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ABSTRACT

Observations indicate that the Arctic sea ice cover is rapidly retreating while the Antarctic sea ice cover is
steadily expanding. State-of-the-art climate models, by contrast, typically simulate a moderate decrease in
both the Arctic and Antarctic sea ice covers. However, in each hemisphere there is a small subset of model
simulations that have sea ice trends similar to the observations. Based on this, a number of recent studies have
suggested that the models are consistent with the observations in each hemisphere when simulated internal
climate variability is taken into account. Here sea ice changes during 1979–2013 are examined in simulations
from the most recent Coupled Model Intercomparison Project (CMIP5) as well as the Community Earth
System Model Large Ensemble (CESM-LE), drawing on previous work that found a close relationship in
climate models between global-mean surface temperature and sea ice extent. All of the simulations with
1979–2013 Arctic sea ice retreat as fast as observations are found to have considerably more global warming
than observations during this time period. Using two separate methods to estimate the sea ice retreat that
would occur under the observed level of global warming in each simulation in both ensembles, it is found
that simulated Arctic sea ice retreat as fast as observations would occur less than 1% of the time. This implies
that the models are not consistent with the observations. In the Antarctic, simulated sea ice expansion as fast
as observations is found to typically correspondwith too little global warming, although these results aremore
equivocal. As a result, the simulations do not capture the observed asymmetry between Arctic and Antarctic
sea ice trends. This suggests that the models may be getting the right sea ice trends for the wrong reasons in
both polar regions.

1. Introduction

In comprehensive climate model simulations of long-
term climate change, individual models are often used to
carry out multiple simulations that differ only in their
initial conditions. The spread among the simulations
approximates the range of possible realizations of in-
ternal variability in the climate system. Therefore an
individual simulation would not typically match the
observations on decadal time scales even if the model
were perfect, but the observations are expected to fall
within the range of the ensemble of simulations.
Modeling groups from around the world have contrib-

uted to each phase of the CoupledModel Intercomparison

Project (CMIP). In the third phase (CMIP3; Meehl et al.
2007), virtually none of the models simulated a summer
Arctic sea ice cover that diminished as fast as in the
observations under historical natural and anthropogenic
climate forcing (Stroeve et al. 2007). However, Stroeve
et al. (2007) suggested the possibility that the observed
Arctic sea ice retreat may represent a rare realization of
internal variability that would be captured in only a small
fraction of simulations. The CMIP3 models simulated
sea ice trends that were more consistent with observa-
tions in the Antarctic than in the Arctic (Stroeve et al.
2007; IPCC 2007).
In the current phase (CMIP5; Taylor et al. 2012), the

simulated rate of Arctic sea ice retreat is closer to the
observations (Stroeve et al. 2012; IPCC 2013). The cause
of this reduction in model bias is analyzed in a com-
panion paper (Rosenblum and Eisenman 2016). The
ensemble-mean Arctic sea ice trend in CMIP5 is still
slower than observed (Stroeve et al. 2012; IPCC 2013),
but the observations fall within the range of simulations
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(Figs. 1b,e). Consistent with this, a number of recent
studies have suggested that the Arctic sea ice retreat
simulated in the current generation of climate models is
consistent with observations when simulated internal
climate variability is taken into account (Kay et al. 2011;
Stroeve et al. 2012; IPCC 2013; Notz 2014; Swart et al.
2015). Given the CMIP5 ensemble-mean results, this
would imply that climate forcing has caused some of the
observed Arctic sea ice retreat, with the remainder
caused by decadal-scale internal variability.
During the past several years, the observed trend to-

ward Antarctic sea ice expansion has become sub-
stantially larger and crossed the threshold of statistical
significance (Comiso and Nishio 2008; IPCC 2013),
which was related to a recent update in the way the
satellite sea ice observations are processed (Eisenman
et al. 2014). Most CMIP5 models do not simulate this
trend (Figs. 1c,f) (e.g., Turner et al. 2013; Zunz et al.
2013; IPCC 2013), contributing to a consensus view that
there is ‘‘low confidence’’ in the scientific understanding of
the observed Antarctic sea ice expansion (IPCC 2013).

Nonetheless, a number of recent studies have argued that
the models are still at least marginally consistent with ob-
servations when the range of internal climate variability
is considered (Turner et al. 2013; Swart and Fyfe 2013;
Zunz et al. 2013; Mahlstein et al. 2013; Polvani and
Smith 2013; Goosse and Zunz 2014; Gagné et al. 2015;
Fan et al. 2014; Turner et al. 2015; Purich et al. 2016;
Jones et al. 2016). In this view, the observed Antarctic
sea ice expansion is the result of internal climate vari-
ability overwhelming the sea ice retreat that would have
occurred due to climate forcing.
Consequently, these recent studies suggest that sim-

ulated internal variability can explain the differences
between typical state-of-the-art climate model simula-
tions and observed sea ice trends in both the Arctic and
the Antarctic. However, a number of previous studies
have found that Arctic sea ice extent is approximately
linearly related to global-mean surface temperature in
climate models (Gregory et al. 2002; Winton 2011;
Mahlstein and Knutti 2012; Stroeve and Notz 2015).
This suggests that it may be important to consider

FIG. 1. Observed and CMIP5 modeled linear trends in annual-mean (a),(d) global-mean surface temperature, (b),(e) Arctic sea ice
extent, and (c),(f) Antarctic sea ice extent. In (a)–(c), the trends are illustrated as straight lines shifted vertically so that the trend lines
go through zero in 1979. The dark red lines indicate the ensemble-mean trend and the gray shadings indicate one standard deviation
among the 118 CMIP5 trends.The observed time series and associated trend are also included for each quantity (green). (bottom)
Histograms showing the distributions of CMIP5 modeled trends with the observed trend indicated by a green line in each panel. The
standard deviation of each distribution around the ensemblemean is indicated by a red error bar above the histogram, and aGaussian fit
to each distribution is plotted in red.
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global-mean surface temperature trends when compar-
ing sea ice trends with observations.
Here, we examine the relationship between global-

mean surface temperature and sea ice extent in each
hemisphere in all available CMIP5 simulations of years
1979–2013, and we compare this with observations.
There are 40 different climate models, many of which
submitted multiple simulations with differing initial
conditions, leading to a total of 118 ensemble members.
Hence the CMIP5 ensemble members differ due to both
intermodel differences and realizations of internal var-
iability. To isolate the influence of internal variability
alone, we also consider simulations from the Commu-
nity Earth System Model Large Ensemble (CESM-LE)
(Kay et al. 2015), which includes 30 ensemble members
that are all generated with the same model and differ
only in initial conditions. See Table S1 in the online
supplemental material for a list of models, and see
appendix A below for details regarding the processing
of the simulation output and the observations.
Some previous studies have focused on the September

or March sea ice trend, whereas others have considered
the annual-mean trend. Here we focus on annual-mean
trends, thereby averaging over seasonal variability that
may be unrelated to long-term changes.

2. Observed and simulated sea ice trends

As a starting point, we consider the extent to which
the observations lie within the distribution of CMIP5
simulated 1979–2013Arctic andAntarctic sea ice trends.
Each distribution approximates the range of sea ice
trends allowed by internal climate variability and dif-
ferences in model physics. Examining each hemisphere
individually, we find that in both cases the observed sea
ice trend lands within the overall range of the CMIP5
distribution (Figs. 1e,f).
To quantify the level of agreement, we determine the

number of simulated trends that are at least as far in the
tail of the CMIP5 distribution as the observed trend.We
find that 13 of the 118 simulations have Arctic sea ice
retreat at least as fast as the observations and 3 of the 118
simulations have Antarctic sea ice expansion at least as
fast as the observations (Table 1). This implies that if the
CMIP5 models are correct, then the probability that the
Arctic sea ice would retreat as fast as observations is
11%, and the probability that the Antarctic sea ice
would expand as fast as observations is 2.5%. These
results are approximately similar to previous studies that
found that, after accounting for simulated internal var-
iability, the models and observations are statistically
consistent in the Arctic (Stroeve et al. 2012; Notz 2014;
Swart et al. 2015) and marginally consistent in the

Antarctic (Swart and Fyfe 2013; Turner et al. 2013; Zunz
et al. 2013; Purich et al. 2016; Jones et al. 2016).
As an alternative method of assessing the level of

agreement, we also consider Gaussian fits of the model
distributions. This will be useful later in the analysis
when the observations fall deep within the tail of the
distributions. We find that 12% of runs in the Gaussian
distribution in Fig. 1e have Arctic sea ice retreat at least
as fast as the observations, and 1.6% of runs in the
Gaussian distribution in Fig. 1f have Antarctic sea ice
expansion as fast as the observations, similar to the raw
percentiles given above. It should be noted, however,
that these distributions are not expected to be exactly
Gaussian. They would be Gaussian, for example, if the
simulated sea ice retreat were a linear trend in time at
the same rate in all of the ensemble members with su-
perimposed internal variability taking the form of re-
alizations of white noise (e.g., Santer et al. 2008). Under
this construction, the center of the distribution is the
response to climate forcing, and the width of the distri-
bution represents the influence of internal variability.

