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ABSTRACT OF THE DISSERTATION

Microfluidic technologies for investigating dynamics-based regulation in S. cerevisiae

by

Richard O’Laughlin

Doctor of Philosophy in Bioengineering (with a specialization in Quantitative Biology)

University of California San Diego, 2020

Professor Jeff Hasty, Chair

Technological advances in molecular biology over the last several decades have enabled

researchers to probe the inner workings of living systems at unprecedented scale and resolution.

These new capabilities have resulted in the emergence of the field of quantitative biology, which

seeks to utilize mathematical modeling along with techniques from systems biology and synthetic

biology in order to ascertain the design principles that underlie the structure and function of

biological regulatory networks. In pursuit of this goal, it has become clear that heterogeneity at

the single-cell level and the dynamics, or time-dependent behavior, of these networks are critical

features of a multitude of biological processes. Much of the foundational work establishing the

importance of these themes began from the study of microbes such as the budding yeast Saccha-

xvii



romyces cerevisiae. However, even in unicellular organisms such as S. cerevisiae, significant

challenges remain in tracking and analyzing single cells over long periods of time, as well as

monitoring gene expression dynamics at scale. Development of these capabilities is critical, not

only for understanding the cell biology of S. cerevisiae, but also for being able to apply the mech-

anistic insights obtained from yeast to evolutionarily conserved pathways in higher eukaryotes. In

this thesis, I describe the design and application of microfluidic technologies for S. cerevisiae that

address these limitations. In Chapter 1, I detail the utility of microfluidic devices and time-lapse

fluorescence microscopy for analyzing single cells and recording biological dynamics. In Chapter

2, I describe the development of novel microfluidic devices that enable long-term isolation and

tracking of single yeast cells, culminating in a design that can monitor cells over the course of

their entire replicative lifespans. In Chapters 3 and 4, I discuss applications of the microfluidic

technologies described in Chapter 2. Chapter 3 concerns the discovery of metabolic cycles in

flavin fluorescence at the single-cell level, which can oscillate along with and independently of

the cell division cycle, persisting even when cellular respiration is blocked. Chapter 4 describes

the uncovering of two divergent paths taken by single yeast cells during replicative aging, in

which distinct dynamics of heterochromatin silencing at the rDNA region that modulate cellular

lifespan can be detected in each group. In Chapter 5, I apply the design principles validated in the

construction of microfluidic devices for tracking single cells in order to develop a high-throughput

microfluidic platform for recording gene expression dynamics of thousands of yeast strains

simultaneously. I demonstrate a proof-of-principle of this technology by monitoring changes in

gene expression across more than 4000 yeast strains in real-time during the diauxic shift. The

microfluidic devices developed and described herein underscore the importance of single-cell

analysis and dynamics-based regulation by elucidating novel sources of heterogeneity at the

single-cell level and demonstrating how metabolic, chromatin silencing and gene expression

dynamics contribute to the regulation of complex processes such as cell division, replicative

aging and growth in changing environments. Further, these technologies establish a foundation

xviii



upon which future studies can continue to pursue quantitative biology work in yeast, from the

single-cell level to the genome scale.
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Chapter 1

Introduction

1.1 Quantitative Biology: searching for the design principles

of biological systems

Modern molecular biology has become an increasingly quantitative discipline thanks

to a bevy of new technologies that have been introduced to the field. While no means an

exhaustive lists, these technologies include advancements in molecular cloning, DNA sequencing

, DNA synthesis, microfluidics, imaging and fluorescent molecular reporter systems such as

green fluorescent protein (GFP). By leveraging the early work of many pioneering biologists

who have characterized and discovered a plethora of individual features, genes, molecules, and

pathways inside cells, technologies such as these have enabled scientists to study these biological

components in fundamentally new ways. Systems and synthetic biology are two fields that

emerged from these new capabilities.

Both systems and synthetic biology are relatively new disciplines that encompass many

subfields, and exact definitions of what they entail may vary [1, 2]. For example, the field of

systems biology includes the mathematical modeling of small genetic regulatory networks that

contain a handful of core components [3], the computational modeling of metabolic fluxes through

1



biochemical cellular reactions on the genome-scale [4,5], and even the holistic modeling of entire

cells [6, 7]. Likewise, the field of synthetic biology can include the de novo design, construction

and mathematical analysis of simple gene circuits such as toggle switches [8], oscillators [9–

11], and logic gates [12, 13], as well as the metabolic engineering of organisms to produce

medically relevant compounds compounds [14, 15], genome editing with CRISPR-Cas9 [16–18]

and the synthesis and construction of entirely synthetic genomes and chromosomes [19, 20].

Although these various research areas have different goals and focus areas, one unifying theme

amongst many of these topics is the utilization of quantitative analysis techniques, mathematical

modeling and computational approaches in order to gain insight into their data. Quantitative

biology is the field that focuses on utilizing these approaches in order to understand the design

principles of the biological networks that give rise to cellular functions, or in other words, why

the regulatory networks inside cells appear the way they are and what advantages do particular

network configurations have [3, 21].

1.2 Microfluidics and time-lapse fluorescence microscopy for

quantitative biology

Two technologies that have proved very useful for systems and synthetic biology studies

have been microfluidic devices and time-lapse fluorescence microscopy [22]. Microfluidic

devices offer a well controlled environment where cells receive a constant supply of nutrients.

The optically clear and soft plastic polydimethylsiloxane often used for constructing microfluidic

devices [23], allows for time-lapse fluorescence microscopy to be performed on cells growing in

the device. Thus, various cellular process can be monitored during experiments, including the

expression of different genes, cell division, and cell morphology just to name few. Two important

themes that have emerged from studies that have combined these two technologies has been the

importance of single-cell analysis and dynamics-based regulation.
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1.2.1 Dynamics-based regulation in biology at the single-cell level

Dynamic phenotypes are pervasive throughout biology and govern many important bio-

logical processes such as cellular differentiation [24, 25], stress response [26, 27] and epigenetic

regulation [28]. By utilizing microfluidic technologies or time-lapse fluorescence microscopy

or both to analyze single cells, a number of examples across different kingdoms of life have

been discovered. For example, in the bacterium Bacillus subtilis, entry into a state that allows

cells to uptake DNA from the environment, termed competence, depends on the dynamics of a

gene regulatory network involving two genes, ComK and ComG [24]. Similarly in yeast, the

transcription factors Msn2 and Msn4 respond to different cellular stressors with distinct patterns

of nuclear localization [26,27]. Depending on the dynamics of these transcription factors, this can

result in different forms of genetic regulatory logic on the downstream genes they control, being

able to act as together as AND or OR gate in different situations [26,27]. Likewise in mammalian

cells, modulating the length of time that certain chromatin regulators are recruited to genetic loci

can result in different patterns of silencing dynamics at that region [28].

Often, studies such as those mentioned above are conducted at the single-cell level. At

this resolution, phenotypic differences between individual cells that could potentially be obscured

by bulk measurements can be made apparent. This idea was crystallized when Elowitz et al. [29]

described how two identical promoters in single bacteria cells can give rise to a range of gene

expression levels of a fluorescent reporter both within and between individual cells. Since then, a

multitude of different studies have described how individual isogenic cells can differ from one

another in surprising ways and how this phenotypic heterogeniety at the single-cell level plays an

important role in a variety of processes [30–32].
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1.3 Thesis overview

As detailed above, single-cell analysis and dynamics-based regulation are two growing

areas of quantitative biology research that are greatly expanding our understanding of a variety of

biomolecular processes. During my time in graduate school, I worked to further these lines of

inquiry by combining novel microfluidic technologies with time-lapse fluorescence microscopy

to study replicative aging and metabolic oscillations in budding yeast; two areas where single-cell

analysis and dynamics-based regulation have not been extensively explored in the literature.

Chapter 2 of this thesis details the design and development of the microfluidic devices I have

designed to accomplish these tasks. Chapter 3 and Chapter 4 document the results from single-

cell studies on metabolic oscillations during the cell division cycle and chromatin silencing

dynamics during replicative aging, respectively. In Chapter 5, I describe the development of a

high-throughput microfluidic platform for monitoring gene expression dynamics in thousands

of yeast strains simultaneously, and demonstrate its utility by monitoring, in real-time, a yeast

culture undergoing the diauxic shift. The work described herein not only showcases the powerful

insights that can be gained from analyzing single-cells and investigating the dynamics of biological

regulation, but also lays the groundwork for future studies to apply these microfluidic technologies

and biological insights to continue explore and uncover the regulatory nature of a variety of

biological processes.
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Chapter 2

Microfluidic technologies for single-cell

analysis of yeast

2.1 Introduction

In this Chapter, I detail the design, construction and validation of microfluidic devices

that are able to trap, isolate and track single haploid yeast cells. The main motivation for this is to

be able to conduct time-lapse fluorescence microscopy experiments during replicative aging in

single yeast cells. To acheive this goal, I began by designing a microfluidic platform that could

track cells over several cell divisions, which was an improvement over then currently available

yeast microfluidic devices designed by the Hasty Lab. I eventually modified this device to be

suitable for replicative aging studies. We begin this Chapter by covering the study of yeast

replicative aging in microfluidic devices. I describe the utility of yeast a model organism for

aging research and then introduce the published microfluidic devices for studying replicative

aging. After covering the ‘microchannel’ design that I developed, I describe this device, as well

as the process of developing it, in greater detail. Applications of these microfluidic devices to

scientific problems are described in Chapters 3 and 4.
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2.2 Microfluidic devices for yeast replicative aging

Rapid technological advances over the past several decades have enabled an increasingly

quantitative understanding of biological systems. Cutting-edge imaging [33], sequencing [34, 35],

microfluidics [36] and genome editing [37, 38] methods are generating increasingly complex data

sets that, when combined with the requisite quantitative analysis, are producing groundbreaking

biological insights. One such area benefitting from these new developments is the field of

geroscience, which seeks to understand the basic biological mechanisms of aging and apply

this knowledge to treat human diseases and prolong healthy lifespan [39, 40]. While progress is

being made by applying new experimental techniques to directly study aging in humans [41, 42],

conducting aging experiments in humans is difficult and in certain cases impossible. However,

work from a variety of model eukaryotic organisms has revealed a number of evolutionarily

conserved molecular processes that drive aging [43, 44], which helps to point the way for future

work in and therapies for humans. In particular, the use of the budding yeast Saccharomyces

cerevisiae as a genetically tractable single-celled model system for studying aging has helped

illuminate a number of important conserved pathways underlying aging [43–48] as well as

potential interventions for mitigating its effects [49].

Aging in S. cerevisiae is primarily studied in two modalities, chronological aging and

replicative aging [50]. For chronological aging, cells are held in stationary phase, then periodically

tested for their capacity to resume division when the stationary-inducing conditions are relieved.

The time in which the cells can successfully survive in stationary is defined as their chronological

lifespan (CLS) [50]. In contrast, replicative aging is defined by the number of daughter cells

that can be produced by a single mother cell before it stops reproducing and dies, termed as

replicative lifespan (RLS) [50, 51]. Because replicative aging occurs on a timescale of days

rather than weeks, it has the potential of seamlessly interfacing with microfluidic devices and

time-lapse fluorescence microscopy, widely used tools for studying dynamic biological processes
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in real-time [22, 52]. However, until the last seven years, the field of yeast replicative aging

relied on microdissection [51, 53] as the only tool for RLS measurements. For this method, an

experimenter uses a micromanipulator to separate mother and daughter cells growing on an agar

pad under a microscope, thereby keeping track of and recording the number of divisions of each

mother cell for RLS analysis [53]. Although microdissection has provided valuable knowledge

about lifespans under various genetic and environmental conditions, its manual nature results in a

number of drawbacks, including its tedium and the inability to dynamically modify the growth

environment. An additional significant drawback of this technique is that the thick agar pad

on which the cells grow prevents high-quality time-lapse fluorescence microscopy from being

conducted [54, 55]. Consequently, dynamic and quantitative single-cell measurements cannot be

performed, which greatly impedes understanding of the genetic regulatory networks governing

the cell aging process, which are dynamic by their very nature. To circumvent these shortcomings,

new technologies and methods have been developed in recent years that offer alternatives to the

microdissection approach.

Here we review the recent advances in studying yeast replicative aging using microfluidics,

time-lapse fluorescent microscopy, computational modeling and high-throughput technologies.

We cover recent studies utilizing each technique and discuss the unique insights provided by

these approaches compared to traditional methods. Taken together, these advances provide novel

insights and challenges for the field of yeast aging and suggest important and creative new avenues

for applying this research to higher organisms. We conclude by discussing open questions and

new directions raised by these approaches in this field that is ripe for new findings.

To address the drawbacks of the traditional microdissection method, various polydimethyl-

siloxane (PDMS) based microfluidic devices have been developed. These devices automate

mother-daughter separation during aging and allow RLS measurements to be interfaced with

time-lapse fluorescence microscopy. These technologies have provided an unparalleled look at

the aging process in single yeast cells by allowing the dynamics of various molecular and cellular
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processes to be tracked and quantified. The construction and design of such devices, however, is

challenging, and microfluidic platforms capable of tracking large numbers of single mother cells

throughout their lifespans require new features not necessary in the design of devices for more

short-term cell tracking [23, 56–59]. In this section, we discuss the design strategies that enable

microfluidics to be applied to yeast replicative aging.

2.2.1 Design constraints for a yeast aging microfluidic device

One of the first considerations to have in designing microfluidics for yeast aging is the

operation time of the device. An often noted feature of replicative aging is the wide distribution

of lifespans one obtains from a population [51, 60], with reported RLS values for long-lived

wild-type (WT) cells from microdissection studies [51, 53] exceeding 40 divisions. As the

population doubling time for yeast is about 90 minutes [61], 40 divisions for single cells equates

to approximately two and a half days. Considering that certain long-lived mutants can divide 60

or more times [62], it is clear that a successful microfluidic device must be able to trap mother

cells for more than 4 days. Indeed, these long operation times for RLS studies result in another

problem: the accumulation of a large number of daughter cells in the device. If not rapidly

removed, the cells can dislodge mother cells, interfere with automated cell tracking or clog the

device. Finally, the mechanisms used to trap mother cells must not stress the cells and RLS

measurements should be comparable to microdissection studies. Taking these issues into account,

a number of yeast aging microfluidic devices have been successfully designed (Fig. 1A), with

lifespan measurements being validated in WT cells and various longevity mutants [54, 55, 63–69].

While each device design has its own unique features that allow it to fulfill the aforementioned

criteria, the currently available microfluidic devices employ some common strategies to load and

trap mother cells. Before detailing the particularities of each yeast aging microfluidic device, we

describe these shared mechanisms in order to properly contextualize the motivations behind each

design.
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2.2.2 Physical mechanisms for loading and trapping mother cells

There are a plethora of methods for trapping single cells in microfluidic chambers. How-

ever, for replicative aging applications, the asymmetric nature of yeast division [70], wherein for

most of their lifespans, mother cells give rise to daughters that are smaller than themselves [71],

favors three primary strategies for loading cells into the trapping regions and retaining mother cells

throughout their entire lifespans, as well as removing daughter cells: contact-based mechanical

trapping, geometric confinement and hydrodynamic trapping. Contact-based mechanical trapping

entails immobilization of cells from above, that is, between the PDMS ceiling of the microfluidic

device and the glass slide. Using this approach, trapping regions smaller than or approximately

the same size as a typical yeast diameter are used to push down on cells and hold them in place.

Loading cells requires the ceilings or heights of these traps be raised, so that cells can actually get

into the trapping regions. This is done by increasing the pressure at both the inlet and outlet of the

device to generate hydrostatic pressure that raises the height of the ceiling, allowing cells to pass

under the trapping areas [54, 63] (Fig. 1B, left). Release of the pressure by allowing flow toward

the waste port lowers the ceiling back down, immobilizing cells and trapping them [54, 63] (Fig.

1B, right). Since daughter cells are smaller than their mothers, they are not as restrained by the

low ceilings and can more easily escape from the trap and flow toward the waste port.

As an alternative to contact-based mechanical trapping, most recently published microflu-

idic devices utilize a physical mechanism known as hydrodynamic trapping. In the context of

this review, hydrodynamic trapping can be defined as a technique for capturing and immobilizing

cells against structures in a microfluidic device by exploiting the hydraulic forces that act on

particles in a fluid [72–77]. Hydrodynamic trapping enables a number of desirable features for

yeast aging microfluidic devices such as trapping areas with ceilings taller than the diameter

of a typical yeast cell (i.e. < 4 µm). For devices of this kind, microstructures are positioned

along the flow path to capture and immobilize cells. Because loading of cell traps increases the

fluidic resistance along that path, this increases the flow through adjacent empty traps, which
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facilitates cell loading. From this point, mother cells can be obtained from daughters that enter

isolated trapping regions that geometrically confines their movement (Fig. 1C) or directly from

the immobilized cells that are trapped (Fig. 1D). With the physical principles used by different

microfluidic devices for loading and trapping mother cells during their entire lifespans in hand,

we now turn to a discussion of the design layouts of various devices.

2.2.3 Microfluidic design layouts

Three of the earliest published microfluidic devices for yeast aging relied on contact-based

mechanical trapping of mother cells. This was accomplished via vertical micropads [54, 63] or

dead-end microcavities [64] (Fig. 1A, top row). The device reported by Zhang et al. [63] was an

improvement on an original device developed by this group that used chemical modification of the

glass coverslip and cell wall as part of its trapping mechanism [55]. The use of vertical micropads

to trap cells allowed them to jettison this requirement. In the designs by Lee et al. [54] and Zhang

et al. [63], the vertical micropads traps are positioned within an “open room” that is much taller

than the height of the traps (for example, 15 µm in the device by Lee et al. [54]) in which media

flows. The cross-sectional area of these traps is large enough to accommodate multiple mother

cells under a single micropad. For the design by Fehrmann et al. [64], media channels 40 µm tall

flank 3.3 µm trapping areas with dead-end cavities. Here, cells grow to fill the trapping area until

a newborn cell reaches the end of the cavity where it is subsequently tracked as a mother cell for

RLS analysis. While lifespan measurements of these devices produced similar results to those

obtained with microdissection, the trapping methods for these devices are relatively inefficient.

For designs relying on contact-based mechanical trapping, it can be difficult to retain mother cells

over their entire RLS. It is also difficult to control the number of cells trapped in the case of the

vertical micropad designs [54, 63], or the timing at which cells reach the end of the cavities [64] .

For example, in the micropad designs [54, 63] larger daughter cells or cells washing down from

upstream can be caught under a single micropad and dislodge mother cells from the trapping
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regions. Similarly, the dead-end microcavities design [64] relies on mother cells budding in a

single direction for the entire course of their lifespan and a single polarity switch can remove the

mother from the trap. Further, the contact-based mechanical trapping employed by these devices

may not be suitable for various longevity mutants that could have altered cell size compared to

wild-type cells.

With devices from Lee et al. [54], Zhang et al. [63] and Fehrmann et al. [64] paving

the way for applications of microfluidics to yeast replicative aging, a new generation of devices

was developed that built upon and extended these foundational technologies. As previously

mentioned, these devices use hydrodynamic trapping and/or geometric confinement for loading

and retaining mother cells in the traps throughout their entire lifespans. An example of a device

that uses both hydrodynamic trapping and geometric confinement for operation is the three-bar

“jail” design [56] that was optimized to trap single cells for replicative aging experiments by Liu

et al. [67] (Fig. 1A, middle right). In this device, cells are guided toward the openings between

two of the bars by the fluid flow, eventually producing a bud that enters the jail. Once there it is

tracked as the mother cell. The 5.3 µm tall PDMS bars spanning the entire space between the

ceiling of the device and the glass slide spatially confine each mother cell while also allowing for

increases in cell size that accompany aging [78]. Buds can be produced out of three openings in

the jail small enough for daughters to pass through and periodic pulses of high velocity flow are

used to aid in daughter cell removal. A variation of this design was created to analyze aging in

diploid cells, where a two-bar jail structure was created which functions using the same basic

principles as the three-bar jail [69].

