shows that this condition holds for many popular tests.

Let Φ denote the CDF of the standard normal distribution.

Lemma 1.1. Assumption 1.2 holds when

(i) F(x) = Φ(x), Fh(x) = Φ(x−h), H0 = {0}, H1 ⊆ (0,∞) (e.g., similar one-sided t-test)

(ii) F is the CDF of a half-normal distribution with scale parameter 1, Fh is the CDF of a
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folded normal distribution with location parameter h and scale parameter 1, H0 = {0},

H1 ⊆ R\{0} (e.g., two-sided t-test)

(iii) F is the CDF of a χ2 distribution with degrees of freedom d > 0, Fh is the CDF of a

noncentral χ2 distribution with degrees of freedom d > 0 and noncentrality parameter h,

H0 = {0}, H1 ⊆ (0,∞) (e.g., Wald test3)

The following theorem shows that the p-curve is non-increasing and continuously differ-

entiable under the maintained assumptions for any distribution of true effects.

Theorem 1.1 (Testable restrictions for general tests). Under Assumptions 1.1–1.2, g is continu-

ously differentiable and g′(p)≤ 0 for p ∈ (0,1).

The result in Theorem 1.1 holds for many commonly-used statistical tests such that,

in many empirically relevant settings, the p-curve will be non-increasing in the absence of

p-hacking. To our knowledge, Theorem 1.1 provides the first general formal justification

for the existing tests for p-hacking that exploit non-increasingness of the p-curve. Theorem

1.1 further motivates the use of density discontinuity tests as an alternative to tests based on

non-increasingness of the p-curve.

The results can be extended to settings with nuisance parameters. In such settings, h

contains both the parameters of interest, h1, as well as additional nuisance parameters, h2, such

that h = (h1,h2). Let H 1 and H 2 denote the supports of h1 and h2. Allow the null distribution

to depend on h2 with CDF Fh2 . The CDF of p-values becomes

G(p) =
∫
H 1×H 2

β (p,h1,h2)dΠ(h1,h2),

where β (p,h1,h2) = 1−Fh (cvh2(p)) and cvh2(p) = F−1
h2

(1− p). The results of Theorem 1.1

extend to the p-curve generated from this distribution after changing the notation to include

3For instance, let
√

N(θ̂ − θ)
a∼ N (0,V ), where θ̂ is an estimator of θ based on N observations and V ∈

Rdim(θ)×dim(θ) is known (or can be consistently estimated). Consider the problem of testing H0 : Rθ = r against
H1 : Rθ ̸= r, where R ∈ Rq×dim(θ), r ∈ Rq, and rank(R) = q. Set T = N(Rθ̂ − r)′(RV R′)−1(Rθ̂ − r). This fits our
framework with d = q and h := λ ′(RV R′)−1λ , where λ :=

√
N(Rθ − r).
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the dependence on h2. For h2 ∈ H 2, Fh2 , fh2, f ′h2
have the same properties as F , f , f ′ in

Assumption 1.1, and the assumptions on Fh, fh, f ′h hold for h= (h1,h2). Assumption 1.2 becomes

f ′h(cvh2(p)) fh2(cvh2(p)) ≥ f ′h2
(cvh2(p)) fh(cvh2(p)) for (h1,h2) ∈ H 1 ×H 2. The proof then

follows directly from that of Theorem 1.1.

In applications, often only a part of the p-curve is examined. The p-curve over subin-

tervals I ⊂ (0,1) is given by gI (p) = g(p)/
∫
I g(p)d p for p ∈ I . Therefore, the results

extend directly to this situation. Moreover, the p-curve constructed from a finite aggregation

of different tests satisfying the assumptions of Theorem 1.1 is continuously differentiable and

non-increasing.

The assumptions of Theorem 1.1 directly suggest p-curves for which the results of

Theorem 1.1 fail. For example, when the tests are non-similar, the p-curve can be non-monotonic

in the absence of p-hacking, which arises through a violation of Assumption 1.2. To illustrate,

consider testing H0 : h ≤ 0 against H1 : h > 0 using a (non-similar) one-sided t-test, where f is the

density of the N (0,1) distribution and fh is the density of the N (h,1) distribution. It follows

that f ′(x)/ f (x) =−x and f ′h(x)/ fh(x) =−(x−h), such that Assumption 1.2 holds when h ≥ 0

but is violated when h < 0. Thus, when the weight in Π on h < 0 is large enough, the p-curve can

be non-monotonic or increasing. For example, suppose that Π is a normal distribution with mean

µ and variance 1, which places some mass on h < 0, mixing increasing and decreasing p-curves.

Figure 1.1 shows that the resulting p-curve is non-increasing when µ = 0 and non-monotonic

when µ =−2.5.

1.3 The p-curve based on t-tests

We now show that for the leading case where p-curves are generated from t-tests with

exact or asymptotic normal distributions, there are additional previously unknown testable

restrictions. These restrictions allow us to develop more powerful statistical tests for p-hacking

(see Section 1.4.3). In particular, these tests have power in situations where p-hacking does not

7
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Figure 1.1. P-curves based on non-similar one-sided t-tests on (0,0.1]. The distribution of true
effects Π is a normal distribution with mean µ and variance 1.

lead to a violation of non-increasingness.

Consider first the problem of testing a one-sided hypothesis

H0 : h = 0 against H1 : h > 0, (1.3)

where h is a scalar, H0 = {0}, and H1 = (0,∞). We assume that T ∼ N (h,1). This holds

when using one-sided t-tests to test a hypothesis concerning a scalar parameter θ : H0 : θ = θ0

against H1 : θ > θ0. Let
√

N
(
θ̂ −θ

)
∼ N

(
0,σ2), where θ̂ is an estimator of θ based on N

observations and σ2 is assumed to be known. Denote the usual t-statistic as t̂ and set T = t̂.

Defining h :=
√

N ((θ −θ0)/σ) this fits (1.3). More generally, testing problems with limiting

normal experiments employed to test hypotheses of the form (1.3) are common in empirical

work (e.g., a one-sided test of a regression parameter using normal critical values).

The chosen null distribution is the standard normal distribution, F = Φ. A level p test

rejects the null hypothesis when T is larger than cv1(p) := Φ−1 (1− p). Note that cv1(p)≥ 0

for p ∈ (0,1/2]. Then β (p,h) = 1−Φ(cv1(p)−h) and the CDF of p-values is

G1(p) = 1−
∫
[0,∞)

Φ(cv1(p)−h)dΠ(h). (1.4)
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We also consider the two-sided version of this test. Here the hypothesis is

H0 : h = 0 against H1 : h ̸= 0 (1.5)

with H0 = {0} and H1 = R\{0}. The two-sided test statistic T is assumed to have a folded

normal distribution. This holds when using a two-sided t-test with T = |t̂| for testing a two-sided

hypothesis about θ : H0 : θ = θ0 against H1 : θ ̸= θ0. More generally, testing problems with

limiting normal experiments employed to test hypotheses of the form (1.5) are also common in

empirical work.

The chosen null distribution is the half normal distribution with scale parameter 1. A

level p test rejects the null hypothesis when T is larger than cv2(p) := Φ−1 (1− p
2

)
. The CDF

of the p-values is

G2(p) = 2−
∫
R
[Φ(cv2(p)−h)+Φ(cv2(p)+h)]dΠ(h). (1.6)

In addition to the results of Section 1.2.2, previously unknown testable restrictions for

p-curves based on t-tests follow from the shape of the power functions for these tests. These

additional restrictions enable us to better pin down the space of potential p-curves when there is

no p-hacking, allowing us to construct more powerful statistical tests for p-hacking. They also

enable distinguishing non-increasing p-curves, which can arise from certain types of p-hacking,

from curves where there is no p-hacking.

The p-curve based on one-sided t-tests testing hypothesis (1.4) is

g1(p) =
∫
[0,∞)

exp
(

hcv1(p)− h2

2

)
dΠ(h). (1.7)
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For two-sided t-tests testing hypothesis (1.6), the p-curve is

g2(p) =
∫
R

1
2

[
exp
(

hcv2(p)− h2

2

)
+ exp

(
−hcv2(p)− h2

2

)]
dΠ(h). (1.8)

Our next theorem shows that the p-curves (1.7) and (1.8) are completely monotone. A function

ξ is completely monotone on an interval I if 0 ≤ (−1)kξ (k)(x) for every x ∈ I and all

k = 0,1,2, . . . , where ξ (k) is the kth derivative of ξ .

Theorem 1.2 (Complete monotonicity). (i) The p-curve g1 is completely monotone on (0,1/2].

(ii) The p-curve g2 is completely monotone on (0,1).

Complete monotonicity yields additional restrictions that can be exploited to improve

the power of statistical tests for p-hacking. Whilst available for one- and two-sided t-tests, not

all tests yield completely monotonic p-curves. For example, a direct calculation shows that

complete monotonicity may fail for tests based on χ2 distributions with more than two degrees

of freedom (e.g., Wald tests).

The next theorem presents additional testable restrictions in the form of upper bounds on

the p-curves and their derivatives.

Theorem 1.3 (Upper bounds).

(i) The p-curves g1 and g2 are bounded from above:

g1(p) ≤ 1{p≤1/2} exp
(

cv1(p)2

2

)
+1{p>1/2} =: B

(0)
1 (p), (1.9)

g2(p) ≤ 1{p<2(1−Φ(1))}B̃
(0)
2 +1{p≥2(1−Φ(1))} =: B

(0)
2 (p), (1.10)

where

B̃
(0)
2 (p) :=

1
2

[
exp
(

h∗(p)cv2(p)− h∗(p)2

2

)
+ exp

(
−h∗(p)cv2(p)− h∗(p)2

2

)]
≤ exp

(
cv2(p)2

2

)
,

10



and h∗(p) is the non-zero solution to

ϕ(cv2(p),h) := (cv2(p)−h)exp(cv2(p)h)− (cv2(p)+h)exp(−cv2(p)h) = 0.

(ii) The derivatives of g1 and g2 are bounded from above. For s = 1,2 and k = 1,2,3, . . . , then

(−1)kg(k)s (p)≤ B
(k)
s (p), where B

(k)
s is defined in Appendix A.2.3.

As with the results in Theorem 1.2, the results in Theorem 1.3 yield additional restrictions,

allowing more powerful tests for p-hacking.4 The bounds in Theorem 1.3 do not only rule out

large humps around significance cutoffs such as 0.01, 0.05, and 0.1 but also restrict the magnitude

of the p-curves near zero. For the two-sided test, tests for p-hacking can be either constructed

using the sharper (but not explicit) bound B̃
(0)
2 (p) or the simpler explicit bound exp

(
cv2(p)2

2

)
.

The bounds of Theorem 1.3 are particularly useful when p-hacking fails to induce an

increasing p-curve, a situation where tests based on non-increasingness of the p-curve have no

power. Intuitively we might suspect this happens when all researchers p-hack but this simply

shifts mass of the p-curve to the left, rather than inducing humps. A concrete example is when

researchers run a finite number of M > 1 independent analyses and report the smallest p-value,

for example, when engaging in specification search across independent subsamples or data

sets. The resulting p-curve under p-hacking is gp(p;M) = M(1−Gnp(p))M−1gnp(p), where

Gnp and gnp are the CDF and density of p-values in the absence of p-hacking.5 Note that gp is

non-increasing (completely monotone) whenever gnp is non-increasing (completely monotone).6

Thus, gp will not violate the testable implications of Theorems 1.1–1.2, so tests based on these

restrictions do not have power. However, gp can violate the bounds in Theorem 1.3 whenever

M(1−Gnp(p))M−1 > 1. For example, consider the one-sided case and let Π be a half-normal

4One can use similar arguments as in Theorem 1.3 to derive bounds for p-curves based on other specific tests
such as Wald tests.

5This generalizes the example in Ulrich and Miller (2015), who studied the special case where all null hypotheses
are true such that G(p) = p.

6Since the products of completely monotone functions are completely monotone, complete monotonicity of
gp(p;M) follows from complete monotonicity of 1−Gnp(p) and gnp(p).
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distribution with scale parameter 1. Figure 1.2 shows that gp violates the upper bound in Theorem

1.3 to an extent that depends on M.
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Figure 1.2. Comparison of the p-curve from specification search based on one-sided t-tests and
the upper bound in Equation (1.9).

Upper bounds also help with testing for p-hacking with non-similar tests. In Section

1.2.2, we show that non-increasingness may fail for non-similar one-sided t-tests, in which case

tests of p-hacking based on non-increasingness may well reject because of non-similarity rather

than p-hacking. Since upper bounds can also be derived for non-similar tests, we can still use

bounds on the p-curve and its derivatives to test for p-hacking.7

Finally, the characterizations in Theorems 1.2–1.3 imply related characterizations of

p-curves over subintervals I ⊂ (0,1), gs,I (p) = gs(p)/
∫
I gs(p)d p. In particular, complete

monotonicity of gs implies the complete monotonicity of gs,I , because the sign of g(k)s,I equals the

sign of g(k)s for k = 0,1,2 . . . . Moreover, (conservative) upper bounds on gs,I (p) for I = (0,α]

are given by the upper bounds in Theorem 1.3, re-scaled by α since Gs(α)≥ α for s = 1,2.

1.4 Statistical tests for p-hacking

Here we consider tests for p-hacking based on a sample of n p-values. We consider three

types of tests that differ with respect to the specification of the null hypothesis (the null space of

7For instance, for p ≤ 1/2, the upper bound on the p-curve for non-similar one-sided t-tests coincides with that
in Part (i) of Theorem 1.3.
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p-curves). As a result, the different tests will differ with respect to the violations of the null of

no p-hacking that they are able to detect.

In the absence of publication bias, our tests are tests for p-hacking; when there is also

publication bias, they are joint tests for p-hacking and publication bias in general.

1.4.1 Tests for non-increasingness of the p-curve

Theorem 1.1 shows that, under general conditions, the p-curve is non-increasing. Con-

sider the following testing problem

H0 : g is non-increasing against H1 : g is not non-increasing. (1.11)

Popular tests based on hypothesis testing problem (1.11) include the Binomial test (e.g., Simon-

sohn et al., 2014; Head et al., 2015) and Fisher’s test (Simonsohn et al., 2014). Here we describe

two alternative and more powerful tests.

Histogram-based tests. Let 0 = x0 < x1 < · · ·< xJ = 1 be an equidistant partition of the unit

interval. Define the population proportions as π j :=
∫ x j

x j−1
g(p)d p, j = 1, . . . ,J. When g is non-

increasing, ∆ j := π j+1 −π j is non-positive for all j = 1, . . . ,J−1. Thus, the null hypothesis in

testing problem (1.11) can be reformulated as H0 : ∆ j ≤ 0 for all j = 1, . . . ,J −1. To test this

hypothesis, we apply the conditional chi-squared test of Cox and Shi (2022). We describe the

implementation of this test in Section 1.4.3 and Appendix A.1, where we propose more general

tests that nest the histogram-based test for non-increasingness.

LCM test based on concavity of the CDF of p-values. Under the null hypothesis (1.11),

the CDF of p-values is concave. This observation allows us to apply tests based on the least

concave majorant (LCM) (e.g., Carolan and Tebbs, 2005; Beare and Moon, 2015; Fang, 2019).

LCM-based tests assess concavity of the CDF based on the distance between the empirical CDF

of p-values, Ĝ, and its LCM, M Ĝ, where M is the LCM operator.8 We consider the test statistic

8For a function f , the LCM operator is defined as M f = inf{g : g is concave and f ≤ g} (e.g., Beare and Moon,
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T =
√

n∥M Ĝ− Ĝ∥∞. The uniform distribution is least favorable for LCM tests (e.g., Kulikov

and Lopuhaä, 2008; Beare, 2021), in which case T converges weakly to ∥M B−B∥∞, where B

is a standard Brownian Bridge on [0,1].

1.4.2 Tests for continuity

Theorem 1.1 shows that the p-curve is continuous in the absence of p-hacking. Tests

for continuity of the p-curve at significance thresholds α such as α = 0.05, thus, provide an

alternative to the tests based on non-increasingness of the p-curve. Consider the following testing

problem:

H0 : lim
p↑α

g(p) = lim
p↓α

g(p) against H1 : lim
p↑α

g(p) ̸= lim
p↓α

g(p) (1.12)

Testing (1.12) requires estimating two densities at the boundary point α . Traditional kernel

density estimators are not suitable for this task because they suffer from boundary bias (e.g.,

Karunamuni and Alberts, 2005). A popular approach to overcome this problem is to use local

linear density estimators that rely on prebinning the data (e.g., McCrary, 2008). We apply the

density discontinuity test of Cattaneo et al. (2020) with data-driven bandwidth selection (?),

which is based on boundary adaptive local polynomial density estimators and avoids prebinning.

1.4.3 Tests for K-monotonicity and upper bounds

Theorem 1.2 shows that p-curves based on t-tests are completely monotone, and Theorem

1.3 establishes upper bounds on the p-curves and their derivatives. Here we develop tests based

on these testable restrictions.

We say a function ξ is K-monotone on some interval I if 0 ≤ (−1)kξ (k)(x) for every

x ∈ I and all k = 0,1, . . . ,K, where ξ (k) is the kth derivative of ξ . By definition, a completely

monotone function is K-monotone. Consider the null hypothesis

H0 : gs is K-monotone and (−1)kg(k)s ≤ B
(k)
s , for k = 0,1, . . . ,K, (1.13)

2015, Definition 2.1).
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where s = 1 for one-sided t-tests, s = 2 for two-sided t-tests, and B
(k)
s is defined in Theorem 1.3.

Hypothesis (1.13) implies restrictions on the population proportions π := (π1, . . . ,πJ)
′, which

can be expressed as H0 : Aπ−J ≤ b, where π−J := (π1, . . . ,πJ−1)
′.9 The matrix A and vector b

are defined in Appendix A.1.2.10

We estimate π−J using the sample proportions π̂−J .11 This estimator is
√

n-consistent

and asymptotically normal with mean π−J and non-singular (if all proportions are positive)

covariance matrix Ω = diag{π1, . . . ,πJ−1}−π−Jπ ′
−J . Following Cox and Shi (2022), we test

the null by comparing T = infq: Aq≤b n(π̂−J −q)′Ω̂−1(π̂−J −q) to the critical value from a χ2

distribution with rank(Â) degrees of freedom, where Â is the matrix formed by the rows of A

corresponding to active inequalities.

1.5 Empirical applications

The analyses were done using R (R Core Team, 2020) and Stata (StataCorp., 2019).

1.5.1 P-hacking in economics journals

Here we reanalyze the data collected by Brodeur et al. (2016b), which contain information

about 50,078 t-tests from 641 papers published in the AER, QJE, and JPE 2005–2011 (Brodeur

et al., 2016a). We convert t-statistics into p-values associated with two-sided t-tests based on the

standard normal distribution.12 After excluding observations with missing information, there are

49,838 tests from 640 papers.

Because the p-values may be correlated within papers, we use cluster-robust estimators

of the variance of the sample proportions for the Cox and Shi (2022) tests. In addition, we apply

9The upper bounds on π implied by hypothesis (1.13) are not sharp in general. Sharp bounds can be obtained by
directly extremizing the proportions and their differences; see Appendix A.1.1.

10We use π−J because the variance matrix of the estimator of π is singular by construction and we want to express
the left-hand side of our moment inequalities as a combination of “core” moments.

11Given a sample of n p-values, {Pi}n
i=1, the sample proportions are defined as π̂i =

1
n ∑

n
i=1 1{xi−1 < Pi ≤ xi},

i = 1, . . . ,J.
12The original data contain p-values for less than 10% of observations. Where available, we work with the

reported p-values.
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all tests to random subsamples with one p-value per paper, allowing us to use exact tests in

the presence of within-paper correlation. To test for p-hacking, we focus on p-values smaller

than 0.15. We consider a Binomial test on [0.04,0.05], Fisher’s test, a histogram-based test for

non-increasingness (CS1), a histogram-based test for 2-monotonicity and bounds on the p-curve

and the first two derivatives (CS2B), the LCM test, and a density discontinuity test at 0.05.13

Figure 1.3 shows the results before and after de-rounding and based on the full sample

and random subsamples. There is a large number of very small p-values, which is sometimes

interpreted as indicative of evidential value (e.g., Simonsohn et al. (2014); in our notation, this

is a large mass of Π away from zero). The data exhibit a noticeable mass point at t̂ = 2 (there

are 427 such observations), which translates into a mass point in the p-curve at p = 0.046.14

To analyze the impact of rounding, we also apply the tests to the de-rounded data provided by

Brodeur et al. (2016b).15

In what follows, we say that a test rejects the null of no p-hacking if its p-value is smaller

than 0.1. Based on the original raw (rounded) data on all p-values, all tests reject the null except

Fisher’s test and the density discontinuity test. There are no rejections based on the random

subsample, suggesting that the tests may be underpowered in small samples.

We find different results based on the de-rounded data.16 There are no rejections based

on the full sample of p-values. This finding suggests that the rejections based on the raw data

are mainly due to the mass point just below 0.05 and shows that de-rounding may substantially

affect empirical conclusions.

Based on the random subsample of de-rounded p-values, only the CS2B test rejects the

null of no p-hacking. The CS1 test comes close to rejecting (p = 0.11). These two tests yield

13For the Binomial test, we split [0.04,0.05] into two subintervals [0.04,0.045] and (0.045,0.05]. Under the null
of no p-hacking, the fraction of p-values in (0.045,0.05] should be smaller than or equal to 0.5, which we assess
using an exact Binomial test. For CS1 and CS2B, we use 30 bins when testing based on all p-values and 15 bins
when testing based on random subsamples of p-values.

14This mass point could be due to low precision reporting (Brodeur et al., 2016b), but also due to p-hacking,
publication bias, or a combination thereof.

15The de-rounded data were constructed by randomly redrawing estimates and standard errors; see Section II in
Brodeur et al. (2016b) for a detailed description.

16Note that the (sub)sample sizes for the rounded and de-rounded data differ due to de-rounding.
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Test: p−value
Binomial: 0.000
Fisher’s Test: 1.000
Discontinuity: 0.522
CS1: 0.000
CS2B: 0.000
LCM: 0.000
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(a) Full sample (rounded data)

Test: p−value
Binomial: 0.679
Fisher’s Test: 1.000
Discontinuity: 0.795
CS1: 0.492
CS2B: 0.428
LCM: 1.000

Obs in [0.04, 0.05]: 1040
Total obs: 32313
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(b) Full sample (de−rounded data)

Test: p−value
Binomial: 0.395
Fisher’s Test: 1.000
Discontinuity: 0.980
CS1: 0.198
CS2B: 0.176
LCM: 1.000

Obs in [0.04, 0.05]: 14
Total obs: 458
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 (c) Random draw (rounded data)

Test: p−value
Binomial: 0.788
Fisher’s Test: 1.000
Discontinuity: 0.408
CS1: 0.111
CS2B: 0.061
LCM: 1.000

Obs in [0.04, 0.05]: 14
Total obs: 456
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(d) Random draw (de−rounded data)

Figure 1.3. P-curves and p-values from testing for p-hacking. The tests for p-hacking are
described in Section 2.4. Data: Brodeur et al. (2016a).

the smallest p-values across all four samples.

1.5.2 P-hacking across different disciplines

Here we reanalyze the data collected by Head et al. (2015), which contain p-values

obtained from text-mining open access papers in the PubMed database (Head et al., 2016).

There are p-values from 21 different disciplines. We focus on biology, chemistry, education,

engineering, medical and health sciences, and psychology and cognitive science. The data

contain p-values from the abstracts and the results sections in the main text. We use p-values

from the results sections, allowing us to work with larger samples and present results for p-values
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smaller than 0.15.

Since the data do not only contain t-tests, we consider tests based on non-increasingness

and continuity of the p-curve (Theorem 1.1): a Binomial test on [0.04,0.05], Fisher’s test, a

histogram-based test for non-increasingness (CS1), the LCM test, and a density discontinuity test

at 0.05.17 To account for within-paper dependence of p-values, we use a cluster-robust variance

estimator for the CS1 test, and also present results based on random subsamples with one p-value

per paper.

Test: p−value
Binomial: 1.000
Fisher’s Test: 1.000
Discontinuity: 0.000
CS1: 0.000
LCM: 0.000

Obs in [0.04, 0.05]: 38462
Total obs: 352817
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(a) Full sample (rounded data)

Test: p−value
Binomial: 1.000
Fisher’s Test: 1.000
Discontinuity: 0.162
CS1: 0.000
LCM: 0.065

Obs in [0.04, 0.05]: 28318
Total obs: 352066
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(b) Full sample (de−rounded data)

Figure 1.4. P-curves and p-values from testing for p-hacking for medical and health sciences.
The tests for p-hacking are described in Section 2.4. Data: Head et al. (2016).

The left panel of Figure 1.4 shows a histogram of the raw data on all p-values for the

medical and health sciences (the largest subsample). A substantial fraction of p-values is rounded

to two decimal places, which results in sizable mass points at 0.01,0.02, . . . ,0.15. Rounding

makes the p-curve non-monotonic and discontinuous even in the absence of p-hacking and,

thus, invalidates the testable restrictions in Theorem 1.1. Therefore, we also show results based

on de-rounded data.18 In an earlier version of this paper (Elliott et al., 2020), we show that

de-rounding restores the non-increasingness but not the continuity of the p-curve. The right panel
17For CS1, we use 60 bins (all data) and 30 bins (random subsamples) for biological and medical and health

sciences given the large sample sizes, and 30 and 15 bins for the other disciplines.
18We de-round the data as follows. To each observed p-value rounded up to the kth decimal point we add a

random number generated from the uniform distribution supported on the interval [u,0.5] ·10−k, where u = 0 for
zero p-values and u =−0.5 for non-zero p-values.
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of Figure 1.4 shows the impact of de-rounding on the shape of the p-curve. We note that density

discontinuity tests are poorly suited here because rounding induces substantial discontinuities,

which remain even after de-rounding. This means that rejections of the null can be either due to

rounding or due to p-hacking.

In what follows, define a rejection of the null of no p-hacking for p-values smaller than

0.1. Table 1.1 presents the results for the full sample of p-values. For the original (rounded)

data, the CS1 and the LCM test reject the null for all disciplines. De-rounding leads to fewer

rejections. The CS1 test only rejects for biological sciences, engineering, and medical and health

sciences; the LCM test rejects for medical and health sciences. This shows that rounding and

de-rounding can substantially affect empirical results. The Binomial and Fisher’s test do not

reject the null for any discipline, which demonstrates the importance of using our more powerful

tests.

Table 1.1. Testing results based on full sample of p-values

Test Discipline

Biological
sciences

Chemical
sciences Education Engineering Medical and

health sciences
Psychology and

cognitive sciences

Rounded

Binomial 1.000 0.342 0.975 0.999 1.000 1.000
Fisher’s Test 1.000 1.000 1.000 1.000 1.000 1.000
Discontinuity 0.000 0.000 0.159 0.000 0.000 0.172
CS1 0.000 0.000 0.000 0.000 0.000 0.000
LCM 0.000 0.000 0.000 0.000 0.000 0.000

Obs in [0.04, 0.05] 7692 296 220 396 38462 1621
Total obs 74746 2631 1993 3262 352817 15189

De-rounded

Binomial 0.993 0.133 0.467 0.975 1.000 0.811
Fisher’s Test 1.000 1.000 1.000 1.000 1.000 1.000
Discontinuity 0.005 0.117 0.245 0.849 0.162 0.406
CS1 0.028 0.530 0.884 0.084 0.000 0.836
LCM 0.936 1.000 1.000 1.000 0.065 0.653

Obs in [0.04, 0.05] 5720 234 144 250 28318 1161
Total obs 74550 2628 1988 3258 352066 15130

Notes: Table reports p-values from applying different tests for p-hacking based on the full sample of p-values for rounded and de-rounded data.
The tests for p-hacking are described in Section 2.4. Data: Head et al. (2016).

Table 1.2 shows the results based on random samples with one p-value per paper. We

find that the CS1 test (biological sciences, engineering, medical and health sciences) and the
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LCM test (all disciplines except chemical sciences) reject the null based on the rounded data.