3. Sea ice scales with global temperature

Previous studies have found an approximately linear
relationship inmany climatemodel simulations between
global-mean surface temperature and sea ice extent in
the Arctic (Gregory et al. 2002; Winton 2011; Mahlstein
and Knutti 2012; Stroeve and Notz 2015) and Antarctic
(e.g., Armour et al. 2011). The regression coefficient
between these two variables is often referred to as the
‘‘sea ice sensitivity’’ to global warming (Winton 2011).
We find that this applies to Arctic sea ice in the CESM-
LE and CMIP5 ensembles (Fig. S1a in the online sup-
plemental material): The annual-mean Arctic sea ice
extent and annual-mean global-mean surface air tem-
perature have an ensemble-mean correlation of20.99 in

TABLE 1. Fraction of runs with simulated sea ice trends that are
at least as extreme as the observations using the distribution of
CMIP5 simulated trends (see section 1), effective trends (see sec-
tion 4), and a pseudo-ensemble of 35-yr periods that have similar
levels of global warming to the observations (see section 5). The
first column is the fraction with Arctic sea ice retreat as rapid as the
observations, and the second column is the fraction with Antarctic
sea ice expansion as rapid as the observations. There are 118 sim-
ulations of 1979–2013 in the CMIP5 ensemble analyzed here and
1232 overlapping 35-yr periods in the pseudo-ensemble. Percent-
ages are included to aid in comparison between the rows.

Arctic Antarctic

1979–2013 trends 13/118 (11%) 3/118 (2.5%)
1979–2013 effective trends 0/118 (0%) 0/118 (0%)
Pseudo-ensemble 1/1232 (0.08%) 45/1232 (3.7%)

15 AUGUST 2017 ROSENBLUM AND E I SENMAN 6267



the CESM-LE simulations of 1920–2100 (Fig. S1c) and
20.94 in the CMIP5 simulations of 1900–2100 (Fig. S1e)
(see appendix A for details). We find that the Antarctic
sea ice extent has a similar relationship with global
temperature (Fig. S1b), although the correlation is
somewhat smaller at 20.98 and 20.86 in CESM-LE and
CMIP5, respectively (Figs. S1d,f). These relationships
imply that simulated 35-yr global-mean surface temper-
ature trends are related to sea ice trends in both hemi-
spheres (scatter of black points in Figs. S2 and S3a,b).
Although this study focuses primarily on CMIP5, we

begin by using CESM-LE in order to assess how this
relationship influences the distribution of 1979–2013 sea
ice trends in realizations of a single model. In Figs. 2a
and 2b we plot the Arctic and Antarctic sea ice extent
trend in each CESM-LE simulation versus the simulated
trend in global-mean surface air temperature. This
shows a clear relationship in which realizations of in-
ternal climate variability that have anomalously large
levels of global warming during 1979–2013 also tend to
have anomalously large levels of sea ice retreat during
this period in both hemispheres. Two representative

runs are plotted in Fig. S4 to further illustrate this point.
This is consistent with Xie et al. (2016), who found that
simulated internal variability in global-mean surface
temperature correlates substantially with temperatures
in both polar regions.
The results in Fig. 2 are also relevant to the recent

study of Notz and Stroeve (2016), who propose a phys-
ical mechanism by which sea ice extent responds linearly
to cumulative CO2 emissions. This mechanism implies
that the previously noted relationship between sea ice
extent and global-mean surface temperature is actually
an artifact of global temperature also depending linearly
on cumulative CO2 emissions. Since the CESM-LE sim-
ulations in Fig. 2 each represent identical cumulativeCO2

emissions (i.e., each has identical forcing) but have a
range of different global-mean temperature trends, they
provide an ideal testing ground for this hypothesis. Hence
the relationship between global-mean surface tempera-
ture trends and sea ice trends in Fig. 2 represents a
counterargument to the hypothesis that sea ice extent is
fundamentally driven by cumulative CO2 emissions
(Notz and Stroeve 2016). Rather, the results in Fig. 2

FIG. 2. CESM-LE annual-mean sea ice trends in (a) the Arctic and (b) the Antarctic plotted vs the global-mean
surface temperature trend for each ensemble member (red points) with the observations indicated by green dashed
horizontal and vertical lines. (c),(d) The distribution of simulated effective sea ice trends (see text for details) from each
CESM-LE simulation, with the observed sea ice trend indicated by a green vertical line. The mean and standard de-
viation of the distribution of simulated sea ice trends (red error bars, repeated fromFigs. 1e,f) and effective sea ice trends
(blue error bars) are shown, as well as Gaussian fits to the effective sea ice trend distributions (blue curves). The means
and standard deviations of the effective trends are repeated for comparison in the top panel (blue vertical error bars).
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suggest that the underlying mechanism for the linear re-
lationship between sea ice extent and global-mean tem-
peraturemust account for the relationship being robust to
changes in global-mean temperature driven by internal
climate variability (cf. Winton 2011).
Next, we examine this relationship using CMIP5 sim-

ulations of 1979–2013 (Figs. 3a,b). We find here also that
higher levels of global warming tend to be associated
withmore rapid sea ice retreat, implying that some of the
intermodel differences in sea ice trends may be associ-
ated with differences in the level of simulated global
warming. Comparing with observations, we find that al-
though some of the simulations in Fig. 3a approximately
match the observed sea ice retreat and others approxi-
mately match the observed level of global warming,
there is a systematic bias inwhich none of the simulations
match both observed rates. All of the simulations with
Arctic sea ice trends similar to the observations have
global warming rates that are approximately 1.4–2.1
times larger than the observed trend in Fig. 3a. Similarly,
each simulation with a temperature trend similar to the
observations underestimates theArctic sea ice retreat by
at least 30%. By contrast, runs with approximately ac-
curate levels of global warming tend to land closer to the
observed Antarctic sea ice trend, although they still tend
to simulate Antarctic sea ice retreat rather than the ob-
served expansion (Fig. 3b).

Note that the relationship between sea ice trends
and global-mean surface temperature trends is less cor-
related in the CMIP5 simulations (correlations of 20.56
and 20.54 in Figs. 3a and 3b, respectively) than in the
CESM-LE simulations (correlations of20.73 and20.81 in
Figs. 2a and 2b, respectively). This is consistent with the
previous finding that the sea ice sensitivity to global
warming remains relatively constant within a single model
but can differ substantially from one model to another
(Winton 2011). On the other hand, however, sea ice and
global temperature are typically less correlated under in-
ternal variability than under greenhouse-driven warming
(Winton 2011), which could be expected to cause simula-
tions that differ only due to internal variability (Fig. 2) to
have a less correlated relationship than simulations with
different levels of greenhouse-driven warming (Fig. 3).
The results of Figs. 3a,b and 2a,b suggest that the former
effect is the dominant factor here, and that the low cor-
relation among the CMIP5 simulations (Fig. 3) is largely
due to intermodel differences in the sea ice sensitivity.

