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Abstract
Background: Magnetic resonance image only (MRI-only) simulation for head
and neck (H&N) radiotherapy (RT) could allow for single-image modality plan-
ning with excellent soft tissue contrast. In the MRI-only simulation workflow,
synthetic computed tomography (sCT) is generated from MRI to provide elec-
tron density information for dose calculation.Bone/air regions produce little MRI
signal which could lead to electron density misclassification in sCT.Establishing
the dosimetric impact of this error could inform quality assurance (QA) pro-
cedures using MRI-only RT planning or compensatory methods for accurate
dosimetric calculation.
Purpose: The aim of this study was to investigate if Hounsfield unit (HU) voxel
misassignments from sCT images result in dosimetric errors in clinical treatment
plans.
Methods: Fourteen H&N cancer patients undergoing same-day CT and 3T
MRI simulation were retrospectively identified. MRI was deformed to the CT
using multimodal deformable image registration. sCTs were generated from
T1w DIXON MRIs using a commercially available deep learning-based gener-
ator (MRIplanner, Spectronic Medical AB, Helsingborg, Sweden). Tissue voxel
assignment was quantified by creating a CT-derived HU threshold contour.
CT/sCT HU differences for anatomical/target contours and tissue classification
regions including air (<250 HU),adipose tissue (–250 HU to –51 HU),soft tissue
(–50 HU to 199 HU), spongy (200 HU to 499 HU) and cortical bone (>500 HU)
were quantified. t-test was used to determine if sCT/CT HU differences were
significant. The frequency of structures that had a HU difference > 80 HU (the
CT window-width setting for intra-cranial structures) was computed to establish
structure classification accuracy. Clinical intensity modulated radiation therapy
(IMRT) treatment plans created on CT were retrospectively recalculated on sCT
images and compared using the gamma metric.
Results: The mean ratio of sCT HUs relative to CT for air, adipose tissue, soft
tissue, spongy and cortical bone were 1.7 ± 0.3, 1.1 ± 0.1, 1.0 ± 0.1, 0.9 ± 0.1
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and 0.8 ± 0.1 (value of 1 indicates perfect agreement). T-tests (significance set
at t= 0.05) identified differences in HU values for air,spongy and cortical bone in
sCT images compared to CT. The structures with sCT/CT HU differences > 80
HU of note were the left and right (L/R) cochlea and mandible (>79% of the
tested cohort), the oral cavity (for 57% of the tested cohort), the epiglottis (for
43% of the tested cohort) and the L/R TM joints (occurring> 29% of the cohort).
In the case of the cochlea and TM joints,these structures contain dense bone/air
interfaces.In the case of the oral cavity and mandible, these structures suffer the
additional challenge of being positionally altered in CT versus MRI simulation
(due to a non-MR safe immobilizing bite block requiring absence of bite block in
MR). Finally, the epiglottis HU assignment suffers from its small size and unsta-
ble positionality. Plans recalculated on sCT yielded global/local gamma pass
rates of 95.5% ± 2% (3 mm, 3%) and 92.7% ± 2.1% (2 mm, 2%). The largest
mean differences in D95, Dmean, D50 dose volume histogram (DVH) metrics for
organ-at-risk (OAR) and planning tumor volumes (PTVs) were 2.3%± 3.0% and
0.7% ± 1.9% respectively.
Conclusions: In this cohort, HU differences of CT and sCT were observed but
did not translate into a reduction in gamma pass rates or differences in average
PTV/OAR dose metrics greater than 3%.For sites such as the H&N where there
are many tissue interfaces we did not observe large scale dose deviations but
further studies using larger retrospective cohorts are merited to establish the
variation in sCT dosimetric accuracy which could help to inform QA limits on
clinical sCT usage.