None of the tests based on non-increasingness rejects the null based on the de-rounded data. A

comparison to the results based on all p-values shows that the sample sizes required for detecting

p-hacking may be quite large.

Table 1.2. Testing results based on random subsamples of one p-value per paper

Test Discipline

Biological
sciences

Chemical
sciences Education Engineering Medical and

health sciences
Psychology and

cognitive sciences

Rounded

Binomial 0.510 0.157 0.439 0.904 1.000 0.670
Fisher’s Test 1.000 1.000 1.000 1.000 1.000 1.000
Discontinuity 0.113 0.083 0.103 0.000 0.000 0.157
CS1 0.000 0.637 0.232 0.078 0.000 0.734
LCM 0.000 0.265 0.035 0.002 0.000 0.000

Obs in [0.04, 0.05] 1482 63 42 85 6270 185
Total obs 13829 482 366 619 56892 1730

De-rounded

Binomial 0.178 0.116 0.286 0.712 0.976 0.465
Fisher’s Test 1.000 1.000 1.000 1.000 1.000 1.000
Discontinuity 0.571 0.085 0.997 0.287 0.557 0.637
CS1 0.992 0.688 0.481 0.731 0.872 0.747
LCM 1.000 1.000 1.000 0.999 0.846 1.000

Obs in [0.04, 0.05] 1053 45 28 51 4536 128
Total obs 13788 482 365 619 56753 1716

Notes: Table reports p-values from applying different tests for p-hacking based on random subsamples of p-values for rounded and de-rounded
data. The tests for p-hacking are described in Section 2.4. Data: Head et al. (2016).

Finally, the density discontinuity test rejects for at least three disciplines based on the full

sample and the random subsamples. After de-rounding, it only rejects for biological sciences

(full sample) and chemical sciences (random subsample). These rejections are expected because

of the prevalence of rounding-induced discontinuities.

1.6 Conclusion

We provide theoretical foundations for testing for p-hacking based on the distribution

of p-values across scientific studies. We establish general results on the p-curve, providing

conditions under which a null set of p-curves can be shown to be non-increasing. For p-values
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based on t-tests, we derive previously unknown additional restrictions on the p-curve when there

is no p-hacking. These restrictions lead to the suggestion of more powerful tests that can be used

to test the absence of p-hacking. A reanalysis of two datasets from the literature shows that the

new tests based on additional restrictions are useful in testing for p-hacking.

Chapter 1, in full, is a reprint of the material as it appears in Econometrica 2022. Elliott,

Graham; Kudrin, Nikolay; Wüthrich, Kaspar. The dissertation author was a primary author of

this material.

21



Chapter 2

(When) Can We Detect p-hacking?

Abstract

p-Hacking can undermine the validity of empirical studies. A flourishing empirical

literature investigates the prevalence of p-hacking based on the empirical distribution of reported

p-values across studies. Interpreting results in this literature requires a careful understanding

of the power of methods used to detect different types of p-hacking. We theoretically study the

implications of likely forms of p-hacking on the distribution of reported p-values and the power

of existing methods for detecting it. Power can be quite low, depending crucially on the particular

p-hacking strategy and the distribution of actual effects tested by the studies. Publication bias

can enhance the power for testing the joint null hypothesis of no p-hacking and no publication

bias. We relate the power of the tests to the costs of p-hacking and show that power tends to be

larger when p-hacking is very costly. Monte Carlo simulations support our theoretical results.

2.1 Introduction

Researchers have a strong incentive to find, report, and publish novel results (e.g., Imbens,

2021, p.158). Translated mathematically, this often results in a strong incentive to find useful

results that have small p-values when conducting hypothesis tests examining if the data fits

with the current conventional beliefs. Simonsohn et al. (2014) used the term “p-hacking” to

encompass decisions made by researchers in conducting their work that are made to improve
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the novelty of their results as seen through the lens of the reported p-values. Their work has

generated an empirical literature that examines empirically the distribution of p-values across

studies (the “p-curve”) in an attempt to determine if p-hacking is prevalent or not.1

In previous work (Elliott et al., 2022b), we characterized the set of p-curves under the

null hypothesis of no p-hacking. Such characterizations are useful for developing tests for

detecting p-hacking that control size. However, they are inherently uninformative about the

power of the resulting tests. To understand power, we need to understand both how p-hacking

impacts the distribution of p-values and how powerful tests are in detecting these impacts. This

paper examines theoretically and through Monte Carlo analysis the power of tests available to

test for p-hacking using data on p-values across studies.

A careful study of power is relevant to this literature because the implications of p-

hacking on the distribution of reported p-values are not clear. When researchers p-hack, the

p-curve differs from the null set of p-curves, but there are many ways in which the distribution

of p-values can be affected. “Directions” of power depend on precisely how the curve is affected,

which in turn will depend on the empirical problem and how the p-hacking is undertaken. This

paper places a strong emphasis on considerations of how the distribution might be affected. Many

tests sprang from the early intuition that p-hacking would result in “humps” in the distribution

of p-values just below common thresholds for size like 5%. But intuition also might suggest that

if all researchers p-hack, then this might simply push the distributions to the left. It is also the

case that there are limits to how much can be gained by p-hacking; approaches such as searching

across regressions with different control variables can help improve p-values but do not allow

the researcher to attain any p-value they desire.

Of further interest in examining power is that power is useful if it is directed towards

alternatives where the costs of p-hacking are higher. As the ASA notes “Valid scientific con-

1See, e.g., Masicampo and Lalande (2012); Simonsohn et al. (2014); Lakens (2015); Simonsohn et al. (2015);
Head et al. (2015); Ulrich and Miller (2015) for early applications and further discussions, Havranek et al. (2021);
Brodeur et al. (2022a); Malovaná et al. (2022); Yang et al. (2022); Decker and Ottaviani (2023) for recent applications,
and Christensen and Miguel (2018) for a review.
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clusions based on p-values and related statistics cannot be drawn without at least knowing how

many and which analyses were conducted, and how those analyses (including p-values) were

selected for reporting.” (Wasserstein and Lazar, 2016, p.132) This translated mathematically is

that p-hacking has two costs in terms of understanding the statistical results — empirical sizes

of tests will be larger than the stated size and in many cases coefficient estimates will be biased

in the direction of being more impressive. In our power analyses, we therefore explicitly relate

power to the costs of p-hacking.

In order to consider relevant directions of power, we examine two approaches to p-

hacking in four situations in which we might think opportunities for p-hacking in economics

and other fields commonly arise. The two approaches are what we refer to as a “threshold”

approach where a researcher targeting a specific threshold stops if the obvious model rejects at

this size and conducts a search over alternative specifications if not and a second approach of

simply choosing the best p-value from a set of specifications (denoted the “minimum” approach

below). We examine four situations where opportunities for p-hacking arise: (a) searching across

linear regression models with different control variables, (b) searching across different choices of

instruments in estimating causal effects, (c) searching across datasets, and (d) searching across

bandwidth choices in constructing standard errors in time series regressions.2 We construct

theoretical results for the implied distribution of p-values under each approach to p-hacking in a

simple model. The point of this exercise is twofold — by seeing how exactly p-hacking affects

the distribution we can determine the testing method appropriate for detecting the p-hacking,

and also we will be able to determine the features that lead to large or small deviations from the

distribution of p-values when there is no p-hacking.3 We then examine in Monte Carlo analyses

2While (a)–(d) are arguably prevalent in empirical research, there are of course many other approaches to p-
hacking, such as strategically dropping/including data or excluding outliers, selecting among different econometric
methods and empirical strategies, choosing which outcomes to analyze, etc. See, e.g., Simonsohn et al. (2014) and
Simonsohn (2020). From an econometric perspective, this implies that the alternative space of the testing problem is
very large.

3While we focus on the impact of these different types of p-hacking on the shape of the p-curve and the power
of tests for detecting p-hacking, such explicit models of p-hacking are also useful in other contexts. For example,
McCloskey and Michaillat (2022) use a model of p-hacking to construct incentive compatible critical values.
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extensions of these cases.

Our theoretical results and Monte Carlo simulations shed light on how distributions of

p-values are impacted by p-hacking and provide a careful understanding of the power of existing

tests for detecting p-hacking. The main implications are as follows:

1. From a scientific perspective, the ability of tests to detect p-hacking can be quite low. The

threshold approach to p-hacking is more easily detected than when researchers simply

take the minimum of the p-values.

2. For the threshold approach, target values for the p-value result in discontinuities in the

distribution of p-values as well as violations on upper bounds for this distribution, resulting

in tests for these violations having power. It is only in special cases that the intuitive

“humps” in this distribution appear, violating the condition that this curve is monotonically

non-increasing.

3. When researchers choose the minimum p-value from a set of models that nests the true

model, the distribution of p-values is shifted to the left, and only tests based on upper

bounds for this distribution have power. For this reason this approach to p-hacking is much

harder to detect.

4. The power of different tests for p-hacking depends strongly on where the mass of true

values being tested actually lies. If most of the tests are of null hypotheses that are true,

tests looking for humps and discontinuity tests can still have power. However, if the

majority of the p-values are constructed from tests where the null is false, tests based on

upper bounds on the p-curve are more appropriate.

5. The costs of p-hacking in terms of biases through model specification can be quite small.

In many cases the estimates and t-statistics are strongly positively correlated across

specifications. We show that the power of the tests is positively related to the cost in terms

of bias of p-hacking.
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6. Publication bias under reasonable models enhances the power of tests for p-hacking,

although in this situation it is best to consider the tests as test of the joint null hypothesis

of no p-hacking and no publication bias.

In this paper, we focus on the problem of detecting p-hacking based on the distribution

of p-values and do not consider the popular Caliper tests.4 Caliper tests aim to detect p-hacking

based on excess mass in the distribution of z-scores right above significance cutoffs. However,

since humps in the distribution of z-scores can also be induced by the distribution of true effects,

these tests do not control size in general; see Kudrin (2022) for a discussion.

2.2 Setup

2.2.1 The Distribution of p-Values

Elliott et al. (2022b) provided a theoretical characterization of the distribution of p-values

across studies in the absence of p-hacking for general distributions of true effects.5 The notation

here follows that work. Individual researchers provide test results of a hypothesis that is reported

as a test statistic T , which is distributed according to a distribution with cumulative distribution

function (CDF) Fh, where h∈H indexes parameters of either the exact or asymptotic distribution

of the test. Researchers are testing the null hypothesis that h ∈H0 against h ∈H1 with H0∩H1

empty. Suppose the test rejects for large values of T and denote by cv(p) the critical value for

level p tests. For any individual study the researcher tests a hypothesis at a particular h. We

denote the power function of the test for that study by β (p,h) = Pr(T > cv(p) | h).

Across researchers, there is a distribution Π of effects h, which is to say that different

researchers testing different hypotheses examine different problems that have different “true”

4See, e.g, Gerber and Malhotra (2008a,b); Bruns et al. (2019); Vivalt (2019); Brodeur et al. (2020a).
5See, e.g., Hung et al. (1997), Simonsohn et al. (2014), and Ulrich and Miller (2018) for numerical and analytical

examples of p-curves for specific tests and/or effect distributions.
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effects. The resulting CDF of p-values across all these studies is then

G(p) =
∫
H

Pr(T > cv(p) | h)dΠ(h) =
∫
H

β (p,h)dΠ(h).

Under mild regularity assumptions (differentiability of the null and alternative distribu-

tions, boundedness and support assumptions; see Elliott et al. (2022b) for details), we can write

the p-curve (density of p-values) in the absence of p-hacking as

g(p) =
∫
H

∂β (p,h)
∂ p

dΠ(h).

Next we discuss the properties of g(p), which underlie the statistical tests for p-hacking.

2.2.2 Testable Restrictions

Our goal is to evaluate the power of statistical tests based on the different testable

implications derived in the literature. Elliott et al. (2022b) provide general sufficient conditions

for when the p-curve is non-increasing, g′ ≤ 0, and continuous when there is no p-hacking,

allowing for tests of these properties of the distribution to be interpreted as tests of the null

hypothesis of no p-hacking.6 These conditions hold for many possible distributions Fh that

arise in research, for example, normal, folded normal (relevant for two-sided tests), and χ2

distributions.

When T is normally distributed (for example, tests on means or regression parameters

when central limit theorems apply), Elliott et al. (2022b) show that in addition to the non-

increasing property the p-curves are completely monotonic (i.e., have derivatives of alternating

signs so that g′′ ≥ 0, g′′′ ≤ 0, etc.) and there are testable upper bounds on the p-curve and its

derivatives.
6These results imply that classical approaches for detecting p-hacking based on non-increasingness, such as

the Binomial test and Fisher’s test (e.g., Simonsohn et al., 2014; Head et al., 2015), are valid in a wide range of
empirically relevant settings.
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2.2.3 Directions of Power

If researchers do p-hack, the distribution of the reported statistic T differs from that under

the null and this affects the distribution of reported p-values. It is then possible that the resulting

p-curve violates the properties listed above in one way or another, providing the opportunity to

test for p-hacking.

For any form of p-hacking, we consider that there is a set of p-values {P1,P2,P3, . . .}

that a researcher could report and a method of choosing which p-value Pr to report, i.e.,

Pr = d(P1,P2,P3, . . .).

The power of tests for p-hacking will be dependent on the functional form of d(·) and

the joint distribution of {P1,P2,P3, . . .}. The relevant functional form is a result of the approach

to p-hacking. A discontinuous function arises if researchers search across specifications in

order of ‘reasonableness’ until finding one that is significant at some level such as 0.05. In

such situations we might expect humps in the distribution for p-values below such thresholds,

as well as discontinuities at that point because of the discontinuity in d(·). For researchers

choosing the smallest p-value of those available we are less likely to see humps and unlikely

to see discontinuities in the p-curve because of the continuity of the d(·) function, instead the

bounds derived in Elliott et al. (2022b) may be violated.

The distribution over possible p-values will depend on the testing situation and the data.

It is not the case that researchers can select any p-value they desire, available p-values will be

a draw from a distribution. This relates to Simonsohn (2020)’s distinction of “slow p-hacking”

and “fast p-hacking”: slow p-hacking corresponds to the case where p-values change little

across analyses; fast p-hacking refers to settings where p-values change substantially across

analyses. Our analysis in each of the cases characterizes the possible distributions analytically

thus providing results as to how these distributions affect power.

28



Ultimately carefully considering the functions d(·) and distributions of p-values allow us

to examine power in empirically relevant directions.

2.2.4 Impact of Publication Bias

Our main focus is on the power of testing for various types of p-hacking, however a

practical concern is that most studies of reported p-values are restricted to the sample selected

set of p-values that appear in papers published in journals, referred to in the literature under the

general term of publication bias (see, e.g., Andrews and Kasy, 2019, and the references therein).

Publication bias also impacts the distribution of the p-values in ways that tests for p-hacking are

designed to detect.

To consider the impact of publication bias, let S denote the publication indicator, where

S = 1 if the paper is selected for publication and S = 0 otherwise. By Bayes’ Law, the p-curve

conditional on publication, gS=1(p) := g(p | S = 1), is given by

gS=1(p) =
Pr(S = 1 | p)gd(p)

Pr(S = 1)
. (2.1)

Here Pr(S = 1 | p) is the publication probability given p-value P = p, and gd(p) refers to the

potentially p-hacked distribution of p-values when there is no publication bias.

If there is no publication bias, the publication probability does not depend on p, Pr(S = 1 |

p) = Pr(S = 1), so that gS=1 = gd . If, on the other hand, there is publication bias, the publication

probability will depend on the reported p-value so that Pr(S = 1 | p) will not be equal to Pr(S = 1)

for some p ∈ (0,1) and gS=1 ̸= gd . In this case, one can detect p-hacking and/or publication bias

if gS=1 violates the testable restrictions underlying the statistical tests, so we can regard the tests

here as joint tests of the absence of both p-hacking and publication bias.

It is plausible to assume that papers with smaller p-values are more likely to get published

so that Pr(S = 1 | p) is decreasing in p. In this case, gS=1 is non-increasing in the absence of

p-hacking. Selection through publication bias that favors smaller p-values can result in steeper p-
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curves violating the bounds derived under the null hypothesis of no p-hacking. Hence rejections

of bounds tests may well be exacerbated by publication bias. Discontinuities in Pr(S = 1 | p) can

generate discontinuities in the absence of p-hacking, generating power for discontinuity tests.

We examine these effects via Monte Carlo analysis in Section 2.5.2.4.

2.3 Implications of p-Hacking

Power of tests will depend on the underlying tests being examined along with the true

distribution of the effects (here the distribution of h), the methods used to p-hack, and also

the extent to which there are choices in modelling that allow choices of estimates and tests

over which p-hacking can be undertaken. Because of this, there is considerable complexity

in evaluating the power of tests for p-hacking, and any power evaluation is dependent on the

context of the problem and the choices available.

We deal with each of these through the following choices:

1. For the distribution of h, we provide general analytical results for any distribution, for

graphical and Monte Carlo purposes we choose either point masses on a particular value

of h or well known distributions.

2. For the methods employed in p-hacking, corresponding to the choice of the function d(·),

we consider two basic approaches to p-hacking.

(a) The threshold approach, where the researcher constructs a test from their preferred

model, accepting this test if it corresponds to a p-value below a target value (for

example, 0.05). If the p-value does not achieve this goal value, additional models

are considered, and the smallest p-value over the model choices is reported. This is

representative of the “intuitive” approach to p-hacking that is discussed in much of

the literature on testing for p-hacking, where humps in the p-curve around common

critical levels are examined.
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(b) The minimum approach, where researchers take the smallest p-value from a set of

models. Intuitively, we would expect that for this approach the distribution of p-

values would shift to the left, be monotonically non-increasing, and there would be no

expected hump in the distribution of p-values near commonly reported significance

levels. This is true, for example, if the researchers report the minimum p-value across

independent tests; see Section 2.3.3.

3. We study the shape of the distribution of p-values under four arguably prevalent empirical

problems with the potential for p-hacking. The ability to p-hack depends on the distribution

of the p-values conditional on h, the four examples allow us to construct power in these

relevant testing situations.

Appendix B.1 presents the analytical derivations underlying the results in this section.

2.3.1 Selecting Control Variables in Linear Regression

Linear regression has been suggested to be particularly prone to p-hacking (e.g., Hendry,

1980; Leamer, 1983; Bruns and Ioannidis, 2016; Bruns, 2017). Researchers usually have available

a number of control variables that could be included in a regression along with the variable of

interest. Selection of various configurations for the linear model allows multiple chances to

obtain a small p-value, perhaps below a threshold such as 0.05. The theoretical results in this

section yield a careful understanding of the shape of the p-curve when researchers engage in

this type of p-hacking. They clarify which statistical tests can be expected to have power for

detecting p-hacking.

2.3.1.1 Shape of the p-Curve

We construct a stylized model and consider the two approaches to p-hacking discussed

above in order to provide analytical results that capture the impact of p-hacking. Suppose that

the researchers estimate the impact of a scalar regressor Xi on an outcome Yi. The data are
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generated as Yi = Xiβ +Ui, i = 1, . . . ,N, where Ui
iid∼ N (0,1). For simplicity, we assume that Xi

is non-stochastic. The researchers test the hypothesis H0 : β = 0 against H1 : β > 0.

In addition to Xi, the researchers have access to two additional non-stochastic control

variables, Z1i and Z2i.7 To simplify the exposition, we assume that (Xi,Z1i,Z2i) are scale

normalized so that N−1
∑

N
i=1 X2

i = N−1
∑

N
i=1 Z2

1i = N−1
∑

N
i=1 Z2

2i = 1, that N−1
∑

N
i=1 Z1iZ2i = γ2,

and that N−1
∑

N
i=1 XiZ1i =N−1

∑
N
i=1 XiZ2i = γ , where |γ| ∈ (0,1).8 Let h :=

√
Nβ
√

1− γ2, where

h is drawn from a distribution with support H ⊆ [0,∞).

First, consider the threshold form of p-hacking.

1. Researchers regress Yi on Xi and Z1i and report the resulting p-value, P1, if P1 ≤ α .

2. If P1 > α , researchers regress Yi on Xi and Z2i instead of Z1i and obtain p-value, P2. They

report Pr = min{P1,P2}.

Under this threshold form of p-hacking, the reported p-value, Pr, is given by

Pr =


P1, if P1 ≤ α,

min{P1,P2}, if P1 > α.

Define β̂ t
r to be the OLS estimate from the regression that accords with the chosen p-value.

Under the minimum approach, the reported p-value is Pr = min{P1,P2}. Denote the regression

estimate for the chosen model as β̂ m
r . Each approach results in different distributions of p-values,

and, consequently, tests for p-hacking will have different power properties.

In Appendix B.1.1, we show that for the threshold approach the resulting p-curve is

gt
1(p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

t
1(p;α,h,ρ)dΠ(h),

7For simplicity, we consider a setting where Z1i and Z2i do not enter the true model so that their omission does
not lead to omitted variable biases (unlike, e.g., in Bruns and Ioannidis (2016)). It is straightforward to generalize
our results to settings where Z1i and Z2i enter the model: Yi = Xiβ1 +Z1iβ2 +Z2iβ3 +Ui.

8We omit γ = 0, i.e., adding uncorrelated control variables, because in this case the t-statistics and thus p-values
for each regression are equivalent and hence there is no opportunity for p-hacking of this form.
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where ρ = 1− γ2, zh(p) = Φ−1(1− p)−h, Φ is the standard normal CDF, and

ϒ
t
1(p;α,h,ρ) =


1+Φ

(
zh(α)−ρzh(p)√

1−ρ2

)
, if p ≤ α,

2Φ

(
zh(p)

√
1−ρ

1+ρ

)
, if p > α.

In interpreting this result, note that when there is no p-hacking ϒ1(p;α,h,ρ) = 1. It follows

directly from the properties of Φ that the threshold p-curve lies above the curve when there is

no p-hacking for p ≤ α . We can also see that since Φ

(
zh(α)−ρzh(p)√

1−ρ2

)
is decreasing in h that for

larger h the difference between the threshold p-curve and the curve without p-hacking becomes

smaller. This follows intuitively since for a larger h, the need to p-hack diminishes as most of

the studies find an effect without resorting to manipulation.

If researchers simply compute both p-values and report Pr = min{P1,P2}, the distribution

of p-values follows directly from calculations deriving the above result and is equal to

gm
1 (p) = 2

∫
H

exp
(

hz0(p)− h2

2

)
Φ

(
zh(p)

√
1−ρ

1+ρ

)
dΠ(h).

For p-hacking of this form, the entire distribution of p-values is shifted to the left. For p

less than one half, the curve lies above the curve when there is no p-hacking. This distribution is

monotonically decreasing for all Π, so does not have a hump and remains continuous. Because

of this, only the tests based on upper bounds and higher-order monotonicity have any potential

for testing the null hypothesis of no p-hacking. If Π is a point mass distribution, there is a range

over which gm
1 (p) exceeds the upper bound exp(z0(p)2/2) derived in Elliott et al. (2022b), the

upper end (largest p) of which is at p = 1−Φ(h).

Figure 2.1 shows the theoretical p-curves for various h and γ . In terms of violating the

condition that the p-curve is monotonically decreasing, violations for the threshold case can
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occur but only for h small enough. For p < α , the derivative is

gt
1
′
(p) =

∫
H

φ(zh(p))
[

ρ√
1−ρ2

φ

(
zh(α)−ρzh(p)√

1−ρ2

)
−h
(

1+Φ

(
zh(α)−ρzh(p)√

1−ρ2

))]
φ 2(z0(p))

dΠ(h),

where φ is the standard normal probability density function (PDF). Note that ρ is always positive

and, when all nulls are true (i.e., when Π assigns probability one to h = 0), gt ′(p) is positive for

all p ∈ (0,α).9 This can be seen for the dashed line in Figure 2.1 (left panel). However at h = 1

this effect no longer holds, and the p-curve is downward sloping. From Figure 2.1 (right panel)

we see that violations for monotonicity are larger for smaller γ . When γ = 0.1, the p-curve even

becomes bimodal.

Figure 2.1 indicates that the threshold approach to p-hacking implies a discontinuity at

p-values equal to size. The size of the discontinuity is larger for larger h and remains for each γ ,

although how that translates to power of tests for discontinuity also depends on the shape of the

rest of the curve. We examine this in Monte Carlo experiments in Section 3.5.
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Figure 2.1. p-Curves from covariate selection with thresholding. Left panel: γ = 0.5. Right
panel: h = 1.

9For p > α , the derivative of gt
1(p) is negative and equal to

gt
1
′
(p) =−

∫
H

φ(zh(p))
φ 2(z0(p))

(
h+

√
1−ρ

1+ρ
φ

(
zh(p)

√
1−ρ

1+ρ

))
.
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Figure 2.2 examines both the threshold approach to p-hacking as well as the p-hacking

approach of directly taking the minimum p-value. Results are presented across the two choices

for h = 1 and γ = 0.5, with respect to the bounds under no p-hacking. We also report the

no-p-hacking distribution for the same value of h. Simply taking the minimum p-value as a

method of p-hacking results in a curve that remains downward sloping and has no discontinuity —

tests for these two features will have no power against such p-hacking. But as Figure 2.2 shows,

the upper bounds on the p-curve are violated for both methods of p-hacking. The violation in the

thresholding case is pronounced; for taking the minimum p-value the violation is much smaller

and harder to detect.
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Figure 2.2. p-Curves from covariate selection for threshold and minimum approaches (h = 1,
γ = 0.5).

2.3.1.2 Costs of p-Hacking

There are two costs to p-hacking. The first is that when we account for the searching

over models, the size of tests when h = 0 is understated, larger than the empirical size claimed.

The second cost is that the reported estimates will be larger in magnitude and hence biased.

The magnitude of size distortions follows from the derived CDF for the p-hacked curve

evaluated at h = 0. The size distortion is the same for both the thresholding case and the situation

where the researcher simply reports the minimum p-value, since in either case, if there is a

rejection at the desired size, each method of p-hacking will use it. Empirical size for any nominal
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size is given by

G0(α) = 1−Φ2(z0(α),z0(α);ρ),

where Φ2(·, ·;ρ) is the CDF of the bivariate normal distribution with standard marginals and

correlation ρ . Figure 2.3 shows the difference between empirical and nominal size. The left

panel shows, for nominal size α = 0.05, how empirical size varies with γ . For small γ the tests

are highly correlated (ρ is close to one), leaving little room for effective p-hacking, and hence

there is only a small effect on size. As γ becomes larger, so does the size distortion as it moves

towards having an empirical size double that of the nominal size. The right-hand size panel

shows, for three choices of γ (γ ∈ {0.1,0.5,0.9}), how the empirical size exceeds nominal size.

The lower line is nominal size; the empirical size is larger for each value of γ . Essentially, the

result is somewhat uniform over this empirical size range, with size coming close to double

empirical size for the largest value of γ .
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Figure 2.3. Rejection rate under p-hacking. Left panel: rejection rate as a function of γ for
α = 0.05. Right panel: rejection rate as a function of α for γ ∈ {0.1,0.5,0.9}.

Selectively choosing larger t-statistics results in selectively choosing larger estimated

effects. The bias for the threshold case is given by

Eβ̂
t
r −β =

(√
2(1−ρ)φ(0)Φ

(√
2

1+ρ
zh(α)

)
+(1−ρ)φ(zh(α))

(
1−Φ

(√
1−ρ

1+ρ
zh(α)

)))
√

Nρ
,
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and for the minimum approach it is given by

Eβ̂
m
r −β =

√
2(1−ρ)φ(0)√

Nρ
.

The bias as a function of h can be seen in Figure 2.4. For the threshold case, most

p-hacking occurs when h is small. As a consequence, the bias is larger for small h. A larger γ

means a smaller ρ , and hence draws of the estimate and the p-value are less correlated, allowing

for larger impacts. For the minimum approach, the bias does not depend on h, and is larger than

that for the threshold approach. The reason is that the minimum approach always chooses the

largest effect since in our simple setting the standard errors are the same in both regressions.
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Figure 2.4. Bias from covariate selection for γ ∈ {0.1,0.5,0.9}.

