
UC San Diego
UC San Diego Previously Published Works

Title
Impact of MMP-2 and MMP-9 enzyme activity on wound healing, tumor growth and RACPP 
cleavage

Permalink
https://escholarship.org/uc/item/32q5t0n7

Journal
PLOS ONE, 13(9)

ISSN
1932-6203

Authors
Hingorani, Dina V
Lippert, Csilla N
Crisp, Jessica L
et al.

Publication Date
2018

DOI
10.1371/journal.pone.0198464
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32q5t0n7
https://escholarship.org/uc/item/32q5t0n7#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE

Impact of MMP-2 and MMP-9 enzyme activity

on wound healing, tumor growth and RACPP

cleavage

Dina V. Hingorani1☯, Csilla N. Lippert2☯, Jessica L. Crisp2, Elamprakash N. Savariar2,

Jonathan P. C. Hasselmann3, Christopher KuoID
3, Quyen T. Nguyen4,5, Roger

Y. Tsien1,2,4†, Michael A. Whitney2, Lesley G. ElliesID
3,4*

1 Howard Hughes Medical Institute, UC San Diego, La Jolla, CA, United States of America, 2 Department of

Pharmacology, UC San Diego, La Jolla, CA, United States of America, 3 Department of Pathology, UC San

Diego, La Jolla, CA, United States of America, 4 Moores Cancer Center, UC San Diego, La Jolla, CA, United

States of America, 5 Department of Surgery, UC San Diego, La Jolla, CA, United States of America

☯ These authors contributed equally to this work.

† Deceased.

* lellies@ucsd.edu

Abstract

Matrix metalloproteinases-2 and -9 (MMP-2/-9) are key tissue remodeling enzymes that have

multiple overlapping activities critical for wound healing and tumor progression in vivo. To over-

come issues of redundancy in studying their functions in vivo, we created MMP-2/-9 double

knockout (DKO) mice in the C57BL/6 background to examine wound healing. We then bred

the DKO mice into the polyomavirus middle T (PyVmT) model of breast cancer to analyze the

role of these enzymes in tumorigenesis. Breeding analyses indicated that significantly fewer

DKO mice were born than predicted by Mendelian genetics and weaned DKO mice were

growth compromised compared with wild type (WT) cohorts. Epithelial wound healing was dra-

matically delayed in adult DKO mice and when the DKO was combined with the PyVmT onco-

gene, we found that the biologically related process of mammary tumorigenesis was inhibited

in a site-specific manner. To further examine the role of MMP-2/-9 in tumor progression, tumor

cells derived from WT or DKO PyVmT transgenic tumors were grown in WT or DKO mice.

Ratiometric activatable cell penetrating peptides (RACPPs) previously used to image cancer

based on MMP-2/-9 activity were used to understand differences in MMP activity in WT or

knockout syngeneic tumors in WT and KO animals. Analysis of an MMP-2 selective RACPP in

WT or DKO mice bearing WT and DKO PyVmT tumor cells indicated that the genotype of the

tumor cells was more important than the host stromal genotype in promoting MMP-2/-9 activity

in the tumors in this model system. Additional complexities were revealed as the recruitment of

host macrophages by the tumor cells was found to be the source of the tumor MMP-2/-9 activ-

ity and it is evident that MMP-2/-9 from both host and tumor is required for maximum signal

using RACPP imaging for detection. We conclude that in the PyVmT model, the majority of

MMP-2/-9 activity in mammary tumors is associated with host macrophages recruited into the

tumor rather than that produced by the tumor cells themselves. Thus therapies that target

tumor-associated macrophage functions have the potential to slow tumor progression.
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Introduction

Tissue matrix homeostasis is a complex process that is important in normal growth, develop-

ment and wound healing. Matrix metalloproteinases-2 and -9 (MMP-2/-9) are members of a

family of over 25 zinc-dependent endopeptidases that degrade or cleave a wide range of extra-

cellular proteins including components of the extracellular matrix (ECM). Proteolysis is regu-

lated at multiple levels, including transcription, secretion, and conversion of the zymogen

(pro-MMP) into an active protease as well as by the presence of cell type specific tissue inhibi-

tors of metalloproteinases (TIMPs) [1, 2]. Elevated MMP-2/-9 levels are associated with pro-

inflammatory states that can induce or amplify diseases, such as cardiac disease, arthritis and

cancer [3–5], suggesting a role for inhibitors in disease prevention or treatment.