KEYWORDS
AI in radiation therapy, MRI-only radiation therapy, synthetic CT

1 INTRODUCTION

Magnetic resonance imaging (MRI) is increasingly
used in head and neck (H&N) radiotherapy treat-
ment (RT) planning.1–4 MRI provides excellent visu-
alization of soft tissue anatomy and more exact
delineation of tumor extent, and thus augments
anatomical information provided by computed tomog-
raphy (CT) radiotherapy simulation imaging.2,5–10 MRI-
only simulation imaging for treatment planning could
be advantageous for H&N sites due to excellent
soft tissue contrast on a single modality image
hence eliminating multimodality MRI/CT image reg-
istration errors which necessitate larger treatment
margins.11,12

As part of the MRI-only workflow, synthetic com-
puted tomography (sCT) images are produced from
MRI simulation images to aid patient setup and pro-
vide electron density information.13–15 sCT images are
generated from MRI because the latter does not pro-
vide electron density information.11,16,17 Accounting for
tissue heterogeneity in external beam radiation ther-
apy is important because it allows for planning systems
to correct for photon fluence passing through tissues
and more accurately map doses.18 sCT solutions devel-
oped for the H&N region include bulk density, statisti-
cal/machine learning, and deep learning methods.19–22

The challenging and complex H&N anatomy, in par-

ticular its multiple air/bone interfaces and small bony
structures, has meant that bulk-density Hounsfield unit
(HU) assignment algorithms are often lacking and deep
learning-based methods are instead required for robust
image generation.23,24

Errors can arise in sCT images because the process
involves creation of a pseudo image set based on train-
ing data.25 sCT image generation has been identified
as a major cause of errors in failure mode and error
analysis (FMEA) studies of MRI-only processes.26–28

Errors in sCT images could contribute to dosimetric dif-
ferences for planning target volumes (PTV) and organs
at risk (OAR).29 Incorrect assignment of bone and air
voxels in sCT images is a reported error that could
potentially lead to incorrect dose calculation and organ
localization.13,15,30–32 Palmér et al. evaluated digitally
reconstructed radiograph (DRR) accuracy from H&N
sCT images produced via a convolutional neural net-
work (CNN)-based algorithm for a cohort of 14 H&N
cancer patients. They noted the sCT algorithm pro-
duced misclassified bone voxels around the spinous
processes.13 Lerner et al. reported on the presence of
abnormal bone structures in a CNN-based brain sCT
image, possibly due to deviations from the characteris-
tics in training data set.31 Klages et al. reported on the
presence of misclassified air cavities near bone inter-
faces in generative adversarial network (GAN)-based
H&N sCT images.30 For MRI-only radiation therapy to be
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implemented clinically understanding or mitigating these
errors may be necessary

While bone and air misassignments have been iden-
tified in sCT images, their impact on CT number
assignment to OAR structures and dosimetry has not
been well characterized. This is especially important for
H&N sites, which contain many interfaces between air,
bone, and/or tissue and where voxel misassignments
could result in appreciable dose differences. Further-
more, there have been limited studies reporting on the
performance of sCTs for H&N RT plans,which tend to be
very highly modulated.13,33–35 Characterizing the effect
of voxel misassignments in highly modulated treatment
plans developed on sCT could allow for the development
of QA criteria for the clinical implementation of H&N
MRI-only radiotherapy.

The aim of this study was to investigate if HU voxel
misassignments from sCT images result in dosimet-
ric errors in clinical treatment plans. In this work, we
characterized the HU differences between paired sCT
and CT images of H&N cancer patients and studied
the resultant dosimetric impact. We quantified tissue
voxel assignment differences by creating CT-derived HU
threshold contours for 5 tissue types and compared
CT numbers across CT and sCT. Clinical IMRT plans
created on CT images were recalculated onto corre-
sponding sCT images and the dosimetric impact from
differences in tissue CT numbers was quantified.

