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Summary

Admixture mapping is potentially a powerful method for mapping genes for complex human

diseases, when the disease frequency due to a particular disease susceptible gene is different

between founding populations of different ethnicity. The method tests for genetic linkage

by detecting association of the allele ancestry with the disease. Since the markers used to

define ancestral populations are not fully informative for the ancestry status, direct test of

such association is not possible. In this paper, we develop a hidden Markov model (HMM)

framework for estimating the unobserved ancestry haplotypes across a chromosomal region

based on marker haplotypes. The HMM efficiently utilizes all the marker data to infer the

latent ancestry states at the putative disease locus. In this modelling framework, we consider

a likelihood based approach for detecting genetic linkage based on case-control data. We

evaluate by simulations how several factors affect the power of admixture mapping, including

sample size, ethnicity relative risk, marker density and the different admixture dynamics. Our

simulation results indicate correct type 1 error rates of the proposed likelihood ratio test and

great impact of marker density on the power. In addition, simulation results indicate that

the methods work well for the admixed populations derived from both hybrid-isolation and

continuous gene-flowing models.

KEYWORDS: Admixture Mapping, Hidden Markov Model, Linkage Disequilibrium, Hap-

lotype.
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1 Introduction

When there has been recent admixture between two populations with different prevalence for

a certain disease and markers with large allele frequency differences between the two found-

ing populations have been identified throughout the genome, it has been suggested that such

an admixed population can be utilized for mapping susceptible genes for complex diseases

(Chakroborty and Weiss, 1988; Stephens et al., 1994; Brisoe et al., 1994; McKeigue, 1998).

Examples of the recently admixed populations include the African-American (AA) popula-

tion and the Mexican-American population, in which the founding populations are European

American (EA) and African (AF) or EA and Native American populations. Example of the

complex diseases which show different risks in different populations include multiple sclerosis,

primarily a Caucasian disease, especially affecting those of northern European ancestry (e.g.

Scandanavians, English, Irish). Its prevalence is low in African blacks, Asians and other ethnic

groups with little Caucasian admixture (Sadovnick 1994). The markers with large allele fre-

quency differences between the two founding populations, called ancestry informative markers

(AIMs), have been gradually identified throughout the genome (Shriver et al., 1997; Smith

et al., 2001; Collins-Schramm et al. 2002). The mapping methods which use the particular

genetic structure of the admixed population are called mapping by admixture linkage dise-

quilibrium or admixture mapping. When admixture occurs between two populations, linkage

disequilibrium (LD) is created between loci with large allele frequencies in the two founding

populations. The LD between unlinked markers rapidly decays with successive generations

while the LD between linked markers persists for many more generations. Efficiently utilizing

such LD can provide evidence of genetic linkage.

Most of recent efforts have focused on studying the LD patterns in the admixture popula-

tions (Briscoe et al., 1994; Stephens et al., 1994; Pfaff et al., 2001; Para et al., 2001; Rybicki

et al. 2002; Collins-Schramm et al. 2003)). Pfaff et al. (2001) observed by empirical sim-

ulation study that the LD pattern is highly dependent on admixture dynamics: populations

that follow a continuous-gene-flow (CGF) history of admixture have greater LD over large

chromosomal region than do populations that more closely fit a hybrid-isolation (HI) admix-

ture model. While studying LD patterns in the admixed populations is important, statistical

methods for actually testing for linkage based on admixed populations are less developed.

Other efforts have been on developing methods for inference of population structure using

multilocus genotype data (Pritchard et al. 2000: Fulash et al. 2003).
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Admixture mapping can be viewed as examining the linkage between a susceptibility gene

and marker alleles that distinguish between the ancestry of the founding populations. This

association between the susceptibility gene and the marker alleles in the same chromosomal

region is maintained for many generations but the linkage does not depend on LD per se

between the susceptibility gene and any specific marker allele. Thus, instead of testing for

allelic association, markers are typed for obtaining ancestry information and this information

is used to examine linkage of the trait. Therefore, admixture mapping can be regarded as

testing for linkage by using association or by using admixture LD. Based on this view of

admixture mapping, McKeigue (1998) and McKeigue et al (2000) developed several interesting

statistical tests for linkage by testing for unequal transmission of ancestry alleles conditional

on parental admixture using only affected individuals. The difficulty is that the markers are

not always fully informative for inferring the ancestry states. However, since AIMs are often

linked, it is possible to utilize all the marker data to infer the ethnicity states for a given locus

in a candidate region by using a hidden Markov model (HMM) (MacDonald and Zucchini,

1997) formulation. This idea was briefly discussed in McKeigue (1998). However, McKeigue

(1998) did not provide a clear formulation of the HMM and the methods by McKeigue do not

account for any uncertainty associated with the estimation of most probable ancestry states.