2.3.2 Selecting amongst Instruments in IV Regression

2.3.2.1 Shape of the p-Curve

Suppose that the researchers use an instrumental variables (IV) regression to estimate the

causal effect of a scalar regressor Xi on an outcome Yi. The data are generated as

Yi = Xiβ +Ui,

Xi = Z1iγ1 +Z2iγ2 +Vi,
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where (Ui,Vi)
′ iid∼ N (0,Ω) with Ω12 ̸= 0. The instruments are generated as Zi

iid∼ N (0, I2) and

independent of (Ui,Vi). The researchers test the hypothesis H0 : β = 0 against H1 : β > 0. To

simplify the exposition, suppose that Ω11 = Ω22 = 1 and γ1 = γ2 = γ , where |γ| ∈ (0,1) is known.

We let h :=
√

Nβ |γ|, where h is drawn from a distribution supported on H ⊆ [0,∞).

We again consider the two forms of p-hacking. For the threshold approach, first the

researchers run an IV regression of Yi on Xi using Z1i and Z2i as instruments and report the

corresponding p-value, P12, if P12 ≤ α . If P12 > α , the researchers then run IV regressions of

Yi on Xi using Z1i and Z2i as single instruments and obtain p-values, P1 and P2. They report

min{P1,P2,P12} so that reported p-value, Pr, is

Pr =


P12, if P12 ≤ α,

min{P1,P2,P12}, if P12 > α.

The second approach is to report the min{P1,P2,P12}, that is to just check for the smallest p-value

and report that. Researchers report the estimated effect that accords with the reported p-value in

both approaches, defined as β̂ t
r and β̂ m

r , accordingly.10

For the threshold approach, the p-curve (see Appendix B.1.2 for derivations) is

gt
2(p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

t
2(p;α,h)dΠ(h),

where

ϒ
t
2(p;α,h) =



φ(z√2h(p))
φ(zh(p)) +2Φ(Dh(α)− zh(p)), if 0 < p ≤ α,

φ(z√2h(p))
φ(zh(p)) ζ (p)+2Φ(Dh(p)− zh(p)), if α < p ≤ 1/2,

2Φ(zh(p)), if 1/2 < p < 1,

10In our stylized model, researchers select the instruments that yield the “best” result. In practice, it is likely that
they also select instruments based on the first stage F-statistic exceeding a certain cutoff such as 10 (e.g., Andrews
and Kasy, 2019; Brodeur et al., 2020a). We leave the derivation of p-curves under both types of instrument selection
for future research.
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and ζ (p) = 1−2Φ((1−
√

2)z0(p)) and Dh(p) =
√

2z0(p)−2h.
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Figure 2.5. p-Curves from IV selection. Left panel: thresholding. Right panel: minimum.

In Figure 2.5 the p-curves for h ∈ {0,1,2} are shown for the threshold approach in

the left panel. As in the covariate selection example, it is only for small values of h that we

see upward sloping curves and a hump below size. For h = 1 and h = 2, no such violation of

non-increasingness occurs, and tests aimed at detecting such a violation will have no power. The

reason is similar to that of the covariate selection problem — when h becomes larger many tests

reject anyway, so whilst there is still a possibility to p-hack the actual rejections overwhelm the

“hump” building of the p-hacking. For all h there is still a discontinuity in the p-curve arising

from p-hacking, so tests for a discontinuity at size will still have power.

If researchers simply report Pr = min{P1,P2,P12}, the distribution of p-values follows

directly from calculations deriving the above result and is equal to

gm
2 (p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

m
2 (p;α,h)dΠ(h),

where

ϒ
m
2 (p;α,h) =


φ(z√2h(p))

φ(zh(p)) ζ (p)+2Φ(Dh(p)− zh(p)), if 0 < p ≤ 1/2,

2Φ(zh(p)), if 1/2 < p < 1.

The right hand side panel of Figure 2.5 displays the p-curves for h ∈ {0,1,2} for the
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minimum approach. There is no hump as expected, and all the curves are non-increasing. Only

tests based on upper bounds for and higher-order monotonicity of the p-curve have the possibility

of rejecting the null hypothesis of no p-hacking in this situation. As displayed, the upper bound

is violated for large h for low p-values, and is violated for smaller h at larger p-values.
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Figure 2.6. p-Curves from IV selection for threshold and minimum approaches (h = 1).

Figure 2.6 shows the comparable figure for the IV problem as Figure 2.2 shows for

the covariates example. The results are qualitatively similar across these examples, although

quantitatively the p-hacked curves in the IV problem are closer to the bounds than in the

covariates problem. For h = 1, we do find that the p-curves under p-hacking violate the bounds

on (0,0.1], hence suggesting that the tests based on upper bounds can be employed to test the

null hypothesis of no p-hacking.

Overall, as with the case of covariate selection, both the relevant tests for p-hacking and

their power will depend strongly on the range of h relevant to the studies underlying the data

employed for the tests.

2.3.2.2 Costs of p-Hacking

Again, one of the costs of p-hacking is an inflated size of tests when h = 0, i.e., when the

null hypothesis is true, but the paper hopes to claim it is not. The second is inflated coefficient

estimates resulting in a bias of reported results, which occurs to some extent at all values of h.
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Size distortions follow from the derivation of the results above. The corresponding CDF for the

p-curve evaluated at size α is given by the expression

G0(α) = 1−Φ(z0(α))Φ((
√

2−1)z0(α))−
∫ z0(α)

(
√

2−1)z0(α)
φ(x)Φ(

√
2z0(α)− x)dx.

The expression is the same for both the threshold approach and taking the minimum, for the

same reason as in the case of covariate selection. The magnitude of the size distortion is given

in Figure 2.7. Size is essentially double the stated size, with the p-hacked size at 11% when

nominal size is 5%.
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Figure 2.7. Rejection rate under p-hacking. Left panel: rejection rate as a function of α . Right
panel: bias from p-hacking for different values of h and γ = 1.

In terms of the bias induced by p-hacking, distributions over h will induce distributions

over the biases since the bias for any study depends on the true model. We report here the bias

for different h rather than choose a (non-degenerate) distribution. For the special case example

of this section, for the threshold and minimum approaches with α ≤ 1/2, we can write for any h
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the scaled mean (first-order) biases11, Bt
2 and Bm

2 respectively, as follows

Bt
2 = Bm

2 − |γ|−1√
2−

√
2

φ

√√
2−1√

2
h

Φ

(
h√

2−
√

2
−
√

4−2
√

2z0(α)

)
,

Bm
2 =

|γ|−1√
2−

√
2

φ

√√
2−1√

2
h

Φ

(
h√

2−
√

2

)
+ |γ|−1

√
2φ(0)(1−Φ(

√
2h).

The right-hand panel in Figure 2.7 shows the bias as a function of h for both approaches

to p-hacking. For the threshold approach, calculations are for tests of size 5%. Estimates are

more biased for smaller h. A larger h means that tests are more likely to reject anyway, so there

is less likely reason to p-hack. Thus the bias is maximized when the null hypothesis is likely to

be true. This indicates that it would be preferable for tests of p-hacking to have higher power

when the majority of the underlying studies are examining hypotheses that are more likely to be

correct. For the minimum approach, unlike the results of the previous subsection, the bias for the

minimum approach is a function of h — this effect is due to the higher power of the test using

two instruments resulting in that test being selected more as h is larger. Bias decreases in h as

this test statistic becomes more dominant (since it is itself unbiased), but remains higher than

that for the threshold approach since taking the minimum results in the researcher being better

able to find a smaller p-value.

2.3.3 Selecting across Datasets

Consider a setting where a researcher conducts a finite number of K > 1 independent

tests over which they can choose the best results. In each case the researcher uses a t-test to test

their hypothesis, with test statistic Ti ∼ N (h,1). We assume that the true local effect h is the

same across datasets. This gives the researcher K possible p-values to consider, enabling the

possibility of p-hacking. For example, a researcher conducting experiments with students, as is

11Since the first moments of the IV estimators do not exist in just-identified cases (Kinal, 1980), we define B j
2 to

be the mean of the asymptotic distribution of
√

N(β̂ j
r −β ), where β̂

j
r is the p-hacked estimate and j ∈ {m, t}.

42



common in experimental economics, could have several independent sets of students on which to

test a hypothesis. As with the other examples, researchers could simply search over all datasets

and report the smallest p-value or engage in a strategy of searching for a low p-value.

Let K = 2, and consider a search where first the researchers construct a dataset for their

study and compute a p-value for their hypothesis on this dataset, then report this p-value if it is

below size. Otherwise, they construct a new dataset and report the smallest of the two possible

p-values (threshold approach). For illustration, we assume they use one-sided t-tests to test their

hypothesis.

For the threshold approach, the p-curve is given by

gt
3(p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

t
3(p;α,h)dΠ(h),

where

ϒ
t
3(p;α,h) =


1+Φ(zh(α)) , if p ≤ α,

2Φ(zh(p)) , if p > α.

This is a special case of the results in Section 2.3.1 where ρ = 0 because of the indepen-

dence assumption across datasets. If the t-statistics were correlated through dependence between

the datasets, then setting ρ equal to that correlation and using the results in Section 2.3.1 would

yield the correct distribution of p-values.

Figure 2.8 shows p-curves for h ∈ {0,1,2}. For all values of h, no upward sloping

p-curves are induced over any range of p. So for this type of p-hacking, even with thresholds

such as in this example, tests that look for p-hacking through a lack of monotonically downward

sloping p-curves will not have power. This method does suggest that tests for discontinuities in

the distribution will have power, but likely only if studies have a large h.
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Figure 2.8. p-Curves from dataset selection based on the threshold approach with γ = 0.5.

An alternative strategy is to simply report the smallest of the p-values across all datasets

or subsamples (e.g., Ulrich and Miller, 2015; Elliott et al., 2022b). For general K, the p-curve is

given by

gm
3 (p;K) = K

∫
H

exp
(

hz0(p)− h2

2

)
Φ(zh(p))K−1dΠ(h). (2.2)
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Figure 2.9. p-Curves from dataset selection based on the minimum approach. Left panel: h = 0.
Right panel: h = 1.

The p-curve under p-hacking, gm
3 , is non-increasing (completely monotone) whenever

the distribution with no p-hacking is non-increasing (completely monotone) (Elliott et al., 2022b).

This can be seen in Figure 2.9 where for various K and h each of the curves are decreasing. Tests

for violations of monotonicity will have no power. Similarly, tests for discontinuities will also
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not have power. Figure 2.9 also shows (solid line) the bounds under the null hypothesis of no

p-hacking. Clearly, each of the curves violates the bounds for some range of p; see also Figure 2

in Elliott et al. (2022b).

Alternatively, the researcher could consider the threshold strategy of first using both

datasets, choosing to report this p-value if it is below a threshold and, otherwise, choosing

the best of the available p-values. For K = 2, this gives three potential p-values to choose

between. For many such testing problems (for example, testing a regression coefficient in a linear

regression), Tk ∼ N (h,1), k = 1,2, approximately so that the t-statistic from the combined

samples is T12 ≃ (T1 +T2)/
√

2. This is precisely the same setup asymptotically as in the IV

case presented above, so those results apply directly to this problem. As such, we refer to the

discussion there rather than re-present the results.

2.3.4 Variance Bandwidth Selection for Means

In time series regression, sums of random variables such as means or regression coeffi-

cients are standardized by an estimate of the spectral density of the relevant series at frequency

zero. A number of estimators exist; the most popular in practice is a nonparametric estimator that

takes a weighted average of covariances of the data. With this method, researchers are confronted

with a choice of the bandwidth for estimation. Different bandwidth choices allow for multiple

chances at constructing p-values, hence allowing for the potential for p-hacking.

To examine this analytically, consider the model Yt = β +Ut , t = 1, . . . ,N, where we

assume that Ut
iid∼ N (0,1). We can consider two statistics for testing the null hypothesis

that the mean is zero versus a positive mean. First the usual t-statistic testing the null of zero,

T0 =
√

NȲN , and, secondly, T1 = (
√

NȲN)/ω̂ , where ȲN = N−1
∑

N
t=1Yt , ω̂2 := ω2(ρ̂) := 1+2κρ̂

and ρ̂ = (N − 1)−1
∑

N
t=2ÛtÛt−1. Here κ is the weight in the spectral density estimator. For

example, in the Newey and West (1987) estimator with one lag, κ = 1/2.

In line with the previous subsections, we consider both a threshold approach to p-hacking

as well as simply choosing the best p-value from a set. In the threshold approach, the researcher
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constructs T0 and calculates the corresponding p-value. If it is below α ≤ 1/2, this p-value is

reported. Otherwise, the researcher calculates T1 and reports the smaller of the p-values from the

two t-statistics.12 In the second approach, the smallest p-value of the two computed is reported.

In Appendix B.1.4, we show that the distribution of p-values has the form

gt
4(p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

t
4(p;α,h,κ)dΠ(h),

with ϒ4(p;α,h,κ) taking different forms over different parts of the support of the distribution.

Define l(p) = (2κ)−1
((

z0(α)
z0(p)

)2
−1
)

and let HN and ηN be the CDF and PDF of ρ̂ , respectively.

Then we have

ϒ
t
4 =


1+ 1

φ(zh(p))

∫ l(p)
−(2κ)−1 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if 0 < p ≤ α,

1−HN(0)+HN(−(2κ)−1)+ 1
φ(zh(p))

∫ 0
−(2κ)−1 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if α < p ≤ 1/2,

HN(0)+ 1
φ(zh(p))

∫
∞

0 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if 1/2 < p < 1.
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Figure 2.10. p-Curves from lag length selection with N = 200 and κ = 1/2. Left panel:
thresholding. Right panel: minimum.

The left-hand side panel in Figure 2.10 presents the p-curves for the thresholding case.

12If ρ̂ is such that ω̂2 is negative, the researcher always reports the initial result.
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Notice that, unlike the earlier examples, thresholding creates the intuitive hump in the p-curve at

the chosen size (here 0.05) for all of the values for h. Thus tests that attempt to find such humps

may have power. Discontinuities at the chosen size also occur. For h large enough, the p-curves

also violate the bounds for smaller p-values.

When the minimum over the two p-values is chosen, the p-curve is given by

gm
4 (p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

m
4 (p;α,h,κ)dΠ(h),

where

ϒ
m
4 =


1−HN(0)+HN(−(2κ)−1)+ 1

φ(zh(p))

∫ 0
−(2κ)−1 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if 0 < p ≤ 1/2,

HN(0)+ 1
φ(zh(p))

∫
∞

0 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if 1/2 < p < 1.

The right-hand side panel in Figure 2.10 presents the p-curves for the minimum case.

When p-hacking works through taking the minimum p-value, as in earlier cases for p-values

near commonly used sizes, the impact is to move the distributions towards the left, making the

p-curves fall more steeply. The effect here is modest and likely difficult to detect. Of more

interest is what happens at p = 0.5, where taking the minimum (this effect is also apparent in

the thresholding case) results in a discontinuity. The reason for this is that choices over the

denominator of the t-statistic used to test the hypothesis cannot change the sign of the t-test.

Within each side, the effect is to push the distribution to the left, so this results in a discontinuity

at p = 0.5. This effect will extend to all methods where p-hacking is based on searching over

different choices of variance covariance matrices — for example, different choices in estimators,

different choices in the number of clusters, etc. Figure 2.10 shows that for h = 1,2 the bound

is not reached, and any discontinuity at p = 0.5 is very small. For h = 0, the bound is slightly

below the p-curve after the discontinuity.
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For size at h = 0 and p = α we have

G0(α) = α +(1−α)(HN(0)−HN(−(2κ)−1))−
∫ 0

−(2κ)−1
Φ(z0(α)ω(r)−h)ηN(r)dr

Figure 2.11 shows that the size distortions through this example of p-hacking are quite modest.

The reason is that for a reasonable sample size, the estimated first-order correlation is very close

to zero. Thus estimated standard errors when an additional lag is included are very close to one,

meaning that the two t-statistics are quite similar and very highly correlated. This means that

there is not much room to have size distortions due to this p-hacking.

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Figure 2.11. Rejection rate under p-hacking from lag length selection with N = 200 and κ = 1/2.

2.4 Statistical Tests for p-Hacking

In this section, we discuss several statistical tests for the null hypothesis of no p-hacking

based on a sample of n p-values, {Pi}n
i=1. We do not consider Caliper tests based on the

distribution of t-statistics (Gerber and Malhotra, 2008a,b) because these tests do not control size

(Kudrin, 2022).

2.4.1 Histogram-based Tests for Combinations of Restrictions

Histogram-based tests (Elliott et al., 2022b) provide a flexible framework for constructing

tests for different combinations of testable restrictions. Let 0 = x0 < x1 < · · · < xJ = 1 be
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an equidistant partition of [0,1] and define the population proportions π j =
∫ x j

x j−1
g(p)d p, j =

1, . . . ,J. The main idea of histogram-based tests is to express the testable implications of p-

hacking in terms of restrictions on the population proportions (π1, . . . ,πJ). For instance, non-

increasingness of the p-curve implies that π j − π j−1 ≤ 0 for j = 2, . . . ,J. More generally,

Elliott et al. (2022b) show that K-monotonicity13 restrictions and upper bounds on the p-curve

and its derivatives can be expressed as H0 : Aπ−J ≤ b, for a matrix A and vector b, where

π−J := (π1, . . . ,πJ−1)
′.14

To test this hypothesis, we estimate π−J by the vector of sample proportions π̂−J . The

estimator π̂−J is asymptotically normal with mean π−J so that the testing problem can be recast

as the problem of testing affine inequalities about the mean of a multivariate normal distribution

(e.g., Kudo, 1963; Wolak, 1987; Cox and Shi, 2022). Following Elliott et al. (2022b), we use

the conditional chi-squared test of Cox and Shi (2022), which is easy to implement and remains

computationally tractable when J is moderate or large.

2.4.2 Tests for Non-Increasingness of the p-Curve

A popular test for non-increasingness of the p-curve is the Binomial test (e.g., Simonsohn

et al., 2014; Head et al., 2015), where researchers compare the number of p-values in two

adjacent bins right below significance cutoffs. Under the null of no p-hacking, the fraction of

p-values in the bin closer to the cutoff should be weakly smaller than the fraction in the bin

farther away. Implementation is typically based on an exact Binomial test. Binomial tests are

“local” tests that ignore information about the shape of the p-curve farther away from the cutoff,

which often leads to low power in our simulations. A “global” alternative is Fisher’s test (e.g.,

Simonsohn et al., 2014).15

In addition to the classical Binomial test and Fisher’s test, we consider tests based on the
13A function g is K-monotone if 0 ≤ (−1)kg(k) for and all k = 0,1, . . . ,K, where g(k) is the kth derivative of g.

Complete monotonicity implies K-monotonicity for all K.
14Here we incorporate the adding up constraint ∑

J
j=1 π j = 1 into the definition of A and b and express the testable

implications in terms of the “core moments” (π1, . . . ,πJ−1) instead of (π1, . . . ,πJ).
15An alternative to Fisher’s test is Stouffer’s method (Simonsohn et al., 2015).
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least concave majorant (LCM) (Elliott et al., 2022b).16 LCM tests are based on the observation

that non-increasingness of g implies that the CDF G is concave. Concavity can be assessed by

comparing the empirical CDF of p-values, Ĝ, to its LCM M Ĝ, where M is the LCM operator.

We choose the test statistic
√

n∥Ĝ−M Ĝ∥∞. The uniform distribution is least favorable for the

LCM test (Kulikov and Lopuhaä, 2008; Beare, 2021), and critical values can be obtained via

simulations.

2.4.3 Tests for Continuity of the p-Curve

Continuity of the p-curve at pre-specified cutoffs p = α can be assessed using standard

density discontinuity tests (e.g., McCrary, 2008; Cattaneo et al., 2020). Following Elliott et al.

(2022b), we use the approach by Cattaneo et al. (2020) with automatic bandwidth selection

implemented in the R-package rddensity (Cattaneo et al., 2021).

2.5 Monte Carlo Simulations

In this section, we investigate the finite sample properties of the tests in Section 2.4

using a Monte Carlo simulation study. The Monte Carlo study is based on generalizations of the

analytical examples of p-hacking in Section 2.3. We do not consider selection across datasets, as

this example can be viewed as a special case of covariate and IV selection.

2.5.1 Generalized p-Hacking Examples

In all examples that we consider, researchers are interested in testing a hypothesis about

a scalar parameter β :

H0 : β = 0 against H1 : β > 0. (2.3)

The results for two-sided tests of H0 : β = 0 against H1 : β ̸= 0 are similar. See Figure 2.13.

Researchers may p-hack their initial results by exploring additional model specifications

16LCM tests have been successfully applied in many different contexts (e.g., Carolan and Tebbs, 2005; Beare and
Moon, 2015; Fang, 2019).
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or estimators and report a different result of their choice. Specifically, we consider the two

general approaches to p-hacking discussed in Section 2.3: the threshold and the minimum

approach. In what follows, we discuss the generalized examples of p-hacking in more detail.

2.5.1.1 Selecting Control Variables in Linear Regression

Researchers have access to a random sample with N = 200 observations generated as

Yi = Xiβ +ui, where Xi ∼ N (0,1) and ui ∼ N (0,1) are independent of each other. There are

K additional control variables, Zi := (Z1i, . . . ,ZKi)
′, which are generated as

Zki = γkXi +
√

1− γ2
k εZk,i, εZk,i ∼ N (0,1), γk ∼U [−0.8,0.8], k = 1, . . . ,K.

We set β = h/
√

N with h ∈ {0,1,2} and show results for h ∼ χ2(1) in the Appendix.

Researchers use either a threshold or a minimum approach to p-hacking.

Threshold approach. Researchers regress Yi on Xi and Zi and test (3.12). Denote the

resulting p-value as P. If P ≤ 0.05, the researchers report the p-value. If P > 0.05, they

regress Yi on Xi, trying all (K − 1)× 1 subvectors of Zi as controls and select the result

with the smallest p-value. If the smallest p-value is larger than 0.05, they continue and

explore all (K −2)×1 subvectors of Zi etc. If all results are insignificant, they report the

smallest p-value.

Minimum approach. Researchers run regressions of Yi on Xi and each possible configura-

tion of covariates Zi and report the minimum p-value.

Figures C.4, C.5, and C.6 show the null and p-hacked distributions for K ∈ {3,5,7}

and figure B.4 shows the null and p-hacked distributions for K = 3 when researchers report

p-values for two-sided tests.17 The p-curves are similar to those in the simple analytical example

of Section 2.3.1. The threshold approach leads to a discontinuity in the p-curve and may lead

17To generate these distributions, we run the algorithm one million times and collect p-hacked and non-p-hacked
results.
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to non-increasing p-curves and humps below significance thresholds. By contrast, reporting

the minimum p-value across all possible specifications generally leads to continuous and non-

increasing p-curves. The distribution of h is an important determinant of the shape of the p-curve,

especially when researchers use the threshold approach. The larger h, the higher the probability

that the researchers find significant results in the initial specification and thus will not engage in

further specification search. Finally, as expected, the violations of the testable restrictions are

more pronounced when K is large, that is when researchers have many degrees of freedom.

2.5.1.2 Selecting amongst Instruments in IV Regression

Researchers have access to a random sample with N = 200 observations generated as

Yi = Xiβ +Ui,

Xi = Z′
iπ +Vi,

where Ui ∼N (0,1) and Vi ∼N (0,1) with Cov(Ui,Vi)= 0.5. The instruments Zi :=(Z1i, . . . ,ZKi)
′

are generated as

Zki = γkξi+
√

1− γ2
k εZk,i, ξi ∼N (0,1), εZk,i ∼N (0,1), γk ∼U [−0.8,0.8], k= 1, . . . ,K,

where ξi,εZk,i, and γk are independent for all k. Also, πk
iid∼ U [1,3], k = 1, . . . ,K. We set

β = h/(3
√

N) with h ∈ {0,1,2} and show results for h ∼ χ2(1) in the Appendix.

Researchers use either a threshold or a minimum approach to p-hacking.

Threshold approach. Researchers estimate the model using all instruments Zi, test (3.12),

and obtain the p-value P. If P ≤ 0.05, the researchers report the p-value. If P > 0.05, they

try all (K −1)×1 subvectors of Zi as instruments and select the result corresponding to

the smallest p-value. If the smallest p-value is larger than 0.05, they continue and explore

all (K −2)×1 subvectors of Zi etc. If all results are insignificant, they report the smallest
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p-value.

Minimum approach. The researchers run IV regressions of Yi on Xi using each possible

configuration of instruments and report the minimum p-value.

Figures B.5 and B.6 display the null and p-hacked distributions for K ∈ {3,5}. We do

not show results for K = 7 since there is a very high concentration of p-values at zero in this case.

The p-curves in the general case here are similar to those in the simple analytical example of

Section 2.3.2. As with covariate selection, the threshold approach yields discontinuous p-curves

and may lead to non-increasingness and humps, whereas reporting the minimum p-value leads

to continuous and decreasing p-curves. The distribution of h and the number of instruments, K,

are important determinants of the shape of the p-curve. We note that the distribution of p-values

under the null hypothesis of no p-hacking when h = 0 is not exactly uniform because of the

relatively small sample size.

2.5.1.3 Lag Length Selection in Regression

Researchers have access to a random sample with N = 200 observations from Yt =

Xtβ +Ut , where Xt ∼ N (0,1) and Ut ∼ N (0,1) are independent. We set β = h/
√

N with

h ∈ {0,1,2} and show results for h ∼ χ2(1) in the Appendix.

Researchers use either a threshold or a minimum approach to p-hacking.

Threshold approach. Researchers first regress Yt on Xt and calculate the standard error

using the classical Newey-West estimator with the number of lags selected using the

Bayesian Information Criterion (researchers only choose up to 4 lags). They then use a

t-test to test (3.12) and calculate the p-value P. If P ≤ 0.05, the researchers report the

p-value. If P > 0.05, they try Newey-West estimator with one extra lag. If the result is

not significant, they try two extra lags etc. If all results are insignificant, they report the

smallest p-value.
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Minimum approach. Researchers regress Yt on Xt , calculate the standard error using

Newey-West with 0 to 4 lags, and report the minimum p-value.

The null and p-hacked distributions are displayed in Figure B.7. The p-curves exhibit

features similar to those in the simple analytical example in Section 2.3.4. The threshold approach

induces a sharp spike right below 0.05. The reason is that p-hacking via judicious lag selection

does not lead to huge improvements in terms of p-value. Both approaches to p-hacking lead to a

discontinuity at 0.5.

2.5.2 Simulations

2.5.2.1 Setup

We model the distribution of reported p-values as a mixture:

go(p) = τ ·gd(p)+(1− τ) ·gnp(p)

Here, gd is the distribution under the different p-hacking approaches described above; gnp is

the distribution in the absence of p-hacking (i.e., the distribution of the first p-value that the

researchers obtain). The parameter τ ∈ [0,1] captures the fraction of researchers who engage in

p-hacking.

For our main results, we focus on settings without publication bias and set the publication

probability equal to one, irrespective of the reported p-value, Pr(S = 1 | p) = 1. To assess the

impact of publication bias, we also consider two types of publication bias that differ with respect

the publication probability Pr(S = 1 | p).

Sharp publication bias. The publication probability Pr(S = 1 | p) is a step function.

We set the probability of publishing a result that is significant at the 5% level to one,

Pr(S = 1 | p) = 1 for p ≤ 0.05, and the probability of publishing an insignificant result to

0.1, Pr(S = 1 | p) = 0.1 for p > 0.05. Hence, significant results are 10 times more likely

to be published than insignificant ones.
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Smooth publication bias. The publication probability is a smooth function of the reported

p-value. We set Pr(S = 1 | p) = exp(−A · p), where we choose A = 8.45 to make results

comparable across both types of publication bias.18

To generate the data, we first simulate the p-hacking algorithms one million times to

obtain samples corresponding to gd and gnp. Then, to construct samples in every Monte Carlo

iteration, we draw n = 5000 p-values with replacement from a mixture of those samples and keep

each p-value, pi, with probability Pr(S = 1 | pi). Following Elliott et al. (2022b), we apply the

tests to the subinterval (0,0.15]. Therefore, the effective sample size depends on the p-hacking

strategy, the distribution of h, the presence and type of publication bias, and the fraction of

p-hackers τ .