4. Effective sea ice trend

Motivated by the above result that biases in global-mean
surface air temperature trends are related to both Arctic
and Antarctic sea ice trends in these simulations, we
consider a simple method to account for biases in the level

FIG. 3. As in Fig. 2, but using CMIP5 simulations instead of CESM-LE.
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of simulated global warming. This method leverages the
approximately linear relationship between sea ice extent and
global-mean surface temperature (Fig. S1), and it allows us
to approximately estimate the distribution of sea ice trends
that the models would produce if they simulated a level of
global warming during 1979–2013 that matched the obser-
vations. That is, we examine how the results presented in
section 2 are affected by the biases presented in section 3.
Using the approximation that the ratio between

trends in sea ice extent and trends in global temperature
in each simulation does not depend on the level of global
warming (which would hold if the relationship between
sea ice extent and global-mean temperature were per-
fectly linear, i.e., if the sea ice sensitivity were constant),
we can scale the sea ice trend in each simulation to ac-
count for the bias in global warming:

!
dI

dt

"

eff

[

!
dI

dt=
dT

dt

"

sim

!
dT

dt

"

obs

. (1)

We define the term on the left-hand side as the ‘‘effective
sea ice trend,’’ which is computed for 1979–2013 in each
simulation. The effective sea ice trend is meant to ap-
proximate what the value of the simulated sea ice trend
would have been if themodel had accurately captured the
observed level of global warming. The quotient on the
right-hand side is the simulated change in sea ice extent
per degree of global warming (measured in km2K21),
which is a measure of the simulated sea ice sensitivity
based on the ratio of simulated temporal trends (Winton
2011). The sea ice sensitivity is then scaled by the ob-
served global-mean surface temperature trend, which is
the final term on the right-hand side.
Thismethod can be visualized by drawing a line from the

origin through each point in Figs. 2a,b and 3a,b. The slope
of this line is equivalent to the sea ice sensitivity, and the
y coordinate of the point where this line intersects the
vertical dashed line (indicating the observed temperature
trend) is equivalent to the effective sea ice trend. The
spread in effective sea ice trends in each ensemble is shown
by the vertical blue error bars in Figs. 2a,b and 3a,b, which
indicate that the effective sea ice trends in the full ensemble
are similar to the unadjusted sea ice trends in the subset of
runs that have global temperature trends similar to the ob-
servations. This is consistent with the assumption of a linear
relationshipbetween sea ice areaandglobal temperature and
hence provides an approximate validation of this method.
The distributions of effective sea ice trends are plotted

in Figs. 2c, 2d, 3c, and 3d. Using the effective sea ice
trend causes the results presented in section 2 to change
substantially (cf. red and blue confidence intervals in
Figs. 2c,d and 3c,d). First, the CMIP5 ensemble-mean
effective sea ice retreat is slower in each hemisphere than

the unadjusted sea ice trend by more than 35%. Second,
the CMIP5 effective sea ice trend distribution is narrower
than the distribution of unadjusted sea ice trends, im-
plying that there is a smaller range of sea ice trends that
can arise due to internal variability when constrained to
match the observed level of recent global warming: the
standard deviation of each distribution decreases by ap-
proximately 40% (Figs. 3c,d). Note that this may be
partially related to the entire distribution being scaled
by a constant value. As a result, we find that none of the
118 CMIP5 simulations has an Arctic effective sea ice
retreat as fast as the observations. Similarly, none of the
118 CMIP5 simulations has an Antarctic effective sea ice
expansion as large at the observations (Table 1).
Fitting a Gaussian to the distributions to approximately

estimate values in the tails beyond what is populated by
the 118 members, we find that the percentage of runs in
the Gaussian distribution that have Arctic sea ice retreat
as fast as the observations drops from 12% (Fig. 1e) to
0.02% (Fig. 3c). In the Antarctic, biases in the level of
global warming appear to have a somewhat smaller effect.
Although the center of the Antarctic distribution moves
closer to the observed value, the width of the distribution
decreases sufficiently to cause the percentage of runs in
the distribution that have Antarctic sea ice expansion as
large as the observations to drop from 1.6% (Fig. 1f) to
0.37% (Fig. 3d). Note that these results are qualitatively
consistent with the sea ice sensitivities reported by Purich
et al. (2016) and Stroeve and Notz (2016).
It is noteworthy that the discrepancies between the

models and observations have similar magnitudes in the
Antarctic as the Arctic when using effective sea ice trends
(Figs. 3c,d), which is in contrast to the analysis of un-
adjusted sea ice trends, where the bias was larger in the
Antarctic (Figs. 1e,f). Note that a similar finding was re-
ported for the sea ice sensitivity in CMIP3 (Eisenman et al.
2011). This may be of interest, for example, because the
different levels of consistency between the observed and
modeled sea ice trends in the two hemispheres in CMIP5
contributed to the consensus view that there is low confi-
dence in the scientific understanding of the observed
Antarctic sea ice trend and high confidence in the scientific
understanding of the observed Arctic sea ice trend (IPCC
2013). Overall, the results of this section imply that the
possibility that internal variability alone could explain the
difference between the observed and modeled sea ice
trends in either hemisphere decreases substantially after
accounting for biases in the level of global warming.

5. Pseudo-ensemble from longer time period

Next, we explore an alternative method to estimate
the distribution of sea ice trends that the CMIP5 models

6270 JOURNAL OF CL IMATE VOLUME 30



would simulate if each run had the observed level of
global warming during 1979–2013. Here we assume that
the relationship between global warming and sea ice
changes is the same for all 35-yr periods (which would
hold if the relationship between sea ice extent and global-
mean temperature were perfectly linear, i.e., if the sea ice
sensitivity were constant). We therefore examine the
trends during each overlapping 35-yr period in each of the
CMIP5 simulations of 1900–2100. There are a total of
13 354 overlapping 35-yr periods (some CMIP5 runs were
excluded because data were not available for the entire
1900–2100 period; see appendix A for details). Figures 4a
and 4b show a scatter of these 13354 trends in annual-
mean global-mean surface air temperature and sea ice
extent. The trends during 1979–2013 are shown in red,
illustrating the qualitatively similar relationship be-
tween trends in sea ice and global temperature during
this period and other 35-yr periods. That is, we find that
higher levels of global warming are associated with
faster sea ice retreat, even over this extended range of
trends in global-mean surface temperature.

To validate whether this method can provide a mean-
ingful approximation to the ensemble of 1979–2013 simu-
lation results, we consider the distribution of sea ice trends
during all 35-yr periods that have levels of global warming
similar to the simulated 1979–2013 distribution (i.e., similar
to Fig. 1d). Specifically, we select the 3923 periods during
1900–2100 that have temperature trends within one stan-
dard deviation of the 1979–2013 ensemble mean (points
that fall within the red shaded region in Figs. S3a,b), and
we examine the histogram of the corresponding sea ice
trends (Figs. S3c,d). We find that the distribution of 3923
trends in Figs. S3c and S3d does approximately match the
mean and standard deviation of the smaller distribution of
118 simulated sea ice trends during 1979–2013 (Figs. 1e,f):
the red and black error bars in Figs. S3c and S3d are ap-
proximately aligned. This implies that this method allows
us to build a far larger ‘‘pseudo-ensemble’’ of sea ice trends
by harvesting time periods with similar levels of global
warming from the 200-yr simulations.
Next, we create a pseudo-ensemble of time periods in

the simulations that have global warming trends similar

FIG. 4. Scatter of observed and simulated annual-mean (a) Arctic and (b) Antarctic sea ice trends vs the global-
mean surface temperature trends from all overlapping 35-yr periods in 73 CMIP5 simulations of 1900–2100 (13 354
points in total); the 1979–2013 trends are indicated in red (as in Figs. 3a,b). Green dashed horizontal and vertical
lines represent the observed trends.Global-mean surface temperature trends that are within one standard deviation
of the observed trend are highlighted in green. (c),(d) Sea ice trends from periods that fall within the highlighted
regions are shown in histograms with the observed trend indicated by a thick green line. Standard deviations of this
distribution (black error bars) and the distribution of 1979–2013 effective sea ice trends (blue error bars, as in Figs.
3c,d) are also shown. The mean and standard deviation of the trends that fall within the highlighted regions are
repeated for comparison in the top panel (black vertical error bars).
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to the 1979–2013 observed value. This provides an ap-
proximation of the spread of simulated sea ice trends
that would coincide with the observed level of global
warming. Green shading in Figs. 4a and 4b indicates 35-yr
global warming trends that are within the 68% linear re-
gression confidence interval of the observed trend (using
the method in section b of appendix B to account for au-
tocorrelation). The pseudo-ensemble plotted in Figs. 4c
and 4d comprises the distributionof 1232 35-yr periods that
fall within this green shaded region. This approximates the
ensemble of periods whose distribution of global warming
trends is consistent with the observed trend.
Only 1 (0.08%) of the 1232 sea ice trends from this