In addition, McKeigue (1998) only considered case-only design by examining transmissions of

alleles of different ancestries to probands.

Recently, Falusch et al. (2003) has developed an algorithm based on Morkov Chain Monte

Carlo and HMM for inference of population structure using multicolus genotpe data. While

the algorithm can be used to infer the population origin of chromosomal regions, it is not

specifically designed for the purpose of admixture mapping. In this paper, we develop meth-

ods for testing genetic linkage using case-control data based on HMM by formally defining the

latent states, the transition probabilities and the probabilities of observed data given latent

states. We develop an iterative procedure utilizing the posterior decoding algorithm (Rabiner,

1989) to estimate the latent ancestry haplotype together with the allele frequencies condition-

ing on the latent states and other model parameters. We then consider case control design

for admixture mapping and propose a likelihood ratio test for testing the linkage between the

disease and a candidate locus in a test chromosomal region. Factors that affect the power of

such test are fully investigated by using simulations.

The rest of the paper is organized as follows: we first define the HMM for the haplotype

data and present methods for estimating the parameters such as the conditional allele fre-
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quencies. We then present a likelihood ratio test for linkage between the test chromosomal

region and the disease. Following the methods sections, we present results from simulation

studies. Finally we give a brief discussion of the methods and results.

Methods

Hidden Markov Model for Ancestry Haplotypes

Consider a map of AIMs with known locations in a candidate chromosomal region and assume

within this region an arbitrary location for the disease locus, 0. Given this location 0, the

region is divided into two regions with L markers present to the left of the disease locus and

R markers to the right for a total of L + R markers, denoted by 1, · · · , L + R. Denote ”di+1”

as the distance between the adjacent marker loci i and (i + 1). In this paper, we assume that

we know the marker haplotypes over these L + R markers in this region for all individuals

and all the AIMs are diallelic with two alleles, 1 and 2. Let Mi = {M (1)
i ,M

(2)
i } denote the

marker alleles at locus i of the two haplotypes. Then for a given haplotype, each of these

L + R marker loci may take one of two possible ancestral states: identity by descent (IBD)

with an X founder chromosome, or Y founder chromosome. However, these ancestral states

are not observable. Let X denote the status IBD with X founder chromosome, Y denote the

status IBD with Y founder chromosome. Let Si = {S(1)
i , S

(2)
i } denote the ancestral states at

locus i on the two haplotypes, which takes values X or Y .

We assume that each observed haplotype is generated by a hidden Markov model, in which

the unobserved ancestry haplotype serves as the latent path of ancestry states. We consider

here the HI model, in which the admixture occurs in a single generation and is followed by

recombination and genetic drift, with no further genetic contribution from either parental

population. Let π = Pr(X) be the prior probability that a randomly chosen allele in the

admixed population is from the X founding population, which can also be interpreted as the

contribution of population X to the admixture in the current admixed population. Given the

chromosome’s ancestral states at the locus i, we can calculate the probability of the two states

at the locus j on the kth haplotype,

Pr(S
(k)
j = X|S(k)

i = X)=Pr(NR)+[1-Pr(NR)]Pr(MRR=X),

where NR denotes that no recombination has occurred between the loci, MRR=X is used to

indicate that the most recent recombination event occurred, at locus j, with a chromosome
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IBD with the X population”; similarly,

Pr(S
(k)
j = X|S(k)

i = Y )=[1-Pr(NR)]Pr(MRR=X)),

since a recombination event must have occurred between two loci of different ancestral states.

We further assume that the probability that, at locus j, a chromosome IBD with the X

population has remained constant over time, i.e., Pr(MRR = X) = π. This assumption

holds for the HI model, but not the CGF model. Based on this general formula, the transition

probabilities from Si → Si+1 are defined as

τ i+1
XX = exp(−γdi+1) + [1− exp(−γdi+1)]π,

τ i+1
XY = [1− exp(−γdi+1)](1− π),

τ i+1
Y X = [1− exp(−γdi+1)]π,

τ i+1
Y Y = exp(−γdi+1) + [1− exp(−γdi+1)](1− π). (1)

Under the assumption of no interference, exp(−γdi+1) is the probability of no recombination

events in generations since the admixture, where γ is the expected frequency of recombination

events for each cM of a chromosomal region since admixture. Here 100γ can be regarded as the

number of generations since admixture. Note that the parameters which are associated with

these transition probabilities are π and γ. This formulation of the latent states and transition

probabilities are similar to those used by Morris et al (2000) for fine-scale mapping of disease

loci. It is important to note that these transition probabilities are derived by assuming a

hybrid-isolation model. However, as shown in a later section, the methods developed by this

model work well for other population models such as the continuous gene-flow model.