2 METHODS

2.1 Patient and imaging information

In this retrospective study, patients with H&N cancer
undergoing same day CT and 3T MRI at a single institu-
tion between January 2023 – April 2023 were identified.
Patient diagnosis and prescription information is pre-
sented in Table 1. Fourteen patients who received H&N
radiotherapy met these criteria. All patients had CT sim-
ulation imaging on a Siemens Somatom Definition AS
(Siemens, Erlangen, Germany) for clinical target vol-
ume (CTV) delineation and treatment planning. Patients
were simulated using an immobilization mask for repro-
ducible treatment setup (Integrated Shim™ for Portrait™
S-frame immobilization masks, QFix, Avondale, Penn-
sylvania, USA). CT simulation images were acquired at
120kVp and 100−150 mA tube current. Images were
reconstructed with a Bf37 kernel with a 1.2 mm x
1.2 mm in plane resolution and 3 mm slice thickness.
Each patient had CTV and organ-at-risk (OAR) contours
delineated on their CT simulation images by two attend-
ing radiation oncologists with specialized H&N cancer
expertise.

Same day MRI simulation images were acquired on
a 3.0T Siemens Vida (Siemens, Erlangen, Germany).
Patients had identical immobilization as used for CT

TABLE 1 Summary table patient diagnosis, PTV structures,
doses, and volumes.

Diagnosis

PTV volumes (cc).
Volumes denoted in
parenthesis. PTV names
denoted by PTV_XXXX
where XXXX is the
prescription dose in cGy

Patient 1 Malignant neoplasm
of nasal cavity

PTV_6000 (110.34)
PTV_5400 (150.27)

Patient 2 Malignant neoplasm
of tonsil

PTV_6600 (204.97)
PTV_5940 (433.69)

Patient 3 Squamous cell
carcinoma of skin

PTV_6600 (58.99)

Patient 4 Malignant neoplasm
of larynx

PTV_6600 (51.82)
PTV_6000 (200.33)
PTV_5600 (338.64)

Patient 5 Malignant neoplasm
of tongue

PTV_6600 (153.42)
PTV_5940 (380.25)
PTV_5412 (197.10)

Patient 6 Malignant neoplasm
of mouth

PTV_6996 (152.38)
PTV_5940 (435.06)
PTV_5412 (33.60)

Patient 7 Malignant neoplasm
of base of tongue

PTV_6996 (60.98)
PTV_5940 (240.13)
PTV_5412 (201.59)

Patient 8 Malignant neoplasm
of base of tongue

PTV_6996 (98.3)
PTV_5940 (215.04)
PTV_5412 (126.79)

Patient 9 Malignant neoplasm
of mouth

PTV_6996 (27.27)
PTV_6600 (38.66)
PTV_5940 (646.72)

Patient 10 Malignant neoplasm
of tonsil

PTV_6996 (302.55)
PTV_5940 (262.39)
PTV_5412 (118.21)

Patient 11 Malignant neoplasm
of tonsil

PTV_6996 (149.28)
PTV_5940 (187.97)
PTV_5412 (130.96)

Patient 12 Malignant neoplasm
of cheek

PTV_6600 (27.93)
PTV_5940 (143.79)

Patient 13 Malignant neoplasm
of nasopharynx

PTV_6996 (207.55)
PTV_5940 (600.02)
PTV_5412 (12.47)

Patient 14 Malignant neoplasm
of parotid

PTV_6600 (12.48)
PTV_5940 (70.99)

simulation but excluding the bite block as the mate-
rial was not MRI-safe (patients were instructed to open
their mouths inside the mask without the bite block
being present). An UltraFlex 18 coil (Siemens, Erlan-
gen, Germany) was suspended from the coil bridge
anteriorly and brought as close to the patient surface
as possible without touching the mask. Velcro straps
were used laterally to bring the UltraFlex coil close
to the patient’s sides. The spine coil was used for
posterior signal. For sCT generation, T1-weighted Vol-
umetric Interpolated Breath-hold Examination (VIBE)
MRI sequence images were acquired for each patient.
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The T1-VIBE sequence utilizes the Dixon technique
to acquire an in-phase (water + fat), opposed-phase
(water—fat), fat only (in-phase—opposed-phase), and
water only (in-phase + opposed-phase) MRI. Dotarem
(Guerbet, France) contrast was used with a gradient
recalled scanning sequence. T1-VIBE MR images were
acquired using an echo train length of 2, flip angle
of 12 degrees, echo time of 2.46 ms, and repetition
time of 5.54 ms. All images had 3D distortion correc-
tion applied. Images were reconstructed with a slice
thickness of 3.2–3.5 mm and in-plane resolution of
0.84375–0.875 mm.