Another set of devices more fully rely on hydrodynamic trapping for proper device

operation. Here, traps consist of arrays of cup shaped two-bar traps [65, 66] or open-ended

microchannels [68]. Devices developed by Crane et al. [65] and Jo et al. [66] are single layer

devices where traps are positioned parallel to the direction of flow in an open room layout similar

to devices using vertical micropads [54,63]. The device developed by Li et al. [68] consists of two
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Figure 2.1: Microfluidic devices for single-cell replicative aging in yeast.(a) The cell trap designs
for currently published yeast aging microfluidic devices [54, 63–69]. (b) Example of loading in
a device relying on contact-based mechanical trapping, where hydrostatic pressure is used to
raise the height of the micropad traps (left). Releasing pressure by allowing fluid flow to the
waste port lowers the height of the micropads once more and traps cells underneath them [54, 63].
(c) Devices that use hydrodynamic trapping to guide cells to the outside of the jails. Cells can
produce a daughter cell through the openings in the jail (left). The cell that enters the jail is
geometrically confined, and is analyzed as the mother cell for RLS experiments [67] . (d) Loading
of microchannel traps [68] using hydrodynamic trapping. Cells are guided into the traps by the
flow and can produce buds through a small opening at the bottom of the trap or toward the entrance
(left). Loading of a cell into the trap increases the hydraulic resistance of this path for fluid flow,
facilitating the loading of adjacent traps (right). (Figure adapted from refs. 2 [54, 63–69]).

layers, with 20 µm tall media channels positioned perpendicular to the 4.3 µm cell traps. In each

design, traps feature small 3 µm openings that provide a docking site for mother cells, preventing

their movement beyond this point while allowing passage of budding daughters. Furthermore,
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these openings allow for constant fluid flow through the trap, which provides the hydrodynamic

force needed to secure mother cells over the course of their entire RLS. With openings on each

side of the trap, mothers are able to produce buds in either direction, which are eventually washed

away by the media flow. The use of hydrodynamic trapping allows the ceilings of the trapping

regions to be taller than the height of the cells [65, 66, 68]. Along with the wider width of these

traps compared to that of the cells, these designs allow room for increases in cell size during

aging. Importantly, the use of hydrodynamic trapping enables very efficient loading [66, 68] and

also robust retention rates of mother cells [65, 66, 68].

2.2.4 Unique device features

Due to the different design layouts of each, there are a number of unique capabilities

for the aforementioned microfluidic devices. A feature exclusive to the devices with dead-end

microcavities [64] and and jail structures [67, 69] is the requirement of newborn daughter cells

to load their traps. As a result, RLS analysis begins with virgin cells that have not yet divided,

yielding exact lifespan measurement for all analyzed cells. Although undoubtedly useful, given

that populations are disproportionally composed by young cells, with only 12.5% of cells are

expected to be older than two generations [79, 80], this feature is not an absolute necessity for

obtaining accurate RLS measurements for WT cells or longevity mutants. In regards to lifespan

measurements of large numbers of cells (500 or more) or multiple strains in a single experiment,

the device by Jo et al. [66] is particularly suited for such applications. Another feature that is

unique to devices using microcavities [64], micropads [54, 63] and microchannels [68] as traps

is the ability to visualize daughter cells for some time without them being immediately washed

away. For example, daughter cells, especially of old mothers can be maintained under micropads

for some time before removal. Similarly, for the microchannels used by Li et al. [68] daughters

born toward the entrance of the microchannel can be retained for some time. Although removal

of daughter cells is critical to prevent device clogging and for later image analysis and tracking
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of mothers, the daughter cells are a potential valuable source of data. Monolayer open room

style devices [65–67, 69] are designed to immediately remove all daughters from the field of

view and therefore sacrifice the possibility of obtaining daughter cell information. In particular,

the micropad design by Zhang et al. [63] and microchannel design by Li et al. [68] have been

leveraged to analyze daughter cell gene expression [81] and cell morphology [68, 82]. Finally,

devices by Crane et al. [65] and Li et al. [68] allow media switches to be performed in their

devices. This enables dynamic modifications of the cellular environment in the form of chemical

perturbations or changes to the nutrient conditions. For more technical details about the design,

validation and testing of many of the microfluidic devices described here, we refer the interested

reader to a recent thorough review on this topic [83].

2.3 Design and development of the ‘microchannels’ yeast ag-

ing device

2.3.1 A microfluidic platform for monitoring single yeast cells over several

cell divisions

As discussed in section 2.2.3, the ‘microchannels’ yeast aging device is highly robust and

optimized for the study of replicative aging. Perhaps the most critical feature of this device is

that it allows cells to bud bidirectionally, either toward the entrance of the trap or toward the exit

of the trap. However, before developing the specific trap design that allowed for bidirectional

budding, I first developed a microfluidic chip that was geared toward monitoring single yeast

cells over several cell divisions (Fig. 2.2). The main purpose of this device was to be used for

studying the yeast metabolic cycle (YMC) in single cells, which will be discussed in Chapter 3.

As such, I will refer to this device as the ‘YMC chip’ moving forward.

As mentioned previously in section 2.2, several of the currently published microfluidic
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devices [23, 56–58] were not well suited to long term monitoring of large numbers of yeast cells

over multiple cell divisions. In most cases [23, 57, 58], the cell trapping area was quickly filled to

confluence, making it difficult to track single cells over multiple divisions and limiting throughput.

The YMC chip circumvents these issues by utilizing hydrodynamic trapping to arrange cells in

monolayer rectangular traps (Fig. 2.2a, b). A 1.3 µm tall conduit region fluidically connects the

cells traps and media channels, allowing flow through the trap (which provides the hydrodynamic

trapping effect) while also blocking cell movement past the 4.7 µm trapping region, since cells are

too large to pass under the 1.3 µm tall conduits. As a result, cells are efficiently loaded into the

trapping regions where cells at the bottom of the trap are immobilized at the boundary between

the trap and the conduit region (Fig. 2.3a), making them much easier to monitor with automated

cell tracking algorithms. However, cells can not be trapped indefinitely using this strategy.

Figure 2.2: A microfluidic platform for monitoring single yeast cells over several cell divisions
(a) Four parallel branches contain cell trapping regions of 4.7 µm tall (red) and media conduits
(1.3 µm tall), with a total of 580 traps on the entire device. (b) This design permits the flow of
media from the main channel (20 µm tall, blue) through the cell trapping region but does not
allow cells to pass through the media conduits as they are too low in height. In this way cells are
stably maintained at the bottom of the trap (for as long as they bud up toward the entrance of the
trap) while constantly being supplied media throughout the course of the experiment. .

Cells at the bottom of the trap can only be maintained in this position as long as they bud

upwards toward the entrance of the trap. Despite the asymmetric nature of yeast cell division,

whereby the mother cell produces a daughter cell that is smaller than itself (until late in the

mother’s lifespan [71]), the daughter cells are still not small enough to pass under the 1.3 µm
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conduits. Because of this, a polarity switch where the mother cell produces a bud downward

toward the conduit will push the mother cell out from the bottom of the trap and eventually

remove it from the trapping region completely (Fig. 2.3b). Consequently, that cell can no longer

be tracked. For this device, observing a single cell for more than 10 generations is rare. Since

wild-type yeast cells can produce around 20-30 daughter cells on average before death [53], it is

clear that this style of trapping yeast cells is not suitable for studying replicative aging.

Figure 2.3: Bidirectional budding removes cells from the trap of the YMC chip. (a) Single
position image with cells loaded. (b) Time-lapse of budding, showing that when budding polarity
switches, cells are pushed out from the bottom of the trap where they can no longer be tracked.
Blue arrows indicated tracked cells while white arrows indicate daughter cells. .

2.3.2 Trap design and optimization to allow for bidirectional budding of

mother cells

While it was clear that the YMC chip could not allow replicative aging to be studied in

single cells, it was also apparent that this design was not too far off from being able to do just

that. If the conduit was made just tall enough so that the daughter cell could pass under it and exit

the trap, while the mother cell was held in place, this could allow for full lifespan observation of
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the mother. Despite its potential, through numerous design iterations, successful implementation

of this strategy was not able to be attained. However, a similar strategy was also tried in addition

to changing the height of the conduit. Instead of using a conduit which was smaller in height than

the cell trap, a number of trap designs were tested in which a narrowing or ‘dent’ was designed

into the cell trap itself. The idea behind this design was that, since the daughter cells are smaller

than their mother for most of their lives [71], and buds produced by the mother cells initially

are very small, it may be possible to design the dent such that the budding daughter cells can fit

through it, while the mother cells cannot. Through numerous design iterations of this strategy,

two main trap designs emerged as possible successful strategies and microfluidic devices with

these trap styles were built and tested.

Figure 2.4: Testing of different ‘dent’ styles for the traps of the yeast aging microfluidic device.
(a) Arch-styled ‘dent’ design. (b) Yeast aging microfluidic device built with arch-styled ‘dent’
traps. The traps also have a ‘V’ shape, where they are wider at the inlet of the trap. (c) Chalice-
styled dent’ traps. (d) Yeast aging microfluidic device built with chalice-styled ‘dent’ traps.
.
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With these two ‘dent’ styles for the traps, microfluidic experiments were conducted to

test how well each trap style worked in retaining mother cells. Various widths of the dents

for the arch-styled and chalice-styled traps were tested including 2.8, 3.0 and 3.2 µm widths.

Additionally, different trap widths were tested from 5 to 6 µm. I note here that the media channel

layouts were also varied for both dent styles to test the impact that this factor had on mother cell

retention and lifespan. Ultimately it was determined that the trap style is a much more critical

factor for retaining mother cells. Flow rate in the media channel was also very important, however

since the flow rate could be adjusted by changing the height of the media syringe, media channel

layout played a much more minor role than the trap style. After several rounds of testing it was

determined that the chalice-styled traps with a 3.0 µm wide dent were the optimal traps, as they

were able to robustly retain mother cells over the course of several days for their full replicative

lifespans while also allowing daughter cells to pass through the dent and not interfere with mother

cell retention. Therefore this chalice-styled styled trap was used moving forward.

2.3.3 Design layout and validation of the first generation yeast aging mi-

crofluidic devices

Having optimized the trap design to retain mother cells and allow for bidirectional budding

and removal of daughter cells using the chalice-styled traps, we settled on a three inlet media

channel design to create the first generation yeast aging device (Fig. 2.5). We next sought to fully

test the lifespan and functionality of the device. We developed a growth protocol involving two

steps for obtaining high numbers of newborn yeast cells. Yeast cells were inoculated into 2 ml of

synthetic complete medium (SC, 2% dextrose) and cultured overnight at 30◦C. 2 µl of saturated

culture was diluted into 20 ml of fresh SC medium and grown at 30◦C overnight. To evaluate

the bud scar distribution of yeast cells, a cell culture with OD600 of about 1.0 was sampled and

stained with 5 µg/ml WGA conjugates (Alexa Fluor 647 conjugate, Thermo Fisher) for 10 min at

37◦C. Cells were washed twice with PBS after incubation then examined with a Leica TCS SP8
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Stimulated Emission Depletion (STED) superresolution microscope using a Cy5.5 channel to

visualize the bud scars (Fig. 2.6a). We also validated that cells were not squeezed when they were

loaded into the traps (Fig. 2.6b). Further, we were able to obtain a healthy lifespan for mother

cells, with the mean replicative lifespan in our device being approximately 21 to 22 generations

(Fig. 2.6c). We were also able to recapitulate the lifespan extending effects of deletion of SGF73

(Fig. 2.6c). Finally, we identified fluorescence imaging settings for GFP, mCherry and iRFP that

did not effect cellular lifespan, allowing us to utilize fluorescent markers to track different cellular

processes during aging (Fig. 2.6d). See Chapter 4.7 for details on fluorescence imaging settings.

Figure 2.5: First generation yeast aging microfluidic device. (a) Device layout consisting of
features of two different heights, approximately 20 µm tall media channels and 4.3 µm tall cell
traps. A three inlet media channel design was used. (b) Schematic of device operation showing
where mother cells are retained, bidirectional budding and hydrodynamic trapping.

In Chapter 4 of this thesis I discuss in-depth the application of this first generation yeast

aging microfluidic device to the study of chromatin silencing at the rDNA region during aging.

However, along with work in studying the molecular biology of yeast aging using this device, I

continued to improve the microfluidic device itself. The first such improvement was simply a

redesign of the media channel layout in order to reduce the number of syringes needed, increase

throughput and increase the number of different strains that could be tested in a single experiment.

This device is shown in Figure 2.7. Performance of this device versus the three-inlet media
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channel design were essentially identical, as flow rate in the device and the trapping style using

the chalice-style dent traps were kept constant. Lifespan validation for this device using various

longevity mutants and lifespan extension under calorie restriction are shown in Figure 2.8. Further

experiments with this device can be found in Li et al. 2019 [85].

2.3.4 A second generation yeast aging microfluidic device

The most recent yeast aging microfluidic device was designed with a fundamentally new

feature that may allow for enhanced functionality and more precise measurements of aging cells,

with further increased throughput over the 4-unit device Figure 2.7. The design of this device

contains cell traps that are designed to be flexible, allowing cells to stretch and expand past the

original size of the traps (Fig. 2.9). This was done by adding rectangular structures next to each

trap. These structures are fluidically closed and only served to create a blank space that creates a

thin wall between the cell trapping region of the blank space in the PDMS left by the rectangular

structures. Surprisingly, this wall could be made as thin as 2 µm. Cells were able to stretch the

width of these straps under various different wall thicknesses (Fig. 2.9). Currently, these traps are

being implented in the design of a final second generation yeast aging microlfuidic device.

2.4 Methods

2.4.1 Design and fabrication of the the YMC microlfuidic device

The microfluidic device used in this study was designed to trap short single rows of cells in

individual rectangular traps that would minimized intercellular communication and provide good

resolution of single cells. To accomplish this cell traps were 25 µm by 5.25 µm and approximately

4.7 µm tall. Cell traps are open on both ends allowing media to flow through the traps and provide

continuous nutrients to the cells. The device design (see Chapter 2) was drawn in AutoCAD
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(Autodesk) and then printed on chrome glass masks (HTA Photomask). Standard procedures

similar to those detailed by Ferry et al. [23] for photolithography with SU8 (MicroChem) were

used to pattern silicon wafers (University Wafer) with an EVG620 mask aligner (EV Group) and

then make PDMS (polydimethylsiloxane, Dow SYLGARD) molds of the devices.

2.4.2 Design and fabrication of the microfluidic device for yeast aging stud-

ies

In designing a microfluidic device for studying aging in budding yeast, the viability of the

cells, efficiency of cell trapping and robustness of the device were our primary concerns. Multiple

designs were built and tested to optimally satisfy these criteria. The robustness of the device is

affected by clogging due to excess cells around the traps and at the waste port, which can interfere

with mother cell lifespan and retention. Supplying media through approximately 20 [65–67].

The device was optimized for using continuous gravity-driven flow during operation, with the

three-inlet design also facilitating media switching experiments. The height and width of cell

traps were optimized for cell loading and retention. Cell loading efficiencies and final retentions

until cell death are approximately 93% and 75% respectively. See Quantification of single-cell

traces (Chapter 4.7.4) for a consideration of cell retention. We quantified the widths of cells in

the culture population immediately before loading and cells that are just loaded into the device,

respectively. As shown in Fig. 2.6b, the distributions of cell widths are similar for the population

before loading and for the loaded population, confirming that the device loading does not select

for a subpopulation of cells. A potential caveat of microfluidic devices for aging studies is that

the limited size of cell traps might affect the lifespan. However, given that lifespans measured

using our device are comparable to those from classical microdissection studies (Fig. 2.6c), the

effect of the trap size on lifespan, if any, should be modest.

To construct the microfluidic device, designs were first drawn in AutoCAD (Autodesk

Inc.). Modeling of fluid flow in the device using COMSOL Multiphysics aided in design
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(COMSOL Inc.). Two chrome quartz glass masks (HTA Photomask), one for each layer of

the device, were used to pattern SU-8 negative epoxy photoresist (MicroChem Corp.) onto

clean silicon wafers (University Wafer Inc.). SU-8 2005 was used to build the first layer (cell

trapping region) and was spun at 3250 rpm while SU-8 2015 was used to build the second layer

(main channels), spun at 2000 rpm. These spin parameters yield approximately 4.3 µm and

20 µm tall features for the cell trapping and main channel layers respectively, as measured by

a Dektak 150 surface profiler (Veeco Instruments Inc.). The mask for the second layer was

aligned to the first layer of the wafer using an EVG620 mask aligner (EV Group Inc.). Once

patterning of the SU-8 was complete, the wafer was exposed to 40 µl of trichloro(1H, 1H, 2H,

2H-perfluoro-octyl)silane (Sigma-Aldrich Co.) in a vacuum chamber for 7 minutes. After this,

poly-dimethylsiloxane (PDMS, Sylgard 184, silicone elastomer kit with base and curing agent,

Dow Corning Corp.) molds of the features on the wafer were made, cleaned and bonded to glass

coverslips for experiments as described in Ferry et al [23]. Other yeast aging devices described in

this chapter were built similarly using these methods.

Strain information can be found in Chapter 4 tests done in three inlet yeast aging device

(Fig. 2.5). Strain information and details for experiments using the 4-unit variant of the aging

device can be found in Li et al. 2019 [85]. Cell divisions were recorded manually by monitoring

the seperation of the mother and daughter nuclei, visualized by the Nhp6a-iRFP reporter present

in all strains. Likewise other details of the microfluidic experiments can be found in Chapters

3 and 4. Experimental details relevant to the use of the 4-unit device can be found in Li et al.

2019 [85].

2.5 Acknowledgements

This chapter contains material that was originally published from the following papers.

· Baumgartner, B.L.*, O’Laughlin, R.*, Jin, M.*, Tsimring, L.S., Hao, N. and Hasty, J., 2018.

22



Flavin-based metabolic cycles are integral features of growth and division in single yeast

cells. Scientific Reports, 8(1), pp.1-10. (*equal contribution). Reproduction of this work was

granted by Springer Nature under the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/). The dissertation author, Richard O’Laughlin,

was a primary investigator and author of this work.

· Li, Y.*, Jin, M.*, O’Laughlin, R.*, Bittihn, P., Tsimring, L.S., Pillus, L., Hasty, J. and Hao, N.,

2017. Multigenerational silencing dynamics control cell aging. Proceedings of the National

Academy of Sciences, 114(42), pp.11253-11258.(*equal contribution). The dissertation author,

Richard O’Laughlin, was a primary investigator and author of this work.

· O’Laughlin, R., Jin, M., Li, Y., Pillus, L., Tsimring, L.S., Hasty, J. and Hao, N., 2019. Advances

in quantitative biology methods for studying replicative aging in Saccharomyces cerevisiae.

Translational Medicine of Aging. (in press). Permission was granted by Elsevier to reprint

material from this article in this thesis. The dissertation author, Richard O’Laughlin, was a

primary investigator and author of this work.