We next introduce the probability models to relate the observed data with the latent

ancestry states. The observed data are the observed alleles, Mi = {M (1)
i ,M

(2)
i }, at each of

the R + L AIM loci on the two haplotypes and the disease status for each individual. Let

piS(a) be the probability of observing allele a at the locus i if the latent ancestry state is S,

for i = 1, · · ·R +L, S = X,Y , and a = 1, 2. We call these piS(a) the conditional marker allele

frequencies. In practice, these conditional allele frequencies are unknown and are estimated

from the data.

Finally, for the putative disease locus 0, we define the probability of phenotype, Z = 1 or

0 for case or control, given the latent ancestry states at the putative disease locus which is
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given in the following logistic penetrance function,

Pr(Z = 1|S(1)
0 , S

(2)
0 ) =

exp{β0 + β1I(S
(1)
0 S

(2)
0 = XY ) + β2I(S

(1)
0 S

(2)
0 = Y Y )}

1 + exp{β0 + β1I(S
(1)
0 S

(2)
0 = XY ) + β2I(S

(1)
0 S

(2)
0 = Y Y )}

, (2)

where I(.) is the indicator function. Under this model, the null hypothesis of no linkage of

the putative disease locus 0 with the disease can be formulated as testing H0 : β1 = β2 = 0.

Other penetrance functions can also be assumed.

Genotypic Relative Risk, Ethnicity Relative Risk and Population Risk Ratio

In the previous penetrance model (2), the risk of disease is defined in term of the ancestry

statuses of the two alleles at the putative disease locus 0. However, in practice, the genetic

effect of a disease is often measured in term of genotypic relative risks and disease prevalence

in the study population, in this case, the admixed population. It is important to establish the

relationships between these different measurements of the disease risk.

Suppose that there are two variants at the disease locus, 0 and 1, where 1 is the high risk

allele in both founding populations. Let pX (or pY ) be the frequency of allele 0 in the X (or Y)

population. For each founding population, we assume a multiplicative model for the disease

risk with genotypic relative risk ratio (GRR) of rX and rY , then the prevalence of the disease

in the founding population X and Y can be written as

KX = f0X [p2
X + 2pX(1− pX)rX + (1− pX)2r2

X ],

KY = f0Y [p2
Y + 2pY (1− pY )rY + (1− pY )2r2

Y ],

where f0X = Pr(Z = 1|00, XX) is the baseline risk of disease in the X population and

f0Y = Pr(Z = 1|00, Y Y ) the baseline risk of disease in the Y population corresponding to the

genotype 00. The population risk ratio RRXY can be written as KY /KX .

In the admixed population between X and Y founding populations, the frequency of allele

0 is pXY = πpX + (1− π)pY . If we assume a multiplicative model, we can define the ethnicity

relative risk (ERR) as

ERR =
Pr(Z = 1|Y Y )

Pr(Z = 1|XY )
=

Pr(Z = 1|XY )

Pr(Z = 1|XX)
,

which measures the increased risk when an allele at the disease locus in the admixed population

is from the Y population. Then the prevalence of the disease in the admixed population is

Kp = Pr(Z = 1|XX)Pr(XX) + 2Pr(Z = 1|XY )Pr(XY ) + Pr(Z = 1|Y Y )Pr(Y Y )
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= Pr(Z = 1|XX)π2 + 2Pr(Z = 1|XY )π(1− π) + Pr(Z = 1|Y Y )(1− π)2

= Pr(Z = 1|XX)[π2 + 2π(1− π)ERR + (1− π)2ERR2],

where Pr(Z|XX) is risk of disease in the X population. In addition, it can be shown that

the ethnicity relative risk ratio can be written in terms of the relative risks in the founding

populations as

ERR =

√
f0Y

f0X

× pY + rY (1− pY )

pX + rX(1− pX)
.

If we further assume that the genotype-specific penetrance functions are the same in both

founding populations and therefore rX = rY = r, then the ethnicity relative risk can be

further reduced to

ERR =
pY + r(1− pY )

pX + r(1− pX)
.

In this case, the genotypic relative risk ratio in the admixed population is also r, and the

disease prevalence can be written as

Kp = f0[pXY + 2pXY (1− pXY )r + (1− pXY )2r2],

where f0 is the probability of disease in non-carriers of the disease allele. If rX 6= rY , then

the the genotypic relative risk ratio in the admixed population depends on understanding the

epistatic interaction in the admixed population.