Table 2.1. Tests for p-hacking

Testable restriction: non-increasingness of p-curve

CS1 Histogram-based test based on Cox and Shi (2022) with J = 15

LCM LCM test

Binomial Binomial test with bins [0.40,0.45) and [0.45,0.50]

Testable restriction: continuity of p-curve

Discontinuity Density discontinuity test (Cattaneo et al., 2021)

Testable restriction: upper bounds on p-curve, 1st, and 2nd derivative

CSUB Histogram-based test based on Cox and Shi (2022) with J = 15

Testable restriction: 2-monotonicity and upper bounds on p-curve, 1st, and 2nd derivative

CS2B Histogram-based test based on Cox and Shi (2022) with J = 15

We compare the finite sample performance of the tests described in Section 2.4. See

18When A = 8.45, the ratio between
∫ 0.05

0 Pr(S = 1 | p)d p and
∫ 1

0.05 Pr(S = 1 | p)d p is the same for both types of
publication bias.
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Table 2.1 for more details.19 We do not show results for Fisher’s test since we found that this test

has essentially no power for detecting the types of p-hacking we consider. The simulations are

implemented using MATLAB (MATLAB, 2020) and R (R Core Team, 2022).

2.5.2.2 Power Curves

In this section, we present power curves for the different data generating processes

(DGPs). For covariate and instrument selection, we focus on the results for K = 3 in the main

text and present the results for larger values of K in Appendix B.3. The nominal level is 5% for

all tests. All results are based on 5000 simulation draws. Figures 2.12–2.15 present the results.

The power for detecting p-hacking crucially depends on the type of p-hacking, the

econometric method, the fraction of p-hackers, τ , and the value of h. As shown in Section

2.3, when researchers p-hack using a threshold approach, the p-curves are discontinuous at the

threshold, may violate the upper bounds, and may be non-monotonic; see also Appendix C.5.

Thus, tests exploiting these testable restrictions may have power when the fraction of p-hackers

is large enough.

The CS2B test, which exploits monotonicity restrictions and bounds, has the highest

power overall. However, this test may exhibit some small size distortions when the effective

sample size is small (e.g., lag length selection with h = 0). Among the tests that exploit

monotonicity of the entire p-curve, the CS1 test typically exhibits higher power than the LCM

test. The LCM test can exhibit non-monotonic power curves because the test statistic converges

to zero in probability for strictly decreasing p-curves (Beare and Moon, 2015).

The widely-used Binomial test often exhibits low power. The reason is that the p-hacking

approaches we consider do not lead to isolated humps or spikes near 0.05, even if researchers use

a threshold p-hacking approach. There is one notable exception. When researchers engage in

variance bandwidth selection, our theoretical results show that p-hacking based on the threshold

19For CS1, CSUB and CS2B tests, the optimization routine fails to converge for some realizations of the data due
to nearly singular covariance matrix estimates. We count these cases as non-rejections of the null in our Monte
Carlo simulations.
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approach can yield isolated humps right below the cutoff (see Figure 2.10 and also Figure B.7).

By construction, the Binomial test is well-suited for detecting this type of p-hacking and is

among the most powerful tests in this case. Our results for the Binomial test demonstrate the

inherent disadvantage of using tests that only exploit testable implications locally. Such tests only

have power against very specific forms of p-hacking, which limits their usefulness in practice.

Discontinuity tests are a useful complement to tests based on monotonicity and upper

bounds because p-hacking based on threshold approaches often yields pronounced discontinuities.

These tests are particularly powerful for detecting p-hacking based on lag length selection, which

leads to spikes and pronounced discontinuities at 0.05 as discussed above.

When researchers always report the minimum p-value, the power of the tests is much

lower than when they use a threshold approach. The minimum approach to p-hacking does not

lead to violations of monotonicity and continuity over p ∈ (0,0.15]. Therefore, by construction,

tests based on these restrictions have no power, irrespective of the fraction of researchers who

are p-hacking.

In Section 2.3, we show theoretically that the minimum approach may yield violations of

the upper bounds. The range over which the upper bounds are violated and the extent of these

violation depend on h and the econometric method used by the researchers (see Figures 2.2, 2.5,

and 2.10). Consistent with the analysis in Section 2.3, the simulations show a moderate amount

of power for the tests based on upper bounds (CSUB and CS2B) for IV selection with h = 0

and h = 1 when a sufficiently large fraction of researchers p-hacks. Our theoretical results show

that the violations of the upper bounds may be small, so the moderate power of these tests is not

unexpected.

Under the minimum approach, the power curves of the CSUB and CS2B tests are very

similar, suggesting that the power of the CS2B test comes mainly from using upper bounds. This

finding demonstrates the importance of exploiting upper bounds in addition to monotonicity and

continuity restrictions in practice. Figure 2.14 further shows that the power of the CSUB and the

CS2B test may not be monotonic in h. On the one hand, for large h, there are more p-values close
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to zero, where the upper bounds are more difficult to violate. On the other hand, the effective

sample size increases with h, leading to more power. Finally, the results for covariate and IV

selection in Appendix B.3 show that the larger K — the more degrees of freedom the researchers

have when p-hacking — the higher the power of the CSUB and CS2B test.

Finally, we compare the results in Figure 2.12, which are based on researchers testing the

one-sided hypothesis (3.12), to those in Figure 2.13, which are based on researchers engaging

in covariate selection based on two-sided tests. While there are some differences between the

power curves, the overall rankings of the tests in terms of their power properties are the same.

Interestingly, the power of the CSUB and the CS2B test under the minimum approach can be

higher when the researchers use two-sided tests.
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Figure 2.12. Power curves covariate selection with K = 3.
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Figure 2.13. Power curves covariate selection with K = 3 (2-sided tests).
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Figure 2.14. Power curves IV selection with K = 3.
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Figure 2.15. Power curves lag length selection.

Overall, the tests’ ability to detect p-hacking is highly context-specific and can be low in

some cases. As we show theoretically in Section 2.3, this is because p-hacking may not lead

to violations of the testable restrictions used by the statistical tests for p-hacking. Moreover,

even if p-hacking leads to violations of the testable restrictions, these violations may be small

and can thus only be detected based on large samples of p-values. Regarding the choice of

testable restrictions, the simulations demonstrate the importance of exploiting upper bounds

in addition to monotonicity and continuity for constructing powerful tests against plausible

p-hacking alternatives.

2.5.2.3 Power vs. Costs of p-Hacking

Our simulation results show that the tests’ ability to detect p-hacking crucially depends

on the shape of the p-curve under the alternative of p-hacking, which depends on the type of

p-hacking, the econometric method, the distribution of effects, and the fraction of p-hackers.
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This result is expected since the alternative space of p-curves under p-hacking is very large. It

begs the question: What alternatives are relevant for empirical practice?

To determine which alternatives are relevant, we consider the costs of p-hacking. As

discussed in Section 2.3, there are at least two types of costs: size distortions when h = 0 and

bias in the estimated coefficients. Here we focus on the bias, which is relevant for all values of

h. Our theoretical results show that the bias is particularly large for small values of h. This is

intuitively clear in that this is where there is more need for p-hacking to get small p-value.

In Figure 2.16, we plot the relationship between bias and power for the threshold and the

minimum approach across all DGPs and all K. We compare three tests: the classical Binomial

test, the discontinuity test, and the CS2B test (the most powerful test overall). Each dot in Figure

2.16 corresponds to the power of one test under one DGP.20 We only show results for covariate

and IV selection; the bias under lag length selection is always zero. For the threshold approach,

we present results for τ = 0.25. For the minimum approach, we set τ = 0.75 since no test has

non-trivial power for τ = 0.25.

When researchers p-hack using a threshold approach, there is a positive association

between the average bias and the power of all three tests: the higher the costs of p-hacking,

the higher the power of the tests on average. The CS2B test has power close to one when the

bias is large. This test is able to detect p-hacking with high probability when it is costly, even

when only 25% of the researchers are p-hacking. Although less powerful than the CS2B test,

the discontinuity test also has high power in settings where p-hacking yields large biases. By

contrast, the power of the Binomial test does not exceed 30%, even when p-hacking leads to

large biases.

p-Hacking based on the minimum approach is difficult to detect. This type of p-hacking

does not lead to violations of continuity and monotonicity. As a result, the discontinuity and

the Binomial test, by construction, have no power, irrespective of the magnitude of the bias.

Our simulations confirm this. Therefore, we only discuss results for the CS2B test, which may

20We only include results for one-sided tests and exclude the results for two-sided tests in Figure 2.13.
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have power since the minimum approach may yield p-curves that violate the upper bounds. Our

simulation results suggest that the relationship between bias and power crucially depends on the

econometric method. The CS2B test does not have meaningful power for covariate selection,

irrespective of the bias. By contrast, there is again a positive relationship between bias and power

for IV selection.

Overall, our results show that whenever the tests have non-trivial power, there is a positive

association between their power and the bias from p-hacking. This is desirable from a meta-

analytic perspective. However, we also document cases where the proposed tests do not have

non-trivial power, even when p-hacking is very costly.
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Figure 2.16. Power vs. bias.
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2.5.2.4 The Impact of Publication Bias

Here we investigate the impact of publication bias on the power of the tests for testing

the joint null hypothesis of no p-hacking and no publication bias. Table 2.2 presents the results

for h = 0 and τ = 0.5. In Appendix B.3, we also report results for h ∈ {1,2} and h ∼ χ2(1).

The impact of publication bias on power depends on the testable restrictions that the tests

exploit. Both types of publication bias can substantially increase the power of the CSUB and

the CS2B test, which exploit upper bounds. This is expected since both forms of publication

bias favor small p-values, which leads steeper p-curves that are more likely to violate the upper

bounds, as discussed in Section 2.2.4. The difference in power with and without publication

bias is particularly stark under the minimum approach to p-hacking: publication bias can lead

to nontrivial power even when the CSUB and the CS2B test have very low power for detecting

p-hacking.

For the tests based on monotonicity of the entire p-curve (CS1 and LCM), the results

depend on the type of publication bias. Sharp publication bias tends to increase power, whereas

smooth publication bias can lower power. Due to its local nature, sharp publication bias does

not increase the power of the Binomial test. This again demonstrates the advantages of using

“global” tests.

Sharp publication bias accentuates existing discontinuities and leads to discontinuities

in otherwise smooth p-curves. It is thus not surprising that the discontinuity test is much more

powerful under sharp publication bias. By contrast, smooth publication bias can decrease the

power of the discontinuity test.

Overall, our results suggest that publication bias, sharp publication bias in particular, can

lead to high power, even in settings where p-hacking is difficult to detect. This finding is relevant

when interpreting empirical results. Specifically, we have documented several cases where even

the best tests exhibit low power for detecting p-hacking. In such cases, rejections are likely due

to the presence of publication bias.
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Table 2.2. The effect of publication bias: 1-sided tests, h = 0, τ = 0.5

Test

Binomial Discontinuity CS1 CSUB CS2B LCM

Cov Selection (K = 3, thresholding)

No Pub Bias 0.083 0.234 0.57 0.073 0.698 0.156

Sharp Pub Bias 0.083 0.997 0.635 0.998 0.998 0.764

Smooth Pub Bias 0.052 0.155 0.059 1 1 0.006

Cov Selection (K = 3, minimum)

No Pub Bias 0.031 0.047 0.032 0.034 0.047 0.001

Sharp Pub Bias 0.031 0.931 0.081 0.998 0.998 0.001

Smooth Pub Bias 0.024 0.045 0.012 1 1 0

IV Selection (K = 3, thresholding)

No Pub Bias 0.045 0.224 0.541 0.083 0.833 0.153

Sharp Pub Bias 0.045 0.994 0.583 1 1 0.736

Smooth Pub Bias 0.033 0.133 0.046 1 1 0.004

IV Selection (K = 3, minimum)

No Pub Bias 0.029 0.042 0.02 0.033 0.043 0

Sharp Pub Bias 0.029 0.95 0.054 1 1 0

Smooth Pub Bias 0.018 0.047 0.011 1 1 0

Lag Selection (thresholding)

No Pub Bias 0.267 0.16 0.156 0.039 0.17 0.04

Sharp Pub Bias 0.267 0.994 0.259 0.996 0.996 0.147

Smooth Pub Bias 0.155 0.109 0.028 1 1 0

Lag Selection (minimum)

No Pub Bias 0.04 0.039 0.057 0.041 0.068 0.01

Sharp Pub Bias 0.04 0.931 0.134 0.995 0.995 0.02

Smooth Pub Bias 0.029 0.047 0.017 1 1 0
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2.6 Conclusion

The ability of researchers to choose between possible results to report to put their work

in the best possible light (p-hack) has reasonably caused concern within the empirical sciences.

General approaches to limit or detect this ability are welcome, for example, replication studies

and pre-registration. One strand of detection is to undertake meta-studies examining reported

p-values (the p-curve) over many papers. Interpreting empirical work based on these tests

requires a careful understanding of their ability to detect p-hacking.

We examine from both a statistical and scientific perspective how well these tests are

able to detect p-hacking in practice. To do this, we examine four situations where we might

expect researchers to p-hack — search over control variables in linear regressions, search over

available instruments in IV regressions, selecting amongst datasets, and selecting bandwidth

in variance estimation. In a stylized version of each of these, we show how p-hacking affects

the distribution of p-values under the alternative, which tells us which types of tests might have

power. These results motivate Monte Carlo experiments in more general settings.

Threshold approaches to p-hacking (where a predetermined significance level is targeted)

result in p-curves that typically have discontinuities, p-curves that exceed upper bounds under

no p-hacking, and less often violations of monotonicity restrictions. Many tests have some

power to find such p-hacking, and the best tests are those exploiting both monotonicity and

upper bounds and those based on testing for discontinuities. p-Hacking based on reporting

the minimum p-value does not result in p-curves exhibiting discontinuities or monotonicity

violations. However, tests based on bound violations have some power. Overall this second

approach to p-hacking is much harder to detect.

From a scientific perspective, the relevant question is how hard it is to detect p-hacking

when the costs of p-hacking — size distortions when there is no effect to find and biases induced

in estimates through reporting the best results — are high. From this perspective, the results

are more positive. For the p-hacking strategies we examine, the opportunities to change results
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significantly through p-hacking are often limited. Test statistics are often quite highly (positively)

correlated when they are based on a single dataset so that the effects can be small. We show that

for the threshold case the power of tests that work well is positively correlated with the biases in

estimated effects induced by p-hacking. This is less so when the minimum p-value is reported

because of the low power of the tests in general.

Of final note is that this study examines situations where the model is correctly specified

or over-specified, so estimates are consistent for their true values. For poorly specified models, for

example, the omission of important variables that leads to omitted variables (confounding) effects,

it is possible to generate a larger variation in p-values. Such problems with empirical studies are

well understood and perhaps best found through theory and replication than meta-studies.

Chapter 2, in full, is currently being prepared for submission for publication of the

material. It is joint work with Graham Elliott and Kaspar Wüthrich. The dissertation author is a

primary author of this material.
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Chapter 3

Robust Caliper Tests

Abstract

Caliper tests are widely used to test for the presence of p-hacking and publication bias

based on the distribution of the z-statistics across studies. We show that without additional

restrictions on the distribution of true effects, Caliper tests may suffer from substantial size

distortions. We propose a modification of the existing Caliper test, referred to as the Robust

Caliper test, which is shown to control size irrespective of the true effect distribution. We also

propose a way of correcting the regression-based version of the Caliper test that allows for the

inclusion of additional covariates. The proposed tests are easy to implement and perform well in

practice.

3.1 Introduction

Publication bias and p-hacking undermine the credibility of empirical findings reported

in the scientific journals. A growing body of literature is concerned with detecting and under-

standing the magnitude and the impact of these phenomena based on the samples of published

statistical results (e.g., Gerber and Malhotra, 2008a,b; Brodeur et al., 2016b, 2020b; Vivalt, 2019;

Bruns et al., 2019; Adda et al., 2020; Elliott et al., 2022b,a). One approach to detecting p-hacking
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and publication bias is to analyze the distribution of observed z-statistics across studies.1

Among the statistical tools routinely used to formally test for the presence of p-hacking

and publication bias is the Caliper test. Originally proposed by Gerber and Malhotra (2008a,b)

for detecting publication bias in sociology research, this is a local test based on the idea that in

the absence of selection or manipulation, the observed fractions of marginally significant and

marginally insignificant results in a small neighborhood around the chosen significance cutoff

should be the same. Recently in economics, Vivalt (2019) adopted the same methodology to

examine how significance inflation has varied across time, methods and disciplines. A prominent

paper by Brodeur et al. (2020b) also uses the Caliper test and its regression-based augmentation

to examine how extent of p-hacking varies by the econometric method that researchers use.

Other applications include Brodeur et al. (2021, 2022b,a).

The logic behind the Caliper test described above does not take into account the under-

lying distribution of true effects that the researchers are dealing with. In this paper, we show

that this standard version of the Caliper test fails to control size for certain distributions of true

effects. We propose a corrected version of the Caliper test that we refer to as the Robust Caliper

test, which compares the proportion difference of marginally significant and insignificant results

to the bound implied by the worst-case distribution of true effects.

Our contribution to the literature is two-fold. First, by construction, the resulting test

is uniformly valid over the set of all possible distributions of effects. In this way, the paper

contributes to the literature on methods for testing for p-hacking and publication bias. Second,

we propose a procedure to quantify the extent of p-hacking/publication bias present in the

literature. Specifically, given a chosen confidence level, we construct a lower bound on the share

of literature affected by p-hacking. To our knowledge, this paper is the first to provide a formal

way of measuring the extent of p-hacking without assuming a counterfactual distribution of test

statistics, absent p-hacking, contributing to the literature on evaluation of the extent of p-hacking

1More classic approaches to analyzing the impact and magnitude of publication bias include, for example,
Rosenthal (1979) and Gleser and Olkin (1996). A great review of related methods, their advantages and limitations,
can be found in Schmid et al. (2020)
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and publication bias (Head et al., 2015; Andrews and Kasy, 2018; Brodeur et al., 2016b, 2020b).

When the econometrician has additional information regarding the distribution of true

effects, such as its parametric form, we derive a version of the Caliper test that uses this

information to construct an alternative bound on the proportion difference that allows for the test

to be less conservative and consequently improve power.

We also consider a regression-based modification of the Caliper test introduced by

Brodeur et al. (2020b). We show that the regression-based test suffers a similar size control

problem and admits a correction under parametric first stage estimation of the distribution of

true effects. We propose a bootstrap version of the corrected test that does not require analytical

derivation of the variance matrix components.

The Caliper tests can be equivalently formulated and applied to the distributions of

reported p-values (p-curves). In this case, the tests will compare the number of p-values just

below a significance threshold (typically, 0.05) to the number just above it. Given the non-

increasingness of the p-curve absent p-hacking (Elliott et al., 2022b), the standard Caliper test

is only valid when the p-curve is flat, i.e. when the distribution of true effects is a point mass

at zero so that all the null hypotheses considered by researchers in the literature are true. This

condition is unlikely to hold in reality. On the other hand, the Robust Caliper test takes into

account the maximum absolute slope of the p-curve in the neighborhood of the target threshold

for constructing the bound on proportion difference. Therefore, this paper complements existing

methods for detecting p-hacking that use shape restrictions on the p-curve (see, e.g., Simonsohn

et al. (2014); Elliott et al. (2022b,a)).

The rest of the paper is organized as follows. Section 3.2 provides the general setup,

introduces the standard Caliper test and shows its invalidity. Section 3.3 derives the Robust

Caliper test and shows how it can be used to evaluate the extent of p-hacking. Section 3.4

discusses how to improve Caliper test and its regression-based version given a parametric

estimate of the distribution of true effects. Section 3.5 conducts a simulation experiment that

shows validity of proposed tests and examines their power. Section 3.6 applies Robust Caliper
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tests to the dataset of Brodeur et al. (2020b). Section 3.7 concludes. Appendix contains all

derivations, proofs and additional results.

3.2 Setup

3.2.1 The Distribution of z-statistics

Consider the problem of testing a two-sided hypothesis about a scalar parameter θ

H0 : θ = θ0 against H1 : θ ̸= θ0. (3.1)

Suppose that researchers have access to an estimator θ̂ of θ based on a sample of n observations.

The estimator is assumed to be asymptotically normal such that

√
n
(
θ̂ −θ

) d→ N (0,σ2),

where σ2 is the asymptotic variance of θ̂ that can be consistently estimated by σ̂2.

Define the usual z-ratio as

z :=
√

n(θ̂ −θ0)

σ̂
.

For a given h∈R, asymptotic normality of θ̂ implies that z d→N (h,1), where h :=
√

n(θ −θ0)/σ .

The absolute value of the z-ratio, |z|, is asymptotically distributed according to a folded normal

distribution with location parameter h and scale parameter 1. In most studies, the sample sizes

are large enough to rely on asymptotic approximations. Therefore, in what follows, we are

going to assume that, conditional on h for a given study, the z-statistic comes from N (h,1)

distribution.

We are interested in the distribution of the absolute value of z across studies, where we

compute z given values of h, which are drawn from a probability distribution Π with support
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H ⊂ R. We refer to Π as the distribution of true effects. The density of |z| is given by

g|z|(x) =
∫
H

[φ(x+h)+φ(x−h)]dΠ(h), (3.2)

where φ is the density of a standard normal distribution. Note that the derivative of g|z|(x) is

g′|z|(x) =
∫
H

[(h− x)φ(x−h)− (x+h)φ(x+h)]dΠ(h).

and its sign will generally depend on x and Π. In practice, scientists may well be focusing on

hypotheses that are difficult to distinguish from the null, which corresponds to Π’s that assign a

lot of mass to z-statistics near two. As a result, the distribution of z-statistics, while not being

p-hacked, may still look suggestive of p-hacking due to the hump near the significance threshold.

See Section ?? and Figure 3.1 for a concrete example.

Illustrative Example. If Π(h) is the normal distribution with mean µh and variance σ2
h , then

g|z|(x) =
φ((x−µh)/

√
σ2

h +1)+φ((x+µh)/
√

σ2
h +1)√

σ2
h +1

.

Remark 3.1 (One-sided tests). When researchers are concerned with a one-sided version of

(3.1) with alternative hypothesis being θ > θ0, one may also consider the density of signed

z-statistics gz(x) =
∫
H φ(x+h)dΠ(h). All results of this paper remain valid even if some fraction

of observations are generated by one-sided testing problems. Therefore, in what follows, we

focus on the case of two-sided hypotheses and absolute z-values.

3.2.2 Caliper Tests

Caliper tests are based on the distribution of absolute z-values. The idea underlying the

caliper test is to compare the fraction of absolute z-statistics right above and below a particular

threshold t. If the fraction right above t exceeds 0.5, it is interpreted as evidence for p-hacking
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and/or publication bias, where the value of t is often chosen to be 1.96 or some other standard

significance cutoff, in practice.

Let b denote a bandwidth chosen by the researcher. Define the fraction of absolute

z-statistics right below and right above t as

pL(b) := Pr(t −b ≤ |z| ≤ t) =
∫ t

t−b
g|z|(x)dx =

∫
H

KL(h; t,b)dΠ(h) (3.3)

and

pU(b) := Pr(t ≤ |z| ≤ t +b) =
∫ t+b

t
g|z|(x)dx =

∫
H

KU(h; t,b)dΠ(h) (3.4)

respectively, where KL(h; t,b) = Φ(t+h)+Φ(t−h)−Φ(t−b+h)−Φ(t−b−h), KU(h; t,b) =

Φ(t + b+ h)+Φ(t + b− h)−Φ(t + h)−Φ(t − h) and Φ(·) is the CDF of a standard normal

distribution. Finally, define

∆b := pU(b)− pL(b) =
∫
H

K(h; t,b)dΠ, (3.5)

where K(h; t,b) = KU(h; t,b)−KL(h; t,b).

The formal hypothesis testing problem behind the Caliper test is

H0 : ∆b ≤ 0 against H1 : ∆b > 0. (3.6)

The hypothesis (3.6) can be tested using (exact) Binomial test.2

Remark 3.2. Brodeur et al. (2020b) consider a regression-based implementation of Caliper tests.

In particular, they restrict their sample to [t −b, t +b] and model the conditional probability of a

2The Binomial test examines that pU (b)
pL(b)+pU (b) ≤ 0.5 by comparing NL,the number of observed |z|-values in

[t −b, t), to NU , the number of observed |z|-values in [t, t +b]. The p-value for the Binomial test is calculated as
1−FBin(NU −1;NL +NU ,0.5), where FBin(x;N, p) is the CDF of the Binomial distribution with success probability
p and N number of trials. Note that the exact Binomial test requires independent observations.
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significant result as a function of covariates. A simplified version of their model is

Pr(|z| ≥ t | |z| ∈ [t −b, t +b],X) = Λ(X ′
δ ),

where X is a vector of covariates of interest and Λ is a suitable link function such as the Probit

or Logit link function. We analyze this approach in more detail in Section 3.4.2.

3.2.3 Size Distortions of Caliper Tests

Previous papers (e.g., Gerber and Malhotra, 2008a,b; Brodeur et al., 2020b; Vivalt, 2019;

Bruns et al., 2019; Adda et al., 2020) have interpreted the existence of humps, i.e. excess mass,

just above the t threshold as evidence of p-hacking. However, this interpretation partly relies on

the implicit monotonicity assumption on the shape of the density of |z|-statistics. As pointed out

by Elliott et al. (2020), this monotonicity assumption is only satisfied under additional restrictions

on the allowable set of distributions of true effect.3 Consequently, in general, humps generated

by the distribution of local alternatives result in size violations for the tests attributing humps in

the z-curve to p-hacking.
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Figure 3.1. z-curves

Consider the following simple example. Let Π be a two-point distribution that assigns

3Specifically, the density of absolute z-statistics is monotone if Π admits a unimodal continuous density function.
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probability η ∈ (0,1) to h = 0 and probability 1−η to h = 2.5. Thus, the observed results

are coming from a mixture of studies in which researchers examine true null hypotheses and

studies in which researchers focus on hypotheses with alternatives that are difficult to distinguish

from the null. Figure 3.1 plots |z|-curves for η ∈ {0.3,0.4,0.5,0.6}. The shape of g|z| is highly

dependent on η , and may result in humps around t = 1.96 even in the absence of p-hacking.

The shape of g|z| directly translates to the rejection rates of the Caliper test. Figure

3.2 displays the empirical rejection rate of a Caliper test based on exact Binomial tests for

t = 1.96 and b ∈ {0.05,0.1,0.2}, where the nominal level is 5%. The sample size is N = 5000

corresponding to the empirical application of Section 3.6.4 In our setting, the average local

sample size ranges from 58 (b = 0.05, η = 1) to 686 (b = 0.2, η = 0). Our simulations

demonstrate that Caliper tests can suffer from substantial size distortions when τ is small. When

this is the case, the z-curve exhibits humps induced by the distribution of alternatives (cf. Figure

3.1).
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Figure 3.2. Size distortions caliper test. Nominal level: 5%. Based on simulations with 10000
repetitions.

Proposition 3.1 provides a formal explanation for the findings of the above Monte Carlo

experiment. The asymptotic rejection probability of the Binomial test can be made arbitrarily

4Note that the relevant sample size for the Caliper test is not the overall sample size, but the local sample size in
the [t∗−b, t∗+b] interval, which depends on the distribution of alternatives and on the choice of b.
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large by choosing a suitable distribution of true effects.

Proposition 3.1. Suppose Z1, ...,ZN are i.i.d. random observations of z-statistics as in Section

3.2.1. Then, for any 0 < b ≤ t,

sup
Π

limsup
N→∞

Pr(1−FBin(NU −1;NL +NU ,0.5)< α) = 1,

where α ∈ (0,1), NU =∑
N
i=1 1{t < |Zi| ≤ t+b}, NL =∑

N
i=1 1{t−b≤ |Zi| ≤ t} and the supremum

is taken over all probability distributions on R.