This chapter also contains work that has been submitted for publication as:

· Li, Y., Jiang, Y., Paxman, J., O’Laughlin, R., Klepin, S., Zhu Y., Pillus, L., Tsimring, L.S.,

Hasty, J. and Hao, N. A programmable fate decision landscape underlies single-cell aging in

yeast. The dissertation author, Richard O’Laughlin, was a primary investigator and author of

this work.

This work was initially placed on the bioRxiv preprint server as:

· Li, Y., Jiang, Y., Paxman, J., O’Laughlin, R., Pillus, L., Tsimring, L.S., Hasty, J. and Hao, N.,

2019. An epigenetic landscape governs early fate decision in cellular aging. bioRxiv, p.630921.

The dissertation author, Richard O’Laughlin, was a primary investigator and author of this

work.

23



This chapter also contains the following material that is currently being prepared for

submission for publication.

· O’Laughlin, R, Li, Y., Pillus, L., Tsimring, L.S., Hasty, J. and Hao, N. “A high-throughput and

adaptive microfluidic platform for monitoring yeast replicative aging.” (in prep)(title tentative).

The dissertation author, Richard O’Laughlin, was a primary investigator and author of this

work.

24



Figure 2.6: Validation of the yeast aging microfluidic device. (a) Left: A representative confocal
image showing bud scars stained with wheat germ agglutinin (WGA). Right: Bud scar distribution
of cells at OD600 of approximately 1.0. (b) A boxplot showing the distributions of cell widths
for cells from the culture population before loading (black) and cells loaded in the device (blue).
Snapshot images were taken with cells from the culture population immediately before loading or
with cells just loaded into the device, respectively. Cell widths for single cells were quantified
using ImageJ. In the plot, the bottom and top of the box are first (the 25th percentile of the
data, q1) and third quartiles (the 75th percentile of the data, q3); the band inside the box is the
median; the whiskers cover the range between q1-1.5 x (q3-q1) and q3+1.5 x (q3-q1). These
results confirm that the device loading does not select for a subpopulation of cells.(c) Replicative
lifespans measured using the microfluidic device. Lifespan curves have been shown for WT
and sgf73∆ cells in SC medium supplemented with 2% glucose. In our device, deletion of
SGF73 increases lifespan by 27% comparing to that of WT, consistent with the previouse reprot
(McCormick et al. [84], Cell Metabolism 2015, Table S2; the sgf73 mutant increases lifespan
by 25.8% in MATa strains). (d) Replicative lifespans measured in the device with or without
fluorescent imaging. Fluorescent imaging setting and acquisition frequency are given in the
Methods section of Chapter 4. For experiments without fluorescent imaging, only phase images
(50 ms exposure) were taken every 15 mins.
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Figure 2.7: The 4-strain redesign of the first generation yeast aging microfluidic device. (a)
Device layout for the redesign of the first generation device, with 400 traps per device and 4
individual units which allow 4 different strains to be analyzed in a single experiment. (b) Close-up
of a single unit of the device, which has one inlet and one outlet.
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Figure 2.8: Lifespan validation of the 4-unit yeast aging chip. (a) Lifespan measurement of
WT cells (n = 189 cells) and different longevity mutants. Double expression of SIR2, a histone
deacetylase, results in lifespan extension (n = 222 cells), while deletion (sir2∆, n = 98 cells) results
in a much reduced mean RLS, demonstrated by Kaeberlein et al. [86], and also demonstrated in
the microfluidic device. We found that deletion of HAP4 (n = 99 cells), involved in regulating
cellular respiration [87], resulted in a decreased RLS while overexpression of HAP4 with the
GPD promoter (n = 123 cells) had a mean RLS close to that of WT. (b) Lifespan extension under
calorie restriction conditions (n = 138 cells). Similar to the microfluidic device study by Jo et
al. [66], we found that dramatically reducing the glucose level in the media (in our case a 100-fold
reduction in glucose from 2% weight by volume to 0.02%) resulted in lifespan extension.

27



Figure 2.9: Flexible cell traps for a second generation of yeast aging microfluidic devices. (a)
Flexible traps with a 2 µm wall. (b) Flexible traps with a 2.5 µm wall. (c) Flexible traps with a 3
µm wall. (d) Flexible traps with a 3.5 µm wall. Cells were able to stretch the width of the traps in
all cases. The shapes of the cell traps were slightly varied in each case.
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Chapter 3

Single-cell analysis of metabolic cycling

during growth and division in yeast using

microfluidics

3.1 Introduction

Oscillations underlie a wide variety of biological phenomena. Their unique dynamical

characteristics allow organisms across diverse kingdoms of life and at multiple length scales

to perform a myriad of complex functions such as timekeeping [88], resource allocation and

sharing [89], as well as coordinated behavior [90]. At the level of single cells, the networks of

interacting genes and proteins that generate oscillatory behavior have traditionally been the focus

of investigation [88, 91–94]. However, it is becoming increasingly clear that metabolic processes

are also capable of periodic behavior, and that these oscillations may be integral parts of core

biological processes such as glycolysis [95, 96], the cell division cycle [97–99] and circadian

rhythms [100, 101].
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3.1.1 The yeast metabolic cycle (YMC)

One of the most well-studied examples of metabolic oscillations is known as the yeast

metabolic cycle (YMC). Since its initial observations about 50 years ago [102, 103], the YMC

has come to be known as the bursts of respiratory metabolism and oxygen consumption by

synchronized cultures of budding yeast growing in a nutrient-limited chemostat environment

[104–106]. It has been shown that these oscillations correspond to a global coordination of

cellular activity, where specific stages of the dissolved oxygen oscillations are associated with the

expression of certain genes, the accumulation of distinct metabolites and progression through

different phases of the cell division cycle [105, 107, 108]. Yet, despite the importance of these

findings, the extent to which the many features of the YMC are recapitulated at the single-cell

level remains to be determined. Answering these questions is made all the more difficult by

the fact that different experimental set-ups can lead to markedly different observations about

the period of the metabolic cycle and its relationship to the cell division cycle. For example,

varying the strain background and chemostat conditions can lead to YMC periods ranging from

40 minutes [104, 106] to 5 hours [105], and the YMC can even oscillate multiple times per

cell cycle [109] in specific deletion mutants or possibly disappear altogether at certain dilution

rates [110]. Indeed, answering questions about the biological basis of metabolic cycles is

challenging using synchronized cultures because it is difficult to decouple perturbations that affect

cycling from those that merely prevent synchrony. As such, studies that could directly observe

the dynamics of metabolism in single yeast cells would circumvent many of these challenges and

greatly facilitate understanding of the mechanisms that generate the YMC.

Toward this end, seminal work by Papagiannakis et al. [99] demonstrated the existence

of metabolic cycles in the form of NAD(P)H and ATP oscillations in unsynchronized single

yeast cells growing in a microfluidic device. A critical finding from their work was that cell

cycle progression was synchronized with and gated by the metabolic cycle [99] in multiple

different media conditions. This distinguishes these oscillations from previously described
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glycolytic oscillations in single yeast cells, which are associated with NADH [95,96] and pH [96]

oscillations that have periods of approximately one minute [95, 96] and appear to not manifest in

all conditions [111,112] or in all cells of a population [96,113]. While the work by Papagiannakis

et al. [99] establishes the existence of metabolic oscillations in single cells and supports previous

findings [114–116] along this line, questions remain about the degree to which other features of

the YMC, as observed in synchronized chemostat cultures, are also extant at the single-cell level.

In this chapter, we used novel microfluidic technology and time-lapse fluorescence mi-

croscopy to directly observe and quantitatively characterize the dynamics of metabolic cycling

in unsynchronized single yeast cells. To accomplish this we monitored changes in cellular re-

dox state via endogenous flavin fluorescence. We observed clear and robust oscillations that

displayed the expected phase relationships relative to the cell division cycle as reported from

YMC chemostat studies [105, 107, 110]. Our results indicate that the metabolic cycle is a robust

oscillator that typically couples one-to-one to the cell division cycle across four different nutrient

conditions, however, we found that treatment with rapamycin can alter phase synchrony between

these two oscillators, leading to multiple metabolic cycles per CDC and increased variability of

metabolic cycling. Additionally, in contrast to the chemostat studies of the YMC, we found that

cellular respiration is dispensable for metabolic cycling, as flavin oscillations persisted in deletion

mutants impaired in oxidative phosphorylation. These results are in general agreement with the

previous findings from Papagiannakis et al. [99], and demonstrate that another critical cellular

metabolite, flavin, also oscillates during the cell division cycle. Our work provides new insights

into metabolic cycling in budding yeast and provides a foundation and methodology for future

studies of its role at the level of single cells.

31



3.2 Results

3.2.1 Tracking metabolic cycles in single-cells via endogenous flavin fluo-

rescence

To investigate metabolic cycling in unsynchronized single cells, we designed a custom

microfluidic device to minimize the accumulation of possible synchronizing agents such as

hydrogen sulfide and acetaldehyde . At the high cell densities experienced in chemostats, such

compounds are thought to accumulate in the media and synchronize nearby cells by phase

shifting the YMC [106, 117]. Our microfluidic platform minimizes such effects by trapping

single cells in physically isolated monolayer columns (Chapter 2.3.1), thus preventing cell-to-cell

communication. Experiments were conducted with the CEN.PK strain previously shown to

produce metabolic cycles with a period of several hours in chemostat environments [105].

As a readout of metabolic cycling, we used the natural redox-sensitive fluorescence of

riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). It has been

shown that the abundance of these molecules is highly periodic during the YMC in chemostats,

exhibiting a near anti-phase relationship with the dissolved oxygen concentration [106, 107]. We

reasoned that we could utilize flavin molecules as dynamic reporters of metabolic cycling in single

cells because of their unique fluorescent properties; they fluoresce in the visible spectrum (peak

excitation/emission: 450/535 nm) [118] and their reduced equivalents (FADH2 and FMNH2)

have negligible fluorescence in this range [119], allowing their oxidized and reduced states to be

distinguished. This approach obviates the need for expression of fluorescent proteins as YMC

reporters, which may not be dynamic enough to observe multiple cycles or could influence the

natural period.

We used a customized filter cube (excitation at 438-458 nm and emission at 515-565 nm)

to image flavin fluorescence during time-lapse microscopy experiments (Fig. 3.1a). The flavin

fluorescence signal was clearly visible in individual cells growing in the microfluidic device
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(Fig. 3.1b) and exhibited good dynamic range, increasing more than 2-fold with the addition of

hydrogen peroxide to the media (Fig. 3.6). By imaging and tracking individual cells growing

in minimal yeast nitrogen base (YNB) media, we observed strikingly clear oscillations in flavin

fluorescence over multiple cell divisions (Fig. 3.1c).

Figure 3.1: Flavin oscillations in single yeast cells.(a) Experimental setup for observing flavin
oscillations in single cells. (b) Snapshot of flavin fluorescence in single cells growing in the
microfluidic device during an experiment. The phase and flavin fluorescence channels were
overlayed and false coloring using the ImageJ [120] ‘royal’ colormap was applied to the flavin
channel in order to increase visual contrast for presentation. The colorbar to the right indicates
the intensity of the measured flavin signal [120]. The scale bar is 10 µm. (c) Single-cell trajectory
of measured flavin fluorescence including snapshots of the cell undergoing oscillations at the
labeled time points. The color bar is the same as in panel b. The scale bar is 2 µm.

Having observed oscillatory flavin dynamics in single cells, we next sought to determine

the extent to which these oscillations were related to the metabolic cycles reported in chemostat

cultures. The cell division cycle has been shown to be highly correlated with phase specific
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Figure 3.2: Tracking the dynamics of flavin fluorescence relative to the cell division cycle.
(a) Snapshots of the dynamics of fluorescent markers of the cell division cycle in single cells.
Fluorescently tagged proteins Whi5-mCherry and Nhp6a-iRFP were used for demarcating the
early and late phases of the cell cycle respectively. All scale bars are 2 µm. (b) Representative
heatmap of Whi5-mCherry nuclear localization from 25 single cells as a visual aid to demonstrate
a lack of CDC synchrony. (c) Example trace of flavin and Whi5-mCherry fluorescence measured
in the same single cell. Pulses of the Whi5-mCherry signal correspond to nuclear localization.
The lag time between the Whi5-mCherry and flavin peaks was denoted as ∆P and was calculated
as the difference between the time of the Whi5-mCherry peak and the flavin fluorescence peak
within each cell division cycle. The black dotted vertical lines indicate separation of the mother
and daughter nuclei as visualized by the Nhp6a-iRFP reporter. (d) Distribution of the time
difference between flavin and Whi5-mCherry peaks (n = 156 cells, the mean (µ) and standard
deviation (σ) for the distribution are ∆P = -45.62 ± 27.59 minutes).

processes during the YMC in synchronized cultures, with budding occurring near the trough of the

oxygen oscillations in the chemostat [105,110]. Further, Papagiannakis et al. [99] demonstrated a

strong coupling between NAD(P)H and ATP oscillations and the cell division cycle in single cells.

Here, we decided to explore the quantitative relationship between the observed flavin oscillations

and the CDC. To accomplish this we constructed strains with fluorescent reporters that allowed

us to monitor different phases of the cell division cycle. We analyzed the relationship of flavin
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oscillations to the early part of the cell cycle by tracking the nuclear localization of Whi5-mCherry

(Fig. 3.2a top row), which exits the nucleus before budding [121]. We also tracked how flavin

oscillations related to the late part of the cell cycle by monitoring the separation of the mother

and daughter nuclei using NHP6a-iRFP as a nuclear marker (Fig. 3.2a bottom row). By tracking

Whi5-mCherry nuclear localization, we verified that cells growing in the microfluidic device were

not synchronized (Fig. 3.2b), and subsequently moved to analyzing the relationship between the

flavin oscillations and the early part of the cell division cycle. We found that the flavin signal

reached its peak shortly after Whi5-mCherry exited the nucleus (Fig. 3.2c, Fig. 3.7). Peak nuclear

localization of Whi5-mCherry occurred approximately 45 minutes before the peak of the flavin

signal (Fig. 3.2d). The troughs of the flavin oscillations closely corresponded with the separation

of the mother and daughter nuclei (Fig. 3.2c dashed lines). The timing of the flavin peak relative

to the CDC is consistent with findings from synchronized chemostat cultures [107] and also

closely matches the timing of peak NAD(P)H fluorescence observed by Papagiannakis et al. [99]

These findings validate our use of flavin fluorescence as a reliable reporter of metabolic

cycling in single cells. Further, by using fluorescent reporters to monitor the cell division cycle we

were able to demonstrate that cells growing in the microfluidic device are not synchronized and

that the flavin dynamics, with respect to the CDC, in single cells are similar to those observed for

synchronized chemostat cultures [107, 110]. Having validated our methodology and uncovered

evidence of metabolic cycling, we next sought to quantify properties of the metabolic cycle and

further explore its relationship with the cell division cycle in single cells.

3.2.2 Metabolic cycles are synchronized with the cell division cycle across

different nutrient conditions

We then turned to investigate the dynamics of the metabolic cycle and its coupling to the

cell division cycle under different nutrient environments. First, we measured flavin oscillations in

unsynchronized cells growing in media with a range of yeast nitrogen base (YNB) concentrations.
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For media preparation, YNB containing ammonium sulfate as a nitrogen source, as well as other

nutrients such as vitamins and minerals, was diluted relative to 1X YNB media. We also tested

the effect of varying the nitrogen source alone by analyzing cells growing in 1X YNB media with

urea as the nitrogen source, a non-preferred option for yeast [122]. In all four media conditions

the level of glucose was kept constant at 1%.

Metabolic cycles robustly persisted in all nutrient environments, with more than 150

cells being analyzed in each experiment. Multiple example traces can be seen in Fig. 3.8 and

Fig. 3.9. For cells in each media condition, we determined the period of the metabolic cycle

and the cell division cycle (Fig. 3.3a, see Fig. 3.10 for estimation of metabolic cycle periods

using autocorrelation analysis). The relative coupling between the metabolic cycle and CDC was

quantified by measuring the lag time between the trough of the metabolic cycle and the separation

of the mother and daughter nuclei at the end of each CDC. This quantity and was termed ∆T (Fig.

3.3a).

Across all media conditions one metabolic cycle accompanied each CDC in at least 85%

of all cases. (Fig. 3.3b). As nutrient quality of the media decreased, the mean period of the

metabolic cycle increased. The 1X YNB and 0.25X YNB conditions gave similar mean metabolic

cycle periods of ∼136 minutes and the less nutrient-rich 0.05X YNB and 10 mM urea conditions

both gave mean periods of ∼163 minutes. The period of the metabolic cycle and the cell division

cycle were similar for all nutrient conditions as well (Fig. 3.3c ). For the 1X YNB and 0.25X YNB

conditions the median CDC and metabolic cycle times were both 130 minutes (Fig. 3.3c). For the

0.05X YNB condition the median CDC time was 160 minutes, while the median metabolic cycle

time was 150 minutes, and both the median CDC and metabolic cycle times were 150 minutes in

the 10 mM urea media (Fig. 3.3c). These results suggest that the metabolic cycle can function

over a range of periods, and that it is tuned along with the cell division cycle in accordance with

the nutrient conditions of the environment.

Phase synchronization of the metabolic cycle and cell division cycle was further estab-
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lished by analyzing the ∆T values for cells in each nutrient condition. Regardless of the length

of the CDC, separation of the mother and daughter nuclei occurred, in almost all cases, near

a metabolic cycle trough in all four media conditions (Fig. 3.3d and e). Taken together, these

findings suggest that the CDC is strongly coupled to and gated by the metabolic cycle; division of

the mother and daughter nuclei occurs at a relatively fixed time near a trough of the metabolic

cycle. This is true even for prolonged cell division cycles where the metabolic cycle can oscillate

multiple times before division occurs. Further, these results demonstrate that carbon source

limitation, as commonly used in the literature [105, 110], is not a requirement for generating or

modulating the metabolic cycle.

3.2.3 Rapamycin perturbs the phase synchronization of the metabolic cy-

cle and CDC

The strong relationship we found between the metabolic cycle and CDC in different media

conditions led us to investigate ways in which we could possibly alter the relationship between

these two oscillators. Since previous work in synchronized cultures showed that the addition

of rapamycin can phase shift metabolic cycles into a prolonged reductive phase [108], and that

rapamycin is a known CDC inhibitor [123], we reasoned that it could be used to perturb the

connection between the metabolic cycle and the cell division cycle.

When cells were grown in 1X YNB media in the presence of 150 nM rapamycin around

half of the cells continued dividing but at a greatly reduced rate. In such cases we often observed

multiple metabolic cycles occurring within a single cell division cycle (Fig. 3.4a left panel and

Fig.3.11). Other cells divided only once or were delayed in the early phases of the CDC and did

not complete a full division during the course of our experiment, yet metabolic cycles were able

to continue in these cells as well (Fig. 3.4a right panel). Overall, there was an increase in the

number of metabolic cycles occurring in each cell division cycle. In 1X YNB without rapamycin

about 90% of all cell divisions condition contained only one metabolic cycle (Fig. 3.3b) while this
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dropped to less than 50% with the addition of rapamycin (Fig. 3.4b). Cells exposed to rapamycin

had a significantly greater (P < 0.0001) number of metabolic cycles during each CDC than cells

in the 1X YNB condition without rapamycin (Fig. 3.4c).

Compared to the cells in 1X YNB media without rapamycin (Fig. 3.3c), the period of the

metabolic cycle and cell division cycle was much longer in the rapamycin exposed cells (Fig.