Parameter Estimation and Likelihood Ratio Test for Linkage

Suppose we have nA affected and nU unaffected individuals in an admixed population from X

and Y founding populations. We then have 2nA haplotypes from cases and 2nU haplotypes

from controls. Let MH
(k)
j = {M (k)

j1 , · · · ,M (k)
jR+L} denote the kth marker haplotype for the jth

individual, and similarly, let SH
(k)
j = {S(k)

j1 , · · · , S(k)
jL , S

(k)
j0 , S

(k)
jL+1, · · · , S(k)

jR+L} denote the kth

ancestry haplotype for the jth individual, for j = 1, · · · , N and k = 1, 2. The likelihood of

observing nA disease cases and nU controls (let N = nA + nU) and the 2N marker haplotypes

can be written as

L =
N∏

j=1

2∏

k=1

Pr(Zj,MH
(k)
j )

=
N∏

j=1

2∏

k=1

{ ∑

SH
(k)
j

[Pr(Zj,MH
(k)
j |SH

(k)
j )× Pr(SH

(k)
j )]}
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=
N∏

j=1

2∏

k=1





∑

SH
(k)
j

[
Pr(Zj|S(k)

j0 )×
R+L∏

i=1

(Pr(M
(k)
ji |S(k)

ji )× Pr(SH
(k)
j )

]




, (3)

where Pr(M
(k)
ji |S(k)

ji ) depends on the conditional allele frequencies piS(a), and Pr(SH
(k)
j ) de-

pends on the transition probabilities (1). In addition,

Pr(Zj|Sk
j0) =

∑

A∈{X,Y }
Pr(Zj|S(k)

j0 , S
(|k−1|)
j0 )Pr(S

(|k−1|)
j0 = A),

as defined in equation (2). Finally we denote the parameters associated with the HMM by

θ = {θ1, θ2}, where θ1 = {piX , i = 1, 2, · · · , L + R}, and θ2 = {π, γ, β0, β1, β2}.
We propose the following iterative procedure for estimating the parameters in θ and for

calculating the likelihood function (3), which involves iteration between the following steps:

Step 1: For given parameters in θ2, for each allele, we estimate the probabilities of ancestral

states by the posterior decoding algorithm and then estimate the allele frequencies conditional

on ancestry by counting the number of alleles with the given ancestry at each marker locus

across all the individuals. For example, for locus i,

piX(a) =

∑N
j=1

∑2
k=1 E[I(S

(k)
ji = X,M

(k)
ji = a)]

∑N
j=1

∑2
k=1 E[I(S

(k)
ji = X)]

=

∑N
j=1

∑2
k=1 Pr(S

(k)
ji = X, M

(k)
ji = a)

∑N
j=1

∑2
k=1 Pr(S

(k)
ji = X)

,

where I is the indicator function.

Step 2: For given θ2, we estimate the parameters by maximizing the likelihood function

over parameter θ1 by using a Quasi-Newton optimization algorithm. The forward algorithm

(Rabiner, 1989)is used for calculating the likelihood function given the conditional allele fre-

quencies.

We iterate between the Step 1 and Step 2 till convergence. The allele frequencies in

the founding populations, if available, can be used as the initial values for the conditional

allele frequencies. In order to address the issue of local maxima of the general Quasi-Newton

optimization algorithm, we first use a grid search that roughly scans the whole range of the

parameters to find the initial values for the parameters so that the procedure will converge
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at an approximately most likely point. After the convergence of the algorithm, we can obtain

the maximum likelihood function maxL.

Similarly, we can obtain the maximum likelihood function maxL0 under H0 : β1 = β2 = 0.

We can then define the likelihood ratio test statistic as LR=2log maxL/maxL0.

Results

In this section, we present simulation studies to evaluate the proposed methods and to study

how different parameters such as sample size, ethnicity disease relative risk, number of AIMs

and marker density affect the power of the proposed LR test. We consider simulated data

from both the true models and from two different admixture population models, including the

HI and CGF models.

In the following simulation studies, we used the actual allele frequencies of a total of 31

indel or SNP AIMs in a 60.6cM segment of chromosome 5. Table 1 gives the conditional

allele frequencies for these markers and the corresponding δ values, which is defined as sum

of absolute value of the allele-frequency difference between two populations divided by two.

Simulation 1: generating data based on the HMM

In order to exam how well the proposed methods estimate the parameters, especially the

conditional allele frequencies, we first simulated the case control data based on our proposed

HMM. We chose π = 0.20 and γ = 0.10, which implies that the X population contributes 20%

to admixture and there has been about 10 generations since admixture. These parameters

were chosen to approximate the AA population, where X is the EA founding population, and

Y is the AF founding population. We assumed that marker CV8844618 (map position 137.1

cM) is the true disease locus with allele 2 being the high risk allele. The allele frequency of the

high risk allele is 0.25 and 0.00 in the African and EA population, respectively. This marker

was used for simulating the disease status data but was removed for all subsequent analyses.