pseudo-ensemble has an Arctic sea ice retreat that is as
large as the observations (Table 1). Therefore, this anal-
ysis of years 1900–2100 in the simulations yields a similar
result to the analysis in section 5 that used the 1979–2013
effective sea ice trends. Consistent with this, the pseudo-
ensemble distribution (Fig. 4c) has a mean that is similar
to the distribution of effective sea ice trends (Fig. 3c),
although the standard deviations of the two distributions
are somewhat different. This can be seen by comparing
the black and blue error bars in Fig. 4c.
Note that increasing the range of global warming

trends included in the pseudo-ensemble (i.e., widening
the green shaded region in Fig. 4a) does not substantially
influence these results. Specifically, when we use the 95%
autocorrelation-corrected linear regression confidence
interval of the observed trend rather than the 68% con-
fidence interval, we find that 6 (0.24%) of the 2532 pe-
riods in the pseudo-ensemble have Arctic sea ice retreat
as fast as the observations. See section c of appendix B for
an alternative approach to generating a pseudo-ensemble
that accurately captures the target distribution.
Similar to the comparison in section 4 between the

effective sea ice trend distribution and the unadjusted
sea ice trend distribution, we next compare the pseudo-
ensemble associated with the observed 1979–2013 level
of global warming (Fig. 4c) with the pseudo-ensemble
associated with the ensemble of simulated 1979–2013
levels of global warming (Fig. S3c). First, whereas 9.0%
of the Arctic sea ice trends in Fig. S3c are at least as
negative as the observed value, this value drops to
0.08% in Fig. 4c. Second, the mean Arctic sea ice trend
in the pseudo-ensemble associated with the simulated
level of 1979–2013 global warming (Fig. S3c) is ap-
proximately 25% larger than in the pseudo-ensemble
associated with the observed level of global warming
(Fig. 4c). These results are approximately similar to the
effective sea ice trend results in section 4.
Turning to the Antarctic, we find some qualitative

similarities with the Arctic results. First, the mean of the
Antarctic sea ice trends in the pseudo-ensemble

associated with the observed level of global warming is
similar to the ensemble mean of Antarctic effective sea
ice trends, although the standard deviations of the two
distributions are somewhat different (error bars in
Fig. 4d). Second, the mean Antarctic sea ice trend in the
pseudo-ensemble associated with the observed level of
global warming (Fig. 4d) is about 30% smaller than in
the pseudo-ensemble associated with the CMIP5 simu-
lated level of global warming (Fig. S3d). A notable dif-
ferences compared with theArctic results is that 3.7% of
the periods in the pseudo-ensemble associated with the
observed level of global warming have Antarctic sea ice
expansion as large as the observations (Table 1, Fig. 4d),
compared to 1.6% of the periods in the pseudo-
ensemble associated with the CMIP5 simulated level
of warming (Fig. S3d). This is in contrast with the ef-
fective sea ice trend results in section 5, where the
fraction of Antarctic sea ice trends as positive as the
observations was found to be smaller for the effective
sea ice trend than for the unadjusted sea ice trend. The
reason for this discrepancy between the pseudo-
ensemble result here and the effective trend result in
section 5 may be related to issues with the Antarctic sea
ice sensitivity varying during the 1900–2100 period. In
Fig. S1b, the Antarctic sea ice sensitivity in CESM-LE
can be seen to be larger during 1900–2000 (top left part
of plot: small warming leads to large sea ice retreat) than
during 2001–2100 (remainder of plot: further warming
leads to more gradual sea ice retreat). This may be as-
sociated with the Antarctic sea ice sensitivity being
influenced by ozone forcing or other local processes that
do not scale with greenhouse forcing during 1900–2100.
The sea ice sensitivity in CESM-LE is more constant in
the Arctic during 1900–2100 (Fig. S1a). This may cause
the pseudo-ensemble approach, which assumes constant
sea ice sensitivity during 1900–2100, to be less accurate
in the Antarctic than the Arctic (cf. Fig. S2).

6. Discussion

The relationship between the global-mean surface air
temperature trend and both the Arctic and Antarctic sea
ice trends in these simulations implies that the models do
not capture the hemispheric asymmetry of the observed
sea ice trends during 1979–2013. This is illustrated in
Fig. 5a, which indicates a substantial systematic bias in the
CESM-LE simulations compared with observations. The
sea ice trend is more accurately simulated in one hemi-
sphere only at the cost of accuracy in the other. This is
closely related to the temperature trend in each realization
of internal variability (colors of points in Fig. 5a). Re-
alizations that warm most rapidly compared to observa-
tions (red and orange points) tend to have more accurate
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Arctic sea ice trends but greater biases toward Antarctic
sea ice retreat rather than expansion. The reverse also
appears to be true (blue and yellow points), although there
are far fewer simulations in CESM-LE that underestimate
global warming trends. We repeat this analysis using
CMIP5 in Fig. 5b andfind a similar result, although there is
more spread, as expected from the comparison of Figs.
2a,b with Figs. 3a,b. Note that there are three simulations
(from IPSL-CM5A-LR, MPI-ESM-MR, and BCC-
CSM1.1) that simulate sea ice retreat that is similar to
the observations in both hemispheres, but they each
overestimate the level of global warming by at least 40%.
The analyses in sections 5 and 6 rely on the approxi-

mation that the relationship between simulated sea ice
extent and global-mean surface air temperature is lin-
ear. The accuracy of this approximation for climate
model simulations is demonstrated in Fig. S1. In the
Arctic, simulated sea ice extent is highly correlated with
global-mean temperature (left column of Fig. S1). This
close relationship is consistent with the previous finding
that the Arctic sea ice sensitivity in a given model does
not depend on the forcing scenario (Winton 2011).
While the Antarctic sea ice extent is not as highly
correlated with global-mean temperature in many of
the models (right column of Fig. S1), the distributions
in Figs. 2b, 3b, and 4b suggest that the correlations
between Antarctic sea ice extent and global-mean
surface air temperature may be sufficiently large that
the relationship between the trends of these two values
during 35-yr periods are directly related, causing sim-
ulated Antarctic sea ice expansion to occur more often
during periods with less global warming than observed
during 1979–2013.
We examine the extent to which internal climate vari-

ability weakens the relationship between sea ice extent

and global-mean surface temperature over short time
scales by evaluating the distribution of Arctic and Ant-
arctic sea ice sensitivity in 30 CESM-LE simulations of
2006–2100 (Figs. S5e,f). This time period is chosen to avoid
issues with the dependence of Antarctic sea ice sensitivity
on the time period, as discussed in section 6 above
(Fig. S1b). We then compute the sea ice sensitivity of each
overlapping 55-yr period (Figs. S5c,d) and 35-yr period
(Figs. S5a,b). The greater widths of the latter distributions
indicate the extent to which internal variability influences
this relationship over shorter time periods. Figure S5 in-
dicates that even for 35-yr time periods, the distributions of
sea ice sensitivities in both hemispheres remain relatively
narrow compared with the distance from the origin to the
center of each distribution; that is, the fractional spreads
remain relatively small.
Note that by approximating that sea ice extent varies

linearly with global-mean temperature (Fig. S1) in the
effective sea ice trend and pseudo-ensemble analyses
(sections 4 and 5), we approximate here that the sea ice
sensitivity takes the same value in a given simulation
whether the global warming occurs due to rising
greenhouse forcing or internal variability (i.e., that the
sea ice sensitivity is constant). However, it has pre-
viously been shown in a climate model that the magni-
tude of the Arctic sea ice sensitivity is somewhat larger
in a control simulation than in a forced warming simu-
lation (Winton 2011). That is, it was found that there was
more sea ice retreat under global warming caused by
internal variability than under the same level of global
warming caused by rising greenhouse forcing. This ef-
fect appears to also occur in the analysis presented here
for both the Arctic and the Antarctic. In CESM-LE, all
of the simulations of 1979–2013 have the same global
warming due to greenhouse forcing since they are all