SCTs were generated from T1-VIBE Dixon MRIs
using a commercially available deep learning-based
generator MRI Planner version 2.2 (Spectronic Medical
AB,Helsingborg,Sweden).To mitigate any organ motion
between MRI and CT simulation, the in-phase T1-VIBE
Dixon MRI was deformably registered to the planning
CT image using MIM version 7.1.4 (MIM Software Inc,
Beachwood, Ohio, USA). Each MRI was resampled to
the same voxel size as CT. A chained registration using
the same deformable vector field was applied to out-
phase, fat and water Dixon images. The deformed MR
image was visually inspected by an expert medical
physicist with 6 years of experience to check if there was
good agreement between the deformed MRI anatomy
to the reference CT. The check included checking that
bone structures and tissue interfaces such as air/soft tis-
sue were in general agreement between the MRI and CT.
The deformed MR images were used to generate sCT
images.

2.2 HU classification evaluation

Tissue voxel assignment was quantified by creating a
CT-derived HU threshold contour in MIM (Figure 1).Five
tissue types based on CT number (CTn) were quantified:
air (contained inside the body surface) (CTn < = −251
HU), adipose tissue (−250 HU < = CTn < = −51 HU),
soft tissue (−50 HU < = CTn < = 199 HU), spongy
bone (200 HU < = CTn < = 499 HU) and cortical bone
(CTn > = 500 HU). These tissue types were defined
for both CT and sCT images. The mean HU differ-
ences for these tissue types were recorded and T-test
statistics were calculated to determine if sCT/CT HU
differences were significant (Table 3). The frequency
of target volume and OAR structures that had a HU
difference > = 80 HU (the CT window-width setting
for intra-cranial structures) was computed to establish
structure classification accuracy.

2.3 sCT dosimetric plan recomputation
evaluation

Clinical IMRT treatment plans created on simulation
CTs were recalculated onto corresponding sCTs to eval-

TABLE 2 Summary table of plan parameters for each patient.
The monitor units/fraction (MU/Fx), modulation factor (MF), number
of arcs and prescription information is provided.

Patient
number MU/Fx

MF
(MU/cGy/Fx) #Arcs

1 1108.49 5.54 3

2 738.14 3.69 2

3 599.24 2.83 2

4 849.9 3.86 3

5 753.17 3.77 2

6 871.77 4.11 3

7 724.57 3.42 2

8 1074.49 5.07 3

9 812.77 3.83 3

10 1143.54 5.39 4

11 1097.77 5.18 4

12 321.15 1.61 2

13 796.6 3.76 5

14 247.49 1.24 2

uate the dosimetric impact of any differences in CT
number that were observed. Each patient had a 6MV
photon Volumetric Modulated Arc Therapy (VMAT) plan
created in Raystation version 11 (Raysearch Laborato-
ries, Sweden), which had been optimized and approved
for actual delivery to the patient. Each plan was cre-
ated for delivery on a Varian Truebeam (Varian Medical
Systems, Palo Alto, California, USA). The same CT
to electron-density table was used for dose calcula-
tion in both image sets. The choice of PTV doses
was based on specific clinical considerations for each
patient. PTV doses ranged from 5400 to 6996 cGy over
30 to 33 fractions. Each plan was delivered with a dose
rate of 600MU/min. Plans included 2−3 simultaneous
integrated boost (SIB) target volumes with a mean mod-
ulation factor of 3.8 ± 1.3 MU/cGy.39 The modulation
factor was calculated by dividing the total MU delivered
by the total dose delivered. A summary table of the
modulation factors for each patient is included in Table 2.