In addition, we assume the same genotypic relative risks in both population and therefore the

disease risk is higher in the Y (African) population. To generate cases and controls and the

corresponding marker haplotypes, we first generate the ancestral state sequence as a Markov

chain with marginal distribution P (Si = X) = π = 0.20 and transition probability defined

by equations (1) with γ = 0.10. We then generated the marker data according to the allele
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frequencies conditional on ancestral states given as in Table 1. We then simulate the disease

status Z according to the ancestry-specific penetrance functions P (Z = 1|S(1)
0 , S

(2)
0 ). We

assume Kp = 0.0072 and ERR = 1.75 which corresponds to Pr(Z = 1|XX) = 0.0028.

To examine how well our proposed methods estimate the conditional allele frequencies,

we first simulated 200 cases and controls with the haplotypes over all 29 markers for an

ERR=1.75. Figure 1 (a) shows the log odds ratio of disease for African ancestry at each

of the 29 markers for 50 replications using the true simulated ancestry statuses for each

individual. A clear peak can be observed around the disease locus. As a comparison, Figure

1 (b) shows the log odds ratio of disease for marker allele 2 for each of the 34 markers

around the true disease locus. Although there are some peaks, the signal is erratic, and

important location information is obscured by the properties of the markers. We also noted

large variations among the 50 replications and that many of the markers close to the disease

locus did not show any significant association with the disease. These results indicated that

comparing the marker allele difference between cases and controls can often result in false

association or no association. This demonstrates the importance of comparing the latent

ancestry states between cases and controls in admixture mapping. Figure 1 (c) presents

the plots of the estimated and true conditional allele frequencies for all markers and all 50

replications. Clearly, our methods provide a reasonable estimate of these conditional allele

frequencies.

To evaluate the behavior of the LR test statistic, Figure 1 (d) shows the likelihood ratio

statistic calculated for each location in the region for 50 replications. A clear peak of the LR

statistic at the disease locus and higher LR values around the true disease locus are observed,

indicating that the proposed LR test can indeed be applied to localize the disease region.

Compared to the marker based test of association (Figure 1 (b)), we obtained a much clearer

picture and the LR statistic decays almost monotonically. We performed similar comparisons

for an unlinked region with the same set of markers. No large differences are observed between

the cases and controls in ancestry estimates in the unlinked region and the LR statistics are

small (results not shown).

Simulation 2: generating data based on population models

To further evaluate the performance of the proposed test, we performed simulation studies

by generating data based on two distinct patterns of admixture dynamics, the HI model and
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the CGF model. Our CGF model assumes that admixture occurs at a steady but reduced

rate in every generation, such that the cumulative amount of admixture is equal to that

in the HI model. This allows comparison of the two models. To simulate the data, we

assume a constant population size of 10,000 and linkage equilibrium between markers in both

founding populations. We simulated the data based on a forward branching process. Based

on the population-specific allele frequencies we first obtained the haplotype frequencies in

the founding populations. Under the HI model, the X population (European) and the Y

population (African) are initially admixed with proportions of π and 1 − π. This is then

followed by random mating for a total of t generations to generate the current admixed

population (African-American population). Under the CGF model, the X population and the

Y population are initially admixed with proportions of π1/t and 1−π1/t. For each of the next

generations, a proportion of π1/t from offspring population and a proportion of 1−π1/t from Y

population enter next generation and randomly mate with each other within the population.

The recombination fraction is calculated based on the map distance.

The same disease model as in Simulation 1 was used to simulate cases and controls based

on the ethnicity-specific penetrance functions for each individual in the population. We also

assumed that KP = 0.0072 and ERR = 1.75 which corresponds to Pr(Z = 1|XX) = 0.0028.

At the end of t generations, we collect 200 case and 200 control from the final admixture

population according to ethnicity relative risk.

Figures 2 (a) and (c) show the log odds ratio values of 50 replications for the disease asso-

ciated allele for each of the 29 markers around the true disease locus. Similar to the previous

results, the analysis of LD between markers and disease does not show a clear identification of

true simulated disease gene. It shows that some of the markers close to the true disease locus

do not show any significant association with the disease. This is due to the fact that these

markers are all in linkage equilibrium with the disease locus in the original founding popula-

tions. In contrast, Figures 2 (b) and (d) show the likelihood ratio statistics of 50 replications

for location in the test chromosomal region. We observed that the statistics obtained their

highest values at the loci close to the true disease locus and became smaller for more distant

markers. It is also interesting to note that the region around the true disease locus that shows

statistical significance is larger for the CGF model than for the HI model. These two plots

indicate that LR statistic for testing linkage indeed behaves as we would expect.

We next performed simulation studies to evaluate the type 1 error rate and the power of the

proposed LR test for Kp = 0.0072 and ERR = 1, 1.375 and 1.75, which correspond to GRR of
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1, 2.5 and 4.0. The corresponding ethnicity-specific penetrance function is Pr(Z = 1|XX) =

0.0072, 0.0043 and 0.0028, respectively. We assume that the test locus is the true disease locus.