3.4d). Indeed the mean metabolic cycle period of the rapamycin treated cells was more similar to

that of cells grown in 0.05X YNB media (191.73 ± 75.41 min for rapamycin treated cells and

162.80 ± 47.52 min for cells in 0.05X YNB media). Although exposure to rapamycin increased

the period of both the metabolic cycle and CDC, the metabolic cycle was not prolonged to the

same extent as the cell division cycle. The mean CDC time in rapamycin was ∼190% greater

than without, while the mean metabolic cycle period was increased ∼40% (Fig. 3.4d and Table

3.3). Interestingly, despite the differences in mean metabolic and cell division cycle periods,

nuclear separation between the mother and daughter nuclei still occurred close to a metabolic

cycle trough (Fig. 3.4e). Additionally, there was a loss of periodicity in the metabolic cycle,

where successive period times became more irregular (Fig. 3.4f).

These findings demonstrate that rapamycin can affect the phase synchrony of the metabolic

cycle and CDC. Under these conditions we observed more instances of multiple metabolic cycles

occurring before a cell division event, however nuclear division of mother and daughter nuclei

still occurred near the metabolic cycle trough, just as in 1X YNB media without rapamycin.

Furthermore, metabolic cycles could persist even without cells completing the cell division cycle.

These results support the model proposed by Papagiannakis et al. [99] where CDC progression is

gated by an autonomous metabolic oscillator.

3.2.4 Metabolic cycling continues in respiratory deficient mutants

Having established that metabolic cycles occur under multiple conditions and can be

decoupled from the cell division cycle, we turned to studying the role of cellular respiration in
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metabolic cycling. Chemostat studies of the YMC have mainly used the dissolved oxygen content

in the media as a readout of the YMC [104–106]. Indeed, cellular respiration has been viewed

as instrumental to the function of these cycles, as the yeast metabolic cycle has sometimes been

referred to as yeast respiratory oscillations [124–126]. However, given that such studies have

been conducted using synchronized chemostat cultures, it remains unclear if oxidative respiratory

metabolism is required for metabolic cycles to occur, or if that mode of metabolism is simply the

most favorable for synchronizing the culture and generating oscillations.

To address this question, we tracked the dynamics of flavin fluorescence in the respiratory-

deficient atp5∆ and cyt1∆ strains growing in 1X YNB media. The ATP5 gene codes for a subunit

of the ATP synthase complex [127] while the CYT1 gene codes for cytochrome c1 [128]. Both

are critical components of mitochondrial respiration, and both genes have been shown to be

required for respiratory growth [129, 130]. We verified that the atp5∆ and cyt1∆ strains in the

CEN.PK background were respiratory deficient by growing cells on the non-fermentable carbon

source glycerol. No growth of either strain was observed on YPG (yeast extract, peptone and

3% glycerol) plates over the course of two days (Fig. 3.5a). Further, atp5∆ and cyt1∆ cultures

did not exhibit post-diauxic shift growth, also indicating an inability to carry out respiratory

metabolism [130] (Fig. 3.5b). Despite this, we continued to observe metabolic cycles in these

strains (Fig. 3.5c, d and Fig. 3.12). As in other media conditions tested (Fig. 3.3), predominantly

one metabolic cycle occurred per CDC (Fig. 3.5e), and separation of mother and daughter nuclei

was near a metabolic cycle trough (Fig. 3.5f). These results suggest that metabolic cycles are

respiration independent, as neither their maintenance nor their coupling to the cell division cycle

were significantly effected in the atp5∆ and cyt1∆ strains.
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3.3 Discussion

Elucidating the workings of biological processes often benefits from multiple methods

of investigation. Through the use of microfluidics and time-lapse fluorescence microscopy we

directly observed metabolic cycling in single yeast cells. These metabolic cycles operated across

four different nutrient conditions, could exist synchronized and unsynchronized with the cell

division cycle, continued without the need of significant cellular respiration and seemed to gate

progression of the CDC. These findings both validate and expand the current understanding

of metabolic cycles and build off of the work reported in foundational studies conducted with

synchronized cultures [104, 105, 109, 110, 117, 124, 125] and in single cells [99]. The unique

insights provided in this work by analyzing single cells suggests that metabolic cycling is an

integral feature of yeast metabolism that is not confined to any specific environmental condition.

With regard to the generality of metabolic cycles in different yeast strains, it is of particular

interest that Papagiannakis et al. [99] conducted their work in the YSBN strain background

(derived from S288C [131]), while we carried out our work in the CEN.PK strain background.

It has been shown that these two popular lab strains have key differences in their metabolism,

particularly with respect to amino acid and protein synthesis as well as glucose catabolism, that

manifest as differences in maximal specific growth rate [131]. Yet, despite these differences

between the two strains, metabolic cycles with similar periods were observed in both strains [99].

Our work here and that of Papagiannakis et al. [99] support the notion that metabolic cycling

is a general phenomenon that occurs across different yeast strains in coordination with the cell

division cycle.

The single-cell approach to studying metabolic cycles could offer a whole host of in-

teresting research directions, as the dynamics of cellular metabolic activity can be studied in

relationship to numerous other processes. Perturbations to chromatin regulation, cellular redox

state and specific metabolic pathways have yielded interesting insights into YMC dynamics in
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synchronized cultures [132] and such results could be greatly complemented by similar studies at

the single-cell level. Hypotheses regarding the biological functions of the metabolic cycle, such

as its possible role as a biological clock in the cell aging process [125], could be investigated

using the methods described here combined with microfluidic technology capable of studying

dynamic processes during cell aging as recently described [68, 133, 134]. Additionally, it has

been proposed that signaling networks such as target of rapamycin complex I (TORC1) and

protein kinase A (PKA) could play important roles in metabolic cycling [98]. This hypothesis is

supported by our data showing that rapamycin can slow the metabolic cycle (Fig. 3.4) and that

respiratory related mitochondrial activity does not appear to play a critical role in generating or

maintaining metabolic cycles (Fig. 3.5). As the TOR and PKA regulated processes of ribosome

biogenesis and translation are both energetically costly and critically important for cell growth

and entry into division [98,135], a connection with the metabolic cycle is an intriguing possibility.

Indeed, as metabolic cycles are studied in greater detail, they may come to be critically important

for our understanding of how cells function, as they represent one more biological knob that can

be dynamically modulated to optimize cellular fitness.

3.4 Methods

3.4.1 Yeast strains and growth conditions

In all experiments prototrophic strains derived from the haploid CEN.PK2-1c strain

(MATa, trp1-289, his3∆1, ura3-52, leu2-3 112) were used (Table 3.1). The CEN.PK2-1c strain

was purchased through EUROSCARF (Accession Number: 30000A) and standard yeast integra-

tion vectors were used to repair auxotrophies (Table 3.1).

The standard lithium-acetate method was used for transformations. Before experiments,

cells were cultured overnight in 1X yeast nitrogen base (YNB) media that contained 6.7g/L of

41



Table 3.1: YMC parent strain, strains constructed and strains used in experiments. To repair the
histidine, leucine and uracil auxotrophies the parent strain CEN.PK2-1c was transformed with
standard yeast integration plasmids pRS403 (for repair of histidine auxotrophy), pRS405 (for
repair of leucine auxotrophy), or pRS406 (for repair of uracil auxotrophy) where indicated below.
To repair the tryptophan auxotrophy we used restriction enzymes to swap a Trp1 selection marker
from a pFA6 plasmid into a pKT-mCherry plasmid, replacing the kanMX marker. We then PCR
amplified the mCherry-Trp1 fragment and inserted it at the C-terminal end of the WHI5 gene
using standard lithium acetate transformation. Similarly, iRFP-kanMX was PCR amplified and
inserted at the C-terminal end of the NHP6a locus. Colony PCR was used to verify insertions.
To create the respiratory deficient deletion mutants the hphMX marker was PCR amplified from
plasmid pAG32 and the natNT2 marker was amplified from plasmid pFA6-natNT2. Colony PCR
was used to verify deletions.

Strain Name Genotype Additional Details

CEN.PK2-1c
MATa; his3∆1; leu2-3 112;
ura3-52; trp1-289; MAL2-8c;
SUC2

Parent strain. Purchased
from EUROSCARF (Acces-
sion Number: 30000A)

yBB107
CEN.PK2-1c his3::pRS403,
leu2::pRS405, ura3::pRS406

Constructed for this study

yBB108
CEN.PK2-1c leu2::pRS405,
ura3::pRS406

Constructed for this study

yBB109
CEN.PK2-1c his3::pRS403,
leu2::pRS405

Constructed for this study

yYMC1

CEN.PK2-1c his3::pRS403,
leu2::pRS405, ura3::pRS406,
Nhp6a-iRFP-kanMX,
Whi5-mCherry-Trp1

Constructed for this study

yYMC4

CEN.PK2-1c his3::pRS403,
leu2::pRS405, ura3::pRS406,
Nhp6a-iRFP-kanMX,
Whi5-mCherry-Trp1, cyt1::hphMX

Constructed for this study

yYMC5

CEN.PK2-1c his3::pRS403,
leu2::pRS405, ura3::pRS406,
Nhp6a-iRFP-kanMX,
Whi5-mCherry-Trp1, atp5::natNT2

Constructed for this study

Difco yeast nitrogen base without amino acids (Becton, Dickson and Company) and 1%(wt/vol)

glucose (Sigma-Aldrich). The day of the microfluidics experiment the overnight culture was

diluted in 1X YNB media to an OD600 of 0.05 and grown to a final OD600 between 0.2 and

0.6 before being loaded into the microfluidic device. In experiments where 0.25X YNB or
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0.05XYNB media was used, yeast nitrogen base without amino acids was diluted to 0.25X or

0.05X as indicated in sterile filtered deionized water. Glucose was kept constant at 1%(wt/vol) in

all media conditions. For the 1X YNB with 10mM urea media, 1.7g/L of Difco yeast nitrogen

base without amino acids and without ammonium sulfate (Becton, Dickson and Company) was

used and 1%(wt/vol) glucose (Sigma-Aldrich) was added. Urea (Sigma-Aldrich) was added to a

final concentration of 10mM and the pH was then adjusted to 5.4 to match that of the standard 1X

YNB with ammonium sulfate. The rapamycin (Sigma-Aldrich) was added to a final concentration

of 150 nM.

For assessing the respiratory growth of the WT, atp5∆ and cyt1∆ strains, overnight cultures

were diluted to an OD600 of 0.3, 0.03, 0.003 and 0.0003, then spotted on YPD (1% bacto-yeast

extract (Becton, Dickson and Company), 2% bacto-peptone (Becton, Dickson and Company), 2%

glucose (Sigma-Aldrich)) and YPG (1% bacto-yeast extract (Becton, Dickson and Company),

2% bacto-peptone (Becton, Dickson and Company), 3% glycerol (v/v) (Sigma-Aldrich)) plates.

Plates were incubated at 30◦C and imaged after 24 and 48 hours using a BioDoc-It Imaging

System (UVP). To test for post-diauxic shift growth, overnight cultures were grown in YPD

media, diluted to an OD600 of 0.2 and 0.5µl was added to wells of a 96 well flat bottom tissue

culture plate (Falcon) containing 50µl YPD. There were four biological replicate wells for each

strain. A blank YPD well containing no cells was included, and surrounding wells were filled

with water to prevent evaporation during the experiment. The plate was placed in a Infinite 200

PRO plate reader (Tecan) and grown at 30◦C for 48 hours with 600nm absorbance values being

recorded every 5 minutes. For data analysis, the value of the blank well at each time point was

subtracted from each well. The mean and standard deviation across the four replicates was plotted

in (Fig. 3.5b).

3.4.2 Microfluidics and time-lapse microscopy

Construction of the microfluidic device is described in Chapter 2.4.1.
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Log-phase cells as described above were loaded into the microfluidic device with the

appropriate media. Images were taken on a Nikon Eclipse Ti inverted microscope with a CoolSnap

HQ2 camera (Photometrics) and Lumencor SOLA system (Lumencor) fluorescent light source at

60X magnification using an oil immersion objective. The microfluidic device was surrounded

by a plexiglass case that maintained the temperature at 30◦C throughout the experiment. Flavin

fluorescence was measured using a customized filter cube (Semrock) that allowed excitation at

438-458 nm and emission at 515-565 nm. Exposure settings were 150 ms at 15% lamp intensity

for flavin, 200 ms at 20% lamp intensity for mCherry and 100 ms at 15% lamp intensity for iRFP.

For all fluorescent signals 2-by-2 binning was used. Images were acquired every 5 minutes for

the 1X YNB experiment and every 10 minutes in all other experiments.

The Whi5-mCherry background strain (yYMC1 from Table 3.1) was used for experiments

in Figures 3 and 4. The Whi5-mCherry background strain (yYMC1 from Table 3.1) was used to

create the atp5∆ and cyt1∆ strain (yYMC4 and yYMC5 from Table 3.1). For Figure 5 the ‘WT’

strain in panels A and B is the Whi5-mCherry strain yYMC1. Experiments lasted approximately

18 hours for analyzing metabolic cycling in different nutrient environments (Fig. 3.3, 3.4 and

3.5).

3.4.3 Cell tracking and data analysis

Time-lapse image stacks were pre-processed in Image-J [120] for background subtraction

and registration. Fluorescence values of single cells were obtained with custom MATLAB

(Mathworks) scripts for cell tracking. We tracked and analyzed one viable cell at the bottom

of each trap. Most cells eventually bud in the direction opposite the trap opening and move up

the trap, eventually exiting it. In these cases we often tracked cells for some time before they

exited the trap until the automated tracking code or manual tracking was no longer accurate or

convenient for that cell. Cells tracked for less than 4.5 hours were excluded from analysis. In

all experiments cell masks generated by tracking code were manually inspected to ensure their

44



accuracy, and manually edited when necessary. For period analysis, fluorescence trajectories

were first detrended using a polynomial function of order 7 fit to the data. Each trace was then

normalized by their maximum value and filtered using the MATLAB Savitzky-Golay filter. These

smoothed trajectories were used for analysis where custom MATLAB scripts detected metabolic

cycle peaks based on fixed and standardized criteria (Table 3.2).

Table 3.2: YMC Parameters for metabolic cycle peak detection. In order to quantify properties of
the metabolic cycles we wrote custom MATLAB code that allowed peak and minima detection in
metabolic cycles using a fixed set of criteria across all experiments. First, the data was detrended
by fitting and then subtracting a polynomial of order 7 from the raw data. Qualitatively, the
results did not depend on the order of polynomial used for detrending. In general, lower order
polynomials failed to remove all baseline drift in the signal, which made applying uniform peak
and minima detection difficult across different experiments, while higher order polynomials gave
a very even baseline but ran the risk of adding peaks to a signal by being overly sensitive to noise.
We found order 7 to be the best balance between these two concerns for our data. After the signal
was detrended each signal was normalized according to its maximum and minimum value to
between 0 and 1. A Savitsky-Golay filter of order 4 and frame length 17 was then applied to each
signal. The MATLAB function ‘findpeaks’ was used on the filtered signals to detect peaks and
mimima according to the specifications listed in the table below.

Order of polynomial used for detrending 7
Savitsky-Golay filter order 4
Savitsky-Golay frame length 17
Amplitude Threshold 0.09
Minimum distance between peaks 65 min
Minimum peak prominence 0.09
Minimum minima prominence 0.045
Minimum distance between 50 min

The period values were calculated by the code and obtained by determining the time

between successive peaks (TP) or successive minima (TM). If a tracked cell appeared to become

sickly or near death, we made special note of these cells and excluded from analysis cell division

times that occurred one division before this and only considered fluorescence values that were

five time points after this for peak and minima detection. For determining the cell division times,

in all cases we manually recorded the separation times of the mother and daughter nuclei for
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each single cell, with the division time being the time difference between each nuclear separation

and the one that follows for the next division. For tracking the dynamics of Whi5-mCherry we

followed the method used by Cai et al. [136] for determining nuclear localization, where, for each

cell mask, we took the difference between the averages of the top five brightest pixels and of all

other pixels in the cell mask. This process gave fluorescence traces with spikes that corresponded

well to Whi5-mCherry nuclear localization. The peak of the Whi5-mCherry nuclear localization

signal was taken to be the maximum peak value within each cell cycle. The color map used in

Fig.3.2 and Fig.3.7 is from Thyung et al. [137] For quantifying the flavin fluorescence we took

the mean intensity over the entire cell mask.
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Table 3.3: Metabolic cycle and cell division cycle times for all experiments. The mean peak-
to-peak metabolic cycle periods and CDC periods (calculated from successive nuclear division
events as visualized by the Nhp6a-iRFP marker) are displayed for each experiment below. In
some media conditions, there were cells that we tracked for only two cell divisions but during
one of these divisions, our peak finding code did not detect a peak during one of the divisions.
Therefore for such cells a peak-to-peak period could not be calculated, but a CDC period could;
hence the one or two cell discrepancy in some cases. For the rapamycin experiment the difference
in the number of cells used for metabolic cycle and CDC period calculation is due to the fact
that some cells did not divide twice during the experiment, thus a CDC period was not able to be
calculated.