3 RESULTS

3.1 HU classification results

Figure 2 shows the relative and absolute sCT/CT HU
differences for the tested cohort. t-test statistics were
calculated with a significance level of 0.05 to deter-
mine if the difference in sCT/CT CT numbers were
statistically significant.The CT numbers assigned for air
(contained within the skin surface) and bone showed
statistically significant differences between sCT and CT.
The CT/sCT agreement for soft tissue was within 10 HU
for all tested patients.
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F IGURE 1 (a) Same day CT and MRI images were acquired. Deep-learning based sCT images were generated using chain deformed
T1-VIBE Dixon MRI images. (b) Soft tissue (yellow), adipose tissue (orange), air (lilac), spongy (green), and cortical bone (purple) were
segmented on CT and sCT allowing for quantification of HU differences.

F IGURE 2 Relative and absolute sCT/CT HU differences for
adipose tissue, soft tissue, air, spongy and cortical bone. The mean
absolute differences and ratios between sCT/CT CT number values
are indicated in the figure sub-table for each tissue type. The sCT/CT
HU significance (t = 0.05) is reported for each tissue type.

TABLE 3 Frequency of anatomical structure misclassification in
sCT. The five most common structures are indicated in this table.

Structure

Frequency
of misclas-
sification
(number)

Frequency of
misclassification
(%)

L/R Cochlea 11/12 79%/85%

Mandible 11 79%

Oral Cavity 8 57%

Epiglottis 6 43%

L/R TM Joint 4/5 29%/36%

Table 3 lists the five structures that contained an
average CT number difference of > = 80 HU on sCT
relative to CT. The most commonly misclassified struc-
tures were the cochleae, which are small (∼0.5 cc)
soft tissue structures located within cortical bone/air
interfaces, as shown in Figure 3. The small size and
proximity to bone/air interfaces of the cochleae and
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TABLE 4 Percentage differences in D95, D50 and mean doses for PTV and OAR structures including the structures identified with > 80 HU
difference and major critical structures including the left and right parotid glands, brainstem and spinal cord for all patients. Differences are
calculated based on (HU(sCT)—HU(CT))/HU(CT).

ΔD95 (%) ΔDmean (%) ΔD50 (%)

Structures with HU
difference > 80 HU

Cochlea L 2.3 ± 3 1.8 ± 1.9 2 ± 2.1

Cochlea R 1.3 ± 1.9 0.8 ± 1.7 0.7 ± 2.1

Mandible 1.1 ± 1.9 0.2 ± 1.9 0.2 ± 2.1

Oral Cavity 1.5 ± 3.8 0.4 ± 1.2 0.8 ± 1.6

Epiglottis 0.7 ± 4.5 0.3 ± 3.5 −0.3 ± 4.1

Joint TM L 0.2 ± 1.6 0.3 ± 0.9 0.4 ± 1.5

Joint TM R 1.1 ± 0.9 0.4 ± 0.8 0.4 ± 1.1

Sample Plan Metrics Brainstem −0.4 ± 2.7 0.8 ± 1.7 1.1 ± 2.1

Spinal Cord 1.7 ± 3.3 0.3 ± 1.2 −0.8 ± 1.8

Parotid L 0.4 ± 0.9 1 ± 1.4 0.6 ± 1.3

Parotid R 0.2 ± 1 0.3 ± 1.4 0.1 ± 1.1

PTV 1 (prescription) 0.5 ± 1.8 0.7 ± 1.9 0.4 ± 1.7

PTV 2 (if present) 0.4 ± 1.4 0.5 ± 1.6 0.6 ± 1.7

PTV 3 (if present) 0 ± 1 0.2 ± 1.4 0.2 ± 1.5

F IGURE 3 Example of tissue misclassification for the cochleae
(red circle) in CT (a) and sCT (b). The cochleae are small volume
structures that sit near bone, air and soft tissue interfaces and had
HU differences > = 80 HU for 79% (left cochlea) and 85% (right
cochlea) of the tested patients. An example of soft tissue defined in
air is indicated with the yellow arrow and soft tissue as bone by the
blue arrow.

temporomandibular joints make both structures sus-
ceptible to HU disagreements between sCT and CT
datasets. Finally, the epiglottis, a small, mobile flap of
cartilage superior to the larynx, also saw disagreement
between sCT and CT scans in about 40% of cases
evaluated due to its small size and mobility. All of the
GTV/CTV structures had < 80 HU difference between
the CT/sCT images.