Table 2 shows the power of the LR test for the true disease location for various combinations

of relative risk, marker number and density and sample size based on 200 simulations (1000

simulations when the ERR is 1). First, we observed that the simulated error rates are close

to the true type 1 error rates of 0.01 or 0.05, indicating that the proposed LR test has correct

type 1 error rate. Second, we observed that the marker density in the test region can greatly

affect the power to detect linkage by admixture mapping. Dense markers result in higher

power. However, for markers with the same density, doubling the width of the testing region

only marginally increase the power. Third, for the same genetic model, data generated from

the CGF model shows similar power that generated from the HI model.

We lastly considered how mixture of individuals with different admixture proportions

and different times since admixture affect the power of our proposed test. In particular, we

considered the scenario that both cases and controls include equal mixture of four different

populations with different π and γ parameters (see legend of Table 3). Note that the overall

proportion of admixture is still 20%. For this set of simulations, the panel of 29 markers were

simulated. Table 3 shows the power for different population models, different relative risks

and different sample sizes for an α level of 0.01 and 0.05. First, we noticed that the test still

has correct type 1 error rates. Second, we observed that the power is only slightly lower than

in the scenario when all individuals were simulated under π = 0.20, γ = 0.15 (see Table 2).

These results indicate that even when some of the assumptions are violated in real data, the

proposed test still have correct type 1 error rate and only decreases the the power marginally.

Simulation 3: generating data based on real genotype data

In order to further evaluate the applicability of our methods to admixture mapping, cases and

controls were simulated from the 268 African American subjects with known genotypes on 31

indel or SNP markers in a 60.6cM segment of chromosome 5. The median distance between

adjacent markers was 1.2 cM and 1.5 Mb. The simulations were performed using the typing

results of two diallelic markers to model susceptibility genes originating in the two different

parental populations (AF and EA). These markers, CV8844618 (AF allele 1, 0.25; EA allele

1, 0.00; map position, 137.1 cM) and MID-990 (AF allele 1, 0.04; EA allele1, 0.31; map

position; 131.5 cM), were used to model AF (AF model) and EA (EA model) susceptibility
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genes, respectively. Setting genotypic relative risk ratios of 2.5 and 1.0 in the AA population,

500 cases and 500 controls were selected from the 268 AA subjects that had been genotyped.

The disease status was simulated based on the individual’s genotype at the chosen disease

locus assuming the probability of disease for non-carrier to be 0.000625 and a multiplicative

model. Haplotypes for the cases and controls for each GRR and model were then separately

estimated using PHASE (Stephens et al., 2001). The genotyping data that was used for

haplotype estimation or subsequent HMM analysis did not include either of the markers used

for the models. The haplotypes were then analyzed using our proposed HMM methods. We

randomly generated 50 data sets for each model. For both EA and AF susceptibility models

there were peaks in the respective likelihood ratio statistics around the chromosomal location

of the modeled markers (see Figure 3 plots (a) and (c)). Strong evidence linkage for both

models were observed. The peaks were close to the modeled loci.

As a comparison, we also simulated 500 cases and 500 controls that were selected from

the 268 AA subjects but with GRR=1.0 (null model) for both the AF and EA models. We

generated 50 replications. None of the markers in this region showed any significance (see

Figure 3 (b) and (c)), further indicating the correct type 1 error rates of the proposed LR

test.

Discussion

We have presented a hidden Markov modelling framework for admixture mapping that utilizes

ancestry informative markers to infer the ancestry states at the putative disease locus. Within

this framework, we have developed a likelihood ratio based approach for testing genetic link-

age between a candidate chromosomal region and the disease. We evaluated the proposed

methods and tested these by simulation studies. Results indicate a correct type 1 error rate

for the proposed test and the effects of marker density on the power can be quite large. These

simulation results have practical implications when designing a study for admixture mapping.

In addition, the simulation results indicate that our methods are not restricted to any par-

ticular admixture dynamic pattern and are applicable to any recently admixed population as

long as there is a different disease prevalence in two founding populations and set of AIMs

are identified. Our simulation results also indicate that populations with a CGF admixture

dynamic pattern may result in modestly better power than that with HI admixture dynamic

pattern.

14



The methods developed in this paper can be applied to both testing a candidate chro-

mosomal region and genome-wide scanning. Our simulations were conducted for testing a

chromosomal region. For genome-wide scans, we can calculate the likelihood ratio statis-

tics or the corresponding Lod scores along evenly-spaced locations on a given chromosome.

The cutoff value of the LR statistic for genome-wide significance developed for genome-wide

family-based linkage analysis (e.g., Lander and Kruglyak, 1995; Morton, 1998) can directly

applied to such genome-wide admixture mapping.