3.3 Robust caliper tests

Let ∆b(Π) denote the value of ∆b that is implied by the distribution of true effects Π. If

Π is known to the econometrician, the testing problem (3.6) can be adjusted in a straight-

forward way by utilizing this knowledge. Indeed, the null hypothesis in testing problem

H0 : ∆b ≤ ∆b(Π) vs. H1 : ∆b > ∆b(Π) holds under no p-hacking, and the Binomial test

with appropriately adjusted success probability controls size.5

Illustrative Example (continued). When the distribution of true effects is N (µh,σ
2
h ), the true

value of ∆b in the absence of p-hacking becomes

∆b(N (µh,σ
2
h )) = ∑

(i, j)∈{−1,1}2

Φ

t + ib+ jµh√
σ2

h +1

−Φ

 t + jµh√
σ2

h +1

 .

3.3.1 Worst-Case Correction

In practice, the distribution of true effects is never known to the econometrician. This

motivates the development of the Caliper test that is agnostic to the distribution true effects. Here

we propose a modified version of the Caliper test, which we refer to as the Robust Caliper Test.

5In this case, the success probability parameter for the Binomial test under the null needs to be calculated as the
value of pU (b)

pL(b)+pU (b) implied by Π.
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The idea is the following. Given the explicit form of g|z| in equation (3.2), we can compute the

maximum value of ∆b that can be achieved in the absence of p-hacking. We denote this value as

∆b. Then we consider the modified testing problem

H0 : ∆b ≤ ∆b against H1 : ∆b > ∆b. (3.7)

To determine the value of ∆b, we use the definition of ∆b (equation (3.5)). In the absence

of p-hacking, we have

∆b := ∆(Π∗
b) = ∑

(i, j)∈{−1,1}2

Φ(t + ib+ jh∗)−Φ(t + jh∗),

where Π∗
b is a probability measure that assigns all mass to an element h∗ ∈ argmaxh∈H K(h; t,b).
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Figure 3.3. The bound on the proportion differences as a function of b (t = 1.96).

For given values of b and t, the value of h∗ can be found numerically. Figure 3.3 shows

the graph ∆b for t = 1.96 as a function of b and ∆b for three different choices of Π. As we can see,

depending of the distribution of true effects, ∆b can take large negative values (Π = N (1,1)),

be close to zero (Π = N (2,0.25)) or take large positive values close to the upper bound ∆b

(Π = N (3,0.05)).

The hypothesis (3.7) can be tested using a simple one-sided t-test. The estimate of ∆b is

76



∆̂b = p̂U(b)− p̂L(b), where p̂U(b) and p̂L(b) are the sample proportions of marginally significant

and marginally insignificant results respectively. The variance of ∆̂b is Ωb = pU(b)(1− pU(b)+

pL(b))+ pL(b)(1− pL(b)+ pU(b)) and can be consistently estimated by plugging in sample

proportions. We denote this estimator by Ω̂b. Thus, as Theorem 3.1 states formally, under the

null hypothesis in (3.7), the asymptotic distribution of the statistic

T =

√
N(∆̂b −∆b)√

Ω̂b

is stochastically dominated by the standard normal distribution and we can test the null hypothesis

of no p-hacking by comparing T to quantiles of the standard Normal distribution.

Theorem 3.1. Suppose Z1, ...,ZN are i.i.d. random observations of z-statistics as in Section 3.2.1.

Then under the null hypothesis of no p-hacking,

limsup
N→∞

Pr(T > z1−α)≤ α,

for all Π other than point masses at ±∞. In addition, for any γ ∈ (0,1) and sufficiently large

A > 0,

limsup
N→∞

sup
Π∈FA,γ

Pr(T > z1−α) = α,

where α ∈ (0,1), z1−α := Φ−1(1−α) and FA,γ = {Π : Π(A)−Π(−A)> γ}.

Remark 3.3 (Testing multiple thresholds jointly). While p-hacking, different researchers may

target different significance thresholds. For instance, if different groups of researchers aim to

achieve significant results at 1%, 5% and 10% significance levels, then we should expect the

testable restriction to be violated in the neighborhoods of t1 = 2.576, t2 = 1.96 and t3 = 1.645

respectively. One can use the Robust Caliper test to examine each threshold separately. However,

doing so would require a certain adjustment for multiple testing in order for this procedure to

control size. Instead, one can construct a joint test that combines all thresholds. For bandwidth
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values b1,b2 and b3, the vector of proportion differences, (∆t1
b1
,∆t2

b2
,∆t3

b3
)′ can be upper-bounded

by a vector of corresponding worst-case differences, (∆t1
b1
,∆

t2
b2
,∆

t3
b3
)′, component-wise. Moment

inequality tests can be used to test that these upper bounds hold given asample of z-statistics.

See Appendix C.3 for more details.

Remark 3.4 (Correlated observations). In practice, we observe multiple results reported in

a single paper. As a consequence, the independence assumption of Theorem 1 is likely to be

violated when we apply the robust test to the full sample of observed results. In that case, one

needs to replace Ω̂b with a cluster-robust version of the variance estimator.

Remark 3.5 (z-curve vs. p-curve). Caliper tests can be constructed analogously on the basis of

observed p-values instead of |z|-values. An advantage of using the p-curve for testing p-hacking

is that testable restrictions under no p-hacking have a more natural interpretation in terms of

shape constraints (monotonicity) on allowable p-curves (see Elliott et al. (2022b)). In general,

since there is a one-to-one correspondence between |z|-values and p-values, one can always

construct a Caliper test based on the p-curve that is equivalent to a given Caliper test based of

the z-curve. However, this is not the case if we require a symmetric partition of the local testing

interval (see Appendix C.4 for the comparison between two approaches in this case). In this

paper, we focus on Caliper tests based on the distribution of absolute z-values.

3.3.2 Evaluating the Extent of p-hacking

In practice, the observed sample of z-statistics combines a mixture of both p-hacked and

non-p-hacked results. Let τ ∈ [0,1] be a population probability that the study is p-hacked, we

will refer to it as the extent of p-hacking in the literature. Then the density of observed |z|-values

is a mixture of g|z|(x) and gph
|z| (x) with mixture weights 1− τ and τ respectively:

gobs
|z| (x) = (1− τ)g|z|(x)+ τgph

|z| (x), (3.8)
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where g|z|(x) is the density of |z| in the absence of p-hacking defined in equation (3.2) and gph
|z| (x)

is the density of p-hacked results. The shape of gph
|z| (x) depends on various factors such as the

underlying distribution of data in observed studies, the estimation methods used by researchers

and the p-hacking strategy employed by researchers. For example, Elliott et al. (2022a) provide

analytical and numerical examples of p-hacked distributions for the cases of covariate selection

in linear regression, judicious instrument selection in IV regression and judicious lag length

selection for the estimation of variance. Section 3.5.1 and Appendix C.5 provide concrete

examples of gph
|z| (x) in the context of control variables selection in linear regression. For this

section, we do not make any assumptions about the form of gph
|z| (x).

When τ = 0 there is no p-hacking in the literature and |z| follows g|z|. Therefore, the

hypothesis of no p-hacking can be formulated as

H0 : τ = 0 against H1 : τ > 0. (3.9)

As we have shown in 3.3.1, Robust Caliper test can be used to test (3.9). Suppose that instead of

the extreme case τ = 0, we want to test a weaker hypothesis that the extent of p-hacking in the

literature is at most τ̄

H0 : τ ≤ τ̄ against H1 : τ > τ̄. (3.10)

Let ∆b,τ̄ be the proportion difference implied by (3.8) when τ = τ̄ Under the null hypothesis in

(3.10) with τ̄ > 0, ∆b is not a valid upper bound on ∆b,τ̄ . However, the valid upper bound can be

easily constructed given the structure of equation (3.8). Specifically, we can show that

∆b,τ̄ := sup
Π

∆b,τ̄ = (1− τ̄)∆b + τ̄.

The first term in the above expression is the worst-case bound on ∆b scaled by the minimum

fraction of non-p-hacked results under the null. The second term is the maximum extent of

p-hacking under the null and comes from the fact that the value of the proportion difference
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under p-hacking cannot exceed 1. Therefore, analogously to the result of Theorem 3.1, the null

hypothesis in (3.10) can be tested by a simple one-sided t-test that compares the test statistic

Tτ̄ =

√
N(∆̂b −∆b,τ̄)√

Ω̂b

to quantiles of a standard Normal distribution. The confidence interval for τ can be constructed by

inverting this test. The (1−α)100% confidence interval for τ is therefore given by CI1−α(τ) :=

[τα ,1], where

τα = max

{
0,
√

N(∆̂b −∆b)− z1−α

√
Ω̂b√

N(1−∆b)

}
is the largest extent of p-hacking rejected by the test at level α .

3.4 Estimating Π under the Null

In testing problem H0 : ∆b ≤ ∆b(Π) vs. H1 : ∆b > ∆b(Π), the distribution of effects,

Π, plays the role of a nuisance parameter. In section 3.3, we dealt with it by considering the

worst-case value of the nuisance parameter to ensure the uniform validity of the test. In this

section, we consider an alternative approach by estimating the nuisance parameter under the null

for the test. This approach requires additional assumptions on Π.

3.4.1 Caliper Test with Parametric Π

The robust caliper test proposed in Section 3.3.1 is valid uniformly over the universe of

distributions of true effects. However, as it can be deduced from Figure 3.3, Robust Caliper tests

can be conservative due to the worst-case construction. The power of the test can be improved

in the presence of additional restrictions on the set of allowable distributions of true effects.

For instance, it can be done if we have information about the parametric form of Π.6 The key

observation is that under the null of no p-hacking, one can construct an estimate Π̂ of Π and use

6Note that even in the presence of such information, if the parametric family of allowable Π’s is rich enough, it
is not possible to tighten the upper bound threshold ∆b. For example, if FΠ = {N (µh,σ

2
h ) : µh ∈ R,σ2

h > 0}, then
supΠ∈FΠ

∆b(Π) = ∆(Π∗
b) = ∆b.
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it to construct an alternative estimate of ∆b(Π) as ∆̃b := ∆b(Π̂). The test then can be based on

the realized difference between ∆̂b and ∆̃b. We require parametric models for Π to satisfy the

following assumption.

Assumption 3.1 (MLE Regularity). (i) The model {Πγ : γ ∈ Γ} is differentiable at an inner point

γ0 of Γ ⊂ Rk; (ii) Πγ ̸= Πγ0 for every γ ̸= γ0; (iii) the derivative of the PDF (or PMF) π(h;γ)

with respect to γ is integrable on H for all γ ∈ Γ; (iv) information matrix of the model at γ0 is

nonsingular; (v) there exists a measurable function s(·) with EΠγ0
[s2]< ∞ such that, for every γ1

and γ2 in a neighborhood of γ0, | logπ(h;γ1)− logπ(h;γ2)≤ s(h)||γ1 − γ2||.

Assumption 3.1 contains standard conditions that ensure that the maximum likelihood

estimator of Π under no p-hacking is consistent and asymptotically normal. They are satisfied in

many parametric settings including the setting of the Illustrative example. Under Assumption 1

the stochastic behavior of ∆̂b − ∆̃b is characterized by the following theorem.

Theorem 3.2. Suppose the model for the distribution of true effects is {Πγ : γ ∈ Γ ⊂ Rk} and

Assumption 3.1 is satisfied. Let γ̂ and Π̂ = Πγ̂ be the MLE estimators of γ and Π respectively.

Then under no p-hacking
√

N(∆̂b − ∆̃b)
d→ ξ1 −ξ2,

where ξ1

ξ2

∼ N


0

0

 ,

 Ωb C′
∆γ

D(Π)

C′
∆γ

D(Π) D(Π)′I −1
γ D(Π)


 ,

Iγ =
∫

∞

−∞

(
∫
H φ(z−h)∂π(h;γ)/∂γdh)(

∫
H φ(z−h)∂π(h;γ)/∂γdh)′∫

H φ(z−h)π(h;γ)dh dz, C∆γ is the asymptotic covariance be-

tween ∆̂b and γ̂ and D(Π) =
∫
H K(h; t,b)∂πγ(h)/∂γdh.

Every element in the variance matrix of (ξ1,ξ2)
′ can be consistently estimated under

standard conditions. Therefore, the test statistic

T̃ =

√
N(∆̂b − ∆̃b)√

Ω̂b −2Ĉ′
∆γ

D(Π̂)+D(Π̂)′Î −1
γ D(Π̂)
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is asymptotically normally distributed and we can test the null hypothesis of no p-hacking by

comparing it to quantiles of the standard normal distribution.

Illustrative Example (continued). Under normality assumption on the distribution of true

effects, γ =(µh,σ
2
h )

′ and γ̂ =
(
Z̄,max

{
0, 1

N ∑
N
i=1(Zi − Z̄)2 −1

})′
with Iγ = diag{σ2

h +1,2(σ2
h +

1)2}. Define α
+
1 := t+b−µh√

σ2
h+1

, α
+
2 := t−µh√

σ2
h+1

, α
+
3 := t−b−µh√

σ2
h+1

, α
−
1 := −t−b−µh√

σ2
h+1

, α
−
2 := −t−µh√

σ2
h+1

and

α
−
3 := −t+b−µh√

σ2
h+1

. Then C∆γ = (C∆µh,C∆σ2
h
)′, where

C∆µh =
√

σ2
h +1

(
2(φ

(
α
+
2
)
−φ(α−

2 ))+φ
(
α
−
1
)
+φ

(
α
−
3
)
−φ

(
α
+
1
)
−φ

(
α
+
3
))

,

C
∆σ2

h
=(σ2

h +1)
(
2(α+

2 φ
(
α
+
2
)
−α

−
2 φ(α−

2 ))+α
−
1 φ
(
α
−
1
)
+α

−
3 φ
(
α
−
3
)
−α

+
1 φ
(
α
+
1
)
−α

+
3 φ
(
α
+
3
))

and

D(Π) =
∫
R

K(h; t,b)π(h)
(

h−µh

σ2
h

,
(h−µh)

2 −σ2
h

2σ4
h

)′

dh.

For more complicated families of distributions, the calculations of the expressions for the

elements in the variance matrix of (ξ1,ξ2)
′ can be cumbersome and often infeasible analytically.

These derivations can be avoided by using Efron’s bootstrap that is described in the Algorithm

3.1.

Algorithm 3.1. Efron’s Bootstrap for ∆̂b − ∆̃b

Step 1. Given a sample of Z = {Z1, ...,ZN} calculate the estimates ∆̂b,Π̂ and ∆̃b = ∆(Π̂)

Step 2. Calculate the test statistic S = ∆̂b − ∆̃b

Step 3. Construct a bootstrap sample Z ∗ = {Z∗
1 , ...,Z

∗
N} by drawing with replacement

from Z and use Z ∗ to calculate ∆̂∗
b,Π̂

∗ and ∆̃∗
b = ∆(Π̂∗)

Step 4. Calculate the bootstrap version of the test statistic as S∗ = ∆̂∗
b − ∆̃∗

b −S

Repeat steps 3 and 4 B times and obtain S = {S∗1, ...,S
∗
B}

Step 5. Reject the null hypothesis of no p-hacking if S > q∗1−α
(S ), where q∗1−α

(S ) is

the 100(1−α)% quantile of S
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Remark 3.6. (Non-parametric estimation of Π) Under the set up of Section 3.2 the distribution

of true effects can be estimated non-parametrically. Note that asymptotically z = h+ ξ , ξ ∼

N (0,1), and thus, given a random sample of z′s, the distribution of h can be recovered using

kernel deconvolution techniques (see Delaigle (2021) for an excellent review). The derivation of

the asymptotic distribution of
√

N(∆̂b − ∆̃b) in this case is more involved and left for future work.

Nevertheless, the test with a non-parametric first stage can be conducted using the bootstrap

procedure described in Algorithm 3.1.

3.4.2 Regression-Based Test

Brodeur et al. (2020b) propose a regression-based implementation of the Caliper test. In

particular, they restrict the sample to include only marginally significant and insignificant results,

|z| ∈ [t −b, t +b], and model the conditional probability of a significant result as a function of

binary variables of interest and additional covariates such as author and journal characteristics.7

More specifically, a version of their model can be written as

Pr(|z| ≥ t | |z| ∈ [t −b, t +b],M0,M1, ...,MK,X) = Λ

(
β0 +

K

∑
k=1

βkMk +X ′
δ

)
, (3.11)

where Mk ∈ {0,1},k = 0, ...,K represent mutually exclusive categories, Xi ∈ X is a vector of

covariates of interest and Λ is a suitable link function such as the Probit or Logit link function.

For example, Mk’s can represent different statistical estimation methods (RCT (baseline), RDD,

IV, DID) used by researchers as in Brodeur et al. (2020b). If the results in the baseline category

are not p-hacked, then significantly positive values of βk may be interpreted as evidence of

p-hacking in category k > 0. Implicitly, this method uses the baseline category as a subset of

data on which the actual proportions of marginally significant and marginally insignificant results

(implied by the distribution of true effects) can be estimated and compares the observed values

in other categories to this benchmark. As Proposition 3.2 formally states, this logic works if the

7Brodeur et al. (2020b) argue that including these additional covariates may help to distinguish p-hacking from
publication bias.
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distribution of true effects is the same among categories and X is independent of the categories.

However, in the absence of homogeneity in the distributions of true effects, this procedure is

invalid for testing for no p-hacking (Proposition 3.3).

Proposition 3.2. Suppose that (i) the baseline category (M0 = 1) is not p-hacked; (ii) X is

independent of Mk,k = 0,1, ...,K; and (iii) the distributions of true effects for all categories

coincide Πk = Π for k = 0, ...,K. Then under no p-hacking βk = 0,k = 1, ...,K in model (3.11).

Proposition 3.3. Suppose X is independent of Mk,k = 0,1, ...,K, E[X2]< ∞ and Λ(·) is strictly

increasing. Let Tk be the t-statistic for testing βk = 0 against βk > 0 in model (3.11). Then

sup
Π0,...,ΠK

limsup
N→∞

Pr(Tk > z1−α) = 1.

Corrected Test

The worst-case correction similar to Section 3.3.1 is not available in the context of the

regression-based test. However, a valid test can still be constructed if we have estimates of

Πk,k = 0, ...,K similar to Section 3.4.1.

Let FX |k be the distribution function of X conditional of Mk = 1. Define

ηk(a) := η(a;δ ,FX |k) =
∫
X

Λ(a+ xδ )dFX |k(x)

and let the estimate of the inverse of η be defined as

η̂
−1
k (u) := η

−1(u; δ̂ , F̂X |k).

In addition, define conditional fraction of marginally significant results for category k, ωk :=

ωk(Πk) :=Pr(|z| ≥ t | |z| ∈ [t −b, t +b],Mk = 1)= pU,k
pU,k+pL,k

. Note that η
−1
0 (ω0)= β0 and η

−1
k (ωk)=

84



β0 +βk for k > 0. Using this observation, it can be shown that, in the absence of p-hacking,

β = Aη
−1,

where β = (β0, ...,βK)
′, η−1 = (η−1

0 (ω0), ...,η
−1
K (ωK))

′ and A =

−1 01×K

−ιK IK

. The left-

hand side, β , can be estimated from the binary regression and the right-hand side, η−1, can be

estimated by combining the estimates of Π0, ...,ΠK (and implied estimates of ω0, ...,ωK) with

the estimate of η . The following theorem shows that a valid test for p-hacking can be constructed

based on the difference between these two estimates.

Theorem 3.3. Suppose the model for the distribution of true effects for subgroup Mk = 1 is

{Πγk : γk ∈ Γk ⊂ Rdk} and Assumption 1 is satisfied for every k = 0, ...,K. In addition, assume

that E[X2]<∞. Let β̂ be the MLE estimate of β in model (3.11), η̂−1 = (η̂−1
0 (ω̂0), ..., η̂

−1
K (ω̂K))

′

and ω̂k = ωk(Πγ̂k) for k = 0, ...,K. Then under no p-hacking

√
N(β̂ −Aη̂−1)

d→ ζ1 −Aζ2,

where (
ζ ′

1 ζ ′
2

)′
∼ N

(
02(K+1)×1,V

)
,

and the blocks of V are defined in Appendix C.1.6.

Given the result of Theorem 3.3, the null hypothesis of no p-hacking for category k can

be tested by a one-sided t-test constructed on the basis of the kth element of
√

N(β̂ −Aη̂−1).

One can also test the null jointly for several categories by using a χ2-test on a subset of elements

in
√

N(β̂ −Aη̂−1).

In practice, the expression for V can be very hard to calculate even when the distributions

of true effects are normal. Similar to Section 3.3.1, these derivations can be avoided by using

Efron’s bootstrap that is described in the Algorithm 3.2.
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Algorithm 3.2. Efron’s Bootstrap for β̂ −Aη̂−1

Step 1. Given a sample of Z = {Z1, ...,ZN} calculate the estimates β̂ and η̂−1

Step 2. Calculate the test statistic S = β̂ −Aη̂−1

Step 3. Construct a bootstrap sample Z ∗ = {Z∗
1 , ...,Z

∗
N} by drawing with replacement

from Z and use Z ∗ to calculate β̂ ∗ and η̂−1
∗

Step 4. Calculate the bootstrap version of the test statistic as S∗ = β̂ ∗−Aη̂−1
∗
−S

Repeat steps 3 and 4 B times and obtain S = {S∗1, ...,S
∗
B}

Step 5. Reject the null hypothesis of no p-hacking if S > q∗1−α
(S ), where q∗1−α

(S ) is

the 100(1−α)% quantile of S

3.5 Monte Carlo Simulations

In this section, we investigate the finite sample properties of the tests in Section 3.3 using

a Monte Carlo simulation study.

3.5.1 Covariate Selection in Linear Regression

We adopt the Monte Carlo design of Elliott et al. (2022a). Specifically, we consider

researchers who have access to a random sample with N = 200 observations generated as

Yi = Xiβ +ui, i = 1, . . . ,N,

where (Xi,ui)
′ ∼ i.i.d.N (0, I2), β = h/

√
N and h is drawn from the distribution of true effects

Π. For this Monte Carlo experiment, we use the three choices of Π that we considered in

Section 3.3.1: Π = N (1,1), Π = N (2,0.25) and Π = N (3,0.05). Researchers have access to

K additional control variables, Wi := (W1i, . . . ,WKi)
′, which are generated as

Wki = γkXi +
√

1− γ2
k εWk,i, εWk,i ∼ N (0,1), γk ∼U [−0.8,0.8], k = 1, . . . ,K.
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The researchers are interested in testing a hypothesis about β :

H0 : β = 0 against H1 : β ̸= 0. (3.12)

Following Elliott et al. (2022a), we consider two approaches to p-hacking: a thresholding and a

maximum approach.

For the threshold approach, researchers first regress Yi on Xi and Wi and test (3.12).

Denote the resulting z-value as Z. If |Z| ≥ t, the researchers report the absolute z-value. If |Z|< t,

they regress Yi on Xi trying all (K −1)×1 subvectors of Wi as controls and select the result with

the largest absolute z-value. If the largest absolute z-value is larger than t, they continue and

explore all (K −2)×1 subvectors of Wi etc. If all results are insignificant, they report the largest

absolute z-value.

For the maximum approach, researchers run regressions of Yi on Xi and each possible

configuration of covariates Wi and report the maximum absolute z-value.

Figures C.4, C.5, and C.6 show the null and p-hacked distributions for K ∈ {3,5,7}. To

generate these distributions, we run the algorithm one million times and collect p-hacked and

non-p-hacked results. The threshold approach leads to a discontinuity in the z-curve and may

lead to humps just above significance thresholds. On the other hand, when using the maximum

approach, the z-curve is generated by maximums across realizations of normal random variables

and hence continuous. The distribution of h is an important driver of the shape of the z-curve.

The larger h, the higher the probability that researchers find significant results in the initial

specification and terminate the specification search when using the thresholding approach. Since

larger amount of controls gives researcher more room to p-hack, the hump right next to the

significance threshold is more pronounced for larger values of K. Similarly, for the maximum

approach larger K makes the distribution more shifted to the right.
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3.5.2 P-hacking at t = 1.96

In this section we present the power curves of our tests when the p-hacking occurs at a

single significance threshold (t = 1.96) and the tests are using this threshold as a target.

We draw our Monte Carlo samples from the distribution gobs
|z| , that is a mixture of p-hacked

(gph
|z| ) and non-p-hacked (g|z|) distributions

gobs
|z| = (1− τ)g|z|+ τgph

|z| ,

where τ ∈ [0,1]. We use sample sizes N ∈ {1000,5000}. All results are based on 5,000 Monte

Carlo repetitions. The nominal level of all tests is 5%.

Figures 3.4 and 3.5 display the power of the Robust Caliper test and Caliper tests based

on a parametric (normal) estimate of Π for the case K = 5 (results for K = 3 and K = 7 are

reported in Appendix C.5). The parametric tests are implemented using both the asymptotic

distribution and bootstrap where we use 1,000 bootstrap repetitions in all cases. We show the

results for two choices of b: b = 0.1 and b = 0.5. Figure 3.4 shows the power for the overall

sample size of N = 1000. It can be seen that all tests control size for every choice of Π. For the

thresholding p-hacking approach the power of the Robust Caliper test varies significantly with Π

and b. For b = 0.5 and Π ∈ {N (1,1),N (2,0.25)} the test has no power. The reason for that

is the fact that the worst-case bound is very weak for b = 0.5 and far above the true value of

the proportion difference implied by these distributions of true effects (cf. Figure 3.3). When

Π = N (3,0.05) the test with b = 0.5 starts detecting p-hacking after the extent of p-hacking

exceeds 40%. For b = 0.1 the power of the Robust Caliper test is much higher, however, the

most amount of power is again achieved in case Π =N (3,0.05) that generates the highest value

of the proportion difference under the null.
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Figure 3.4. Power curves covariate selection with K = 5 and t = 1.96. Sample size is 1000.

The Caliper tests based on the parametric estimate of Π are more powerful for both

b = 0.1 and b = 0.5. This is expected because this tests use additional information about the

shape of the underlying distribution of true effects. As we can see, the results for the asymptotic

and bootstrap versions of the tests are almost identical demonstrating the validity of the bootstrap

procedure. In contrast to the case of the Robust Caliper test, the power of the parametric versions

of the test is higher for larger value of b. The explanation for this is that larger b allows us to use

more information about the shape of the distribution of true effects under the null.

Finally, when researchers use the maximum approach to p-hacking, non of the tests have

power to detect it. As it was pointed out in Elliott et al. (2022a), the maximum approach does

not lead to significant violations of the testable restrictions and is hard to detect.

Figure 3.5 displays the results when the sample size is taken to be N = 5000. The larger

sample size naturally leads to higher power. At the same time, the figures are qualitatively similar

to the ones in case N = 1000.
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Figure 3.5. Power curves covariate selection with K = 5 and t = 1.96. Sample size is 5000.

3.5.3 P-hacking at Multiple Thresholds

In this section, we consider the scenario when researchers p-hack at three different

significance levels: 1%, 5% and 10% (p-hacking occurs with equal probability at each threshold).

The data-generating process is the same as in Section 3.5.2 but the p-hacked distribution is the

mixture of p-hacked distributions for different thresholds. Figure C.7 in Appendix C.5 displays

these distributions for different Π. We focus on the case K = 5, thresholding approach and use

sample size N = 1000. To test the null hypothesis of no p-hacking we use joint Caliper tests. As

in the previous Monte Carlo experiment, we use both Robust and parametric8 versions of the

test.

Figure 3.6 shows the results. All tests control size. As before, the power of the Robust

test is very small for b = 0.5 due to the weakness of the upper bounds. At the same time, the

8Since the distribution of the moment inequalities test of Cox and Shi (2022) is non-standard, the bootstrap
version of the parametric test is not available
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power of the parametric test is higher in all cases and depends negatively on the bandwidth

choice.
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Figure 3.6. Power curves covariate selection with K = 5 and multiple thresholds. Sample size is
1000.

3.6 Application

Here we reanalyze the data collected by Brodeur et al. (2020b), which contain information

about 21,740 t-tests from 684 articles published in Top 25 economic journals. After excluding

observations with missing information, there are 21,156 tests from 680 papers. The data

are divided into categories based on the estimation method used by researchers: Difference-in-

Difference (DID), Instrumental Variables (IV), Randomized Control Trials (RCT) and Regression

Discontinuity design (RDD).