3.2 sCT dosimetric plan recomputation
results

The mean percentage differences in D95, D50 and
mean doses for plans calculated in sCT and CT are

shown in Table 4. The percentage differences are
calculated based on: (HU(sCT)—HU(CT))/HU(CT). All
analyzed plans had either 2 or 3 simultaneous inte-
grated boost (SIB) volumes and the mean values are
indicated accordingly. The percentage differences for
four OAR structures are also shown. Across all plans,
the largest mean percentage difference in D95, Dmean
and D50 for brainstem, spinal cord, parotids and PTV
doses was 1.7%. For the structures with a HU differ-
ence > 80 HU, the largest mean percentage difference
in D95, Dmean and D50 was 2.3%. We observed that
for 5 patients in the study that the difference in ΔD95 for
the prescription PTV dose was −1.2 % ± 1.2%. For 9
patients in this study the difference in ΔD95 for the pre-
scription PTV dose was 1.5 % ± 1.1%. We noted that
as the IMRT plans became more complex (i.e., higher
modulation factor), there was up to a 3% difference in
the high dose PTV calculations especially for plans with
modulation factors > 4 (Figure 4). The mean gamma
passing rates for all plans were 95.5% ± 2.0% (3%,
3 mm, 10% threshold, global) and 92.7% ± 2.1% (2%,
2 mm, 10% threshold, local).

4 DISCUSSION

In this study we investigated the differences between
CT number assignment in sCT and CT images and
the types of clinical structures that are most impacted
by HU differences. We investigated the dosimetric
impact of HU assignment differences between sCT and
CT images in a cohort of highly modulated clinical
H&N IMRT treatment plans. This study demonstrated
there were statistically significant differences in HU
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F IGURE 4 (a) Axial slice showing a CT computed treatment
plan recalculated on sCT for plans with a modulation factor = 3 (Plan
1), modulation factor = 4 (Plan 2) and modulation factor = 5 (Plan 3).
The D20 (720 cGy), 5412 cGy, 5940 cGy, and 6996 cGy isodose lines
are shown (dark blue, yellow, light blue, red) overlaid with the 5412
cGy (yellow), 5940 cGy (light blue) and 6996 cGy (red) PTV
structures. DVH for CT (solid lines) and sCT calculated plans
(dashed lines) are shown for Plan 1 (b), Plan 2 (c), and Plan 3 (d).

assignment for bone and air. However, those differences
in HU assignment seemed to have little impact on OAR
structure doses.

The dosimetric investigation performed in this study
demonstrated that there seemed to be little effect of
HU misassignments for OARs particularly with atten-
tion to small structures such as the cochleae, epiglottis,
and temporomandibular joints. We noted for 3 patients
that there was some deviation between the sCT and
CT doses as the plan complexity increased. This was
noted since more complex volumetric modulated arc
therapy (VMAT) plans may have some increased sen-
sitivity to variations in tissue/HU assignment because
more complex beamlet shapes are impinging through
heterogeneous anatomy. Since, beamlets in H&N plans
can pass through a bone/air, bone/tissue, and tissue air
interfaces, further investigations into the effect of sCT
errors are warranted. Further studies on the dosimetric
effect of plan complexity with sCT HU misassignments
is warranted.