Experiment

Metabolic
Cycle
Period
Mean
(min)

Metabolic
Cycle
Period
Standard
Deviation
(min)

Cell
Division
Cycle
Mean
(min)

Cell
Division
Cycle
Standard
Deviation
(min)

Total
Number
of Cells
for Calcu-
lation
(Metabolic
Cycle,
CDC)

1X YNB 135.91 40.56 142.53 45.95 155, 156
0.25X
YNB 136.43 36.11 138.30 40.93 224, 225

0.05X
YNB 162.80 47.52 178.83 63.73 174, 175

1X YNB
with
10mM
urea

161.48 54.52 181.19 90.49 174, 176

1X YNB
with
150nM
rapamycin

191.73 75.41 416.94 238.51 180, 85

atp5, 1X
YNB 186.58 54.37 218.44 65.40 54, 54

cyt1, 1X
YNB 162.81 42.04 168.70 53.20 51, 52
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Figure 3.3: Phase synchronization between the metabolic cycle and CDC in different nutrient
environments. (a) Summary of the information collected from each single-cell. Across four media
conditions we recorded the peaks and troughs (yellow squares and ‘X’ marks respectively) of
normalized and detrended metabolic cycles, the separation of the mother and daughter nuclei
(black dotted lines), and the time difference between the metabolic cycle trough nearest to each
mother-daughter nuclear separation event (∆T). Thus for each condition we could quantify the
metabolic cycle period (both the peak-to-peak (TP) and min-to-min (TM) period), the CDC period
and the coupling or lag between the metabolic cycle and CDC. (b) Number of observed metabolic
cycles occurring during each cell division. (c) Split violin plots of the distributions of peak-to-
peak periods (TP) of the metabolic cycle and the CDC period (TCDC) for cells in each nutrient
condition. Dotted lines represent the quartiles of the distributions. (d) Single cell data of each ∆T
scaled by the metabolic cycle period (min-to-min period TM) versus the CDC period (TCDC) shows
that regardless of the length of the cell division cycle, division is completed near a metabolic
cycle trough. Data collected from all four media conditions is displayed from a total of 2989
cell divisions, where µ is the mean and σ is the standard deviation. The dashed blue line at
∆T/TM = 0 is shown as a reference. (e) Distributions of the absolute lag time ∆T for each media
condition. The number of cells analyzed for the 1X YNB, 0.25X YNB, 0.05X YNB and 10 mM
urea conditions are as follows: 156 cells, 225 cells, 175 cells and 176 cells.
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Figure 3.4: Rapamycin alters the periodicity of the metabolic cycle and its phase synchronization
with the CDC.(a) Example of metabolic cycles in cells treated with 150 nM rapamycin. There
was an increased occurrence of multiple metabolic cycles occurring during each cell cycle (left
panel). Further some cells displayed metabolic cycles in the absence of complete cell cycle
progression (right panel). (b) Number of observed metabolic cycles occurring during each cell
division cycle. Metabolic cycles not occurring during a division event were not included here.
(C) Comparison of the number of metabolic cycles during each CDC in 1X YNB media and 1X
YNB media with 150 nM rapamycin, showing a significant increase for the rapamycin treated
cells (Kolmogorov-Smirnov test; ****P < 0.0001, P = 2.89×10−25). Error bars are the standard
deviation. (d) Split violin plot of the metabolic cycle (TP) and CDC periods for rapamycin treated
cells. The number of cells used to calculate YMC periods was 180 and the number used to
calculate CDC periods (cells that divided at least twice) was 85. (e) Distribution of ∆T values for
rapamycin treated cells that divided at least once during the experiment (n = 151). ∆T is defined
the same as in Fig.3.3. (f) Hexagonal binning plot of each metabolic cycle period n versus the
next period n+1. Colors correspond to number of values within each hexagon.
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Figure 3.5: Metabolic cycles continue in respiratory deficient mutants. (a) The atp5∆ and cyt1∆

mutants do not exhibit noticeable growth on YPG plates containing the non-fermentable carbon
source glycerol. Cells growing on YPD served as a control. (b) Growth curves demonstrating that
cultures of atp5∆ and cyt1∆ strains display no post-diauxic shift growth, indicating an inability to
conduct respiratory metabolism. Solid lines and shaded regions represent the means and standard
deviations, respectively, from four replicates for each strain. (c) Representative metabolic cycling
in the atp5∆ strain. (d) Representative metabolic cycling in the cyt1∆ strain. (e) The number of
metabolic cycles occurring per cycle division cycle for each strain (n = 54 cells for atp5∆, and n
= 52 cells for cyt1∆). (f) Distributions of ∆T, the time between the metabolic cycle trough and
separation of the mother and daughter nuclei for each strain.
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Figure 3.6: Flavin oscillations in single yeast cells. Dose response of flavin fluorescence intensity
over a range of H2O2 concentrations. Cells were treated with various concentrations of hydrogen
peroxide for 20 minutes after reaching log phase in 1X YNB. Cells were imaged for flavin
fluorescence under coverslips. The number of cells collected for each condition is as follows: n
= 41 (0 mM), n = 64 (0.05mM), n = 61 (0.1 mM), n = 106 (0.2 mM), n = 30 (0.5 mM), n = 38
(0.75 mM) and n = 101 (1 mM). Error bars are standard error of the mean of measurements from
individual cells.
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Figure 3.7: Trajectories of flavin fluorescence and Whi5-mCherry reporter.(a) Sample trajectories
of flavin fluorescence and the Whi5-mCherry nuclear localization signal. (b) Heatmap of Whi5-
mCherry nuclear localization in all cells, demonstrating lack of cell division cycle synchrony.
The black dotted lines represent separation of the mother and daughter nuclei (from Nhp6a-iRFP
reporter).
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Figure 3.8: Metabolic cycles in 1X and 0.25X YNB concentrations. (a) Sample trajectory for 1X
YNB media. (b) Additional sample trajectory for 1X YNB media. (c) Sample trajectory for 0.25X
YNB. (d) Additional sample trajectory for 0.25X YNB media. For all detrended and normalized
trajectories the red squares represent recorded local YMC peaks, the yellow ‘X’ marks local
metabolic cycle troughs and the black dotted lines represent separation of the mother and daughter
nuclei as determined by the Nhp6a-iRFP reporter. In all panels, the raw data and Savitzky-Golay
filtered data are shown on the left and the corresponding detrended and normalized trajectory and
filtered trajectory are shown on the right.
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Figure 3.9: Metabolic cycles in 0.05X YNB and 1X YNB with 10mM urea as the nitrogen source.
(a) Sample trajectory for 0.05X YNB media. (b) Additional sample trajectory for 0.05X YNB
media. (c) Sample trajectory for 1X YNB with 10mM urea. (d) Additional sample trajectory for
1X YNB with 10mM urea. As in Fig. S4, raw data and Savitzky-Golay filtered data are shown
on the left and the corresponding detrended and normalized trajectory and filtered trajectory are
shown on the right.
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Figure 3.10: Autocorrelation analysis of metabolic cycles. Summaries of the location of the first
autocorrelation peak for each cell for the (a) 1X YNB, (b) 0.25X YNB and (c) 0.05X YNB (d)
1X YNB with 10mM urea media conditions.
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Figure 3.11: Metabolic cycles in 1X YNB with 150nM rapamycin. (a-e) Sample trajectories for
1X YNB with 150nM rapamycin. As in Fig. S4 and Fig. S5, raw data and Savitzky-Golay filtered
data are shown on the left and the corresponding detrended and normalized trajectory and filtered
trajectory are shown on the right.
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Figure 3.12: Metabolic cycles in the atp5∆ and cyt1∆ mutants. (a) Sample trajectories for atp5∆.
(b) Sample trajectories for cyt1∆. Raw data and Savitzky-Golay filtered data are shown on the
left and the corresponding detrended and normalized trajectory and filtered trajectory is shown on
the right.
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Chapter 4

Single-cell analysis of chromatin silencing

dynamics at the rDNA locus during

replicative aging in yeast

4.1 Introduction

Cellular aging is generally driven by the accumulation of genetic and cellular damage

[138,139]. Although much progress has been made in identifying molecular factors that influence

life span, what remains sorely missing is an understanding of how these factors interact and change

dynamically during the aging process. This is in part because aging is a complex process wherein

isogenic cells have various intrinsic causes of aging and widely different rates of aging. As a result,

static population-based approaches could be insufficient to fully reveal sophisticated dynamic

changes during aging. Recent developments in single-cell analyses to unravel the interplay of

cellular dynamics and variability hold the promise to answer that challenge [140–142]. Here we

chose the replicative aging of yeast S. cerevisiae as a model and exploited quantitative biology

technologies to study the dynamics of molecular processes that control aging at the single-cell
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level.

4.2 Tracking rDNA silencing dynamics in the yeast aging mi-

crofluidic device

Replicative aging of yeast is measured as the number of daughter cells produced before

the death of a mother cell [51]. The conventional method for studying yeast aging requires

laborious manual separation of daughter cells from mother cells after each division and does

not allow tracking of molecular process over multiple generations during aging [143].Recent

advances in microfluidics technology have automated cell separation and enabled continuous

single-cell measurements during aging [54,55,63–67]. Building upon these efforts, we developed

a new microfluidic aging device. As discussed in Chapter 2, the device traps mother cells at

the bottom of finger-shaped chambers, allowing them to bud continuously, while daughter cells

are removed via a waste port. Each chamber also has a small opening at the bottom, allowing

daughter removal when mother cells switch budding direction. The long trapping chambers allow

tracking of each daughter cell during its first several divisions, useful for studying age-related

daughter morphologies. Furthermore, the device can deliver precise environmental waveforms to

culture chambers.

Genome instability has been considered a significant causal factor of cell aging [138,144].

A major contributor to the maintenance of genome stability is chromatin silencing, which causes

a locally inaccessible heterochromatin structure that suppresses transcription, recombination and

DNA damage. The heterochromatic regions in yeast include the silent mating-type (HM) loci,

rDNA and subtelomeric regions [145]. Among them, the rDNA region on chromosome XII

consists of approximately 100-200 tandem repeats and is a particularly fragile genomic site, the

stability of which closely connects to the RLS [146–148]. Previous studies showed that silencing

loss induced by chemical or genetic perturbatinos leads to increased recombination at the rDNA
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region and shorter life spans [86, 149]. However, the dynamic changes of rDNA silencing during

cell aging remain largely unknown. To measure chromatin silencing in single aging cells, we

constructed a strain with a fluorescent reporter gene under the control of a constitutive TDH3

promoter at a non-transcribed spacer region (NTS1) of rDNA. Because expression of the reporter

gene is repressed by silencing, decreased fluorescence indicates enhanced silencing, whereas

increased fluorescence indicates reduced silencing [150, 151] (Fig. 4.1a, b).

Figure 4.1: Tracking the dynamics of chromatin silencing in single aging cells using a microflu-
idic device. (a) Illustrative schematic of the reporter for chromatin silencing. A GFP reporter
under a strong constitutive promoter (TDH3) is inserted at an NTS1 repeat within the rDNA.
Chromatin silencing at the rDNA is reflected by fluorescence intensity: low, silenced; high,
decreased silencing. (b) Time-lapse images of a single cell trap throughout an entire life span.
Arrows point to the mother cell. (c) Validation of the reporter. Left: Representative images of WT
or sir2∆ cells with the fluorescence reporter gene inserted at URA3, or NTS1 at the rDNA. Right:
Average fluorescence intensities quantified from different strains in the left panel and normalized
to the reporter level at URA3 in WT cells.

We observed that cells with the rDNA reporter gene exhibit weak fluorescence; in contrast,

cells carrying the same reporter at the URA3 locus, which is not subject to silencing, show very

high fluorescence. In addition, deletion of SIR2, which is required for rDNA silencing [145],
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yields significantly increased reporter expression at the rDNA, but not at URA3 (Fig. 4.1c).

Using the microfluidic device and the reporter, we tracked the dynamics of rDNA silencing

throughout the entire lifespans of individual cells (Fig. 4.2). We found intermittent fluorescence

increases in most cells, indicating sporadic silencing loss during aging. About half (about

46%) of the cells, during the later stages of aging, continuously produced daughter cells with

a characteristic elongated morphology until death (Fig. 4.2a, blue arrows). These cells also

exhibited a sustained and dramatic increase in fluorescence, indicating sustained loss of silencing

in aged cells (Fig. 4.2a, color map). In contrast, the other half of the cells, at later phases of

their life spans, continuously produced small round daughter cells (Fig. 4.2b, blue arrows) with

sharply increased cell cycle length.These cells had a shorter average life span than the other

aging type (with a mean RLS of 18 compared to 24) and did not show sustained silencing loss

during aging (Fig. 4.2b, color map). These two distinct types of age-associated phenotypic

changes suggest different molecular causes of aging in isogenic cells [54,55,66]. Previous studies

showed that the aging phenotype with small round daughters could be related to an age-dependent

mitochondrial dysfunction [55, 64], but the molecular mechanisms underlying the other aging

type characterized by elongated daughters remain largely unclear. In support of this, young

mother cells can also sporadically produce a few elongated daughters, the occurrence of which

correlates with the transient silencing loss during the early phase of their life spans (Fig. 4.2c). In

addition, cross-correlation analysis revealed an approximately 140 minute time delay between

the occurence of silencing loss in mother cells and the production of elongated daughters (Fig.

4.2d). This temporal order suggested a potential causal relationship between silencing loss and

the elongated daughter phenotype. In this work, we focused our analysis on the dynamics and

heterogeneity of the type of aging process with sustained silencing loss and elongated daughters.

To exclude the possibility that the observed fluorescence patterns are caused by age-

associated global effects on gene expression [152], we simultaneously monitored two distinguish-

able fluorescent reporters inserted at the rDNA and at URA3. Whereas the rDNA reporter showed
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early sporadic and late sustained induction of fluorescence, the reporter at URA3 exhibited

relatively constant fluorescence during aging (Fig. 4.3a). To confirm that the observed silencing

dynamics are not specific to the NTS1 region, we measured the reporter response at another

non-transcribed spacer region of rDNA (NTS2) and observed similar dynamic patterns as those

found at NTS1 (Fig. 4.3b). Together, these results validate the reporter responses during aging.

We observed very rare events of recombination or extrachromosomal rDNA circles of the reporter

gene, which can be easily distinguished from silencing loss in single-cell time traces Fig. 4.3c).

We have excluded those cells from analysis.

4.3 Quantitative analysis of rDNA silencing dynamics

To evaluate how dynamic patterns of chromatin silencing influence cell aging, we quantita-

tively analyzed the time traces of silencing loss in individual cells producing elongated daughters

before death. With very diverse lifespans ranging from 9 to 48 generations, all the cells show

sustained silencing loss toward later stages of aging. Most cells also exhibit early sporadic waves

of silencing loss, each of which spans multiple cell divisions (Fig. 4.4a). This unprecedented

long-wavelength dynamics is distinct from most previously characterized molecular pulses, which

are on timescales faster than or close to a cell cycle [142]. We further dissected each single-cell

time trace into two phases: an early phase with sporadic silencing loss and a late phase with

sustained silencing loss (Fig. 4.4b, “Intermittent Phase” and “Sustained Phase”). The length of

Intermittent Phase (or the number of silencing waves) is highly variable among cells (Coefficient

of Variation – CV: 0.63; Fig. 4.6) correlates closely with final life span, suggesting the longevity

of a cell is largely determined by the time it stays in this phase (Fig. 4.4c, left). Long-lived

cells generally have a longer Intermittent Phase and produce more silencing silencing waves than

short-lived cells (Fig. 4.4a, Fig. 4.6b and d). In contrast, the length of Sustained Phase is more

uniform among cells (CV: 0.29; Fig. 4.6a) and shows little relationship with life span, suggesting
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sustained silencing loss defines cell death within a relatively constant period of time (Fig. 4.4c,

right). We further quantified the rise time of each fluorescence increase in single aging cells

(the duration of silencing loss; Fig. 4.4b, t1 and t2) and found a significant difference between

the durations of early sporadic and later sustained silencing loss: a sporadic silencing loss on

average lasts for about 300 minutes, whereas sustained silencing loss lasts for about 1200 minutes

until death (Fig. 4.4d). Moreover, sporadic waves of silencing loss show modest effects on the

basal silencing level during aging, as indicated by the trough levels of silencing loss pulses in

single-cell time traces (Fig. 4.6b and c), yet do not contribute additively onto sustained silencing

loss to inducing cell death (Fig. 4.6e).

Together, our analyses reveal that cells undergo spontaneous silencing loss during aging.

The early phase of aging features a reversible process, in which cells can effectively reestablish

silencing and produce non-detrimental short waves of silencing loss. The late phase is irreversible:

aged cells cannot re-establish silencing [153], resulting in sustained silencing loss and death.

Individual cells might have different intrinsic capacities to maintain the reversible phase and

thereby the ultimate life span.

4.4 A phenomenological model of rDNA silencing loss and

cell aging

To provide a quantitative framework for understanding aging dynamics, we developed a

simple phenomenological model. The model postulates that an aging cell can be in one of the

two states: state 0 is the silencing state in which it produces normal daughters, and state 1 is the

loss of silencing state with elongated daughters (Fig. 4.5a). The transitions between the states

are characterized by transition probabilities p01 and p10 that depend linearly on the cell age (Fig.

4.5b). In the silenced state (state 0), D is set to zero. We fit the model only using the experimental

data on phenotypic changes and simulated this model stochastically. The model reproduced
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the main statistical properties of age-dependent phenotypic changes and RLS remarkably well

(Fig. 4.5c–f). We also generated individual cell state trajectories (Fig. 4.5g) that qualitatively

and quantitatively reproduce the data in Fig. 4.2a. To predict how silencing dynamics influence

aging, we further simulated the effects of an induced silencing loss. Whereas a short pulse of

silencing loss does not affect life span, a sustained silencing loss dramatically shortens life span

(Fig. 4.5h and i). To test these predictions, we set out to modify silencing dynamics using genetic

or chemical perturbations.

4.5 Perturbations of rDNA silencing dynamics

Chromatin silencing at the rDNA is primarily mediated by the lysine deacetylase Sir2,

encoded by the best-studied longevity gene to date, which is conserved from bacteria to humans

[145]. To examine the role of Sir2 in regulating silencing dynamics, we monitored the aging

process of sir2∆ cells. We observed that sir2∆ cells do not exhibit sporadic silencing loss; instead,

most cells show sustained silencing loss throughout their life spans (Fig. 4.6a), indicating that the

intermittent silencing dynamics is dependent on Sir2-mediated silencing reestablishment. Most

(70%) sir2∆ cells continuously produce elongated daughters until their death, in accordance with

the observed correlation between silencing loss and elongated daughters. Furthermore, in sir2∆

cells, sustained silencing loss leads to cell death within a relatively uniform time frame, strikingly

resembling the Sustained Phase in WT cells (Fig. 4.6a, red dashed line). These results suggest

Sir2 promotes longevity by generating intermittent silencing dynamics and delaying entry into

the Sustained Phase. We also examined sgf73∆, a mutant with an extended longevity [154](28),

and observed intermittent silencing dynamics during aging and elongated daughters at the late

phase of aging. This long-lived mutant shows more silencing loss pulses than WT, consistent

with the possibility that the intermittent silencing dynamics promotes longevity (Fig. 4.8).

To further test predictions of the model and examine the causative roles of silencing
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dynamics on aging, we exposed cells to nicotinamide (NAM), an inhibitor of Sir2 (29), to

chemically disrupt silencing with physiologically relevant durations. In response to a 1,000-min

NAM input mimicking the Sustained Phase, the majority of cells cannot recover from silencing

loss (Fig. 4.6b). All (100%) of the treated cells, although young, continuously produce elongated

daughters and die within a similar time frame to sustained silencing loss in sir2 mutant or WT

cells (Fig. 4.6b). The cells also show an elevated DNA damage response, as reported by the

induction of RNR3 (30, 31) (Fig. 4.6b, Inset), and have a significantly shortened life span (mean

RLS, 12), comparable to that of sir2 mutants. These results suggested that sustained silencing loss

causes the elongated daughter phenotype and accelerates cell death in young cells. In contrast, in

response to a 240-min NAM input, mimicking the sporadic silencing loss, most cells exhibit a

synchronized silencing loss followed by effective silencing reestablishment on the removal of

NAM (Fig. 4.6c). This short-term silencing loss does not induce the DNA damage response

(Fig. 4.6c, Inset) and does not affect life span, in accord with the sporadic silencing loss in the

Intermittent Phase of naturally aging cells. These perturbation experiments validate the model’s

predictions and confirm that a prolonged duration of silencing loss triggers an irreversible process

sufficient to induce cell death, whereas short-term silencing loss is fully reversible and does not

promote aging or death.

Finally, we considered the role of the intermittent pattern of silencing, as opposed to

continuous chromatin silencing. To this end, we used nicotinic acid (NA), an activator of

Sir2 [155], to prevent sporadic silencing loss in aging cells. As shown in Fig. 4.6d, most cells

show continuous silencing with few sporadic losses of silencing. The repression of silencing

loss during aging results in the absence of the elongated daughter phenotype in the majority

(about 98%) of cells. Importantly, this sustained chromatin silencing also results in significantly

shortened life span (mean RLS, 11), suggesting constant chromatin silencing can activate a

different aging or death pathway. Furthermore, we confirmed that the effects of NA on life span

are not likely a result of direct cellular toxicity (Fig. 4.9), but are instead primarily mediated
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through Sir2 (Fig. 4.10). Our results suggest the intriguing possibility that chromatin silencing

may be a double-edged sword with both anti-aging and pro-aging functions, probably depending

on target genomic regions. Whereas sustained rDNA silencing loss increases heterochromatin

instability, sustained chromatin silencing may repress genes that benefit longevity; either state

would accelerate cell aging and death. The intermittent silencing dynamics driven by Sir2 allow

the cell to periodically alternate between the two states, avoiding a prolonged duration in either

state and maintaining a time-based balance important for longevity.