In developing the proposed methods for admixture mapping, we made several key assump-

tions. First, we assume that the marker haplotype data are available for the test chromosomal

region for all the sampled individuals. In practice, the haplotype may not be known, in which

case we can estimate them using available algorithms such as the EM algorithm (Long et al.

1995) or the Bayesian algorithm PHASE (Stephens et al. 2002). We can choose the most

likely haplotypes and apply our proposed methods directly, as we did for our simulations.

Our simulated data demonstrate that the proposed methods work well by using the PHASE-

based estimation of the marker haplotypes when the uncertainty of the haplotype estimation

is low. However, if the marker haplotypes cannot be estimated with high certainty, the test

procedure needs to account for such uncertainty. We are currently investigating an unified

approach to account for the uncertainly of the marker haplotype estimates in our likelihood

formation. Second, we assume that the γ parameter, which is a parameter for historical re-

combination since admixture is the same for all the individuals. However, for populations

with a continuous-gene-flow history of admixture, the value of γ could be different. Although

this assumption might be violated, it should not affect the type 1 error of the proposed test,

as indicated in our simulations. Our limited simulations (See Tables 2 and 3) also indicated

that the power of the proposed test is only marginally affected by violation of constant γ

assumption. One possibility to relax this assumption is to assume that γ is a random variable

following some distribution. Lastly, the methods are developed for the admixed populations

derived from two founding populations. It is however possible to extend the HMM to mixture

of multiple populations by expanding the latent states and the transition probabilities (Falush

et al., 2003).

The power of admixture mapping is a complicated function of many factors. As our

simulations implied, the number of markers, marker densities and informativeness of markers

have impact on how well we can infer the chromosomal ancestry at the putative disease locus

and therefore on the power of the proposed test. The disease characteristics such as disease

15



allele frequencies and penetrance functions in the founding populations will also determine the

power of the proposed test. In addition, the population admixture dynamics and admixture

proportions will have affect the power. Our simulations only examined the effects on test

power for some of these factors. We are currently examining how these factors affect the

power of admixture mapping by both analytical calculations and large-scale simulations.

Finally, in this paper we considered the case control design for admixture mapping. An

interesting alternative is case-only design. For such design, our goal is to identify the chro-

mosomal regions which have different ancestry haplotype makeups than the other regions

throughout the genome. This approach is in spirit similar to the genomic control for de-

tecting excess-haplotype sharing (Devlin et al. 2000). It should however be noted that this

genome-wide case only design is very different from that of McKeigue (1998), in which unequal

transmissions of alleles of different ancestry origins are tested. We are currently investigating

such approach and comparing the power of case-only design and case-control design for ad-

mixture mapping. It is also possible to combine both case only test and case-control test in

order to increase the power of detecting genetic association by admixture mapping.
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Figure Legends

Figure 1 Simulation results based on case-control data generated from the proposed HMM

model for 50 replications of 200 case/control pairs for π = 0.2, γ = 0.10, ERR = 1.75. Under

this model, the probability of getting disease in the low risk populaton is 0.0028. (a) log

odds ratio of disease for true African ethnicity; (b) log odds ratio of disease for true marker

genotypes; (c) estimated and true conditional allele frequencies; (d) 2LR based on the full

likelihood ratio tests for 50 replications. For plots (a), (b) and (d), the vertical line indicates

the true disease locus, and the solid curve is the average across 50 replications.

Figure 2: Simulation results based on hybrid (HI) (plots (a) and (b)) and continuous gene-

flowing model (CGF) (plots (c) and (d)) for 50 replications of 200 case/control pairs for

π = 0.2, γ = 0.10, ERR = 1.75. Under this model, the probability of getting disease in the

low risk populaton is 0.0028. (a) and (c): log odds ratio of disease for true marker genotypes

shown for 50 replications of 200 case control pairs; (b) and (d): 2LR values for 50 replica-

tions of 200 case control pairs based on the full likelihood ratio tests for each markers in the

54 cM region. The vertical line indicates the true disease locus, the horizontal line indicate

the significance value for α level of 0.01 and the solid curve is the average across 50 replications.

Figure 3: Simulation results based on re-sampling real genotype data. (a) and (b): LR

statistics for the AF model for GRR=2.5 and GRR=1 based on 500 cases and 500 controls;

(c) and (d): LR statistics for the EA model for GRR=2.5 and GRR=1 based on 500 cases and

500 controls. For each plot, the vertical line indicates the true disease locus, the horizontal

line corresponds to critical value of 0.01, and 50 curves represent 50 replications with the solid

curve being the averge of the curves.
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Table 1: Conditional allele frequencies for 31 AIMS markers identified in a 60.6 cM region
on chromosome 5, where X and Y denote European and African populations and 1 and 2
represent allele 1 and allele 2. These markers are used for simulations, where markers marked
with ∗ are used as the disease loci in the simulations.