We apply the standard Binomial test and the Robust Caliper test developed in this paper

to these data and compare the results. Because the z-values may be correlated within papers, we

use cluster-robust estimators of the variance for the Robust test. Following Brodeur et al. (2020b)

we examine three most common significance thresholds: 2.576 (1% level), 1.96 (5% level) and

1.645 (10% level). We try seven values of b (b = 0.05,0.075,0.1,0.2,0.3,0.4,0.5). For every

case we report τ5%, the lower end of the 95% confidence interval for the extent of p-hacking.

We apply these tests to subgroups DID, IV, RCT and RDD separately. Table 3.1 replicates

Table 3 from Brodeur et al. (2020b) and shows the results (p-values) of testing p-hacking at 5%

threshold. The results for the 1% and 10% thresholds can be found in Appendix C.6.
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As we can see from Table 3.1, the p-values of the Robust Caliper Test are always smaller

than the ones coming from the Binomial test. This is expected because the Robust test uses the

worst-case bound to test against in order to preserve size. For the values of b greater than or

equal to 0.2, the Robust test does not reject the null of no p-hacking on any significance level.

The reason for this is that for such large values of b, the fluctuation of the z-curve generated by

the distribution of true effects can be quite large and cannot be distinguished from p-hacking. At

the same time, for b = 0.1, the null hypothesis is rejected at 5% level for DID and IV and for

b = 0.075 the null is additionally rejected at 10%. level for RCT. As for the extent of p-hacking,

for b = 0.075 we can conclude with 95% confidence that at least 35% of DID results and at least

17% of IV results are p-hacked. The results for b = 0.05 are not very different from the results

for b = 0.075.

Table 3.1. Binomial and Robust Caliper Tests, 5% Significance threshold (p-values)

DID IV RCT RDD

Proportion Significant in 1.96±0.5 0.5341 0.5404 0.478 0.475

Binomial Test 0.0119 0.0026 0.9593 0.8777

Robust Caliper Test (τ5%) 1 (0) 0.9999 (0) 1 (0) 1 (0)

# Tests in 1.96±0.5 1071 1162 1613 579

Proportion Significant in 1.96±0.4 0.5353 0.5337 0.4909 0.4774

Binomial Test 0.0161 0.0168 0.7363 0.8232

Robust Caliper Test (τ5%) 0.9974 (0) 0.998 (0) 1 (0) 1 (0)

# Tests in 1.96±0.4 893 965 1324 465

Proportion Significant in 1.96±0.3 0.5264 0.5237 0.4946 0.4737

Binomial Test 0.073 0.0895 0.6227 0.8283

Robust Caliper Test (τ5%) 0.9484 (0) 0.9662 (0) 1 (0) 0.9998 (0)

# Tests in 1.96±0.3 720 758 1023 361
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Table 3.1. (cont.) Binomial and Robust Caliper Tests, 5% Significance threshold (p-values)

Proportion Significant in 1.96±0.2 0.5506 0.5379 0.5043 0.4846

Binomial Test 0.0108 0.0389 0.396 0.6547

Robust Caliper Test (τ5%) 0.4373 (0) 0.5228 (0) 0.9779 (0) 0.9812 (0)

# Tests in 1.96±0.2 494 515 704 227

Proportion Significant in 1.96±0.1 0.6232 0.566 0.5656 0.5505

Binomial Test 0 0.0134 0.0052 0.1251

Robust Caliper Test (τ5%) 0.005 (0.36) 0.0441 (0.02) 0.1245 (0) 0.3907 (0)

# Tests in 1.96±0.1 284 265 366 109

Proportion Significant in 1.96±0.075 0.6491 0.595 0.578 0.5465

Binomial Test 0 0.0028 0.0036 0.1659

Robust Caliper Test (τ5%) 0.0055 (0.35) 0.0086 (0.17) 0.0666 (0) 0.2707 (0)

# Tests in 1.96±0.075 228 200 282 86

Proportion Significant in 1.96±0.05 0.6648 0.5929 0.6649 0.6207

Binomial Test 0 0.0111 0 0.024

Robust Caliper Test (τ5%) 0.0066 (0.3) 0.0127 (0.11) 0.0007 (0.34) 0.0753 (0)

# Tests in 1.96±0.05 182 140 194 58

Total obs 5780 5158 7101 3117
Note: [τ5%,1] is the 95% confidence interval for the extent of p-hacking.

The results show that the conclusion of the standard Caliper test and the Robust Caliper

test can be quite different especially when b is large (0.2 or above). The observed difference

can be due to the fact that the standard Caliper test does not control size and is prone to false

rejections when b is large.

3.6.1 Joint Test

In this section we apply the Robust Caliper test to testing for no p-hacking jointly at

three significance thresholds that we consider in our analysis. To test moment inequalities for the
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joint test we use the method of Cox and Shi (2022). As in the previous subsection, to account for

within-paper dependence, we use cluster-robust estimators of the covariance matrix of sample

proportions.

Table 3.2. Joint Robust Caliper Tests, {1%, 5%, 10%} Significance thresholds (p-values)

DID IV RCT RDD

Robust Caliper Test (τ5%) 1 (0) 1 (0) 1 (0) 1 (0)

# Tests in ti ±0.5, i = 1,2,3 1785 1896 2747 1023

Robust Caliper Test (τ5%) 0.7096 (0) 1 (0) 1 (0) 1 (0)

# Tests in ti ±0.4, i = 1,2,3 1600 1753 2461 917

Robust Caliper Test (τ5%) 0.9977 (0) 1 (0) 1 (0) 1 (0)

# Tests in ti ±0.3, i = 1,2,3 1423 1586 2185 808

Robust Caliper Test (τ5%) 0.8925 (0) 0.3648 (0) 1 (0) 1 (0)

# Tests in ti ±0.2, i = 1,2,3 1091 1190 1666 611

Robust Caliper Test (τ5%) 0.0569 (0) 0.2388 (0) 0.7222 (0) 0.8359 (0)

# Tests in ti ±0.1, i = 1,2,3 635 656 914 330

Robust Caliper Test (τ5%) 0.0161 (0.01) 0.0905 (0) 0.4753 (0) 0.4038 (0)

# Tests in ti ±0.075, i = 1,2,3 484 496 664 252

Robust Caliper Test (τ5%) 0.1036 (0) 0.0486 (0.01) 0.0172 (0.01) 0.2906 (0)

# Tests in ti ±0.05, i = 1,2,3 362 348 457 170

Total obs 5780 5158 7101 3117
Note: [τ5%,1] is the 95% confidence interval for the extent of p-hacking.

Table 3.2 reports the results (p-values) of the tests for b= 0.05,0.075,0.1,0.2,0.3,0.4,0.5.

As we can see, the joint test is able to reject the null of no p-hacking at 5% significance level

for DID with b = 0.075 and for IV and RCT when b = 0.05. For b = 0.1, the tests reject on a

subsample of DID at 10% level. The reported value of τ5% do not exceed 1% in all of the cases.

Overall, it can be observed that the amount of rejections by the joint test is much smaller than by
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the test that is focused exclusively on the 5% threshold. One possible reason for that is that there

is not as much p-hacking occurring at 1% and 10% thresholds and thus the joint test loses power

by taking them into consideration.

3.7 Conclusion

This paper analyses the Caliper test that is one of the most commonly used statistical

methods for testing p-hacking and publication bias given the sample distribution of reported

z-statistics. We demonstrate that the version of the test routinely used by researchers in practice

fails to control size and may lead to a significant overrejection of the null hypothesis of no

p-hacking for certain distributions of true effects. We develop a Robust version of the Caliper

test that is agnostic to the distribution of true effects and always controls size. We show how

the proposed test can be used to draw inference on the extent of p-hacking in the literature. In

addition, we propose a way of incorporating distributional assumptions regarding underlying

true effects to construct more powerful Caliper tests.

We confirm validity of the proposed tests and examine their power using Monte Carlo

experiments. We apply the Robust Caliper test to reanalyze a dataset from the literature and

compare it to the standard test. Given the validity of the Robust test, we recommend researchers

to use it in practice instead of the non-robust version.

Chapter 3, in part, is currently being prepared for submission for publication of the

material. The dissertation author is the sole author of this material.
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Appendix

A Additional results and proofs for Chapter 1

A.1 Additional details Section 1.4.3

A.1.1 Bounds on proportions and their differences

The bounds on the proportions and their differences implied by hypothesis (1.13) are not

sharp in general. Here we derive sharp bounds by directly extremizing the proportions and their

differences.

For the one-sided t-tests, the population proportion, π j, can be written as

π j =
∫ x j

x j−1

g1(p)d p =
∫ x j

x j−1

∫
[0,∞)

e−h2/2ehcv1(p)dΠ(h)d p

=
∫
[0,∞)

(∫ x j

x j−1

e−h2/2ehcv1(p)d p
)

dΠ(h)

=
∫
[0,∞)

(∫ cv1(x j−1)

cv1(x j)
φ(t −h)dt

)
dΠ(h)

=
∫
[0,∞)

λ1, j(cv1,h)dΠ(h),

where λ1, j(cv,h) :=Φ(cv(x j−1)−h)−Φ(cv(x j)−h). For the two-sided t-tests, π j =
∫ x j

x j−1
g2(p)d p=∫

Rλ2, j(cv2,h)dΠ(h), where λ2, j(cv,h) := λ1, j(cv,h)+λ1, j(cv,−h).

Since λ1, j(cv1,h), as a function of h, attains its maximum at h∗j =
cv1(x j−1)+cv1(x j)

2 , for

the one-sided t-tests π j ≤ 2Φ

(
cv1(x j−1)−cv1(x j)

2

)
−1 := ϑ

(0)
1, j . In case of the two-sided t-tests, the

bound, ϑ
(0)
2, j := maxh∈Rλ2, j(cv2,h), can be calculated numerically.

For the bounds on the kth differences of π’s, note that, for j = 1, . . . ,J − k, ∆k
j =
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∑
k
i=0(−1)i(k

i

)
πk+ j−i and therefore

|∆k
j| ≤ ϑ

(k)
s, j := max

h∈H(s)

{
k

∑
i=0

(−1)i+k
(

k
i

)
λs,k+ j−i(cvs,h)

}
, j = 1, . . . ,J− k,

where H(1) = [0,∞), H(2) = R, and s = 1 and s = 2 for the one- and two-sided t-tests, respec-

tively. These bounds can be computed numerically.

A.1.2 Null hypothesis

The null hypothesis formulated in terms of the proportions is

H0 : 0 ≤ (−1)k
∆

k ≤ ϑ
(k)
s ,

J

∑
j=1

π j = 1, for all k = 0, . . . ,K, (13)

where ∆k is a (J − k)×1 vector of kth differences of π’s, ∆0 = π , ϑ
(k)
s := (ϑ

(k)
s,1 , . . . ,ϑ

(k)
s,J−k)

′ is

the vector of upper bounds on |∆k| (cf. Appendix A.1.1), s = 1 for one-sided tests, and s = 2 for

two-sided tests. The inequalities in (13) are interpreted element-wise.

Let Dm be (m−1)×m differencing matrix of the following form:

Dm :=


−1 1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −1 1

 .

In addition, define the J×1 vector eJ := (0, . . . ,1)′, (J−1)×1 vector iJ−1 := (1, . . . ,1)′, and ma-

trix F := [−IJ−1, iJ−1]
′. Using this notation, we can write (−1)k∆k = Dkπ, k = 1, . . . ,K, where

Dk := (−1)kDJ−k+1×·· ·×DJ . Note that the restrictions under the null are equivalent to DKπ ≥

c and π = eJ−Fπ−J , where DK = [−1,1]′⊗[IJ,D1′, . . . ,DK′
]′ and c= [ϑ

(0)
s

′
, . . . ,ϑ

(K)
s

′
,0′(K+1)(J−K/2)×1]

′.

The symbol ⊗ denotes the Kronecker product. We can thus express the null hypothesis (13) as

H0 : Aπ−J ≤ b, where A := DKF and b := DKeJ − c.

When testing on a subinterval (0,α], the bounds need to be re-scaled. We use a consistent

(under the null) estimator of G(α) to re-scale the bounds. In particular, we use bounds ϑ
(k)
s, j =

97



ϑ
(k)
s, j /Ĝ(α), where Ĝ(α) is the fraction of p-values below α .

A.2 Proofs

A.2.1 Proof of Lemma 1.1

Note that for claim (i) {cv(p) : p ∈ (0,1)}= R and for claims (ii) and (iii) {cv(p) : p ∈

(0,1)}= (0,∞).

Claim (i): In this case f (x)= φ(x) and fh(x)= φ(x−h). It follows that, for all h≥ 0, f ′h(x) f (x)−

f ′(x) fh(x) = hφ(x)φ(x−h)≥ 0.

Claim (ii): In this case f (x) = 2φ(x) and fh(x) = φ(x−h)+φ(x+h), where x ≥ 0. After taking

derivatives and collecting terms we get

f ′h(x) f (x)− f ′(x) fh(x) = 2φ(x)h(φ(x−h)−φ(x+h)) = 2φ(x)φ(x+h)h(e2xh −1)≥ 0,

because h(e2xh −1)≥ 0 for any h.

Claim (iii): In this case f (x) := f (x;d)= 1
2d/2Γ(d/2)

xd/2−1e−x/2 and fh(x)=∑
∞
j=0

e−h/2(h/2) j

j! f (x;d+

2 j), where x > 0. Note that f ′(x;d) = f (x;d)
(
(d −2)x−1 −1

)
/2. After taking derivatives and

collecting terms we get

f ′h(x) f (x)− f ′(x) fh(x) =
∞

∑
j=0

e−h/2(h/2) j

2 j!
f (x;d +2 j) f (x;d)

[
((d +2 j−2)x−1 −1)− ((d −2)x−1 −1)

]
=

∞

∑
j=0

e−h/2(h/2) j

j!
f (x;d +2 j) f (x;d) jx−1 ≥ 0,

since every term in the last sum is non-negative.
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A.2.2 Proof of Theorem 1.1

Recall that β (p,h) = 1−Fh (cv(p)), where cv(p) = F−1(1− p). Under Assumption 1.1,

∂ 2β (p,h)
∂ p2 =

f ′h(cv(p))cv′(p) f (cv(p))− f ′(cv(p))cv′(p) fh(cv(p))
f (cv(p))2

=
cv′(p)

f (cv(p))2

[
f ′h(cv(p)) f (cv(p))− f ′(cv(p)) fh(cv(p))

]
.

Non-increasingness of g now follows by Assumption 1.2 and because cv′(p)/ f (cv(p))2 ≤ 0.

Continuous differentiability is implied by Assumption 1.1.

A.2.3 Proofs of Theorems 1.2 and 1.3

Note that the p-curves for the one-sided and two-sided t-tests are given by

g1(p) =
∫
[0,∞)

Ψ(cv1(p),h)exp{−h2/2}dΠ(h), (14)

g2(p) =
1
2

∫
R
(Ψ(cv2(p),h)+Ψ(cv2(p),−h))exp{−h2/2}dΠ(h) (15)

where Ψ(x,y) := exp{xy}. We start by proving an auxiliary lemma about Ψ(x,y).

Lemma A.1. For k ≥ 1, the kth derivative of Ψ(cvs(p),h) is

Ψ
(k)(cvs(p),h) = (−1)k

h∑
k−1
j=0 Ak

j(cvs(p))[cvs(p)+h] j

sk(φ(cvs(p)))k Ψ(cvs(p),h),

where coefficients Ak
j(cvs(p)) are polynomials in cvs(p) with non-negative coefficients and s = 1

for one-sided and s = 2 for two-sided t-tests.

Proof. By direct computation, the first derivative of Ψ(cvs(p),h) with respect to p is Ψ(1)(cvs(p),h)=

− h
sφ(cvs(p))Ψ(cvs(p),h). We use induction to derive the kth derivative of Ψ(cvs(p),h). Suppose
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that for k > 1

Ψ
(k)(cvs(p),h) = (−1)k

h∑
k−1
j=0 Ak

j(cvs(p))[cvs(p)+h] j

sk(φ(cvs(p)))k Ψ(cvs(p),h),

where coefficients Ak
j(cvs(p)) are polynomials in cvs(p) with non-negative coefficients. Define

Bk
0 = (k−1)cvs(p)Ak

0(cvs(p)), Bk
j = (k−1)cvs(p)Ak

j(cvs(p))+Ak
j−1(cvs(p)) for j = 1, . . . ,k−1,

and Bk
k = Ak

k−1(cvs(p)); Ck
j = ∂Ak

j(cvs(p))/∂cvs(p)+( j+1)Ak
j+1(cvs(p)) for j = 0, . . . ,k−2,

Ck
k−1 = ∂Ak

k−1(cvs(p))/∂cvs(p), and Ck
k = 0. Now differentiate Ψ(k)(cvs(p),h) with respect to

p to get

Ψ
(k+1)(cvs(p),h) = (−1)k+1 h2

∑
k−1
j=0 Ak

j(cvs(p))[cvs(p)+h] j

sk+1(φ(cvs(p)))k+1 Ψ(cvs(p),h)

+(−1)k+1 (hcvs(p)k)∑
k−1
j=0 Ak

j(cvs(p))[cvs(p)+h] j

sk+1(φ(cvs(p)))k+1 Ψ(cvs(p),h)

+(−1)k+1 h∑
k−1
j=0(∂Ak

j(cvs(p))/∂cvs(p))[cvs(p)+h] j

sk+1(φ(cvs(p)))k+1 Ψ(cvs(p),h)

+(−1)k+1 h∑
k−1
j=1 jAk

j(cvs(p))[cvs(p)+h] j−1

sk+1(φ(cvs(p)))k+1 Ψ(cvs(p),h)

= (−1)k+1 Ψ(cvs(p),h)
sk+1(φ(cvs(p)))k+1

{
h

k

∑
j=0

(Bk
j +Ck

j )[cvs(p)+h] j

}
.

Since Ak
j(cvs(p)), j = 0, . . . ,k−1 are polynomials with non-negative coefficients, Bk

j and Ck
j are

also polynomials with non-negative coefficients for every j = 0, . . . ,k. It follows that

Ψ
(k+1)(cvs(p),h) = (−1)k+1 h∑

k
j=0 Ak+1

j (cvs(p))[cvs(p)+h] j

sk+1(φ(cvs(p)))k+1 Ψ(cvs(p),h),

where Ak+1
j (cvs(p)) = Bk

j +Ck
j , j = 0, . . . ,k. This completes the induction step.

Using Lemma A.1, we now proof Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Lemma A.1 and equations (14)–(15) directly imply that 0≤ (−1)kg(k)1 (p),

for p ∈ (0,1/2] and 0 ≤ (−1)kg(k)2 (p), for p ∈ (0,1) for k = 1,2, . . . . The result for the two-sided
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case follows from the fact that h{[cv2(p)+h] jΨ(cv2(p),h)− [cv2(p)−h] jΨ(cv2(p),−h)} ≥ 0

for every j ∈ N and every h ∈ R.

Proof of Theorem 1.3. Consider first the one-sided t-test. Lemma A.1 implies that

(−1)kg(k)1 (p)≤ B
(k)
1 (p) := max

h≥0

{
|Ψ(k)(cv1(p),h)|exp{−h2/2}

}
,

where the inequality holds for every p∈ (0,1) and the maximum is finite for every p∈ (0,1) since

|Ψ(k)(cv1(p),h)|exp{−h2/2} is finite for every h ≥ 0 and converges to zero as h goes to infinity.

For the upper bound on g1(p), note that for p∈ (0,1/2], maxh≥0
{
|Ψ(cv1(p),h)|exp{−h2/2}

}
=

Ψ(cv1(p),cv1(p))exp{−cv2
1(p)/2}= exp{cv2

1(p)/2}. For p> 1/2 and h≥ 0, hcv1(p)−cv2
1(p)/2<

0 and hence g1(p)≤ 1.

For two-sided tests, by the above arguments and symmetry, we have

(−1)kg(k)2 (p)≤ B
(k)
2 (p) := max

h∈R

{
|Ψ(k)(cv2(p),h)+Ψ

(k)(cv2(p),−h)|exp{−h2/2}/2
}
,

where the upper bound is finite for every p ∈ (0,1).

For the upper bound on g2(p), one can show that for p ≥ 2(1−Φ(1)), the first-order

condition for maximizing (Ψ(cv2(p),h)+Ψ(cv2(p),−h))exp{−h2/2}/2 has only one solution,

ho = 0. By checking second-order conditions we can verify that 0 is the maximum. For

p < 2(1−Φ(1)), 0 becomes local minimum, and there are two additional non-zero symmetric

solutions to the first-order condition that satisfy the second-order condition for a maximum and

result in identical values of the objective function.
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B Additional results and derivation for Chapter 2

B.1 Detailed Derivations Section 2.3

B.1.1 Selecting Control Variables in Linear Regression

B.1.1.1 p-Curve under p-Hacking

We denote by σ̂ j the standard error of the estimator of β when using Z j as the control

variable ( j = 1,2). Under our assumptions, because the variance of U is known, we have

σ̂
2
j =

1
1− γ2 , j = 1,2.

Therefore, the t-statistic for testing H0 : β = 0 is distributed as follows

Tj =

√
Nβ̂ j

σ̂ j

d
= h+

Wxu − γWz ju√
1− γ2

, j = 1,2,

where 
Wxu

Wz1u

Wz2u

∼ N




0

0

0

 ,


1 γ γ

γ 1 γ2

γ γ2 1


 .

Thus, conditional on h, T1

T2

∼ N


h

h

 ,

1 ρ

ρ 1


 ,

where the correlation is ρ = 1− γ2. As the control variables and Xi become more correlated

(larger γ), ρ becomes smaller.
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The CDF of Pr on (0,1) for the threshold case is

Gt
h(p) = Pr(Pr ≤ p)

= Pr(P1 ≤ p | P1 ≤ α)Pr(P1 ≤ α)

+Pr(min{P1,P2} ≤ p | P1 > α)Pr(P1 > α)

= Pr(P1 ≤ min{p,α})+(1−Pr(P1 > p,P2 > p | P1 > α))Pr(P1 > α)

= Pr(T1 ≥ z0(min{p,α}))+Pr(T1 < z0(α))−Pr(T1 < z0(max{p,α}),T2 < z0(p))

= 1−Φ(zh(min{p,α}))+Φ(zh(α))−
∫ zh(p)

−∞

∫ zh(max{p,α})

−∞

f (x,y;ρ)dxdy,

where f (x,y;ρ) = 1
2π

√
1−ρ2

exp{−x2−2ρxy+y2

2(1−ρ2)
}.

For p ∈ (0,α), differentiating Gt
h(p) with respect to p yields:

dGt
h(p)

d p
=

dzh(p)
d p

[
−φ(zh(p))−

∫ zh(α)

−∞

f (zh(p),y;ρ)dy
]

=

φ(zh(p))
[

1+Φ

(
zh(α)−ρzh(p)√

1−ρ2

)]
φ(z0(p))

.

For p ∈ (α,1), the derivative is

dGt
h(p)

d p
=

2φ(zh(p))Φ
(

zh(p)−ρzh(p)√
1−ρ2

)
φ(z0(p))

.

It follows that the PDF of p-values is

gt
1(p) =

∫
H

dGt
h(p)

d p
dΠ(h) =

∫
H

φ(zh(p))ϒt
1(p;α,h,ρ)

φ(z0(p))
dΠ(h),

where ϒt
1(p;α,h,ρ) = 1{p≤α}

[
1+Φ

(
zh(α)−ρzh(p)√

1−ρ2

)]
+ 1{p>α}2Φ

(
zh(p)−ρzh(p)√

1−ρ2

)
. The final

expression follows because φ(zh(p))/φ(z0(p)) = exp
(

hz0(p)− h2

2

)
.
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For the case when the researchers report the minimum of two p-values, Pr = min{P1,P2},

we have

Gm
h (p) = Pr(Pr ≤ p)

= Pr(P1 ≤ p,P1 ≤ P2)+Pr(P2 ≤ p,P2 < P1)

= Pr(T1 ≥ z0(p),T1 ≥ T2)+Pr(T2 ≥ z0(p),T2 > T1)

= 2Pr(ξ1 ≥ zh(p),ξ1 ≥ ξ2)

= 2
∫ zh(p)

−∞

∫
∞

zh(p)
f (x,y;ρ)dxdy+2

∫
∞

zh(p)

∫
∞

y
f (x,y;ρ)dxdy,

where ξ j = Tj −h, j = 1,2.

The derivative of Gm
h (p) with respect to p is

dGm
h (p)
d p

= 2
dzh(p)

d p

[∫
∞

zh(p)
f (x,zh(p);ρ)dx−

∫ zh(p)

−∞

f (zh(p),y;ρ)dy−
∫

∞

zh(p)
f (x,zh(p);ρ)dx

]
= 2

φ(zh(p))
φ(z0(p))

Φ

(
zh(p)

√
1−ρ

1+ρ

)
.

Therefore, the PDF of p-values is

gm
1 (p) = 2

∫
H

exp
(

hz0(p)− h2

2

)
Φ

(
zh(p)

√
1−ρ

1+ρ

)
dΠ(h).
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B.1.1.2 Bias of the p-Hacked Estimator

Fix h for now. We have β̂ t
r = β̂1 +(β̂2 − β̂1)1{T2>T1,T1<z0(α)}. The bias in the p-hacked

estimate is given by

Eβ̂
t
r −β = E

[
β̂1 −β +(β̂2 − β̂1)1{T2>T1,T1<z0(α)}

]
= E

[
(β̂2 − β̂1)1{T2>T1,T1<z0(α)}

]
=

1√
N
√

ρ
E
[
(ξ2 −ξ1)1{ξ2>ξ1,ξ1<zh(α)}

]
=

1√
N
√

ρ
E
[
V 1{V>0,ξ1<zh(α)}

]
,

where V = ξ2 −ξ1 ∼ N (0,2(1−ρ)) and E[V ξ1] =−(1−ρ). Now

E
[
V 1{V>01,ξ1<zh(α)}

]
=

∫
∞

0

∫ zh(α)

−∞

v fV,ξ1
(v,x)dxdv

=
∫

∞

0

∫ zh(α)

−∞

v fξ1|V (x|v) fV (v)dxdv

=
∫

∞

0
v fV (v)

(∫ zh(α)

−∞

fξ1|V (x|v)dx
)

dv,

and

∫ zh(α)

−∞

fξ1|V (x|v)dx = Pr(ξ1 < zh(α) |V = v)

= Pr

ξ1 + v/2√
1+ρ

2

<
zh(α)+ v/2√

1+ρ

2


= Φ

zh(α)+ v/2√
1+ρ

2

 .

So now we have

Eβ̂
t
r −β =

1√
N
√

ρ

∫
∞

0
vΦ

zh(α)+ v/2√
1+ρ

2

 fV (v)dv,
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and the final expression follows by direct integration.

For the minimum approach, β̂ m
r = β̂1 +(β̂2 − β̂1)1{T2>T1}. The bias in the p-hacked

estimate is given by

Eβ̂
m
r −β = E

[
β̂1 −β +(β̂2 − β̂1)1{T2>T1}

]
=

1√
N
√

ρ
E
(
V 1{V>0}

)
.

Now E
[
V 1{V>0}

]
=
√

2(1−ρ)φ(0) so

Eβ̂
m
r −β =

1√
N

√
2(1−ρ)

ρ
φ(0).

It follows that Eβ̂ t
r ≤ Eβ̂ m

r because

EV 1{V>0,ξ1<zh(α)} =
∫

∞

0
v fV (v)

(∫ zh(α)

−∞

fξ1|V (x|v)dx
)

dv

≤
∫

∞

0
v fV (v)dv.