4.6 Discussion

Further analysis will continue to identify downstream targets that mediate the negative

effects of sustained silencing on life span. For example, potential candidates include genes

in other heterochromatic regions, such as subtelomeric genes that encode metabolic enzymes

or have mitochondrial functions [158], or Sir2-repressed genes with prolongevity functions

[159], or critical processes influenced by rDNA transcription, such as ribosomal biogenesis, a

potential regulator of yeast aging [78, 160] . Interestingly, a recent study [133] demonstrated

that aggregation of a cell-cycle regulator, but not the previously reported loss of silencing at HM

loci [79], causes sterility in old yeast cells. This work, together with our findings here, suggests

chromatin silencing at various genomic regions might undergo different age-dependent changes,

probably because of their specific silencing complexes. For example, whereas the silencing at HM

loci is regulated by a protein complex containing Sir2, Sir3, and Sir4 [161], a different complex

containing Sir2, Net1, Cdc14, and Nan1 is required for the silencing at the rDNA [162, 163].

Furthermore, it has been shown that rDNA and HM silencing have different sensitivities to

NAM or genetic perturbations [164–166], implying different regulatory modes at these loci. We

anticipate that further systems-level analysis will enable a more comprehensive understanding of

chromatin regulation during aging. Another interesting question for future investigation is the fate
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of elongated daughters. One possibility is that the production of these abnormal daughters may

serve as a rescue strategy to alleviate damage accumulation in mother cells. Future technological

advances that allow life span tracking of selected daughter cells would enable us to examine the

silencing dynamics, life span, and aging type decision of these elongated daughters and their

daughters.

Dynamics-based regulation is an emerging theme in biology, the role of which has

been increasingly appreciated in many biological processes across a wide range of organisms

[26,136,140,141,167–169]. Our analysis here uncovered the significant role of silencing dynamics

in cellular aging and opened the possibility of designing temporally controlled perturbations to

extend life span. For example, although constant NA exposure shortens life span, it might be

possible to design dynamic regimes of NA treatment to specifically prevent sustained silencing

loss, and thereby delay aging. Given the observed single-cell heterogeneity in silencing and

aging dynamics (Figs. 4.2 and 4.4), future efforts will focus on technologies that enable distinct

real-time NA treatments to individual cells based on their silencing states.

4.7 Materials and Methods

4.7.1 Strains and plasmids construction

Standard methods for the growth, maintenance and transformation of yeast and bacteria

and for manipulation of DNA were used throughout. The yeast strains used in this study were

generated from BY4741 (MAT a his3∆1 leu2∆0 met15∆0 ura3∆0) strain background. Strain and

plasmid information is provided in Tables 4.1 and 4.2. To make the nuclear reporter for single

cells, a IRFP::KanMX fragment was PCR amplified and integrated into the C-terminus of NHP6a

at the native locus by homolog recombination. To make sir2∆ mutants, a CgHIS3 [170] fragment

was amplified to replace the SIR2 open reading frame by homolog recombination. Similarly, the

SGF73 ORF was replaced with CgHIS3. The URA3 ORF is deleted in the BY4741 background.
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To add a mutated URA3 gene (ura3-1) back to its native locus, a CgURA3 fragment [170] was

amplified and inserted at URA3, then CgURA3 was replaced with a ura3-1 allele from the W303

strain. To make the NTS1 silencing reporter, a Xho1-NTS1-EcoRI fragment from pDM704 [171]

was ligated into the pRS306 plasmid vector. A EcoRI-PTDH3-GFP-EagI fragment contains 680

bp of TDH3 promoter and GFP ORF was made by fusion PCR and then ligated into pRS306 and

the plasmid pRS306 with Xho1-NTS1-EcoRI fragment to get plasmids NHB0206 and NHB0200.

Plasmids NHB0213 and NHB0214 were constructed in the same way. The NTS2 fragment for

plasmid NHB0214 was derived from plasmid pDM312 [171]. Yeast strains with rDNA silencing

reporter were generated by transformation with NHB0200 cut with HindIII to integrate at NTS1,

NHB0213 cut with HindIII to integrate at NTS1, NHB0214 cut with SmaI to integrate at NTS2,

and NHB0206 cut with StuI to integrate at ura3-1. All transformations were performed with the

lithium acetate method [172], and integration was confirmed by PCR.

Table 4.1: Strains used or constructed in this study.

NH0256 BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0
NH0268 BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0, NHP6a-iRFP-kanMX

NH0270
BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0, RDN1::NTS1-PT DH3-
GFP, NHP6a-iRFP-kanMX

NH0273
BY4741 MAT a his3∆1 leu2∆0 met15∆0, NHP6a-iRFP-kanMX,
ura3∆0::ura3-1

NH0277
BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0, NHP6a-iRFP-kanMX,
RDN1::NTS1-PT DH3-GFP-URA3, sir2::HIS3

NH0321
BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0, NHP6a-iRFP-kanMX,
RDN1::NTS1-PT DH3-GFP-URA3, RDN1::NTS2-PT DH3-mCherry-
LEU2

NH0322
BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0, NHP6a-iRFP-kanMX,
RDN1::NTS1-PT DH3-mCherry-LEU2, ura3-1::URA3-PT DH3-GFP

NH0465
BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0, NHP6a-iRFP-kanMX,
RDN1::NTS1-PT DH3-GFP-URA3, sgf73::HIS3
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Table 4.2: Plasmids constructed in this study.

NHB0200 pRS306 XhoI NTS1 EcoRI PGPD-GFP EagI
NHB0206 pRS306 EcoRI PGPD-GFP EagI
NHB0213 pRS305 ApaI NTS1-PGPD-mCherry SacI
NHB0214 pRS305 ApaI NTS2-PGPD-mCherry SacI

4.7.2 Setting up a microfluidics experiment

Each microfluidic device was checked carefully before use to ensure no dust or broken

features were present. Before setting up a microfluidics experiment, the device was vacuumed

for 20 min.After vacuum, all of the inlets of the device were covered with 0.075% Tween 20

(Sigma-Aldrich Co.) for 5 min. The microfluidic device was placed on the stage of an inverted

microscope with a 30C incubator system. Three media ports were connected to plastic tubing,

which connected to 60 ml syringes with fresh SC medium containing 0.04% Tween-20. The

height of all three medium syringes is about 20 inches above the stage. The waste port of the

microfluidic device was connected to plastic tubing, which was set to stage height. Yeast cells

were inoculated into 2 ml of synthetic complete medium (SC, 2% dextrose) and cultured overnight

at 30C. 2 µl of saturated culture was diluted into 20 ml of fresh SC medium and grown at 30C

overnight until it reached OD600nm of about 1.0. For loading, cells were diluted by 10-fold and

transferred into a 60 ml syringe (Luer-Lok Tip, BD) connected to plastic tubing (TYGON, ID

0.020 IN, OD 0.060 IN, wall 0.020 IN). To load cells, the connected syringe on the middle port

was replaced with a syringe filled with yeast culture. The height of the cell loading syringe is also

about 20 inches above the stage. The flow of medium in the device was maintained by gravity

and drove cells into traps. Most traps were filled with cells within 2-5 minutes, after which cell

loading tubing was replaced with media supply tubing and syringe as above. Then the height of

all medium tubing and the waste tubing were adjusted to make the height difference around 60

inches. Waste medium was collected in a 50 ml tube to measure flow rate, which was about 2.5

ml/day.
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For experiments with media switching, left and right medium ports were connected to

syringes with fresh SC medium containing 0.04% Tween-20 and the middle medium port was

connected to a syringe containing medium with NA or NAM and 0.1 g/ml Atto 655 cy5 dye

(Sigma 93711). The waste port of the microfluidic device was connected to plastic tubing set to a

position about 20 inches below the stage. Before cell loading, the heights of syringes need to be

calibrated for media switching. Syringes connected to the left and right medium ports were moved

to the same height as the microscope stage and the syringe containing NA or NAM was moved

to about 33 inches above the stage. To further calibrate the positions, the junction of all three

media channels was imaged under the cy5 channel and the positions of syringes were adjusted to

ensure the cell trapping region was fully filled with the NA or NAM medium. The position of all

syringes were marked and used for NA or NAM during the experiment. To switch from the NA

or NAM medium to SC medium, the left and right syringes were moved to about 33 inches above

the stage and the middle syringes was moved to the same height as the stage. The positions of all

syringes were further calibrated under the cy5 channel to ensure only SC medium went into the

cell trapping region and then marked the positions of all syringes for the condition of no NA or

NAM in the cell culture chamber. Cell loading was as for experiments without media switching.

After cell loading, all syringes were moved to previously marked positions. The flow rate is about

2.5 ml/day. We note that Tween-20 is a non-ionic surfactant capable of coating the hydrophobic

PDMS surface of microfluidic devices, thereby reducing protein interactions and cell friction on

the PDMS [173, 174]. We have used Tween-20 or Tween-80 at very low concentrations in all

the microfluidic experiments for more than 10 years on a variety of organisms including budding

yeast [10, 11, 58, 175–178] without any adverse effects on cells. We have found that Tween-20

aids in preventing clogs and air bubbles from forming and therefore helps with the robustness

and reproducibility of microfluidics experiments [23]. We have observed no difference in the cell

doubling times in media with or without Tween-20 and have obtained lifespan measurements

using our microfluidics setup that are comparable to values in the literature, confirming that
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Tween-20 has no significant effect on lifespan or physiology.

4.7.3 Time-lapse microscopy

Time-lapse microscopy experiments were performed using a Nikon Ti-E inverted fluores-

cence microscope with Perfect Focus, coupled with an EMCCD camera (Andor iXon X3 DU897).

The light source is a spectra X LED system. Images were taken using a CFI plan Apochromat

Lambda DM 60X oil immersion objective (NA 1.40 WD 0.13MM). During experiments, the

microfluidic device was taped to a customized device holder inserted onto the motorized stage

(with Encoders). In all experiments, the microscope was programmed to acquire images for each

fluorescence channel every 15 min for a total of 80 hours or more. The exposure and intensity

setting for each channel were set as follows: Phase 50 ms, GFP 10 ms at 10% lamp intensity with

an EM Gain of 50, mCherry 50 ms at 10% lamp intensity with an EM Gain of 200, and iRFP 300

ms at 15% lamp intensity with an EM Gain of 300. The EM Gain settings are within the linear

range. We confirmed that this fluorescence imaging setting did not affect lifespan (See Chapter

2).

4.7.4 Quantification of single-cell traces

Fluorescence images were processed with a custom MATLAB code. Background of

images from each channel was subtracted. Cell nuclei were identified by thresholding the iRFP

images. Each image was evenly divided into 6 parts, each containing a single cell trap. The

position of the dent in the cell trap was labeled. In each trap, the positions of all nuclei of each

single cell were labeled. Mother cells are identified by comparing the positions of the dent and the

positions of nuclei. Since the fluorescence reporter of rDNA silencing is evenly distributed inside

the cell, nuclei of mother cells were further dilated to generate a mask to quantify the intensities

of fluorescence reporters. The mean intensity value of the top 50% pixels of fluorescence reporter
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is used as the intensity of the rDNA silencing reporter. All single-cell time traces were normalized

by the mean reporter intensity of WT cells’ 1st cell cycle and smoothed with local regression

using weighted linear least squares and a 2nd degree polynomial model. The normalized and

smoothed data were used for plotting of trajectories and density maps.

We also tested segmenting the whole cell using phase images and quantified the mean

fluorescence intensities of the whole cell. The resulting time traces were similar to those obtained

using nuclei segmentation and quantification as described above. Because nuclei segmentation

and quantification is more robust than whole cell segmentation and allows us to identify and

analyze more cells automatically, we used the former method for all imaging analysis.

Cell divisions of each mother cell were manually identified and counted at the time that

the nuclei separated between mother and daughter cells. Cells were categorized based on their

aging phenotypes, characterized by the morphologies of later daughters they produced. Mothers

continually producing elongated daughters at the last few generations were categorized as “cells

aging with elongated daughters”, whereas mothers continually producing round daughters at the

last few generations were categorized as “cells aging with rounded daughters.” A small fraction

of cells show abnormal morphologies even at the very beginning of the experiment and have a

lifespan shorter than 5 generations. Those cells were excluded from analysis.

To identify the peaks and troughs of silencing loss pulses for aging cells, we first took the

time derivative of the fluorescence trajectory of each single cell and then digitalized the curve by

setting positive derivatives as 1 and negative derivatives as -1. The time points with the derivative

transition from -1 to 1 were identified as “troughs” and the time points with the derivative

transition from 1 to -1 were identified as “peaks”. This identification process is illustrated in Fig.

4.6b.

During aging experiments, about 25% of mother cells escaped from chambers before

their final death. The major reason for a mother cell to escape from the chamber is that when

the mother produces a daughter cell toward the bottom of the chamber, depending on the bud
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position, occasionally the daughter cell will not go through the small opening at the bottom of the

chamber. Instead, the daughter will stay in the chamber and push the mother out. We observed

that the times that these cells escaped were randomly distributed throughout the experiments. We

further quantified the silencing time traces of these escaped cells. During their time in the device,

all of the escaped cells showed intermittent silencing loss dynamics with no obvious difference to

those presented in Fig. 4.2. The data from escaped cells have been excluded from further analysis

or presentation in this work.

4.7.5 Correlation analysis of single-cell data

Correlation coefficients(R) for all the scatter plots were calculated using the MATLAB

function: ‘corrcoef.’ To determine the time-dependent relationship between silencing loss in

aging mother cells and the occurrence of elongated daughters, we calculated the cross-correlation

between silencing reporter fluorescence trajectories of each mother cell (from Fig 4.2a) and the

morphology change trajectories of its daughters. The daughter morphology was mapped as a

binary variable that is set to “1” when the daughter is elongated and “0” when the daughter

is rounded. Because daughter morphology traces are digitalized, we also digitized silencing

reporter fluorescence trajectories of mother cells. To this end, we first took the time derivatives

of a fluorescence trajectory, and then set positive derivatives as 1(representing the silencing

loss state)and negative derivatives as -1(representing the silenced state).For each pair of mother

silencing loss trajectory, MSL(1, 2, ... n), and daughter morphology trace i, DM(1, 2, ... n), with

n time points, we aligned them with a time shift ∆τ: MSL(i) (1, 2, ... n-∆τ) and DM(i) (1+∆τ,

2+∆τ, ... n) for ∆τ ≥ 0, or MSL(i) (1+|∆τ|, 2+|∆τ|, ... n) and DM(i) (1, 2, ... n-|∆τ|) for ∆τ <

0. For each ∆τ, we concatenated all mother silencing loss trajectories into one long silencing

loss trajectory and all daughter morphology trajectories into one long morphology trajectory.

We then calculated the correlation coefficient between the concatenated pair of mother-daughter

trajectories with the shift using Matlab function corrcoef. To provide a control for this cross
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correlation analysis, we disrupted the original pairing between mother silencing loss and daughter

morphology trajectories. Instead of pairing each mother silencing loss trajectory with its own

daughter morphology trajectory, we randomly paired mother silencing loss trajectories with

daughter morphology trajectories, and then performed the same cross correlation calculation for

the concatenated mother trajectory and “randomly reshuffled” daughter trajectory (the dash line

in Fig. 4.2d).The correlation analysis revealed a 140 min time lag between silencing loss and

daughter morphology trajectories, indicating a 140 min time delay between the changes at the

molecular level –the occurrence of silencing loss and the changes at the phenotypic level –the

production of elongated daughters during the aging process.

4.7.6 Development of the phenomenological model of cell aging

We developed a phenomenological model that relates silencing and cell aging based on

our experimental data. The model only considers the aging process with elongated daughters and

postulates that each mother cell can be in one of two states during aging: state 0 –the silencing

state in which it produces normal daughters, and state 1 –the silencing loss state with elongated

daughters, and a cell may only die from state 1 (Fig. 4.5a).

The transitions between the states are purely stochastic and are characterized by transition

probabilities p01 and p10 that depend on the replicative age of the cell. All the experimental

data are from Fig. 4.2a. Due to the phenomenological nature of the model, we only used the

age-dependent phenotypic change (elongated daughter) data for model fitting. To deduce the

transition probabilities from the single-cell data, we computed the fraction of all the cells at the

state with normal daughters (state 0) of a given generation that switch to the state with elongated

daughters (state 1) at the next cell cycle f01 and the fraction of the cells at the state with elongated

daughters (state 1) that return to state 0 at the next cell cycle f10, as a function of the replicative

age. As this data shows, the transition rate from state 0 to state 1 gradually increases with age,

while the rate of the reverse process decreases and reaches zero after about 25 generations (Fig.
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4B). Using linear regression of the data, we approximate the dependence of p01 and p10 on the

replicative age of n by linear functions p01(n) = 0.016n - 0.04 and p10(n) = 0.27 - 0.01n.

We also postulate that in the silencing loss state (state 1), a damage factor D accumulates

continuously, and the probability of a cell to die is proportional to D. To obtain the relationship

between damage accumulation and cell death, we calculated the fraction f1D cells that died after

N consecutive generations in state 1 to total number of cells that lived through N consecutive

generations in state 1 (Fig 4.5c). Evidently, this fraction becomes higher with N, however at

large N>10 the data becomes very noisy since only small number of cells remain living. We use

the data for N<10 to approximate the probability of transition to death from state 1 by a linear

function of N, p1D(N)=0.0297N+0.00025and used this expression for all N. We assume that the

damage D is proportional to the time the cell spent in state 1 and, once a cell transits back to the

silencing state 0, D is reset to zero.

Thus, the phenomenological model depends on two transition rates p01 and p10 that are

linear functions of the generation number n, and the death rate p1D that is a linear function of

the number of consecutive generations in state 1. Time unit in simulations is one generation.

Based on the experimental data we set one generation in the silencing state is 80 min, and in

the silencing loss state, 110 min. We simulated this model stochastically and in each in silico

experiment we generated 79 cell state trajectories (same number as cells in experimental data

in (Fig. 4.2a). Using these data and averaging over 200 in silico experiments, we computed the

number of cells alive at replicative age n as a function of n (Fig. 4.5d, red line), the fraction of

cells in state 1 as a function of their replicative age (Fig. 4.5e, red line), and the distribution

of continuous generations in state 1 before death (Fig. 4.5f, red line). The error bars indicate

standard deviations of the distribution for the corresponding results from multiple runs. All these

simulation results match our experimental data very well. We also plotted the individual cell

trajectories from one in silicorun ordered according to the replicative lifespan (Fig. 4.5g).

To simulate the effects of silencing perturbations, we increased p01 and decreased p10 by
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ten-fold to generate an induced silencing loss, see Fig. 4.5h. To simulate the transient silencing

loss (Fig. 4.5i), we used the same high p01 and low p10 as in Fig. 4.5h at the beginning of

simulation for 4 generations then switch them back to the p01 and p10 used in Fig. 4.5g.
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Figure 4.2: Dynamic patterns of silencing loss during aging. (a) Dynamics of silencing loss in
cells aging with elongated daughters. (Top) Representative images of cell aging and death with
elongated daughters. Blue arrows point to daughter cells, white arrows point to the living mother
cell, and the red arrow points to the dead mother cell. (Bottom) Single-cell color map trajectories
of reporter fluorescence. Each row represents the time trace of a single cell throughout its life
span. Color represents the normalized fluorescence intensity as indicated in the color bar, which
is used throughout to allow comparisons between different conditions. Cells are sorted based on
their RLSs. (b) Dynamics of silencing loss in cells aging with rounded daughters. (c) Daughter
cell morphology is correlated with the silencing state of mother cells. Color map trajectories
of representative mothers are aligned with the morphology (round vs. elongated) of daughters
produced throughout their life spans. (d) Cross-correlation analysis of daughter morphology and
mother silencing dynamics.