Other studies of deep-learning-based sCT methods
for the H&N have also showed differences in mean tis-
sue classification errors between bone and air but good
HU agreement with soft tissues. Palmér et al evaluated
the geometrical and dosimetric differences between CT
and H&N sCT images and showed a mean error (± 1
standard deviation, sd) of −1 ± 7 HU for soft tissue,
−62 ± 28 HU for bone, and 107 ± 75 HU for air. The
mean MAE was 67 ± 14 HU for overall body, 38 ± 6
HU for soft tissue, 195 ± 27 HU for bone, and 198 ± 68
HU for air. This study reported a mean gamma pass
rates ranged from 95.7% to 99.9%, in good agreement
with the findings from prior studies.15 However, this study
additionally showed that there could be tissue-specific
HU misassignments in bone/air interface regions which
may need to be taken into consideration when reviewing
H&N MRI-only plans.

Limitations of this study include the impact of
deformable image registration on the accuracy of sCT
generation and the generalizability of the findings. To
compare sCT generation accuracy we wanted to ensure
that the MRI anatomy agreed well with CT anatomy.
Hence all patients in this study had same day MRI/CT
simulation imaging, typically sequentially, using close-
to-identical patient positioning. However, since the MRI
and CT simulation machines are not in the same
room patients were physically moved from the CT
simulation session to the MRI simulation session. Ther-
moplastic masks were removed between sessions and
the bite block could not be used in MRI simulation.
Therefore, even though most of the simulation ses-
sions were sequential, there could have been internal
anatomical motion between sessions in addition to slight
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difference in tongue and jaw position. To account for
this, deformable image registration was used to cor-
rect any anatomical differences between MRI and CT.
The deformed MRI images were manually inspected by
a medical physics expert to ensure that the anatomy
agreed well with CT before sCT generation.

A second limitation of this study was that only a sin-
gle deep learning-based method was tested for a single
anatomic site. We specifically chose to investigate deep
learning-based methods because they have, in general,
better tissue assignment accuracy and reproducibility
compared to their bulk-density counterparts.30,31 The
H&N site was specifically selected because of the
complexity of the anatomy involved in sCT generation.
Additionally, the highly modulated external beam radio-
therapy plans used to treat H&N cancers were thought
to provide the most rigorous testing of the integrity of
sCT images.

Spatial inaccuracies in MRI can propagate into syn-
thetic CTs if the parent MRI hasn’t been corrected.
Images from our study were corrected for geometric
distortion by applying 3D distortion correction during
MRI acquisition. 3D geometric distortions were quanti-
fied using a large field MR distortion phantom. Patient
specific distortions can occur from a variety of sources
including chemical shift differences and local suscep-
tibility variations. Studies have demonstrated that the
effects of the errors contribute up to 0.5 mm depending
on the readout bandwidth.36 For H&N patients, suscep-
tibility artifacts can appear prominently around dental
implants.37,38 The effect on dental susceptibility arti-
facts on sCT imaging has not been studied however
in this study we did not note imaging or dosimetric
deviations due to the presence of dental implants. How-
ever, the presence of dental implants on the sCT image
generation merits further study.

The goal of this work is to report on the dosi-
metric impact of HU differences for OARs in H&N
sCT planning. Towards this future goal, one class of
studies should include investigating additional deep
learning/artificial intelligence (AI) methods to evaluate
structures misidentified in sCT. Improved sCT models
could be developed by using additional training data and
incorporating different MRI sequences such as ultra-
short echo time MRI, which increases bone signal and
could improve bone/air contrast and reduce bone/air
sCT HU misclassifications.40 Additionally, further stud-
ies should include the development of QA tools and/or
sCT correction methods using secondary deep learning
models based on only MRI as input.

5 CONCLUSION

In this study we quantified differences in HU values
between paired CT/ sCT of H&N cancer patients and
investigated the dosimetric impact on clinical treatment

plans. In this cohort of patients, HU differences in sCT
were observed but this did not lead to large differences
in OAR doses for multiple analyzed structures,PTV D95
metrics or gamma passing rates. Additional investiga-
tion of potential dosimetric consequences of this error
could inform QA procedures using MRI-only RT plan-
ning and lead to development of mitigation or correction
strategies.
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