FIG. 5. Simulated annual-meanAntarctic sea ice trend vs Arctic sea ice trend in each run from the (a) CESM-LE
and (b) CMIP5 ensembles. The observed trends are indicated by green dashed horizontal and vertical lines. The
color of each point indicates the ratio R between the simulated and observed values of the annual-mean global-
mean surface temperature trend in each simulation.
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from the samemodel with the same forcing scenario, but
the temperature trends differ among the simulations due
to internal variability. Hence a CESM-LE simulation
with a larger temperature trend has more warming due
to internal variability, and thus it should show a sea ice
sensitivity with a larger magnitude. Indeed, points in
Figs. 2a and 2b that are farther to the right (i.e., runs with
larger global temperature trends) tend to have a ratio of
the sea ice trend to the global temperature trend with a
larger magnitude (i.e., the magnitude of the sea ice
sensitivity is larger). Similar arguments imply that
smaller temperature trends have a smaller magnitude of
this ratio. This also occurs to a lesser extent in CMIP5
(Figs. 3a,b), where the global warming due to green-
house forcing varies among the runs. Hence this effect
may explain why the scatterplots in Figs. 2a, 2b, 3a, and
3b do not appear to linearly extrapolate through
the origin.
The central results of this study are relevant to pre-

vious studies that used control simulations with con-
stant forcing to determine whether the observed Arctic
and Antarctic sea ice trends could arise due to internal
variability alone (Kay et al. 2011; Polvani and Smith
2013; Mahlstein et al. 2013; Jones et al. 2016). For ex-
ample, Polvani and Smith (2013) found that 1979–2005
Antarctic sea ice trends that are up to 3 times as large as
the observed trend can naturally emerge in control
simulations. They suggest that this implies that the in-
ternal variability of this system is large enough
to overwhelm the forced global warming signal, similar
to arguments made by Mahlstein et al. (2013). How-
ever, the results presented here imply that periods
in control simulations with expanding Antarctic sea
ice are likely to have global warming trends that are
substantially below the 1979–2013 observed trend.
Therefore, these results imply that when simulated
global warming trends are not considered, neither the
center nor the width of the distribution of sea ice trends
in a control simulation should be expected to accu-
rately reflect the range of possible sea ice trends that
can emerge in climate models under the observed level
of global warming.
We have examined the sensitivity of the results

presented here to adjustments in various details of
the analysis, which is discussed in appendix B. In
appendix B, section a, we evaluate the influence of
using sea ice area in the models and observations,
rather than sea ice extent as used in the main text. In the
appendix B, section b, we repeat the analyses from sec-
tions 2 and 4 using a framework in which each run is
treated as a single realization from a unique ensemble,
following Stroeve et al. (2012) and Santer et al. (2008);
this is in contrast to the analysis in the main text, which

treated all runs as realizations from a single ensemble. In
appendix B, section c, we carry out an alternative
pseudo-ensemble approach that is more complicated
than that used in section 6 but may more accurately
capture the target distribution. In appendix B, section d,
we repeat the effective sea ice trend analysis (section 4)
with the sea ice sensitivity in Eq. (1) computed using a
total least squares regression, rather than the ratio of ice
and temperature temporal trends. In appendix B, sec-
tion e, we repeat the effective trend analysis (section 4)
and the pseudo-ensemble analysis (section 5) using
the Hadley Centre Climatic Research Unit version 4
(HadCRUT4) dataset (Morice et al. 2012) for the global-
mean surface temperature, rather than the GISTEMP
dataset. Consistentwith the central results of this study, in
each case we find that the possibility that internal vari-
ability alone could explain the difference between simu-
lated and observed sea ice trends in either hemisphere
becomes exceedingly small after we account for biases in
the level of global warming.
The results presented here stem from the point that

the observed relationship between sea ice extent and
global-mean surface temperature (i.e., the observed sea
ice sensitivity) is markedly different in each hemisphere
from that simulated by climate models. It should be
emphasized that the physical processes that determine
the ice sensitivity are not well understood. Therefore,
this bias may be related to issues in the atmosphere,
ocean, or sea ice model components that are connected
to the simulated sea ice changes or to the simulated level
of global warming. For example, several studies have
identified model biases related to global warming trends
(e.g., IPCC 2013; Kosaka and Xie 2013) and local
processes that influence sea ice (Rampal et al. 2011;
Jahn et al. 2012; Mahlstein and Knutti 2012; Bintanja
et al. 2013; Mahlstein et al. 2013; Zunz et al. 2013;
Uotila et al. 2014; Haumann et al. 2014; Purich et al.
2016; Jones et al. 2016). Additional studies have sug-
gested that polar teleconnections may also have an
important influence on sea ice trends in each hemi-
sphere (Meehl et al. 2016; Screen and Francis 2016).
Furthermore, errors in the observations could plausibly
contribute to the discrepancy between observed and
modeled sea ice sensitivity. For example, several
studies have suggested that poorly sampled observa-
tions around the poles and in parts of Africa may help
explain differences between observed and modeled
global-mean surface temperature trends (Cowtan and
Way 2014; Richardson et al. 2016; Karl et al. 2015). Sim-
ilarly, recent studies have highlighted uncertainties in the
observed multidecadal Antarctic sea ice extent trend due
to changes in data sources (Screen et al. 2011; Eisenman
et al. 2014). Lastly, we find that the observations show a
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correlation between sea ice extent and global-mean sur-
face temperature that is similar to themodels in theArctic
but not in the Antarctic (Fig. S6). This suggests that the
discrepancy between the models and the observations in
theAntarctic could be related to themodels simulating an
unrealistically tight relationship between Antarctic sea
ice extent and global temperatures.

7. Conclusions

In each hemisphere, the observed 1979–2013 trend in
sea ice extent falls at least marginally within the distri-
bution of the CMIP5 simulations (Figs. 1b,c,e,f). Con-
sistent with this, a number of previous studies have
suggested that internal climate variability could explain
the difference between the observed sea ice trend and
the ensemble-mean simulated trend in each hemisphere
(Kay et al. 2011; Stroeve et al. 2012; Polvani and Smith
2013; Mahlstein et al. 2013; Turner et al. 2013; Swart and
Fyfe 2013; Zunz et al. 2013; IPCC 2013; Fan et al. 2014;
Notz 2014; Gagné et al. 2015; Goosse and Zunz 2014;
Swart et al. 2015; Purich et al. 2016; Jones et al. 2016).
The results presented here suggest that this viewpoint

breaks down when we account for biases in simulated
1979–2013 global-mean surface temperature trends.
We find that simulated Arctic sea ice retreat is accurate
only in runs that have far too much global warming
(Figs. 2a, 3a, 4a). This suggests that the models may be
getting the right Arctic sea ice retreat for the wrong
reasons. Similarly, simulated periods with accurate
Antarctic sea ice trends tend to have too little global
warming, although these results are more equivocal
(Figs. 2b, 3b, 4b). Relatedly, the simulations do not
capture the observed asymmetry between Arctic and
Antarctic sea ice trends (Fig. 5).
We quantify how this bias influences the level of

agreement between models and observations (Fig. 1)
by estimating what the simulated sea ice trend in each
hemisphere would be in runs that matched the ob-
served level of global warming (Table 1). This anal-
ysis relies on the approximately linear relationship
between sea ice extent and global-mean surface
temperature in the simulations (Fig. S1), which allows
us to scale the results from simulations with varied
levels of global warming (Figs. 2c,d and 3c,d) or use
simulations from different time periods (Figs. 4c,d).
These results suggest that the difference between
observed and modeled sea ice trends in each hemi-
sphere cannot be attributed to simulated internal
climate variability alone. This implies systematic er-
rors in the Arctic and Antarctic sea ice changes sim-
ulated with current climate models, or possibly errors
in the observations.
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APPENDIX A