B.1.2 Selecting amongst Instruments in IV Regression

B.1.2.1 p-Curve under p-Hacking

Since Z1 and Z2 are assumed to be uncorrelated, the IV estimator with 2 instruments is

β̂12 = β +

[
(∑XiZ1i)

2

∑Z2
1i

+
(∑XiZ2i)

2

∑Z2
2i

+oP(1)
]−1[

∑XiZ1i ∑UiZ1i

∑Z2
1i

+
∑XiZ2i ∑UiZ2i

∑Z2
2i

]

with asymptotic variance 1/2γ2. Therefore, the t-statistic is

T12 =
√

Nβ̂12
√

2|γ| d→ h+
W1 +W2

2
,
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where (W1,W2)
′ ∼ N (0, I2). With one instrument,

β̂ j = β +
∑Z jiUi

∑XiZ ji
, j = 1,2,

and the asymptotic variance is 1/γ2 and

Tj =
√

Nβ̂ j|γ|
d→ h+Wj.

Note that T12 is asymptotically equivalent to T1+T2√
2

.

For now, we fix h. Define zh(p) = z0(p)− h and Dh(p) =
√

2z√2h(p), where z0(p) =

Φ−1(1− p). The (asymptotic) CDF of Pr on (0,1/2] is

Gt
h(p) = Pr(Pr ≤ p)

= Pr(P12 ≤ p | P12 ≤ α)Pr(P12 ≤ α)

+Pr(min{P1,P2,P12} ≤ p | P12 > α)Pr(P12 > α)

= Pr(P12 ≤ min{p,α})+Pr(P12 > α)

−Pr(P1 > p,P2 > p,P12 > p|P12 > α)Pr(P12 > α)

= Pr(T12 ≥ z0(min{p,α}))+Pr(T12 < z0(α))

−Pr(T1 < z0(p),T2 < z0(p),T12 < z0(max{p,α}))

= 1−Φ(z√2h(min{p,α}))+Φ(z√2h(α))−Φ(zh(p))Φ(Dh(max{p,α})− zh(p))

−
∫ zh(p)

Dh(max{p,α})−zh(p)
φ(x)Φ(Dh(max{p,α})− x)dx.

The last equality follows because for p ≤ 1/2 we have 2zh(p) > Dh(max{p,α}), Pr(T1 <

z0(p),T2 < z0(p),T12 < z0(max{p,α}))=Pr(W1 < zh(p),W2 < zh(p),W1+W2 <Dh(max{p,α}))
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and

Pr(W1 < a,W2 < a,W1 +W2 < b) =
∫ a

−∞

∫ b−a

−∞

φ(x)φ(y)dxdy

+
∫ a

b−a

∫ b−x

−∞

φ(x)φ(y)dydx

= Φ(a)Φ(b−a)+
∫ a

b−a
φ(x)Φ(b− x)dx

for 2a > b.

The derivative of Gt
h(p) with respect to p on (0,α) is

dGt
h(p)

d p
=

φ(z√2h(p))+2C(zh(p),Dh(α))

φ(z0(p))
, p ∈ (0,α),

where C(x,y) := φ(x)Φ(y− x).

For p ∈ (α,1/2) the derivative is

dGt
h(p)

d p
=

φ(z√2h(p))(1−2Φ((1−
√

2)z0(p)))+2C(zh(p),Dh(p))

φ(z0(p))
, p ∈ (α,1/2).

For p > 1/2, we have 2zh(p)< Dh(max{p,α}), and similar arguments yield

Gt
h(p) = 1−Pr(W1 < zh(p),W2 < zh(p),W1 +W2 < Dh(max{p,α}))

= 1−
∫ zh(p)

−∞

∫ zh(p)

−∞

φ(x)φ(y)dxdy

= 1−Φ
2(zh(p))

and
dGt(p)

d p
=

2φ(zh(p)Φ(zh(p))
φ(z0(p)

, p > 1/2.

108



Since gt(p) =
∫
H

Gt
h(p)
d p dΠ(h), we have

gt
2(p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

t
2(p;α,h)dΠ(h),

where ζ (p) = 1−2Φ((1−
√

2)z0(p)), cv1(p) = z0(p) and

ϒ
t
2(p;α,h) =



φ(z√2h(p))
φ(zh(p)) +2Φ(Dh(α)− zh(p)), if 0 < p ≤ α,

φ(z√2h(p))
φ(zh(p)) ζ (p)+2Φ(Dh(p)− zh(p)), if α < p ≤ 1/2,

2Φ(zh(p)), if 1/2 < p < 1.

The p-curve for the minimum approach arises as a corollary of the above results.

B.1.2.2 Bias of the p-Hacked Estimator

For the bias, consider the estimator for the causal effect given by the threshold approach.

The p-hacked estimator is given by

β̂
t
r = β̂12 +(β̂1 − β̂12)1{AN}+(β̂1 − β̂12)1{BN},

where we define sets AN = {T12 < z0(α),T1 > T12,T1 > T2} and BN = {T12 < z0(α),T2 >

T12,T2 > T1}. Using the same standard 2SLS results used above to generate the approximate

distributions of the t-statistics and by the continuous mapping theorem,

√
N|γ|(β̂ t

r −β )
d→ ξ

t :=
W1 +W2

2
+

W1 −W2

2
1{A}+

W2 −W1

2
1{B},

where A= {
√

2h+W1+W2√
2

< z0(α),h+W1 >
√

2h+W1+W2√
2

,W1 >W2} and B= {
√

2h+W1+W2√
2

<

z0(α),h+W2 >
√

2h+ W1+W2√
2

,W2 >W1}. By the symmetry of the problem,

E[ξ t ] = E[(W1 −W2)1{A}] = E[W11{A}]−E[W21{A}].
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To compute the expectations, we need to calculate P(A|W1) and P(A|W2). Note that

A=



√
2h+ W1+W2√

2
< z0(α)

h+W1 >
√

2h+ W1+W2√
2

W1 >W2

⇔


W2 <

√
2z0(α)−2h−W1

W2 < (
√

2−1)(W1 −
√

2h)

W2 <W1

⇔


W1 <

√
2z0(α)−2h−W2

W1 >
√

2h+ W2√
2−1

W1 >W2

(∗)

From equation (∗), we have

Pr(A|W1) = Φ(min{W1,
√

2z0(α)−2h−W1,(
√

2−1)(W1 −
√

2h)}),

where

min{W1,
√

2z0(α)−2h−W1,(
√

2−1)(W1−
√

2h)}=


W1, if W1 <−h,

√
2z0(α)−2h−W1, if W1 > z0(α)−h,

(
√

2−1)(W1 −
√

2h), if W1 ∈ (−h,z0(α)−h).

Also, the last system of inequalities in equation (∗) is equivalent to

W1 ∈


(

W2,
√

2z0(α)−2h−W2

)
, if W2 <−h,(√

2h+ W2√
2−1

,
√

2z0(α)−2h−W2

)
, if W2 ≥−h.

Note that
(√

2h+ W2√
2−1

,
√

2z0(α)−2h−W2

)
is non-empty when W2 ≤ (

√
2−1)z0(α)−h, and
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(
W2,

√
2z0(α)−2h−W2

)
is non-empty for all values of W2 <−h. Therefore,

Pr(A|W2) = Pr
(

W1 ∈
(

W2,
√

2z0(α)−2h−W2

)
|W2

)
·1{W2<−h}

+Pr
(

W1 ∈
(√

2h+
W2√
2−1

,
√

2z0(α)−2h−W2

)
|W2

)
·1{W2≥−h}

=
[
Φ

(√
2z0(α)−2h−W2

)
−Φ(W2)

]
·1{W2<−h}

+

[
Φ

(√
2z0(α)−2h−W2

)
−Φ

(√
2h+

W2√
2−1

)]
·1{−h≤W2≤(

√
2−1)z0(α)−h}

= Φ

(√
2z0(α)−2h−W2

)
·1{W2≤(

√
2−1)z0(α)−h}−Φ(W2) ·1{W2<−h}

−Φ

(√
2h+

W2√
2−1

)
·1{−h≤W2≤(

√
2−1)z0(α)−h}

To finish the calculation of expectations, we will need to calculate several integrals of the

form ∫ U

L
wφ(w)Φ(aw+b)dw.

The following result is therefore useful.

Lemma B.1.

∫ U

L
wφ(w)Φ(aw+b)dw = Φ(aL+b)φ(L)−Φ(aU +b)φ(U)+

a√
1+a2

φ

(
b√

1+a2

)
×
[

Φ

(√
1+a2U +

ab√
1+a2

)
−Φ

(√
1+a2L+

ab√
1+a2

)]

Proof.

∫ U

L
wφ(w)Φ(aw+b)dw = −

∫ U

L
Φ(aw+b)dφ(w)

= Φ(aL+b)φ(L)−Φ(aU +b)φ(U)+
∫ U

L
φ(w)dΦ(aw+b)

= Φ(aL+b)φ(L)−Φ(aU +b)φ(U)+a
∫ U

L
φ(w)φ(aw+b)dw

= Φ(aL+b)φ(L)−Φ(aU +b)φ(U)+aφ

(
b√

1+a2

)
J,
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where

J : =
∫ U

L
φ

(√
1+a2w+

ab√
1+a2

)
=

1√
1+a2

[
Φ

(√
1+a2U +

ab√
1+a2

)
−Φ

(√
1+a2L+

ab√
1+a2

)]
.

Finally,

E[W11{A}] = E[W1P(A|W1)]

= E[W1Φ(min{W1,
√

2z0(α)−2h−W1,(
√

2−1)(W1 −
√

2h)})]

=
∫ −h

−∞

wφ(w)Φ(w)dw

+
∫ z0(α)−h

−h
wφ(w)Φ((

√
2−1)w−

√
2(
√

2−1)h)dw

+
∫ +∞

z0(α)−h
wφ(w)Φ(

√
2z0(α)−2h−w)dw

= −(1−Φ(h))φ(h)+
1√
2

φ(0)(1−Φ(
√

2h))

+(1−Φ(h))φ(h)−Φ((
√

2−1)z0(α)−h)φ(z0(α)−h)

+

√
2−1√

4−2
√

2
φ

( √
2−1√

2−
√

2
h

)[
Φ

(
h√

2−
√

2

)
−Φ

(
h√

2−
√

2
−
√

4−2
√

2z0(α)

)]
+Φ((

√
2−1)z0(α)−h)φ(z0(α)−h)− 1√

2
φ(z0(α)−

√
2h)[1−Φ((

√
2−1)z0(α))]

=
1√
2

φ(0)(1−Φ(
√

2h))− 1√
2

φ(z0(α)−
√

2h)[1−Φ((
√

2−1)z0(α))]

+

√
2−1√

4−2
√

2
φ

( √
2−1√

2−
√

2
h

)[
Φ

(
h√

2−
√

2

)
−Φ

(
h√

2−
√

2
−
√

4−2
√

2z0(α)

)]
,
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where the fourth equality follows from the direct application of Lemma B.1.

E[W21{A}] = E[W2 Pr(A|W2)]

= E
[
W2Φ

(√
2z0(α)−2h−W2

)
·1{W2≤(

√
2−1)z0(α)−h}

]
−E
[
W2Φ(W2) ·1{W2<−h}

]
−E
[
W2Φ

(√
2h+

W2√
2−1

)
·1{−h≤W2≤(

√
2−1)z0(α)−h}

]
=

∫ (
√

2−1)z0(α)−h

−∞

wφ(w)Φ
(√

2z0(α)−2h−w
)

dw

−
∫ −h

−∞

wφ(w)Φ(w)dw

−
∫ (

√
2−1)z0(α)−h

−h
wφ(w)Φ

(√
2h+

w√
2−1

)
dw

= −Φ(z0(α)−h)φ((
√

2−1)z0(α)−h)− 1√
2

φ(z0(α)−
√

2h)(1−Φ((
√

2−1)z0(α)))

+(1−Φ(h))φ (h)− 1√
2

φ(0)
(

1−Φ

(√
2h
))

−(1−Φ(h))φ (h)+Φ(z0(α)−h)φ((
√

2−1)z0(α)−h)

− 1√
4−2

√
2

φ

√√
2−1√

2
h

[Φ

(
h√

2−
√

2

)
−Φ

(
h√

2−
√

2
−
√

4−2
√

2z0(α)

)]

= − 1√
2

φ(z0(α)−
√

2h)(1−Φ((
√

2−1)z0(α)))− 1√
2

φ(0)
(

1−Φ

(√
2h
))

− 1√
4−2

√
2

φ

√√
2−1√

2
h

[Φ

(
h√

2−
√

2

)
−Φ

(
h√

2−
√

2
−
√

4−2
√

2z0(α)

)]
.

Combining these results gives us the first-order bias of β̂ t
r , Bt

2 = |γ|−1E[ξ t ], where

E[ξ t ] =
1√

2−
√

2
φ

√√
2−1√

2
h

(Φ

(
h√

2−
√

2

)
−Φ

(
h√

2−
√

2
−
√

4−2
√

2z0(α)

))

+
√

2φ(0)
(

1−Φ

(√
2h
))

.
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Finally, for the minimum approach, the p-hacked estimator is given by

β̂
m
r = β̂12 +(β̂1 − β̂12)1{AN}+(β̂1 − β̂12)1{BN},

where now we define sets AN = {T1 > T12,T1 > T2} and BN = {T2 > T12,T2 > T1}.

Thus

√
N|γ|(β̂ m

r −β )
d→ ξ

m :=
W1 +W2

2
+

W1 −W2

2
1{A}+

W2 −W1

2
1{B},

where A = {W1 > max{W2,
√

2h+W2/(
√

2−1)}} and B = {W2 > max{W1,
√

2h+W1/(
√

2−

1)}}.

By the symmetry of the problem,

E[ξ m] = E[(W1 −W2)1{A}] = E[W11{A}]−E[W21{A}].

Note that Pr(A|W2)= 1−Φ(max{W2,
√

2h+W2/(
√

2−1)}) and Pr(A|W1)=Φ(min{W1,W1(
√

2−

1)−
√

2(
√

2−1)h}). Therefore,

E[W11{A}] = E[W1 Pr(A|W1)]

= E
[
W1Φ(min{W1,W1(

√
2−1)−

√
2(
√

2−1)h})
]

=
1√
2

φ(0)(1−Φ(
√

2h))+

√
2−1√

4−2
√

2
φ

√√
2−1√

2
h

Φ

(
h√

2−
√

2

)
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and

E[W21{A}] = E[W2 Pr(A|W2)]

= −E
[
W2Φ(max{W2,

√
2h+W2/(

√
2−1)})

]
= − 1√

2
φ(0)(1−Φ(

√
2h))− 1√

4−2
√

2
φ

√√
2−1√

2
h

Φ

(
h√

2−
√

2

)

Putting these together gives the asymptotic bias of β̂ m
r , Bm

2 = |γ|−1E[ξ m], where

E[ξ m] =
1√

2−
√

2
φ

√√
2−1√

2
h

Φ

(
h√

2−
√

2

)
+
√

2φ(0)(1−Φ(
√

2h)).

B.1.3 Selecting across Datasets

With the assumption that the datasets are independent, we have that the K t-statistics are

distributed as T ∼ N (hιK, IK) where ιK is a K × 1 vector of ones. The assumption that each

dataset tests for the same effect mathematically appears as h being the mean for all t-statistics.

For K = 2, the definition for Pr in this example is the same as that in Appendix B.1.1 with ρ = 0.

Hence the result for the thresholding case is gt
1 evaluated at ρ = 0 and for the minimum case is

gm
1 also evaluated at ρ = 0.

For general K, note that for the minimum case

Gm(p;K) = Pr(max(T1,T2, . . . ,TK)≥ z0(p)

= 1−Pr(T1 ≤ z0(α),T2 ≤ z0(α), . . . ,TK ≤ z0(α))

= 1− (Φ(zh(p))K

Setting p = α gives the size after p-hacking for a nominal value of α . Differentiating
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with respect to p generates the p-curve

gm
3 (p;K) =

d
d p

(
1− (Φ(zh(p))K)

= −KΦ(zh(p))K−1 d
d p

Φ(zh(p))

= KΦ(zh(p))K−1 φ(zh(p))
φ(z0(p))

The expression in the text follows directly from integrating over h.

B.1.4 Variance Bandwidth Selection for Means

Note that T0 ∼ N (h,1) and ρ̂ are independent.9 Also note that T1 ≥ T0 happens in the

following cases: (i) T0 ≥ 0 and 0 < ω2(ρ̂)≤ 1, equivalent to −(2κ)−1 < ρ̂ ≤ 0; (ii) T0 < 0 and

ρ̂ > 0. The researchers report the p-value corresponding to T0 if the result is significant at level

α or if ω̂2 < 0, otherwise they report the p-value associated with the largest t-statistic. Fixing h,

we have

Gt
h(p) = Pr(Pr ≤ p)

= Pr(T0 ≥ z0(p),T0 ≥ z0(α))

+Pr(T0 ≥ z0(p),T0 < z0(α),−∞ < ρ̂ ≤−(2κ)−1)

+Pr(T0 ≥ z0(p),T0 ≥ 0,T0 < z0(α), ρ̂ > 0)

+Pr(T1 ≥ z0(p),T0 ≥ 0,T0 < z0(α),−(2κ)−1 < ρ̂ ≤ 0)

+Pr(T1 ≥ z0(p),T0 ≤ 0,T0 < z0(α), ρ̂ > 0)

+Pr(T0 ≥ z0(p),T0 ≤ 0,T0 < z0(α),−(2κ)−1 < ρ̂ ≤ 0)

We can rewrite these expressions using the independence of T0 and ρ̂ . For p ≤ α ≤ 1/2,

9The independence follows from the fact that ρ̂ is a function of V := (U2 −Ū , . . . ,UN −Ū)′, T0 = h+
√

NŪ and
that V and Ū are independent.
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this is

Gt
h(p) = 1−Φ(zh(p))+

∫ l(p)

−(2κ)−1
(Φ(zh(α))−Φ(z0(p)ω(r)−h))ηN(r)dr.

The last term follows since Pr(T1 ≥ z0(p),0 ≤ T0 ≤ z0(α),−(2κ)−1 < ρ̂ ≤ 0) can be written as

Pr(z0(p)ω(ρ̂)≤ T0 ≤ z0(α),−(2κ)−1 < ρ̂ ≤ l(p)) and

l(p) =
1

2κ

((
z0(α)

z0(p)

)2

−1

)
,

which is the largest value for ρ̂ at each p ≤ α for which the interval for T0 is nonempty.

For α < p ≤ 1/2, we have

Gt
h(p) = 1−Φ(zh(p))(1−HN(0)+HN(−(2κ)−1))−

∫ 0

−(2κ)−1
Φ(z0(p)ω(r)−h)ηN(r)dr

For α < p and p > 1/2, we obtain

Gt
h(p) = 1−Φ(zh(p))HN(0)−

∫
∞

0
Φ(z0(p)ω(r)−h)ηN(r)dr

Differentiating with respect to p and integrating over the distribution of h gives the

density

gt
4(p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

t
4(p;α,h,κ)dΠ(h),

where

ϒ
t
4 =


1+ 1

φ(zh(p))

∫ l(p)
−(2κ)−1 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if 0 < p ≤ α,

1−HN(0)+HN(−(2κ)−1)+ 1
φ(zh(p))

∫ 0
−(2κ)−1 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if α < p ≤ 1/2,

HN(0)+ 1
φ(zh(p))

∫
∞

0 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if 1/2 < p < 1.
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The derivations for the minimum p-value approach are analogous and presented below.

Note that

Gm
h (p) = Pr(Pr ≤ p)

= Pr(T0 ≥ z0(p),−∞ < ρ̂ ≤−(2κ)−1)

+Pr(T0 ≥ z0(p),T0 ≥ 0, ρ̂ > 0)

+Pr(T1 ≥ z0(p),T0 ≥ 0,−(2κ)−1 < ρ̂ ≤ 0)

+Pr(T1 ≥ z0(p),T0 ≤ 0, ρ̂ > 0)

+Pr(T0 ≥ z0(p),T0 ≤ 0,−(2κ)−1 < ρ̂ ≤ 0)

For p ≤ 1/2, we have

Gm
h (p) = HN(0)−HN(−(2κ)−1)+(1−Φ(zh(p)))(1−HN(0)+HN(−(2κ)−1))

−
∫ 0

−(2κ)−1
Φ(z0(p)ω(r)−h)ηN(r)dr

and, for p > 1/2, we have

Gm
h (p) = 1−HN(0)+(1−Φ(zh(p)))HN(0)−

∫
∞

0
Φ(z0(p)ω(r)−h)ηN(r)dr.

Differentiating with respect to p and integrating over the distribution of h gives the density

gm
4 (p) =

∫
H

exp
(

hz0(p)− h2

2

)
ϒ

m
4 (p;α,h)dΠ(h),

where

ϒ
m
4 =


1−HN(0)+HN(−(2κ)−1)+ 1

φ(zh(p))

∫ 0
−(2κ)−1 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if 0 < p ≤ 1/2,

HN(0)+ 1
φ(zh(p))

∫
∞

0 ω(r)φ(z0(p)ω(r)−h)ηN(r)dr, if 1/2 < p < 1.
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B.2 Null and Alternative Distributions MC Study

Figure B.1. Null and p-hacked distributions for covariate selection with K = 3.
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Figure B.2. Null and p-hacked distributions for covariate selection with K = 5.
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Figure B.3. Null and p-hacked distributions for covariate selection with K = 7.

121



Figure B.4. Null and p-hacked distributions for covariate selection with K = 3 and researchers
using two-sided test.
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Figure B.5. Null and p-hacked distributions for IV selection with K = 3.
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Figure B.6. Null and p-hacked distributions for IV selection with K = 5.
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Figure B.7. Null and p-hacked distributions for lag length selection.
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B.3 Additional Simulation Results

Covariate selection with K = 3
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Lag length selection
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Figure B.8. Power curves for h ∼ χ2(1). Thresholding (left column) and minimum (right
column).
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Figure B.9. Power curves covariate selection with K = 5. Thresholding (left column) and
minimum (right column).
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Figure B.10. Power curves covariate selection with K = 7. Thresholding (left column) and
minimum (right column).
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Figure B.11. Power curves IV selection with K = 5. Thresholding (left column) and minimum
(right column).
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Table B.1. The effect of publication bias: 1-sided tests, h = 1, τ = 0.5

Test

Binomial Discontinuity CS1 CSUB CS2B LCM

Cov Selection (K = 3, thresholding)

No Pub Bias 0.045 0.629 0.023 0.715 0.869 0

Sharp Pub Bias 0.045 1 0.044 1 1 0.004

Smooth Pub Bias 0.021 0.377 0.009 1 1 0

Cov Selection (K = 3, minimum)

No Pub Bias 0.016 0.05 0.014 0.036 0.03 0

Sharp Pub Bias 0.016 0.93 0.034 0.999 0.999 0

Smooth Pub Bias 0.008 0.05 0.011 1 1 0

IV Selection (K = 3, thresholding)

No Pub Bias 0.024 0.279 0.01 0.999 0.999 0

Sharp Pub Bias 0.024 0.992 0.024 0.999 0.999 0

Smooth Pub Bias 0.012 0.157 0.009 1 1 0

IV Selection (K = 3, minimum)

No Pub Bias 0.012 0.052 0.011 0.036 0.036 0

Sharp Pub Bias 0.012 0.914 0.028 0.999 0.999 0

Smooth Pub Bias 0.01 0.045 0.008 1 1 0

Lag Selection (thresholding)

No Pub Bias 0.558 0.667 0.086 0.183 0.372 0

Sharp Pub Bias 0.558 1 0.093 1 1 0.002

Smooth Pub Bias 0.325 0.406 0.023 1 1 0

Lag Selection (minimum)

No Pub Bias 0.015 0.052 0.014 0.033 0.034 0

Sharp Pub Bias 0.015 0.928 0.036 1 1 0

Smooth Pub Bias 0.009 0.053 0.011 1 1 0
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Table B.2. The effect of publication bias: 1-sided tests, h = 2, τ = 0.5

Test

Binomial Discontinuity CS1 CSUB CS2B LCM

Cov Selection (K = 3, thresholding)

No Pub Bias 0.036 0.494 0.012 1 1 0

Sharp Pub Bias 0.036 0.998 0.027 0.999 0.999 0

Smooth Pub Bias 0.018 0.28 0.01 1 1 0

Cov Selection (K = 3, minimum)

No Pub Bias 0.015 0.05 0.013 0.037 0.037 0

Sharp Pub Bias 0.015 0.925 0.029 0.998 0.998 0

Smooth Pub Bias 0.008 0.046 0.01 1 1 0

IV Selection (K = 3, thresholding)

No Pub Bias 0.016 0.097 0.013 0.949 0.948 0

Sharp Pub Bias 0.016 0.994 0.036 0.969 0.969 0

Smooth Pub Bias 0.01 0.08 0.012 0.997 0.997 0

IV Selection (K = 3, minimum)

No Pub Bias 0.008 0.041 0.009 0.043 0.042 0

Sharp Pub Bias 0.008 0.951 0.031 0.966 0.966 0

Smooth Pub Bias 0.004 0.042 0.012 0.12 0.119 0

Lag Selection (thresholding)

No Pub Bias 0.41 0.237 0.015 0.542 0.543 0

Sharp Pub Bias 0.41 0.998 0.026 0.997 0.997 0

Smooth Pub Bias 0.22 0.128 0.011 0.999 0.999 0

Lag Selection (minimum)

No Pub Bias 0.01 0.051 0.011 0.04 0.04 0

Sharp Pub Bias 0.01 0.918 0.03 0.996 0.996 0

Smooth Pub Bias 0.006 0.042 0.011 0.953 0.953 0
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Table B.3. The effect of publication bias: 1-sided tests, h ∼ χ2(1), τ = 0.5

Test

Binomial Discontinuity CS1 CSUB CS2B LCM

Cov Selection (K = 3, thresholding)

No Pub Bias 0.044 0.213 0.022 0.468 0.536 0

Sharp Pub Bias 0.044 0.994 0.043 0.999 0.999 0

Smooth Pub Bias 0.027 0.125 0.012 1 1 0

Cov Selection (K = 3, minimum)

No Pub Bias 0.018 0.054 0.016 0.034 0.031 0

Sharp Pub Bias 0.018 0.901 0.043 0.999 0.999 0

Smooth Pub Bias 0.014 0.045 0.013 0.133 0.133 0

IV Selection (K = 3, thresholding)

No Pub Bias 0.038 0.109 0.016 0.263 0.287 0

Sharp Pub Bias 0.038 0.988 0.041 0.999 0.999 0

Smooth Pub Bias 0.024 0.065 0.013 0.931 0.931 0

IV Selection (K = 3, minimum)

No Pub Bias 0.025 0.047 0.014 0.036 0.036 0

Sharp Pub Bias 0.025 0.926 0.041 0.999 0.999 0

Smooth Pub Bias 0.013 0.043 0.013 0.078 0.077 0

Lag Selection (thresholding)

No Pub Bias 0.354 0.242 0.054 0.081 0.194 0

Sharp Pub Bias 0.354 0.997 0.097 0.998 0.998 0

Smooth Pub Bias 0.202 0.109 0.019 0.232 0.228 0

Lag Selection (minimum)

No Pub Bias 0.021 0.046 0.014 0.033 0.03 0

Sharp Pub Bias 0.021 0.923 0.054 0.997 0.997 0

Smooth Pub Bias 0.014 0.043 0.014 0.064 0.062 0
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C Additional results and proofs for Chapter 3

C.1 Proofs

C.1.1 Proof of Proposition 3.1

Let Nb = NU +NL and N be the total number of observations. Note that NU/N
p→ pU(b)

and NL/N
p→ pL(b) and for any 0< b≤ t, there is a distribution Πt,b such that 0< pL(b)< pU(b).

Then, for this choice of Π = Πt,b, we have

1 ≥ Pr(1−FBin(NU −1;n,0.5)< α)

= Pr
(

1−Φ

(
NU −NL −2√

Nb

)
+Φ

(
NU −NL −2√

n

)
−FBin(NU −1;Nb,0.5)< α

)
≥ Pr

(
1−Φ

(
NU −NL −2√

Nb

)
+

∣∣∣∣Φ(NU −NL −2√
Nb

)
−FBin(NU −1;Nb,0.5)

∣∣∣∣< α

)
= Pr

(
1−Φ

(
√

N
NU/N −NL/N −2/N√

Nb/N

)
+

∣∣∣∣Φ(NU −NL −2√
Nb

)
−FBin(NU −1;Nb,0.5)

∣∣∣∣< α

)
→ 1,

where the last step follows due to the fact that
∣∣∣Φ(NU−NL−2√

Nb

)
−FBin(NU −1;Nb,0.5)

∣∣∣ p→ 0 due

to the Central Limit Theorem and
√

N NU/N−NL/N−2/N√
Nb/N

p→ ∞ as N → ∞.