78



Figure 4.3: Validation of the silencing reporter dynamics during aging. (a) Dynamic patterns of
reporter fluorescence are not caused by age-associated global effects on gene expression. Left:
A schematic illustrating the dual-color strain, in which mCherry under the TDH3 promoter is
inserted at the NTS1 region at rDNA and GFP under the same promoter is inserted at URA3.
Middle: Representative single-cell time traces of the dual-color cells throughout their lifespans.
Each plot shows the time traces of NTS1-mCherry and URA3-GFP in a single cell. Vertical
dashed lines represent division times of the cell, in which the distance between two adjacent
dashed lines indicates the cell cycle duration. The number of dashed lines in each trace represents
the cell’s lifespan. Reporter fluorescence is normalized to the baseline level. Right: Single-cell
density map trajectories for rDNA-mCherry divided by URA3-GFP in the same cells (cells aging
with elongated daughters). Because the expression of URA3-GFP reporter shows little change
during aging, the density map trajectories of rDNA-mCherry, normalized by URA3-GFP in
the same cells, show similar patterns to those observed in Fig. 2A. (b) Dynamic patterns of
silencing loss are not specific to the NTS1 region of rDNA. Left: A schematic illustrating the
strain in which mCherry under the TDH3 promoter is inserted at the NTS2 region at rDNA.
Right: Single-cell density map trajectories for NTS2-mCherry during aging. Silencing loss at the
NTS2 region shows similar patterns to those observed for the NTS1 region. (c) Representative
single-cell time traces for loss of silencing, recombination, or ERC of the reporter gene. Top:
Loss of silencing features a gradual fluorescence increase. Middle: Recombination features a
fast 2-fold fluorescence change in one cell division and at the same time the daughter cell from
that cell division stably loses the reporter gene. Bottom: ERC features a drastic exponential
fluorescence increase until detection saturation.

79



Figure 4.4: A quantitative analysis of silencing loss dynamics in single cells. (a) Dynamics of
silencing loss in representative single cells with different life spans. For each cell, (Top) time-lapse
images for the cell have been shown with (Bottom) the fluorescence time trace throughout its life
span. Vertical dashed line represents each division time of the cell, in which the distance between
two adjacent dashed lines indicates the cell cycle length. Reporter fluorescence is normalized to
the baseline level. (b) A schematic illustrates the dissection of two phases based on the silencing
loss dynamics. The rise times of early sporadic and final sustained silencing loss are defined as
t1 and t2,respectively. (c) Scatter plots showing the relationships between the length of (Left)
Intermittent Phase or(Right) Sustained Phase and life span at the single-cell level. Single-cell data
are from Fig. 2A. Each circle represents a single cell. Correlation coefficient (R) is calculated
and shown. (d) Bar graph showing the average durations of (blue) early sporadic and (red) final
sustained silencing loss.
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Figure 4.5: A phenomenological model of cell aging. (a) Schematic diagram of the model. The
circles indicate the cellular states, and the arrows depict transitions between the states. (b) The
statistics of silencing state transitions as a function of age. The fraction of all cells at state 0 of
a given generation that switch to state 1 at the next cell cycle (red) and the fraction of the cells
at state 1 that return to state 0 at the next cell cycle (blue) have been computed as a function of
age. (c) The transition rates from state 1 to death as a function of the number of consecutive
generations in state 1. Blue squares are experimentally measured fractions of cells that died
exactly after N consecutive generation in state 1 over the total number of cells that lived for at
least N generations.Yellow straight line is a linear fit of these data (0<N<10). The red line and
the error bars indicate the mean and SD of the fraction f1D from simulations. (d) The average
number of cells alive as a function of age and the SD in simulations (red line and error bars) and
experimental data (blue line). (e) The average number of cells in state 1 as a function of the age
and the SD in simulations (red line and error bars) and experimental data (blue line). (f) The
distribution of the number of consecutive generations in state 1 until death in simulations (red line
and error bars) and experimental data (blue line). All simulation results in c–f were obtained from
200 stochastic simulations of 79 cells. (g) Single-cell state trajectories from a single stochastic
simulation of the model with 79 cells at time 0. Each row represents the time trace of a single cell
throughout its life span. Blue corresponds to state 0, and red to state 1. Cells are sorted based on
their RLSs. (h) Single-cell state trajectories simulated using modified transition rates to reflect
sustained silencing loss. (i) Single-cell state trajectories simulated using modified transition rates
for four generations to reflect transient silencing loss.
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Figure 4.6: Perturbations of silencing dynamics shorten life span. (a) Dynamics of silencing
loss in sir2∆ cells. (Left) Single-cell color map trajectories of reporter fluorescence. Each row
represents the time trace of a single cell throughout its life span. Color bar is identical to Fig.
4.2. Cells are sorted based on their RLS. The red dashed line represents the average length
of Sustained Phase in WT cells, defined in Fig. 4.4b.(Right) Representative single-cell time
traces with different life spans. Dynamics of silencing loss in WT cells are shown in response to
chemical perturbations. (b) A 1,000-min 5 mM NAM pulse. (Inset) Expression of RNR3-mCherry
in response to a 1,000-min 5 mM NAM pulse at indicated times. (c) A 240-min 5 mM NAM
pulse. Inset shows the expression of RNR3-mCherry in response to a 240-min 5 mM NAM pulse
at indicated times. (d) A constant treatment of 2.5 mM NA. For each condition, (Top) a schematic
illustrating the time-based drug treatment has been shown with (Bottom) the corresponding
single-cell color map trajectories of reporter fluorescence.
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Figure 4.7: Additional quantification of silencing loss dynamics in single cells. (a) A boxplot
showing the distributions of (blue) Intermittent Phase length and (red) Sustained Phase length
in single cells. Single-cell data are from Fig. 2A. In the plot, the bottom and top of the box are
first (the 25th percentile of the data, q1) and third quartiles (the 75th percentile of the data, q3);
the band inside the box is the median; the white circle is the mean; the whiskers cover the range
between q1-1.5 x (q3-q1) and q3+1.5 x (q3-q1). (b) A schematic illustrates the identification of
peaks (orange circles) and troughs (black squares) within Intermittent Phase in a representative
single-cell time trace (green curve). The grey trace is the stepwise derivative trajectory of the time
trace. (c) A scatter plot showing the relationship between the baseline shift values of troughs and
their sequential positions in time traces. For each time trace, the fluorescence value of each trough
is subtracted with the value of the 1st trough to calculate the silencing baseline shift during aging
of this cell. The baseline shift value of each trough versus its sequential position (1st, 2nd, 3rd,
etc.) in a single-cell time trace was plotted. (d) A scatter plot showing the relationship between
the number of early silencing loss pulses and final lifespan at the single-cell level. Each circle
represents a single cell. (e) Sporadic transient waves of silencing loss have little contribution to
cell death. Left: A scatter plot showing the relationship between the summed duration of sporadic
transient silencing loss (summed t1 in Fig. 4.4b for each cell) and the duration of Sustained Phase
preceding cell death (t2 in Fig. 3B for each cell) at the single-cell level. Single-cell data are from
Fig. 4.2a. Each circle represents a single cell. Correlation coefficient (R) has been calculated and
shown. Right: A scatter plot showing the relationship between total number of sporadic transient
waves of silencing loss and the duration of Sustained Phase at the single-cell level.
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Figure 4.8: Dynamics of silencing loss in sgf73∆. (a) Representative single-cell time traces of
silencing loss in sgf73∆. Vertical dashed line represents each division time of the cell, in which the
distance between two adjacent dashed lines indicates the cell cycle length. Reporter fluorescence
is normalized to the baseline level. (b) A scatter plot showing the relationship between the number
of early silencing loss pulses and final lifespan at the single-cell level for WT (black circles) and
sgf73∆ (red squres). Each symbol represents a single cell.

Figure 4.9: A constant treatment of 0.5 mM NA shortens the lifespan. Lifespan curves have been
shown for WT cells with (red solid curve) or without (black solid curve) 0.5 mM NA treatment.
The NA concentration used in Fig. 4.6D (2.5 mM) is lower than that used in most previous studies
(5 mM)(Anderson et al, Nature, 2003 [156]; Bitterman et al, JBC, 2002 [149]). Here, the dosage
of NA has been further reduced by 5 times to 0.5 mM, which is the lowest dose that can be found
in the literature (Mei et al, PLoS Biol, 2015 [157]). A constant treatment of this very low dose of
NA also resulted in a significantly shortened lifespan.
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Figure 4.10: The effects of NAM and NA treatments on lifespan are mediated through Sir2.
Lifespan curves have been shown for WT cells with 5 mM NAM (red solid curve) or 2.5 mM NA
(blue solid curve) treatments, or in normal growth medium (black solid curve), as well as sir2∆

cells with 5 mM NAM (red dashed curve) or 2.5 mM NA (blue dashed curve) treatments, or in
normal growth medium (black dashed curve).

85



4.8 Acknowledgements

This chapter contains material that was originally published as Li, Y.*, Jin, M.*, O’Laughlin,

R.*, Bittihn, P., Tsimring, L.S., Pillus, L., Hasty, J. and Hao, N., 2017. Multigenerational silenc-

ing dynamics control cell aging. Proceedings of the National Academy of Sciences, 114(42),

pp.11253-11258.(*equal contribution). The dissertation author, Richard O’Laughlin, was a

primary investigator and author of this work.

86



Chapter 5

A high-throughput microfluidic platform

for monitoring gene expression dynamics

in yeast

5.1 Introduction

As discussed in Chapters 3 and 4, the use of microfluidic devices combined with time-

lapse fluorescence microscopy can yield powerful insights into dynamic biological processes

inside single cells. Yet, despite the power of this approach, it has certain limitations in the amount

of information it can obtain in a single experiment. One reason for this is that there are limits in

the number of distinguishable fluorescent markers that can be visualized in a single experiment;

the upper limit of this number is typically around 4 (meaning that, for example, 4 different genes

can be tagged in a cell with distinct fluorescent proteins whose excitation and emission spectra do

not overlap with one another). Further, the finite times required for microscope stages to move

to, focus and acquire images limits time-resolution, scale and extent of what can be imaged in a

microfluidics experiment. As such, microfluidic platforms such as the ones described in Chapter

87



2 are best suited to targeted studies in which the genes one wishes to study are known ahead of

time and relatively small in number. On the other hand, these devices not efficient for studies in

which one wishes to obtain the dynamics of hundreds or thousands of genes simultaneously in an

unbiased manner. To conduct such studies in yeast, a new kind of microfluidic device is needed

to study gene expression dynamics at the genome-scale.

5.1.1 The ‘Dynomics’ platform

The Hasty Lab has recently developed a custom high-throughput microfluidic device,

optical enclosure and imaging platform termed ‘Dynomics’ [179]. The microfluidic device that

composes the ‘Dynomics’ platform consists of an array of ‘spotting regions’ where 2,176 different

strains of E. coli can be robotically arrayed onto the device [179]. A custom optical system

houses the microfluidic device and a single image can capture the entirety of the chip. Both GFP

fluorescence images and transmitted light images can be obtained [179]. Finally, the power of

this platform was demonstrated by utilizing the E. coli GFP promoter library [180] growing on

the microfluidic device to sense heavy metal toxins, and machine learning was was utilized to

detect which metals were present [179].

However, despite the tremendous utility of the ‘Dynomics’ platform in monitoring gene

expression dynamics in E. coli in response to different environmental conditions, the microfluidic

device was not able to support robust growth of budding yeast. Although various designs were

tested in order to try to obtain healthy growth of yeast cells, most strategies failed. Thus, I set

out to solve this problem and develop at robust ‘Dynomics’ microfluidic device for S. cerevisiae.

However in order demonstrate the power of this new technology, we had to select an experimental

area on which to test and validate the device. We selected the yeast diauxic shift as the testing

condition for the device, as it is a well-studied phenomenon where gene expression is highly

dynamic.

88



5.1.2 The yeast diauxic shift

The budding yeast Saccharomyces cerevisiae is a ‘facultative fermenter’ [181, 182],

meaning that in the presence of oxygen, fermentation is the dominant form of metabolism, not

respiration via oxidative phosphorylation in the mitochondria. Thus, for yeast cells grown in a

culture flask with glucose supplied as the carbon source, this so-called ‘Crabtree effect’ [181–183]

predominates; yeast uptake glucose from the media, convert it into pyruvate via glycolysis and

then pyruvate is converted into ethanol and carbon dioxide in a reaction that oxidizes NADH

and regenerates NAD+ that can be used for glycolysis [181, 183]. This continues as the yeast

culture grows exponentially in the flask, until nearly all of the glucose is exhausted from the

media. At that point, yeast cells can no longer rely on glucose as a carbon source, and switch

to uptaking and oxidizing the built up ethanol in the media to power cellular respiration in the

mitochondria [181–183]. This switch from fermentive to oxidative metabolism is known as the

diauxic shift and is typically characterized by a short lag phase after the exponential growth

phase of the culture — in which cell growth is halted to alter the metabolic machinery of the

cell to oxidize ethanol— and a subsequent resumption of growth at a slower rate than during

the exponential phase [181–186]. Interestingly, a similar phenomenon to the ‘Crabtree effect’ is

also observed in some cancer cells, whereby glycolysis is elevated at the expense of respiration,

known as the Warburg effect [187]

Given the extensive changes in cellular metabolism that occur during the diauxic shift, it

is perhaps no surprise that gene expression during this process is highly dynamic. As a result,

multiple studies have characterized the gene expression changes that occur during the diauxic

shift by using transcriptomic and proteomic approaches [184–186]. These studies have revealed

a great deal about how have cells respond to changing carbons sources in the media, including

upregulation of enzymes involved in the glyoxylate cycle and cellular respiration [184, 185], the

downregulation of many ribosome-associated genes [184, 186], the upregulation of many stress

response genes [184] and the induction of distinct enzymatic isoforms [184]. However, despite
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the great deal of information about metabolic gene regulation that has been discovered by the

recent omics studies on the diauxic shift [184–186], the transcriptomic and proteomic methods

utilized in previous work could be greatly complemented through a microfluidics and time-lapse

fluorescence microscopy based approach.

Firstly, monitoring the diauxic shift on the genome scale in a microfluidic device could

provide increased time resolution for monitoring gene expression dynamics, on the scale of

minutes rather than hours for transcriptomic and proteomic approaches [184–186], which could

aid in understanding the temporal ordering of cellular events during diauxic shift by revealing

phenomena such as ‘just-in-time’ gene expression [188]. Secondly, the media environment of

the microfluidic chip can be dynamically modified throughout the course of the diauxic shift,

allowing a researcher to study how various perturbations affect the diauxic shift. Finally, the

use of a microfluidic platform capable of detecting the diauxic shift could serve as a valuable

real-time monitoring tool in the ferementation industry where yeast fermentations result in the

production of beer and wine.

5.2 Results

5.2.1 Design and validation of a high-throughput microfluidic platform for

S. cerevisiae

To develop a ‘Dynomics’ microfluidic device for culturing yeast, we drew inspiration

from the microfluidic device described in Chapter 2.3.1. As a brief review, this device uses media

channels that turn back on themselves in order to carry flow in two opposite directions. Cell

traps are positioned perpedicular to these channels so that some portion of the media will flow

from the media channel closest to the entrance of the trap directly through the trap an out to

the portion of the media channel next to the exit of trap. The cell traps consist of two layers,
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one that is taller than the height of a single cell which serves to collect cells in the trap and

another which is smaller than the height of a single cell which functions to prevent movement

past a certain point in the trap. As previously discussed in Chapter 2.2.2., this is a strategy for

hydrodynamic trapping [72–77]. Since this approaches allows for rapid and autonomous loading

of cells traps and also maintains a healthy nutrient environment for cells, a high-throughput

microfluidic platform was designed according to this strategy (Fig. 5.1).

Figure 5.1: A high-throughput microfluidic platform for gene expression dynamics in budding
yeast. (a) Device design, consisting of a single fluidic layer with five different feature heights. Up
to 2,176 unique strains can be loaded onto the device. (b) Close-up of individual strain banks on
the device. A Singer ROTOR robot deposits individual strains onto the 4 µm spotting regions
shown in red. Major and minor channels, shown in blue and yellow respectively, carry media to
supply nutrients to these cells once fluidic lines are connected and experiments have begun. Cells
subsequently grow out of these spotting regions where they are carried by the media flow into
the HD biopixel regions, shown in purple. Cells are then trapped in this region during the entire
course of the experiment as they cannot proceed past the 2 µm conduits, shown in green.

The yeast ‘Dynomics’ device consists of 2,176 strain bank regions arranged in a layout

similar to the previously published chip for E. coli [179] (Fig. 5.1a). However, instead of

measuring cellular fluorescence from the spotting regions (Fig. 5.1b, 4 µm red features) as done
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Figure 5.2: Loading of HD biopixels from the spotting region. (a) Cells are initially deposited
in the spotting region at the very start of the experiment. (b) Media supplied via the major and
minor channels stimulates growth of the spotted cells. Following the flow of media (red arrow)
through each minor channel, cells are loaded into the cone-shaped HD biopixels. The loading of
each HD biopixel increases the fluidic resistance through that trap, thereby promoting loading of
downstream HD biopixels.

by Graham et al. [179], fluorescence is measured in what are called HD (hydrodynamic) biopixels.

To accomplish this, we designed the minor media channels (Fig. 5.1b, 50 µm yellow features)

to snake back on themselves, allowing media to flow through a set of four cone-shaped 70 µm

by µm ‘biopixels’ [176] (Fig. 5.1b, 13 µm tall purple features). A set of ‘conduits’ (Fig. 5.1b,

2 µm green features) fluidically connect the media channels at each end of the biopixels. This

design thereby allows hydrodynamic trapping of cells in the biopixel region; as cells grow out

of the spotting region (Fig. 5.2a), they are guided by the fluid flow into the HD biopixels and

not able to pass under the conduits. They subsequently grow to fill the HD biopixels (Fig. 5.2b).

This approach allows for very efficient and automatic loading of cells from the spotting regions

into the biopixel regions, which provide a superior environment for uniform and exponential cell

growth, relative to the mouth of the spotting region. Further, because the HD biopixels are 13
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µm in height, they allow for increased fluorescence signal to be obtained compared to the 4 µm

spotting regions.

We susequently validated the performance of the HD biopixels across the entire microflu-

idioc device in a dynamic environment. A strain expressing a GFP tagged HXT2 gene was

arrayed onto every strain bank of the device. We measured the response of this strain across the

entire device to a gradual carbon source shift from glucose to galactose and then back to glucose.