Methods

Here further details are given regarding the observa-
tions and the processing of the CMIP5 model output.
For the observed sea ice extent and sea ice area, we

use monthly-mean data from the National Snow and
Ice Data Center Sea Ice Index (Fetterer et al. 2002),
which uses the NASA Team algorithm to estimate sea
ice concentration from satellite passive microwave
measurements. We analyze years 1979–2013, since this
was the period available at the time of analysis. We fill
missing monthly values by interpolating between the
same months in the previous and following years, and we
then take annual averages. For the observed annual-
mean global-mean surface temperature data, we use the
Goddard Institute for Space Sciences Surface Tempera-
ture Analysis (GISTEMP) (Hansen et al. 2010).
We analyze 118 simulations of years 1979–2013 from

40 CMIP5 models, using the Historical (1850–2005) and
RCP4.5 (2006–2100) experiments; note that the choice
of RCP scenario has minimal influence during 2006–13.
The models simulate surface air temperature at each
horizontal atmospheric grid point, and sea ice concen-
tration is simulated on the ocean grid in many of the
models. Therefore, the areas of the cells in both grids are
often needed to compute the total Arctic and Antarctic
sea ice areas as well as the global-mean temperature.
The following models did not have grid cell areas re-
ported in the CMIP5 archive: CanCM4 (surface air
temperature), MPI-ESM-LR (surface air temperature),
and FIO-ESM (surface air temperature and sea ice). In
these cases, grid cell areas were estimated from the re-
ported locations of grid cell corners using the Haversine
formula (note that this method requires a regular grid).
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Simulations were not analyzed in this study when
surface air temperature output was not available during
all of 1979–2013, sea ice output was not available during
all of 1979–2013, dates reported in the file did not match
the filename in the CMIP5 archive, or irregular grids
were used but grid cell areas were not provided. The
following runs each had at least one of these issues and
hence were excluded: EC-EARTH runs 1, 3–6, and 10;
FIO-ESM run 2; MIROC-ESM-CHEM run 2; CESM1-
CAM5–1-FV2 runs 1–4; GFDL-CM3 runs 2–5; GFDL-
CMP2p1 runs 1–10; all runs from BCC-CSM1–1-M; and
all runs from INMCM. GFDL-ESM2G run 1 is also
excluded because the Antarctic sea ice extent gradually
decreases and then increases during 1979–2013, leading
to a highly autocorrelated time series of linear re-
gression residuals with less than 2 effective degrees of
freedom, which causes the standard error in the anal-
ysis in appendix B, section b to be complex [cf. Eq. (4)
in Santer et al. 2008]. Additional simulations were
excluded from the analysis in Fig. 4 and Figs. S1e,f
because data were not available for the entire 1900–
2100 period.

APPENDIX B

Robustness to Changes in Methods

a. Using ice area instead of ice extent

The results presented in the main text use sea ice extent
as a measure of the sea ice cover. Here we briefly sum-
marize the effect of instead using sea ice area in the models
and observations. First, considering the Gaussian distribu-
tion of sea ice trends (as in Figs. 1e,f), we find that 22% of
the simulations would have Arctic sea ice retreat that is as
fast as the observations, and 1.5%would haveAntarctic sea
ice expansion at least as large as the observations, similar to
the values of 12%and 1.6%, respectively, that we found for
ice extent.Whenwe use theGaussian distribution ofArctic
andAntarctic effective sea ice trends (as in Figs. 3c,d), these
values drop to 0.15% and 0.28% (similar to 0.02% and
0.37% for ice extent), respectively. Lastly, of the 1232
overlapping 35-yr periods that have global warming trends
that are similar to the1979–2013observations (as inFigs. 4c,d),
1.3%of the periods haveArctic sea ice trends as negative as
the observed value, and 3.1%of the periods haveAntarctic
sea ice trends as positive as the observed value (similar to
0.08% and 3.7%, respectively, for ice extent).

b. Paired trends tests

In this section, we consider an alternative framework
for the analysis in the main text: rather than treat each
CMIP5 simulation as a realization from a single model,

here we treat each simulation as a realization from a
separatemodel. Following previous studies (Santer et al.
2008; Stroeve et al. 2012), we determine if each simu-
lated trend is statistically different from the observed
trend at the 95% confidence level by usingWelch’s t-test
statistic:
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Here bm and bo are the modeled and observed trends,
respectively, and sm and so are the associated standard
errors, which are adjusted for autocorrelation following
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where bIt,bTt
, andbTo

t
are the trends in simulated sea ice,

simulated global-mean surface temperature, and ob-
served global-mean surface temperature, and sIt, sTt,
and sIt are the associated standard errors.
We find that of the 118 simulations, 33% simulate sea

ice trends that are statistically different from the ob-
servations at the 95% confidence level in the Arctic, and
80% in the Antarctic. On the other hand, 81% and 84%
of the simulations have Arctic and Antarctic effective
sea ice trends that are different from the observations at
the 95% level, respectively.

c. Using scaled histograms in pseudo-ensemble
analysis

In this section, we repeat the calculation in section 5
(Fig. 4) using a somewhat more precise but less
straightforward approach that involves a weighting
function rather than simply selecting the runs that fall
within the shaded region. We begin with the distribution
of 13 354 overlapping 35-yr temperature trends during
1900–2100 as well as a Gaussian distribution centered on
the observed temperature trend with a width equal to
the 68% linear regression confidence interval (which is
adjusted for autocorrelation, as in the previous sub-
section). Next, we assign each 35-yr period a weight
equal to the height of the Gaussian at the center of the
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histogram bin where the 35-yr period falls divided by the
number of runs in the histogram bin.
These weights scale the distribution of temperature

trends during 1900–2100 to match a distribution consistent
with the observed 1979–2013 temperature trend. Next, we
create a histogram of sea ice trends with each 35-yr period
multiplied by its weight. Hence this approach asks what
range of ice extent trends is consistent with the observed
temperature trend under the assumptions described in
section 5. We find that the resulting distribution is ap-
proximately equivalent to the result of the simpler ap-
proach in section 5 (Figs. 4c,d): 0.32% of the 35-yr periods
have Arctic sea ice trends are at least as negative as the
observed value, and 5.2% have Antarctic sea ice trends at
least as positive as the observed value, compared with
0.08% and 3.7%, respectively, reported in section 5.

d. Using total least squares to compute sea ice
sensitivity

Winton (2011) found that computing the sea ice sensi-
tivity using a total least squares (TLS) regression between
sea ice extent and global-mean surface air temperature
leads to a slightly more accurate estimate than the ratio of
ice and temperature temporal trends as in Eq. (1). We find
that replacing the ratio of trends in Eq. (1) with a TLS
regression between ice extent and global-mean surface air
temperature yields similar results: usingGaussian fits to the
distributions, we find that the probability that the obser-
vations would land this far below or above the TLS effec-
tive sea ice trend ensemblemean is 0.02%and 0.08% in the
Arctic and Antarctic, respectively (similar to 0.02% and
0.37%, respectively, computed using the trend ratio).

e. Using HadCRUT4 instead of GISTEMP

The results presented in the main text use the
GISTEMP dataset for the observed annual-mean global-
mean surface temperature. Here we briefly summarize
the effect of instead using the HadCRUT4 dataset
(Morice et al. 2012). This causes the 1979–2013 tem-
perature trend to increase from 0.157Kdecade21

(GISTEMP) to 0.159Kdecade21 (HadCRUT4). Con-
sidering the Gaussian distribution of effective sea ice
trends (as in Figs. 3c,d), we find that this leads to 0.03%
(HadCRUT4) instead of 0.02% (GISTEMP) of the
simulations having Arctic sea ice retreat that is as fast as
the observations, and 0.39% (HadCRU4) instead of
0.37% (GISTEMP) having Antarctic sea ice expansion
as fast as the observations. Considering the 1232 over-
lapping 35-yr periods that have global warming trends
similar to the 1979–2013 observations (as in Figs. 4c,d),
we find that this causes 0.08% (HadCRUTas inGISTEMP)
of the periods to have Arctic sea ice trends as negative
as observed, and 3.5% (HadCRUT) instead of 3.7%

(GISTEMP) of the periods to have Antarctic sea ice
trends as positive as observed. In summary, switching
from GISTEMP to HadCRUT4 has little effect on the
main results presented here.
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FIG. S1. Annual (a) Arctic and (b) Antarctic sea ice extent versus global-mean surface air temperature using 30 CESM-LE simulations of
1920-2100. Years associated with 1920-2005 (blue) and 2006-2100 (red) are indicated. (c-f) Histograms of the correlations between (c,e) Arctic
sea ice extent and (d,f) Antarctic sea ice extent with the global-mean surface air temperature from each (c,d) CESM-LE simulation of 1920-2100
and (e,f) CMIP5 simulation of 1900-2100.
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FIG. S2. As in Figs. 4a,b but for the 30 CESM-LE simulations of 1920-2100 (4 410 points in total).