C.1.2 Proof of Theorem 3.1

In the absence of p-hacking, Ω̂b
p→ Ωb and

√
N(∆̂b−∆(Π))√

Ω̂b

d→ N (0,1). We have,

Pr(T > z1−α) = Pr

(√
N(∆̂b −∆b)√

Ω̂b
> z1−α

)

= Pr

(√
N(∆̂b −∆(Π))√

Ω̂b
−

√
N(∆b −∆(Π))√

Ω̂b
> z1−α

)

≤ Pr

(√
N(∆̂b −∆(Π))√

Ω̂b
> z1−α

)
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where the weak inequality holds as equality for Π = Π∗
b.

Now note that
√

N(∆̂b−∆(Π))√
Ω̂b

is a t-statistic for testing that E[Y ] = 0, where Y = 1{p ∈

[t + b, t)}− 1{p ∈ (t, t − b]}−∆(Π). Clearly, |Y −E[Y ]| ≤ 1+∆b for all Π. Also, note that

Ωb =Var(Y ) = pU(b)(1− pU(b)+ pL(b))+ pL(b)(1− pL(b)+ pU(b))≥ pU(b)pL(b).

inf
Π∈FA,γ

pu(b) = inf
Π∈FA,γ

∫
H

KU(h; t,b)dΠ(h)

= γ p1(A),

where p1(A) > 0 since KU(h; t,b) is zero only when Π put all its mass to either +∞ or −∞.

Similarly,

inf
Π∈FA,γ

pl(b) = inf
Π∈FA,γ

∫
H

KL(h; t,b)dΠ(h)

= γ p2(A),

where p2(A)> 0 since KL(h; t,b) is zero only when Π put all its mass to either +∞ or −∞.

It follow than the the condition 8 form Romano (2004) is satisfied for FA,γ since

E

[
|Y −E[Y ]|2+ε

Ω
2+ε

b

]
≤ (1+∆b)

2+ε

(γ2 p1(A)p2(A))2+ε

. Therefore, Theorem 5(i) from Romano (2004) implies that

∣∣∣∣∣ sup
Π∈FA,γ

Pr(T > z1−α)−α

∣∣∣∣∣→ 0 as n → ∞.
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C.1.3 Proof of Theorem 3.2

Under Assumption 1 the maximum likelihood estimator γ̂ is consistent and asymptotically

normal (Van der Vaart (2000), Theorem 5.39)

√
N(γ̂ − γ)

d→ N (0,I −1
γ )

Note that
√

N(∆̂b − ∆̃b) =
√

N(∆̂b −∆b(Π))−
√

N(∆b(Π̂)−∆b(Π)).

Now
√

N(∆̂b −∆b(Π))
d→ ξ1 ∼ N (0,Ωb)

and

√
N(∆b(Π̂)−∆b(Π)) =

√
N
(∫

H
K(h; t,b)π(h; γ̂)dh−

∫
H

K(h; t,b)π(h;γ)dh
)

=
∫
H

K(h; t,b)
√

N(π(h; γ̂)−π(h;γ))dh

=
√

N(γ̂ − γ)′
∫
H

K(h; t,b)∂π(h; γ̄)/∂γdh

=
√

N(γ̂ − γ)′D(Π)+oP(1),

where γ̄i ∈ (γi, γ̂i) for i = 1, ...,k. Thus,

√
N(∆b(Π̂)−∆b(Π))

d→ ξ2 ∼ N (0,D(Π)′I −1
γ D(Π))

and

Cov(ξ1,ξ2) = lim
N→∞

Cov(
√

N(∆̂b −∆b(Π)),
√

N(γ̂ − γ)′D(Π)) =C′
∆γD(Π).
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C.1.4 Proof of Proposition 3.2

Let FX be the distribution function of X and define

η(a) = η(a;δ ,FX) =
∫
X

Λ(a+ x′δ )dFX(x).

If Π0 = Πk, then ω0 = ωk. On the other hand,

ωk =
∫
X

Pr(|z|> t||z| ∈ Nb(t),Mk = 1,X)dFX(x)

=
∫
X

Λ(β0 +βk + xδ )dFX(x).

Therefore,

βk = η
−1(ωk)−β0

= η
−1(ωk)−η

−1(ω0)

= 0.

C.1.5 Proof of Proposition 3.3

Let

H ∗ = arg max
h∈H

{
KU(h; t,b)−KL(h; t,b)

K(h; t,b)

}
.

and h∗0 /∈ H ∗ and h∗k ∈ H ∗. It follows that if Π0 is a point mass at h∗0 and Πk is a point mass at

h∗k , then ω0 < ωk. Note that |h∗k |< ∞.

Not let β̂k be the estimate of βk and V̂k be the estimate of its variance. Since |h∗k | < ∞,

V̂k
p→Vk < ∞ and from the proof of Proposition 2 we know that

β̂k
p→ βk = η

−1(ωk)−η
−1(ω0).
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η−1(a) is an increasing function. To see this, note that η(a) is an increasing function

because Λ(·) is a CDF and the inverse of increasing function is increasing. It follows then that

Tk :=
√

N(β̂k −βk)√
V̂k

p→ ∞.

C.1.6 Proof of Theorem 3.3

First, we establish the asymptotic expansions for local proportions for each category:

√
N

p̂U,k − pU,k

p̂L,k − pL,k

 =

∫H KU(h)
√

N(πk(h; γ̂k)−πk(h;γk))dh∫
H KL(h)

√
N(πk(h; γ̂k)−πk(h;γk))dh


=

√
N(γ̂k − γk)

′DU(Πk)
√

N(γ̂k − γk)
′DL(Πk)

+oP(1),

where DL(Π) and DU(Π) defined analogously to D(Π) for lower and upper proportions respec-

tively. Let ωk =
pU,k

pU,k+pL,k
, then using the first-order Taylor expansion we get

√
N(ω̂k −ωk) =

pL,k
√

N(p̂U,k − pU,k)−
√

N(p̂L,k − pL,k)

(pU,k + pL,k)2 +oP(1)

=
√

N(γ̂k − γk)
′
ϒω,k +oP(1),

where ϒω,k =
pL,kDU (Πk)−DL(Πk)

(pU,k+pL,k)2 .

Let YU,i = 1{t < |Zi|< t +b} and YL,i = 1{t −b < |Zi| ≤ t}. The log-likelihood function

of the problem can be written as

L =
1
N

N

∑
i=1

YU,i logΛ(M′
iβ +X ′

i δ )+YL,i log(1−Λ(M′
iβ +X ′

i δ ))
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The first-order condition for the maximum likelihood problem is then

1
N

N

∑
i=1

Ψ(YU,i,YL,i,Mi,Xi; β̂ , δ̂ ) = 0,

where Ψ(YU,i,YL,i,Mi,Xi;β ,δ )=

Ψβ ,i

Ψδ ,i

=
(YU,i(1−Λ(M′

i β+X ′
i δ ))−YL,iΛ(M′

i β+X ′
i δ ))Λ′(M′

i β+X ′
i δ )

Λ(M′
i β+X ′

i δ )(1−Λ(M′
i β+X ′

i δ ))

Mi

Xi

.

It follows using standard Taylor expansion argument that

√
N

β̂ −β

δ̂ −δ

=−H−1 1√
N

N

∑
i=1

Ψ(YU,i,YL,i,Mi,Xi;β ,δ )+oP(1),

where H := E

(YU,i(Λ
′′
i Λi−(Λ′

i)
2)

Λ2
i

+
YL,i(Λ

′′
i (1−Λi)−(Λ′

i)
2)

(1−Λi)2

)Mi

Xi


′Mi

Xi


 :=

Hββ Hβδ

H ′
βδ

Hδδ

 and

for what follows we will define the partition of H−1 as H−1 =

Aββ Aβδ

A′
βδ

Aδδ

.

Define

ηk(a) = η(a;δ ,FX |k) =
∫
X

Λ(a+ x′δ )dFX |k(x)

and let

η̂
−1
k (u) = η

−1(u; δ̂ , F̂X |k)

Note that

η̂
−1
k (u) = η

−1(u;δ , F̂X |k)+ϒδ (u; δ̄k, F̂X |k)(δ̂ −δ )

= η
−1(u;δ ,FX |k)+ϒΛ,k(u)

∫
X

Λ(η−1(u)+ xδ )d(F̂X |k −FX |k)

+ ϒδ ,k(u)(δ̂ −δ )+oP(1),
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where ϒδ ,k(u)=ϒδ (u;δ ,FX |k)=−
∫
X x′Λ′(η−1(u;δ ,FX |k)+xδ )dFX |k(x)∫
X Λ(η−1(u;δ ,FX |k)+x′δ )dFX |k(x)

is the derivative of η−1(u;δ ,FX |k)

with respect to δ and the second equality follows from the fact that η−1(u;δ ,FX |k) as a functional

of FX |k is Hadamard differentiable with derivative η
−1
FX |k

(H) = ϒΛ,k(u)
∫
X Λ(η−1

k (u)+ x′δ )dH,

where ϒΛ,k(u) =− 1∫
X Λ(η−1(u;δ ,FX |k)+x′δ )dFX |k(x)

. It follows then

√
N(η̂−1

k (ω̂k)−η
−1
k (ωk)) =

√
N(η̂−1

k (ω̂k)−η
−1
k (ω̂k))+

√
N(η−1

k (ω̂k)−η
−1
k (ωk))

= ϒΛ,k(ω̂k)
∫
X

Λ(η−1
k (ω̂k)+ x′δ )d

√
N(F̂X |k −FX |k)

+ ϒδ ,k(ω̂k)
√

N(δ̂ −δ )

− ϒΛ,k(ω̄k)
√

N(ω̂k −ωk)+oP(1)

= ϒΛ,k(ωk)
∫
X

Λ(η−1
k (ωk)+ x′δ )d

√
N(F̂X |k −FX |k)

+ ϒδ ,k(ωk)
√

N(δ̂ −δ )

− ϒΛ,k(ωk)
√

N(γ̂k − γk)
′
ϒω,k +oP(1)

Now it follows that

√
N(η̂−1 −η

−1)
d→ N (0,Vηη),

where the diagonal elements of Vηη are given by

[Vηη ]kk = ϒ
2
Λ,k(ωk)(VΛk(ωk)−2CΛkγkϒω,k +ϒ

′
ω,kI

−1
γk

ϒω,k)+ϒ
2
δ ,k(ωk)Aδδ

+ 2ϒΛ,k(ωk)ϒδ ,k(ωk)(CΛkδ −C′
δγk

ϒω,k)
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and the off diagonal elements are given by

[Vηη ]kk′ = ϒδ ,k(ωk)ϒδ ,k′(ωk′)Aδδ −ϒδ ,k(ωk)ϒΛ,k′(ωk′)C
′
δ ,γk′

ϒω,k′

− ϒδ ,k′(ωk′)ϒΛ,k(ωk)C′
δ ,γk

ϒω,k,

where CΛkδ is the asymptotic covariance between
∫
X Λ(η−1

k (ω̂k)+ x′δ )d
√

N(F̂X |k −FX |k) and

δ̂ , Cδγk
is the asymptotic covariance between δ̂ and γ̂k and VΛk is the asymptotic variance of∫

X Λ(η−1
k (ω̂k)+ xδ )d

√
N(F̂X |k −FX |k).

Finally,

√
N(β̂ −Aη̂−1) =

√
N(β̂ −β )+A

√
N(η̂−1 −η

−1)

d→ ζ1 +Aζ2,

where ζ1

ζ2

∼ N


0

0

 ,

Aββ Vβη

V ′
βη

Vηη




and the kth row of matrix Vβη is given by

ϒδ ,k(ωk)Aβδ + Aββ (ϒΛ,kCΛkΨβ
−ϒΛ,k(ωk)C′

Ψβ γk
ϒω,k)

+ Aβδ (ϒΛ,kCΛkΨδ
−ϒΛ,k(ωk)C′

Ψδ γk
ϒω,k),

where CΛkΨβ
is the asymptotic covariance between

∫
X Λ(η−1

k (ω̂k)+ x′δ )d
√

N(F̂X |k −FX |k) and

N−1
∑

N
i=1 Ψβ ,i and CΨβ γk ,CΛkΨδ

and CΨδ γk are defined analogously.

C.2 Illustrative Example Derivations

The expressions for g|z|(x) and ∆b(N (µh,σ
2
h )) can be obtained by direct integration.

For the rest, define ξU,i := 1{t < Zi < t + b}+ 1{−t − b < Zi < −t}, ξL,i := 1{t − b < Zi <
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t}+1{−t < Zi <−t +b} and ξi := ξU,i−ξL,i. Note that ∆̂b =
1
N ∑

N
i=1 ξi. Also define Q(a,b) :=

Φ(b)−Φ(a). Using the properties of truncated normal distribution we can obtain

E[Zi1{t −b < Zi < t}] = µhQ(α+
1 ,α+

2 )+
√

σ2
h +1

(
φ
(
α
+
1
)
−φ

(
α
+
2
))

and similarly

E[Zi1{−t < Zi <−t +b}] = µhQ(α−
2 ,α−

1 )+
√

σ2
h +1

(
φ
(
α
−
2
)
−φ

(
α
−
1
))

,

E[Zi1{t < Zi < t +b}] = µhQ(α+
2 ,α+

3 )+
√

σ2
h +1

(
φ
(
α
+
2
)
−φ

(
α
+
3
))

,

E[Zi1{−t −b < Zi <−t}] = µhQ(α−
3 ,α−

2 )+
√

σ2
h +1

(
φ
(
α
−
3
)
−φ

(
α
−
2
))

.

It follows that

Cov(
√

N(∆̂b −∆b),
√

N(µ̂h −µh)) = E[Ziξi]−E[Zi]E[ξi]

= E[ZiξU,i]−E[ZiξL,i]−E[Zi](E[ξU,i]−E[ξL,i])

=
√

σ2
h +1

(
2φ
(
α
+
2
)
−φ

(
α
+
1
)
−φ

(
α
+
3
))

−
√

σ2
h +1

(
2φ
(
α
−
2
)
−φ

(
α
−
1
)
−φ

(
α
−
3
))

Note that, since Pr( 1
N ∑

N
i=1(Zi− Z̄)2 ≤ 1)→ 0 as N → ∞, σ̂2

h is asymptotically equivalent

to 1
N−1 ∑

N
i=1(Zi − Z̄)2 = 1

N ∑
N
i=1 Z2

i − 1
N(N−1) ∑i̸= j ZiZ j − 1. Therefore, the covariance between
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∆̂b and σ̂2
h is

Cov(∆̂b, σ̂
2
h ) =

1
N

Cov(ξi,Z2
i )−

1
N

Cov(ξi,
1

N −1 ∑
i ̸= j

ZiZ j)

=
1
N

Cov(ξi,Z2
i )−

2∑i ̸= j E[Z j]

N
Cov(ξi,Zi)

=
1
N

Cov(ξi,Z2
i )−

2µh

N
Cov(ξi,Zi)

Again, using the properties of truncated normal distribution, we have

Cov(1{t −b < Zi < t},Z2
i ) = E[1{t −b < Zi < t}Z2

i ]−E[1{t −b < Zi < t}]E[Z2
i ]

= Q(α+
1 ,α+

2 )(σ2
h +1)

(
1+

α
+
1 φ(α+

1 )−α
+
2 φ(α+

2 )

Q(α+
1 ,α+

2 )
−
(

φ(α+
1 )−φ(α+

2 )

Q(α+
1 ,α+

2 )

)2)

+ Q(α+
1 ,α+

2 )

(
µh +

φ(α+
1 )−φ(α+

2 )

Q(α+
1 ,α+

2 )

√
σ2

h +1
)2

− Q(α+
1 ,α+

2 )(σ2
h +1+µ

2
h )

= (σ2
h +1)

(
α
+
1 φ(α+

1 )−α
+
2 φ(α+

2 )
)
+2µh

√
σ2

h +1(φ(α+
1 )−φ(α+

2 ))

and similarly

Cov(1{t < Zi < t +b},Z2
i ) = (σ2

h +1)
(
α
+
2 φ(α+

2 )−α
+
3 φ(α+

3 )
)
+2µh

√
σ2

h +1(φ(α+
2 )−φ(α+

3 )).

Cov(1{−t −b < Zi <−t},Z2
i ) = (σ2

h +1)
(
α
−
3 φ(α−

3 )−α
−
2 φ(α−

2 )
)
+2µh

√
σ2

h +1(φ(α−
3 )−φ(α−

2 )).

Cov(1{−t < Zi <−t +b},Z2
i ) = (σ2

h +1)
(
α
−
2 φ(α−

2 )−α
−
1 φ(α−

1 )
)
+2µh

√
σ2

h +1(φ(α−
2 )−φ(α−

1 )).
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Combining these results together gives

Cov(
√

N(∆̂b −∆b),
√

N(σ̂2
h −σ

2
h )) = Cov(ξU,i,Z2

i )−Cov(ξL,i,Z2
i )−2µhCov(ξi,Zi)

= (σ2
h +1)(2α

+
2 φ(α+

2 )−α
+
1 φ(α+

1 )−α
+
3 φ(α+

3 ))

− (σ2
h +1)(2α

−
2 φ(α−

2 )−α
−
1 φ(α−

1 )−α
−
3 φ(α−

3 ))

Finally, since π(h) = φ((h−µh)/σh)/σh, we have

∂π

∂γ
=

∂φ((h−µh)/σh)/σh

∂ (µh,σ
2
h )

′

=

 h−µh
σ2

h
(h−µh)

2−σ2
h

2σ4
h

π(h)

and the expression for D(Π) follows.

C.3 Testing Multiple Thresholds

We can use standard moment inequality tests to combine multiple thresholds in a single

test. Let T = {t1, ..., tJ} be a set of thresholds and let B = {b1, ...,bJ} be the set of corresponding

bandwidth values with 0 < b j ≤ t j (we allow them to differ across thresholds). Since the null

hypothesis 3.7 holds for any value of b, we can consider the following testing problem as

H0 : ∆
t j
b j
≤ ∆

t j
b j

for all t j ∈ T against H1 : ∆
t j
b j
> ∆

t j
b j

for some t j ∈ T , (16)

where ∆
t j
b j

is the upper bound for threshold t j and bandwidth b j.

This hypothesis can be tested by testing moment inequalities with, for instance, Cox and

Shi (2022) test. Define ∆T := (∆t1
b1
, ...,∆tJ

bJ
)′ and ∆

T := (∆
t1
b1
, ...,∆

tJ
bJ
)′. Following Cox and Shi

(2022), we test the null by comparing χ = inf
q: q≤∆

T N(∆̂T − q)′Ω̂−1
b (∆̂T − q) to the critical

value from a χ2 distribution with the number of degrees of freedom equal to the number of active

143



inequalities. Here Ω̂ is a consistent estimate of the variance matrix of ∆̂T .

C.4 P-values vs z-values

In this section we compare Caliper tests based on the distribution of z-values and Caliper

tests based on the distribution of p-values. To examine the difference between using z-values and

p-values for caliper tests, we exploit the Monte Carlo design of Section 3.5.1. We concentrate on

the case K = 5 and sample sizes of N = 1000.

Clearly, since there is a one-to-one correspondence between |z|-values and p-values,

the test based on z-values that compares proportions in |z| ∈ [t − b, t) versus |z| ∈ [t, t + b] is

numerically equivalent to the test based on p-values that compares proportions in p ∈ [2(1−

Φ(|t + b|)),2(1−Φ(|t|))] versus p ∈ (2(1−Φ(|t|)),2(1−Φ(|t − b|))]. In this case, the test

based on p-values divides the interval [2(1−Φ(|t +b|)),2(1−Φ(|t −b|))] asymmetrically. In

practice, researchers tend to use a symmetric partition of the testing interval. If we restrict

attention to the tests that divide a chosen subinterval symmetrically, then the two approaches are

hard to compare because |z| ∈ [t−b, t+b] and p ∈ [p−b, p+b] define very different subsamples

of data and so it is hard to understand at what values of b the comparison is meaningful.

C.4.1 Using relative bandwidth

One possible way to make two approaches comparable is to consider relative bandwidth,

that is use subsamples of |z|-values in [t(1−b), t(1+b)] and subsamples of p-values in [p(1−

b), p(1− b)], where b ∈ (0,1). Unfortunately, even in this case the comparison is difficult

because intervals are still quite different due to Jensen’s inequality. As simulations indicate, for

some values of b, test based of |z|-values will generate more power and for other values tests

based on p-values will be more powerful.
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Figure C.1. Power curves, b = 0.1.
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Figure C.2. Power curves, b = 0.3.

Figures C.1 and C.2 show the comparison between tests based on |z|-values on [1.96(1−

b),1.96(1+ b)] and and tests based on p-values on [0.05(1− b),0.05(1− b)] for b = 0.1 and

b = 0.3. We compare both Robust Caliper tests and parametric versions of Caliper test. As

we can see, for b = 0.1 the Robust Caliper test based on p-value performs better in term of

power when Π ∈ {N (1,1),N (2,0.25)}, but for Π = N (3,0.05) the comparison depends on

the amount of p-hacking. The parametric tests based on |z|-values exhibit higher power than

parametric tests based in p-values in all cases. When b = 0.3, parametric tests based on p-values

have slightly more power (relative to power for |z|-values) for the first two choices of Π and

slightly less power in the last case. The robust test based on p-values has much more power

when b = 0.3.
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C.4.2 Using a fixed subsample size for the test

In this subsection we try to make two approaches comparable by fixing the local subsam-

ple size for testing. For both types of tests define

bk(x) = argmin
b
{

n

∑
i=1

1{Xi ∈ [x−b,x+b] = k} ,

where Xi is observed |z|- or p-value and k is the number of observations we want to include

for testing. For our simulations we set k = 100. As a result, we compare tests based on

|z|-values on [1.96(1− b100(1.96)),1.96(1+ b100(1.96))] and and tests based on p-values on

[0.05(1−b100(0.05)),0.05(1−b100(0.05))], where the value of b100 depends on the realization

of the sample.

Figure C.3 shows the power of the tests based on |z|-values and p-values. We can see,

that tests based on p-values demonstrate slightly higher power in all cases and for both versions

of the test than tests based on |z|-values.
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Figure C.3. Power curves, k = 100.
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C.5 Null and Alternative Distributions MC Study

Figure C.4. Null and p-hacked distributions for K = 3
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Figure C.5. Null and p-hacked distributions for K = 5
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Figure C.6. Null and p-hacked distributions for K = 7
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Figure C.7. p-hacked distributions: p-hacking at multiple thresholds
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Figure C.8. Power curves covariate selection with K = 3. Sample size is 1000.
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Figure C.9. Power curves covariate selection with K = 7. Sample size is 1000.
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C.6 Application: Additional Results

Table C.1. Binomial and Robust Caliper Tests, 1% Significance threshold (p-values)

DID IV RCT RDD

Proportion Significant in 2.576±0.5 0.4134 0.3807 0.3942 0.4111

Binomial Test 1 1 1 0.9999

Robust Caliper Test (τ5%) 1 (0) 1 (0) 1 (0) 1 (0)

# Tests in 2.576±0.5 837 943 1111 467

Proportion Significant in 2.576±0.4 0.3898 0.3962 0.3979 0.4093

Binomial Test 1 1 1 0.9997

Robust Caliper Test (τ5%) 1 (0) 1 (0) 1 (0) 1 (0)

# Tests in 2.576±0.4 644 737 862 364

Proportion Significant in 2.576±0.3 0.3835 0.404 0.4344 0.4126

Binomial Test 1 1 0.9996 0.9975

Robust Caliper Test (τ5%) 1 (0) 1 (0) 1 (0) 1 (0)

# Tests in 2.576±0.3 472 552 663 269

Proportion Significant in 2.576±0.2 0.3839 0.4329 0.4717 0.4032

Binomial Test 1 0.9941 0.8735 0.995

Robust Caliper Test (τ5%) 1 (0) 1 (0) 0.9999 (0) 0.9999 (0)

# Tests in 2.576±0.2 310 365 441 186

Proportion Significant in 2.576±0.1 0.3697 0.4759 0.5063 0.4343

Binomial Test 0.9995 0.7207 0.398 0.8862

Robust Caliper Test (τ5%) 0.9996 (0) 0.8557 (0) 0.8012 (0) 0.9872 (0)

# Tests in 2.576±0.1 165 187 239 99
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Table C.1. (cont.) Binomial and Robust Caliper Tests, 10% Significance threshold (p-values)

Proportion Significant in 2.576±0.075 0.38 0.507 0.5548 0.4478

Binomial Test 0.9895 0.4007 0.0796 0.7681

Robust Caliper Test (τ5%) 0.9828 (0) 0.3556 (0) 0.3154 (0) 0.8983 (0)

# Tests in 2.576±0.075 100 142 146 67

Proportion Significant in 2.576±0.05 0.375 0.5049 0.5463 0.3696

Binomial Test 0.9778 0.4219 0.1449 0.9481

Robust Caliper Test (τ5%) 0.9911 (0) 0.2759 (0) 0.304 (0) 0.9674 (0)

# Tests in 2.576±0.05 72 103 108 46

Total obs 5780 5158 7101 3117

Note: [τ5%,1] is the 95% confidence interval for the extent of p-hacking.

Table C.2. Binomial and Robust Caliper Tests, 10% Significance threshold (p-values)

DID IV RCT RDD

Proportion Significant in 1.645±0.5 0.6026 0.6057 0.5006 0.5042

Binomial Test 0 0 0.4713 0.4025

Robust Caliper Test (τ5%) 0.9141 (0) 0.8749 (0) 1 (0) 1 (0)

# Tests in 1.645±0.5 1014 1050 1738 591

Proportion Significant in 1.645±0.4 0.6183 0.6009 0.5168 0.5198

Binomial Test 0 0 0.0998 0.1804

Robust Caliper Test (τ5%) 0.3548 (0) 0.5635 (0) 1 (0) 0.9983 (0)

# Tests in 1.645±0.4 820 847 1401 479
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Table C.2. (cont.) Binomial and Robust Caliper Tests, 10% Significance threshold (p-values)

Proportion Significant in 1.645±0.3 0.5996 0.5712 0.5216 0.5357

Binomial Test 0 0.0002 0.0817 0.0785

Robust Caliper Test (τ5%) 0.4989 (0) 0.5941 (0) 0.9991 (0) 0.898 (0)

# Tests in 1.645±0.3 557 611 997 364

Proportion Significant in 1.645±0.2 0.5822 0.5851 0.5147 0.5397

Binomial Test 0.0005 0.0002 0.2107 0.0929

Robust Caliper Test (τ5%) 0.333 (0) 0.0787 (0) 0.9479 (0) 0.6137 (0)

# Tests in 1.645±0.2 383 417 682 252

Proportion Significant in 1.645±0.1 0.586 0.5637 0.5113 0.5902

Binomial Test 0.0077 0.0292 0.3246 0.0184

Robust Caliper Test (τ5%) 0.1706 (0) 0.0805 (0) 0.7014 (0) 0.1951 (0)

# Tests in 1.645±0.1 186 204 309 122

Proportion Significant in 1.645±0.075 0.5897 0.5584 0.4915 0.6061

Binomial Test 0.01 0.0627 0.5774 0.0133

Robust Caliper Test (τ5%) 0.1195 (0) 0.1477 (0) 0.794 (0) 0.1215 (0)

# Tests in 1.645±0.075 156 154 236 99

Proportion Significant in 1.645±0.05 0.5833 0.5905 0.4968 0.6061

Binomial Test 0.0335 0.0252 0.5 0.032

Robust Caliper Test (τ5%) 0.3898 (0) 0.0274 (0.05) 0.6515 (0) 0.0949 (0)

# Tests in 1.645±0.05 108 105 155 66

Total obs 5780 5158 7101 3117

Note: [τ5%,1] is the 95% confidence interval for the extent of p-hacking.
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