marker cM Pr(1|X) Pr(1|Y ) Pr(2|X) Pr(2|Y ) δ
MID-1683 100.0 0.790 0.120 0.210 0.880 0.67
MID-737 106.5 0.387 0.000 0.613 1.000 0.387
CV3163022 114.8 0.846 0.231 0.154 0.769 0.615
MID-1272 118.0 0.89 0.061 0.11 0.939 0.829
MID-883 118.8 0.226 0.873 0.774 0.127 0.647
MID-1848 119.5 0.158 0.646 0.842 0.354 0.488
MID-879 120.7 0.583 0.017 0.417 0.983 0.566
CV118646 121.5 0.684 0.054 0.316 0.946 0.63
TSC0232289 123.7 1.000 0.697 0.000 0.303 0.303
MID-739 126.5 0.645 0.191 0.355 0.809 0.455
MID-1191 126.7 0.510 0.03 0.490 0.970 0.48
TSC0569173 127.7 0.627 0.057 0.373 0.943 0.57
MID-1937 128.6 0.664 0.144 0.336 0.856 0.52
CV2060865 130.8 0.630 0.100 0.370 0.900 0.53
CV159565557 131.2 0.798 0.382 0.202 0.618 0.416
MID-990(∗) 131.5 0.690 0.960 0.310 0.040 0.268
TSC0237153 132.3 0.951 0.404 0.049 0.596 0.547
CV3167763 132.4 0.09 0.536 0.91 0.464 0.447
CV11532818 133.1 0.859 0.104 0.141 0.896 0.755
MID-1030 133.7 0.782 0.357 0.218 0.643 0.425
CV1561700 134.2 0.372 0.901 0.628 0.099 0.529
MID-768 135.8 0.826 0.102 0.174 0.898 0.724
MID-1102 136.1 0.876 0.066 0.124 0.934 0.811
CV8844618(∗) 137.1 1.000 0.750 0.000 0.250 0.250
MID-719 139.1 0.854 0.313 0.146 0.687 0.541
CV8958376 139.3 0.116 0.593 0.884 0.407 0.477
CV2083528 142.0 0.35 0.906 0.65 0.094 0.557
CV1989090 145.0 0.926 0.071 0.074 0.929 0.854
CV1675518 148.0 0.381 0.972 0.619 0.028 0.59
CV3220692 151.0 0.081 0.731 0.919 0.269 0.65
MID-1348 160.6 0.724 0.211 0.276 0.789 0.513
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Table 2: Power table for π = 0.2, γ = 0.10 (α = 0.01 (0.05) ) based on 1000 replications when
RR=1 and 200 replications otherwise. ∗: all 29 markers in the 60.6 cM region are used; ∗∗:
18 markers (nine from each side of the disease locus) in the 21.5 cM region are used; ∗∗∗: 15
markers in the 60.6 cM region are used.

Population model(case-control pairs)
Marker ERR GRR HI(300) CGF(300) HI(500) CGF(500)
29 marker 1 1 0.01(0.04) 0.01(0.06) 0.01(0.04) 0.01(0.05)
60.6cM∗ 1.375 2.5 0.26(0.46) 0.24(0.50) 0.39(0.59) 0.41(0.61)

1.75 4.0 0.69(0.88) 0.68(0.88) 0.92(0.98) 0.90(0.98)
18 marker 1 1 0.01(0.04) 0.01(0.05) 0.01(0.04) 0.01(0.05)
21.5cM∗∗ 1.375 2.5 0.26(0.46) 0.23(0.51) 0.38(0.60) 0.42(0.62)

1.75 4.0 0.68(0.88) 0.68(0.88) 0.92(0.98) 0.90(0.97)
15 marker 1 1 0.01(0.05) 0.01(0.06) 0.01(0.04) 0.01(0.05)
60.6cM∗∗∗ 1.375 2.5 0.140(0.32) 0.20(0.39) 0.25(0.52) 0.28(0.53)

1.75 4.0 0.52(0.74) 0.53(0.77) 0.79(0.90) 0.80(0.94)

Table 3: Power table for data of mixed 4 groups (α = 0.01(0.05)):π = 0.25, γ = 0.08; π =
0.15, γ = 0.10; π = 0.10, γ = 0.12; π = 0.30, γ = 0.15 based on 1000 replications when ERR=1
and 200 replications otherwise. 29 markers on 60.6cM chromosomal region were used.

Population model(case-control pairs)
ERR GRR HI(300) CGF(300) HI(500) CGF(500)
1 1 0.01(0.04) 0.01(0.05) 0.01(0.05) 0.01(0.02)
1.375 2.5 0.17(0.42) 0.19(0.39) 0.37(0.61) 0.37(0.61)
1.75 4.0 0.62(0.84) 0.67(0.84) 0.87(0.95) 0.90(0.98)
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