FIG. S3. (a-b) As in Figs. 4a,b, but here the red highlighted region indicates all 35-year global-mean surface air temperature trends that are
within one standard deviation of the 1979-2013 CMIP5 ensemble mean (Fig. 1d). Sea ice trends for the periods that fall within the highlighted
regions are shown in the histograms below (c,d), with the observed trend indicated by a thick green line. Standard deviations of these distributions
(black error bars) and the distribution of 1979-2013 sea ice trends (red error bars) are also shown. The mean and standard deviation of the trends
that fall within the highlighted regions are repeated for comparison in the top panel (black vertical error bars).
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FIG. S4. Time series of annual-mean (a) global-mean surface air temperature, (b) Arctic sea ice extent, and (c) Antarctic sea ice extent from
two CESM-LE simulations. Linear trends are indicated by dashed lines. The simulation with a large level of global warming (red) has more sea
ice loss in both hemispheres than the simulation with a small level of global warming (blue).
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FIG. S5. Distributions of annual (a,c,e) Arctic and (b,d,f) Antarctic sea ice trends divided by the annual global-mean surface temperature trends,
which gives an estimate of the sea ice sensitivity, using 30 CESM-LE simulations of 2006-2080. The distribution of the ratio of these trends is
shown for each of the 30 simulations (e,f), as well as for each (c,d) 55-year and (a,b) 35-year period within each simulation. The mean and standard
deviation of each distribution is also indicated (error bars). The widening of the distributions illustrates the influence of internal variability, which
increases for shorter time scales and makes the relationship between sea ice retreat and global warming more variable.
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FIG. S6. Histograms of the correlations between (a,c) Arctic sea ice extent and (b,d) Antarctic sea ice extent with the global-mean surface air
temperature from each (a,b) CESM-LE simulation and (c,d) CMIP5 simulation of 1979-2013. Observed correlations between Arctic sea ice extent
and global-mean surface temperature are indicated in black.
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FIG. S7. Distribution of 118 CMIP5 simulated 1979-2013 (a,c) Arctic and (b,d) Antarctic (a,b) sea ice trends and (c,d) effective sea ice trends,
as in Figs. 1e,f and 3c,d. The trends and 68% regression confidence intervals for all simulated 35-year trends are indicated as error bars above the
histograms (see Appendix B for details). The observed trend is indicated by a thick green vertical line, with thin green vertical lines indicating the
68% regression confidence interval.
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Model Run Temp Arctic Antarctic Eff Arctic Eff Antarctic

observations 0 0.156 -0.533 0.182 -0.533 0.182
ACCESS1-0 1 0.269 -0.448 -0.204 -0.260 -0.119
ACCESS1-3 1 0.245 -0.262 -0.440 -0.167 -0.280

BCC-CSM1-1 1 0.249 -0.609 0.210 -0.383 0.132
BNU-ESM 1 0.327 -0.755 -0.971 -0.361 -0.465
CanCM4 1 0.270 -0.382 -0.490 -0.221 -0.283
CanCM4 2 0.281 -0.385 -0.518 -0.215 -0.289
CanCM4 3 0.257 -0.330 -0.413 -0.201 -0.251
CanCM4 4 0.302 -0.393 -0.431 -0.203 -0.223
CanCM4 5 0.252 -0.360 -0.427 -0.224 -0.265
CanCM4 6 0.254 -0.379 -0.173 -0.233 -0.106
CanCM4 7 0.303 -0.514 -0.415 -0.266 -0.215
CanCM4 8 0.292 -0.440 -0.468 -0.236 -0.251
CanCM4 9 0.247 -0.380 -0.377 -0.241 -0.239
CanCM4 10 0.251 -0.340 -0.306 -0.212 -0.191

CanESM2 1 0.311 -0.553 -0.510 -0.278 -0.257
CanESM2 2 0.340 -0.416 -0.473 -0.192 -0.218
CanESM2 3 0.339 -0.433 -0.762 -0.200 -0.352
CanESM2 4 0.342 -0.556 -0.333 -0.254 -0.152
CanESM2 5 0.338 -0.381 -0.556 -0.177 -0.257
CCSM4 1 0.269 -0.304 -0.543 -0.177 -0.316
CCSM4 2 0.262 -0.319 -0.466 -0.190 -0.278
CCSM4 3 0.229 -0.058 -0.667 -0.040 -0.456
CCSM4 4 0.241 -0.289 -0.264 -0.187 -0.171
CCSM4 5 0.279 -0.154 -0.648 -0.086 -0.364
CCSM4 6 0.243 -0.408 -0.352 -0.263 -0.227

CESM1-BGC 1 0.261 -0.348 -0.685 -0.209 -0.410
CESM1-CAM5 1 0.200 -0.217 -0.613 -0.169 -0.479
CESM1-CAM5 2 0.217 -0.284 -0.508 -0.205 -0.366
CESM1-CAM5 3 0.234 -0.330 -0.519 -0.221 -0.348

CESM1-WACCM 2 0.203 -0.185 -0.395 -0.143 -0.305
CESM1-WACCM 3 0.278 -0.354 -0.495 -0.199 -0.279
CESM1-WACCM 4 0.200 -0.134 -0.406 -0.105 -0.318

CMCC-CM 1 0.224 -0.492 -0.118 -0.343 -0.082
CMCC-CMS 1 0.233 -0.295 -0.215 -0.198 -0.144
CNRM-CM5 1 0.245 -0.803 -0.317 -0.513 -0.202

CSIRO-Mk3-6-0 1 0.197 -0.131 -0.218 -0.104 -0.174
CSIRO-Mk3-6-0 2 0.193 -0.177 -0.417 -0.144 -0.339
CSIRO-Mk3-6-0 3 0.214 -0.046 0.015 -0.034 0.011
CSIRO-Mk3-6-0 4 0.254 -0.268 -0.362 -0.166 -0.224
CSIRO-Mk3-6-0 5 0.221 -0.243 -0.308 -0.172 -0.218
CSIRO-Mk3-6-0 6 0.185 -0.194 0.008 -0.163 0.007
CSIRO-Mk3-6-0 7 0.220 -0.274 -0.395 -0.195 -0.281
CSIRO-Mk3-6-0 8 0.268 -0.424 -0.290 -0.247 -0.169
CSIRO-Mk3-6-0 9 0.147 0.024 -0.165 0.026 -0.176
CSIRO-Mk3-6-0 10 0.206 -0.217 -0.092 -0.165 -0.070

EC-EARTH 2 0.192 -0.164 -0.526 -0.133 -0.430
EC-EARTH 7 0.192 -0.104 -0.035 -0.085 -0.029
EC-EARTH 8 0.213 -0.120 -0.684 -0.088 -0.503
EC-EARTH 9 0.205 -0.199 0.039 -0.152 0.030
FGOALS-g2 1 0.177 -0.139 -0.090 -0.123 -0.079

continued on next page ...
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Model Run Temp Arctic Antarctic Eff Arctic Eff Antarctic

FIO-ESM 1 0.194 -0.064 -0.502 -0.051 -0.405
FIO-ESM 3 0.211 -0.118 -0.378 -0.087 -0.280

GFDL-CM2p1 1 0.265 -0.380 -0.291 -0.225 -0.172
GFDL-CM2p1 2 0.341 -0.349 -0.722 -0.160 -0.331
GFDL-CM2p1 3 0.262 -0.374 -0.251 -0.223 -0.150
GFDL-CM2p1 4 0.284 -0.374 -0.413 -0.206 -0.227
GFDL-CM2p1 5 0.302 -0.440 -0.260 -0.228 -0.135
GFDL-CM2p1 6 0.255 -0.497 -0.160 -0.305 -0.098
GFDL-CM2p1 7 0.253 -0.494 0.011 -0.305 0.007
GFDL-CM2p1 8 0.281 -0.380 -0.357 -0.211 -0.199
GFDL-CM2p1 9 0.220 -0.426 -0.136 -0.304 -0.097
GFDL-CM2p1 10 0.278 -0.427 -0.148 -0.240 -0.083