Fluorescence from all biopixels, totaling 8,704, was measured (Fig. 5.3). The expression of

HXT2-GFP was extremely uniform across the device and displayed expression dynamics similar

to what has been reported in the literature [189]. As glucose was decreased we observed a sharp

increase in HXT2-GFP expression, consistent with Ruiz et al. [189]. However when glucose

levels fell below 0.02% with 2% galactose also in the media, HXT2-GFP expression began to

decrease, yet recovered to the original baseline value when 2% glucose was added back to the

media (Fig. 5.3).
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Figure 5.3: Performance of HD biopixels across the microfluidic device. The HXT2-GFP strain
from the yeast GFP-fusion library [190] was arrayed onto every position of the device. The
response of this strain to a dynamic shift in the carbon source of the media, from 2% glucose to
2% galactose was measured. A low pass filter of the mean GFP signal from each biopixel on the
chip (a total of 8,704 bioxpixels from 2,176 spotting regions) is displayed, with the solid green
line representing the mean and the shaded region representing the standard deviation.
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5.2.2 Quantitative real-time observation of the yeast diauxic shift using

the Dynomics platform

Having validated the performance of the HD biopixels, we next sought to test the capability

of the device in monitoring genome-wide expression changes in a naturally occurring dynamic

environment. Toward this end, the yeast diauxic shift (Chapter 5.1.2) provides an ideal condition

in which to perform such tests. To conduct this experiment, flasks containing growing yeast

cultures were continuously sampled each hour for 56 hours. Media was filtered to remove cells

and added onto the two microfluidic devices which each contained one half of the yeast GFP

library [190]. Over this time, the culture went through the diauxic shift, growing exponentially

on glucose at first, followed by a short lag phase in which the OD600 of the culture remained

relatively flat, followed by another period of growth (the post-diauxic shift growth phase) before

stationary phase was entered (Fig. 5.4). In this way, the diauxic shift occurring in the flask

cultures could be mirrored on microfluidic devices.
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Figure 5.4: Growth, glucose and ethanol levels of batch cultures undergoing the diauxic shift. All
values were measured hourly. Exponential growth was observed before until glucose depletion
(shown in blue). After an approximately 10 hour lag phase the culture resumed growth by
metabolizing ethanol, as demonstrated by the decreasing ethanol levels in the media (shown in
gray) after the lag phase.
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As the flask cultures underwent the diauxic shift, we also observed changes in gene

expression across the genome on the Dynomics microfluidic device (Fig. 5.5). Groups of genes

were observed to significantly increase after the diauxic shift while others noticeably decreased

after the diauxic shift. More minor changes could be seen throughout the genome (Fig. 5.5).

Having observed these patterns we performed follow-up analysis on the gene expression profiles

obtained from the experiment.
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Figure 5.5: Heat map of gene expression dynamics during the diauxic shift. Relative intensity is
plotted for the 3,761 strains on the chip with detectable fluorescence levels. Batch culture media
was added to the device at time 0 and exhaustion of glucose from the batch culture is indicated by
the black dotted line.
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To better understand the patterns of gene expression observed during the diauxic shift,

clustering analysis was performed. Using hierarchical agglomerative clustering, we were able to

extract six clusters that expressed distinct patterns of gene expression dynamics during the diauxic

shift experiment (Fig. 5.6). The first cluster consisted of 64 strains in which those genes increased

dramatically after the glucose in the media was depleted. Gene ontology term enrichment revealed

that genes involved in the TCA cycle, oxidative phosphorylation and gluconeogenesis were in

this cluster. Similarly, cluster 2 contained genes that increased after glucose depletion but to a

somewhat lesser extent. This cluster included also genes for oxidation-reduction processes as

well as gluconeogenesis and the cellular response to oxidative stress.

Genes that were down-regulated during the diauxic shift fell into clusters 3 and 4. Notably,

both of these clusters contained genes related to ribosome function. The genes belonging to

cluster 3 dropped precipitously after glucose was depleted from the media, while the genes in

cluster 4 gradually decreased as glucose levels dropped, yet remained relatively constant during

the post-diauxic shift growth phase before decreasing again during stationary phase. Finally the

dynamics of genes belonging to clusters 5 and 6 were much more difficult to discern. In both

clusters, gene expression modestly drops during glucose depletion, increases when glucose is

exhausted and decreases again during stationary. Since the overall change in these signals in

low compared to genes that are members of the other 4 clusters, it is possible that these modest

changes in fluorescence do not reflect meaningful changes in gene expression. This notion is

further supported by the fact that YPD media used during this experiment is has considerable

GFP fluorescence. Thus, strains in clusters 5 and 6 may have relatively flat GFP levels across

the experiment, but changes in media fluorescence during the experiment, or other such minor

perturbations, could have had an effect on their fluorescence. A full list of significant GO terms

for each cluster can be found in Table 5.2, Table 5.3 and Table 5.4.

We can also explore the individual time traces of different genes to further validate that the

strains on the chip underwent the diauxic shift along with the batch cultures. The proteomic study
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by Murphy et al. [184] revelaed that different enzyme isoforms are differentially regulated during

the diauxic shift. In Fig. 5.6, we plot four groups of enzymes that were also analyzed by Murphy

et al. [184]. Alcohol dehydrogenase genes ADH3 and ADH5, which convert acetaldehyde to

ethanol, were found to have relatively constant expression by Murphy et al. [184]. On the other

hand, ADH2 expression, which converts ethanol to acetaldehyde, was found to sharply increase

after glucose depletion [184]. Results from our microfluidics experiment recapitulated these

findings (Fig. 5.7a). Similarly, for trios-phosphate dehydrogenase and glutamate dehydrogenase

genes, TDH1 and GDH2 genes exhibited strong induction upon glucose depletion, wereas their

respective isoforms did not, consistent with results from Murphy et al. [184] (Fig. 5.7c, d).

However, in the case of aldehyde dehydrogenase genes, there was a modest departure between

our results and those of Murphy et al. [184]. While ALD4 expression increased in both our study

and that of Murphy et al. [184], we did not see much increase in ALD2 or ALD3 expression

as reported by Murphy et al. [184]. Further for ALD6 expression, we saw a drop in expression

that did not return to baseline values, while Murphy et al. [184] saw a drop in ALD6 expression

around the time of glucose depletion that then returned to baseline. However, taken together, our

results and those from Murphy et al. [184] are largely in agreement with respect to expression

levels of these various enzymatic isoforms.

5.3 Discussion

By analyzing gene expression dynamics of strains from the yeast GFP-fusion library [190],

the data indicates that the diauxic shift of the growing batch culture could be detected on the

Dynomics chip. This is supported by expression changes in a number of genes which are in

agreement with what has been obtained in the literature [184–186]. Perhaps most noteably,

genes involved in the TCA cycle, cellular respiration and gluconeogenesis were all upregulated

upon glucose depletion in the media, as expected from numerious previous studies on the yeast
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diauxic shift [184–186]. This indicates that cells growing in the microfluidic device indeed

underwent a change in metabolism when glucose was depleted, switching to oxidizing ethanol

and conducting cellular respiration in order to grow and divide. Further ribosome related genes

were present in the clusters that were downregulated upon glucose exhaustion from the culture, as

previously observed [184, 186]. Furthermore, we also observed upregulation of genes involved in

cellular stress response when glucose was depleted from the media, as observed by Murphy et

al. [184]. For example, as shown in Fig. 5.6, the general stress response genes HSP42, a heat

shock protein [191], is upregulated during the diauxic shift and is present in cluster 2 of Fig. 5.6.

Along these lines, we also observed upregulation of genes that are known to be repressed under

fermentable carbon sources such as ACS1 [192].

These results are a proof-of-principle that dynamic environmental conditions, such as the

changing carbon source utilization of yeast during the diauxic shift, can be accurately tracked in

real-time on the yeast Dynomics platform. This approaches offers a number of advantages and

the present results and approach can be enhanced in a number of ways for both basic science and

technology purposes. We envision that this platform can greatly aid in understanding genetic

regulation in yeast in dynamically changing environments, as well as aid in improving industrially

relevant processes using yeast by providing real-time feedback on the state of liquid yeast cultures.

5.4 Methods

The yeast Dynomics wafer was built using standard photolithography protocols that have

been detailed previously [23, 179]. In the fabrication of all feature heights of the device, SU8

2000 series (MicroChem Corp.) photoresist was used. Spin speeds are heights are shown below

in Table 5.1. Loading of the yeast GFP-fusion library [190] was performed similar to Graham et

al. [179], with temperature and waiting times for a number of steps optimized to budding yeast.
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Table 5.1: Photolithography fabrication parameters for the yeast Dynomics device. Photoresist
for the major channels was spun on top of the undeveloped photoresist for the minor channels.

SU8 photoresist Spin speed Height
2002 1000 rpm 2.3 µm
2005 2600 rpm 5.3 µm
2007 1000 rpm 13.1 µm
2075 4000 rpm 55-65 µm
2075 2400 rpm 145-170 µm

For the control experiments for validating the device (Fig. 5.3), complete supplemental

mixture (CSM) media (Sunrise Science Product) without histidine was used to grow cells. For

the diauxic shift experiment, four cultures of the yeast strain DBY12020 were grown in 400 mL

of YPD media in 2L flasks. Flasks were inoculated with starter cultures that were at 0.02OD

and were subsequently grown at 30◦C. Every hour thereafter, 5 mL was sampled from each of

the 4 flasks was taken, combined together and the OD600 was measured and recorded. These

samples were then filtered to remove cells and 7 mL was placed on each of the two microfluidic

devices that were running. Each device contained half of the yeast GFP-fusion library [190]. The

remaining approximately 6 mL of media was frozen at -20◦C, and later analyzed for glucose and

ethanol measurements. The glucose level in the media was measured by the Cancer Metabolism

group at the Sanford Burnham Prebys Medical Discovery Institute using a YSI 2950. Ethanol

concentrations were determined with the Millipore-Sigma Ethanol Assay Kit (MAK076-1KT). In

all yeast Dynomics experiments 0.04% tween-20 (Sigma) was added to the media. Images were

acquired every 10 minutes with 1 second exposure time for transmitted light images and 1 minute

exposure time for GFP fluorescence images.

Fluorescence values for the biopixels were background subtracted and background nor-

malized. A strain containing only a histidine selection marker without GFP was present of each

microfluidic device. This strain was yRO136 (BY4741 his3::SpHIS5 (HISMX6)). The histidine

selection marker inserted into this strain was from Addgene plasmid 44836. We subtracted the
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mean HD biopixel fluorescence values from these strains on each chip from all other strain

fluorescence values on that chip in order to aid in trends in fluorescence not due to changes in

GFP fluorescence (for example, due to changing fluorescence of the media during the experiment).

To remove small negative values in traces that resulted from pre-processing we added 0.1 to each

trace value. We plotted relative intensity of fluorescence, the percentage each measured value

was divided by the total value of all measurements for that trace, as was done by Murphy et

al. [184]. We note that a number of strains were removed from analysis before clustering and

follow-up data analysis was performed. These were strains where either clogging was observed

or the fluorescence signal was not high enough to rise over our detection limit. We defined this

detection limit as any raw fluorescence traces whose integral or area under the curve over the

course of the experiment was less than that of the lowest area under the curve of the yRO136

control strains present on each chip. Also we excluded the initial seeding and growth phases of

the cells in the biopixels from anlaysis, only including values from eight hours before samples

from the culture flasks were added to the chip.

Data analysis was performed in Python using the Dynomics package in Python [179]

and scikit-learn was used for clustering analysis. The GOATOOLS package was used for gene

ontology (GO) analysis [193].
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Figure 5.6: Analysis of gene expression dynamics during the diauxic shift through hierarchical
agglomerative clustering and gene ontology enrichment. Data can be grouped in six different
clusters. Heat maps of relative intensities for genes in each cluster are shown. Mean relative
intensity (solid lines) and standard deviation (shaded region) are plotted for each cluster. Genes
belonging to each of the clusters, along with examples of significant GO terms associated with
the genes present in those clusters are shown. Significant was determined at P < 0.05, with the
Benjamini-Hochberg method used to adjust false discovery rate.
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Figure 5.7: Expression patterns of enzymatic isoforms during the diauxic shift. (a) Gene
expression dynamics of alcohol dehydrogenase genes ADH2, ADH3 and ADH5 during the
diauxic shift. (b) Gene expression dynamics of aldehyde dehydrogenase genes ALD6, ALD5,
ALD4, ALD3 and ALD2 during the diauxic shift. (c) Gene expression dynamics of trios-
phosphate dehydrogenase genes TDH1, TDH2 and TDH3 during the diauxic shift. (d) Gene
expression dynamics of glutamate dehydrogenase genes GDH1 and GDH2 during the diauxic
shift. Similar gene expression profiles for these isoforms were obtained by Murphy et al. [184].
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Table 5.2: Gene ontology terms associated with genes significantly upregulated during the diauxic
shift from clusters 1 and 2 from Figure 5.5, P < 0.05.

Cluster Term Term Name P-Value

1 GO:0006099 tricarboxylic acid cycle 7.681185e-11
1 GO:0005739 mitochondrion 7.681185e-11
1 GO:0055114 oxidation-reduction process 1.042798e-09
1 GO:0016491 oxidoreductase activity 8.751906e-07
1 GO:0006103 2-oxoglutarate metabolic process 3.135549e-03
1 GO:0032780 negative regulation of ATPase activity 3.135549e-03
1 GO:0009353 mitochondrial oxoglutarate dehydrogenase complex 3.135549e-03
1 GO:0004591 oxoglutarate dehydrogenase (succinyl-transferr... 3.135549e-03
1 GO:0042645 mitochondrial nucleoid 3.849536e-03
1 GO:0005759 mitochondrial matrix 5.223755e-03
1 GO:0046872 metal ion binding 6.496136e-03
1 GO:0006119 oxidative phosphorylation 6.607367e-03
1 GO:0006546 glycine catabolic process 6.607367e-03
1 GO:0005960 glycine cleavage complex 6.607367e-03
1 GO:0004375 glycine dehydrogenase (decarboxylating) activity 6.607367e-03
1 GO:0006090 pyruvate metabolic process 1.074172e-02
1 GO:0003824 catalytic activity 1.074172e-02
1 GO:0015986 ATP synthesis coupled proton transport 1.370487e-02
1 GO:0046933 proton-transporting ATP synthase activity, rot... 1.370487e-02
1 GO:0005743 mitochondrial inner membrane 1.686306e-02
1 GO:0006094 gluconeogenesis 1.713736e-02

2 GO:0005739 mitochondrion 1.726741e-08
2 GO:0055114 oxidation-reduction process 2.804730e-08
2 GO:0016491 oxidoreductase activity 1.939967e-05
2 GO:0006096 glycolytic process 1.719811e-04
2 GO:0005758 mitochondrial intermembrane space 1.911379e-04
2 GO:0005737 cytoplasm 4.148816e-04
2 GO:0003779 actin binding 1.148191e-03
2 GO:0003824 catalytic activity 1.148191e-03
2 GO:0051015 actin filament binding 4.852143e-03
2 GO:0006094 gluconeogenesis 7.088189e-03
2 GO:0034599 cellular response to oxidative stress 1.901500e-02
2 GO:0046323 glucose import 3.221135e-02
2 GO:0000340 RNA 7-methylguanosine cap binding 3.221135e-02
2 GO:0051016 barbed-end actin filament capping 4.013873e-02
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Table 5.3: Gene ontology terms associated with genes significantly down-regulated during the
diauxic shift from clusters 3 and 4 from Figure 5.5, P < 0.05.

Cluster Term Term Name P-Value

3 GO:0002181 cytoplasmic translation 2.328590e-06
3 GO:0005840 ribosome 1.649079e-05
3 GO:0003735 structural constituent of ribosome 4.736327e-05
3 GO:0022625 cytosolic large ribosomal subunit 1.838265e-04
3 GO:0006412 translation 2.055458e-04
3 GO:1904659 glucose transmembrane transport 3.070526e-04
3 GO:0015761 mannose transmembrane transport 3.070526e-04
3 GO:0015755 fructose transmembrane transport 3.070526e-04
3 GO:0098704 carbohydrate import across plasma membrane 3.070526e-04
3 GO:0005351 carbohydrate:proton symporter activity 3.070526e-04
3 GO:0005353 fructose transmembrane transporter activity 3.070526e-04
3 GO:0015149 hexose transmembrane transporter activity 3.070526e-04
3 GO:0015578 mannose transmembrane transporter activity 3.070526e-04
3 GO:0005355 glucose transmembrane transporter activity 3.070526e-04
3 GO:0055085 transmembrane transport 5.564942e-04
3 GO:0005886 plasma membrane 8.872409e-04
3 GO:0008643 carbohydrate transport 2.495324e-03
3 GO:0022857 transmembrane transporter activity 3.810879e-03
3 GO:0071944 cell periphery 4.946921e-03
3 GO:0005215 transporter activity 5.270063e-03
3 GO:0005634 nucleus 1.365578e-02
3 GO:0008645 hexose transmembrane transport 2.150518e-02
3 GO:0003746 translation elongation factor activity 2.924513e-02
3 GO:1902600 proton transmembrane transport 3.622409e-02

4 GO:0016021 integral component of membrane 5.195558e-10
4 GO:0016020 membrane 7.699885e-07
4 GO:0002181 cytoplasmic translation 3.090864e-06
4 GO:0022625 cytosolic large ribosomal subunit 1.547123e-05
4 GO:0003735 structural constituent of ribosome 1.683960e-04
4 GO:0005840 ribosome 9.070519e-04
4 GO:0005737 cytoplasm 9.185954e-04
4 GO:0000139 Golgi membrane 1.646644e-03
4 GO:0005783 endoplasmic reticulum 2.175216e-03
4 GO:0005524 ATP binding 3.952228e-03
4 GO:0055085 transmembrane transport 7.190739e-03
4 GO:0006412 translation 4.189781e-02
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Table 5.4: Gene ontology terms associated with genes from cluster 5 from Figure 5.5, P < 0.05.

Cluster Term Term Name P-Value

5 GO:0005739 mitochondrion 1.784191e-07
5 GO:0055114 oxidation-reduction process 2.820886e-05
5 GO:0003735 structural constituent of ribosome 3.471530e-04
5 GO:0005840 ribosome 3.807108e-04
5 GO:0005634 nucleus 1.005850e-03
5 GO:0016491 oxidoreductase activity 1.760415e-03
5 GO:0006281 DNA repair 4.826727e-03
5 GO:0006412 translation 5.203735e-03
5 GO:0006974 cellular response to DNA damage stimulus 7.110102e-03
5 GO:0002181 cytoplasmic translation 7.110102e-03
5 GO:0003677 DNA binding 7.110102e-03
5 GO:0007049 cell cycle 1.354622e-02
5 GO:0003824 catalytic activity 1.423408e-02
5 GO:0051301 cell division 4.409527e-02
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Chapter 6

Summary

The work detailed in this dissertation describes how microfluidic technologies can be

designed and applied to uncover dynamics-based regulatory processes in budding yeast. In

Chapter 2, I described my work in developing single-cell microfluidic technologies for monitoring

cell division and replicative aging in S. cerevisiae. In Chapter 3, I described how single-cell

microfluidics was used to uncover the existence of metabolic oscillations in yeast. The fact that

these metabolic cycles could be observed in the absence of cellular respiration highlights a key

insight into their nature and function that may not be possible to obtain using the traditional

chemostat-based approaches [105] typically used to study this phenomenon. Similarly, in Chapter

4, single-cell analysis of yeast during replicative aging revealed two different aging paths that

were characterized by different patterns of rDNA silencing dynamics. These insights also would

be very difficult to obtain with the classical yeast microdissection approach [53]. Finally, high-

throughput microfluidics can offer an unprecedented look at gene expression dynamics during the

diauxic shift, as described in Chapter 5. High-throughput microfluidic devices, such as the one

described in Chapter 5, could be a useful technology in basic science by complementing omics

style approaches in recording gene expression changes in dynamic environments, as well as in

industry, where this device could be used as a real-time biosensor for a variety of applications.
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My hope is that the microfluidic technologies that I have developed, as well as the scientific

studies I have conducted to apply them, will be useful for a plethora of future studies. Such work

could utilize these devices, or similar ones based off of their designs, to continue to reveal how the

complex web of biological components present inside cells gives rise to the beauty and diversity

of the natural world. Further, I hope that these insights can help point the way for designing

interventions to improve human health.
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