GFDL-CM3 1 0.315 -0.455 -0.725 -0.226 -0.360
GFDL-ESM2M 1 0.205 -0.162 -0.044 -0.124 -0.034

GISS-E2-H 1 0.204 -0.485 -0.255 -0.372 -0.196
GISS-E2-H 2 0.234 -0.618 -0.229 -0.414 -0.153
GISS-E2-H 3 0.219 -0.500 -0.037 -0.358 -0.027
GISS-E2-H 4 0.220 -0.544 -0.066 -0.387 -0.047
GISS-E2-H 5 0.206 -0.299 -0.451 -0.226 -0.342

GISS-E2-H-CC 1 0.243 -0.597 -0.671 -0.385 -0.433
GISS-E2-R 1 0.213 -0.498 -0.239 -0.365 -0.175
GISS-E2-R 2 0.197 -0.429 -0.094 -0.342 -0.075
GISS-E2-R 3 0.212 -0.432 -0.008 -0.319 -0.006
GISS-E2-R 4 0.184 -0.392 -0.112 -0.334 -0.096
GISS-E2-R 5 0.154 -0.367 -0.022 -0.373 -0.022
GISS-E2-R 6 0.243 -0.400 -0.263 -0.257 -0.169

GISS-E2-R-CC 1 0.209 -0.509 -0.082 -0.380 -0.061
HadCM3 1 0.270 -0.473 -0.315 -0.274 -0.182
HadCM3 2 0.226 -0.373 -0.296 -0.258 -0.205
HadCM3 3 0.268 -0.426 -0.308 -0.249 -0.180
HadCM3 4 0.250 -0.275 -0.437 -0.172 -0.274
HadCM3 5 0.294 -0.501 -0.379 -0.267 -0.202
HadCM3 6 0.224 -0.270 -0.434 -0.188 -0.303
HadCM3 7 0.272 -0.452 -0.529 -0.260 -0.304
HadCM3 8 0.260 -0.648 -0.277 -0.389 -0.166
HadCM3 9 0.225 -0.356 -0.385 -0.247 -0.267
HadCM3 10 0.238 -0.323 -0.403 -0.213 -0.265

HadGEM2-AO 1 0.335 -0.542 -0.568 -0.253 -0.265
HadGEM2-CC 1 0.205 -0.388 -0.192 -0.296 -0.146
HadGEM2-ES 1 0.313 -0.495 -0.480 -0.247 -0.240
HadGEM2-ES 2 0.229 -0.320 -0.171 -0.219 -0.117
HadGEM2-ES 3 0.182 -0.326 0.032 -0.280 0.028
HadGEM2-ES 4 0.281 -0.603 -0.400 -0.336 -0.222

IPSL-CM5A-LR 1 0.314 -0.403 -0.253 -0.201 -0.126
IPSL-CM5A-LR 2 0.300 -0.429 -0.308 -0.224 -0.160
IPSL-CM5A-LR 3 0.230 -0.405 0.188 -0.276 0.128
IPSL-CM5A-LR 4 0.284 -0.277 -0.664 -0.153 -0.366
IPSL-CM5A-MR 1 0.274 -0.387 -0.340 -0.221 -0.194
IPSL-CM5B-LR 1 0.153 -0.144 0.087 -0.148 0.089

MIROC-ESM 1 0.220 -0.228 -0.410 -0.162 -0.291
MIROC-ESM-CHEM 1 0.208 -0.411 -0.452 -0.309 -0.339

continued on next page ...
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Model Run Temp Arctic Antarctic Eff Arctic Eff Antarctic

MIROC4h 1 0.279 -0.335 -0.388 -0.188 -0.218
MIROC4h 2 0.321 -0.648 -0.546 -0.316 -0.267
MIROC4h 3 0.338 -0.573 -0.509 -0.265 -0.236
MIROC5 1 0.260 -0.421 -0.027 -0.254 -0.016
MIROC5 2 0.189 -0.258 -0.097 -0.214 -0.080
MIROC5 3 0.248 -0.292 -0.241 -0.185 -0.152
MIROC5 4 0.200 -0.239 -0.040 -0.186 -0.031
MIROC5 5 0.198 -0.203 -0.056 -0.161 -0.044

MPI-ESM-LR 1 0.221 -0.341 -0.325 -0.241 -0.230
MPI-ESM-LR 2 0.244 -0.275 -0.273 -0.177 -0.175
MPI-ESM-LR 3 0.237 -0.425 -0.089 -0.280 -0.059
MPI-ESM-MR 1 0.259 -0.502 0.285 -0.303 0.172
MPI-ESM-MR 2 0.215 -0.308 -0.217 -0.224 -0.158
MPI-ESM-MR 3 0.252 -0.378 -0.206 -0.235 -0.128
MRI-CGCM3 1 0.096 -0.212 0.108 -0.345 0.175
NorESM1-M 1 0.173 -0.230 0.004 -0.208 0.003

NorESM1-ME 1 0.190 -0.160 -0.159 -0.132 -0.131
CESM-LE 1 0.199 -0.426 -0.404 -0.334 -0.317
CESM-LE 2 0.226 -0.326 -0.495 -0.226 -0.343
CESM-LE 3 0.195 -0.239 -0.461 -0.191 -0.369
CESM-LE 4 0.170 -0.278 -0.185 -0.256 -0.170
CESM-LE 5 0.170 -0.250 -0.335 -0.229 -0.307
CESM-LE 6 0.224 -0.326 -0.397 -0.228 -0.277
CESM-LE 7 0.193 -0.323 -0.339 -0.262 -0.276
CESM-LE 8 0.223 -0.380 -0.497 -0.266 -0.348
CESM-LE 9 0.228 -0.264 -0.711 -0.181 -0.488
CESM-LE 10 0.185 -0.206 -0.391 -0.174 -0.330
CESM-LE 11 0.210 -0.358 -0.581 -0.267 -0.434
CESM-LE 12 0.243 -0.267 -0.670 -0.172 -0.431
CESM-LE 13 0.250 -0.389 -0.574 -0.243 -0.359
CESM-LE 14 0.191 -0.168 -0.356 -0.137 -0.292
CESM-LE 15 0.187 -0.244 -0.389 -0.204 -0.326
CESM-LE 16 0.189 -0.131 -0.515 -0.109 -0.426
CESM-LE 17 0.210 -0.188 -0.455 -0.140 -0.338
CESM-LE 18 0.230 -0.386 -0.716 -0.262 -0.487
CESM-LE 19 0.240 -0.450 -0.505 -0.293 -0.329
CESM-LE 20 0.233 -0.328 -0.697 -0.221 -0.468
CESM-LE 21 0.162 -0.164 -0.218 -0.159 -0.210
CESM-LE 22 0.205 -0.343 -0.495 -0.261 -0.378
CESM-LE 23 0.174 -0.092 -0.310 -0.083 -0.280
CESM-LE 24 0.192 -0.254 -0.367 -0.207 -0.299
CESM-LE 25 0.164 -0.154 -0.414 -0.147 -0.394
CESM-LE 26 0.195 -0.246 -0.469 -0.198 -0.377
CESM-LE 27 0.178 -0.059 -0.409 -0.052 -0.360
CESM-LE 28 0.109 -0.050 -0.114 -0.071 -0.165
CESM-LE 29 0.157 -0.175 -0.355 -0.175 -0.355
CESM-LE 30 0.178 -0.127 -0.410 -0.111 -0.360

TABLE 1. Trends in CMIP5 and CESM-LE simulations (note that table spans the preceding pages). Units are 106 km2/decade. See http://cmip-
pcmdi.llnl.gov/cmip5 for a list of the modeling centers associated with each model listed here. Note that one simulation (CSIRO-Mk3-6-0 run9)
has an Arctic sea ice trend that is nearly zero, which is the apparently coincidental result of a series of large increases and decreases in the simulated
sea ice cover.