Early efforts to develop therapeutic inhibitors were met with disappointment. This was due

to side effects from insufficiently specific inhibitors as well as an inadequate understanding of

the normal functions of these enzymes and the complex interactions taking place in vivo [6, 7].

Evidence now suggests that MMPs act as key nodal components of an interconnected protease

web and they can have opposing effects on the same biological process depending on factors

present in the local microenvironment [8]. For example, it is now recognized that many

MMPs, including MMP-2/-9, can be protective in cancer and that their upregulation may be

involved in processes aimed at eliminating abnormal tumor cells. Regardless of the function of

MMPs in cancer, fluorescence activatable probes that rely on MMP activity have been devel-

oped to visualize tumor margins and improve surgical outcomes [9–11].

A number of different genetically engineered mouse models have been used to improve our

understanding of the complex interactions occurring between MMPs and their in vivo micro-

environments [8, 12, 13]. Because MMP-2/-9 have overlapping functions in vivo, we used dou-

ble mutant mice to study the role of these enzymes in wound healing and tumorigenesis. We

also used imaging probes dependent on MMP-2/-9 activity to identify cell types within tumors

where the activity was greatest. Our findings reveal that tumor cells play a critical role in

recruiting host stromal cells that activate MMP-2/-9 in vivo in our model system.

Materials and methods

Mice

We backcrossed both the MMP2-/- [14] and MMP9-/- mice [15] (These knockout mice on the

FVB/N background were a generous gift from Lisa Coussens) until they were congenic on an

albino C57Bl/6 background. The C57Bl/6 albino mice that are MMP2-/- will be referred to as

2KO-M. The mice were then mated to produce MMP-2/-9 double knockout (DKO) mice.

Because DKO matings were not fertile, we bred one DKO with an MMP2+/-MMP9-/- mate.

The DKO and heterozygous/KO mice could be of either sex in the breeding pair. Wild type

(WT) albino C57Bl/6 mice were used as controls for the DKO strain since WT littermates

were not generated in these complex breedings. All mice were housed in the vivarium at the

UC San Diego with ad libitum pelleted food and water. The day night cycle, humidity and tem-

perature were controlled according to standard animal facility protocols. Environmental

enrichment in the form of paper rolls or autoclavable mouse houses were provided as needed.

Animals were weighed and monitored once per week by our research team in addition to rou-

tine daily health checks by the staff and veterinarian at the vivarium. Surgical procedures were

performed under isoflurane anesthesia with 2.5–3.5% isoflurane, 1L/min oxygen to a level that

eliminates consciousness and suppresses pain perception. Buprenex (0.05 mg/kg) was admin-

istered subcutaneously prior to surgery for analgesia. Animals were anesthetized with a keta-

mine midazolam cocktail during imaging studies followed by euthanasia. The maximum size
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of tumors was 10 mm diameter or a tumor burden of>15% of the body weight. Mice with

ulcerations were euthanized immediately. After tumor cell injections the mice were weighed

and tumor volumes recorded by calipers biweekly in accordance with IACUC guidelines at

UC San Diego. In addition, we monitored behavior, grooming and coat texture of the mice for

any signs of illness or distress.

Wound healing

Bilateral 8 mm long full thickness skin incisions were made on the dorsal surface of the flank

on either side of the spine in 6 mice per group. The skin incisions were closed with wound

clips. On day 11, the superficial wound area, including any unhealed scab region, was mea-

sured and the mice were euthanized. The skin was fixed in formalin and paraffin embedded;

then, cross-sections along the initial wound line at approximately the same vertical location

were stained with hematoxylin and eosin (H&E). As an additional measure of wound healing,

the distance between healthy hair follicles on the cross sections was quantified.

Mammary tumorigenesis

To examine mammary tumorigenesis, DKO mice were bred into the polyomavirus middle T

(PyVmT) model of mammary tumorigenesis [B6.FVB-Tg(MMTV-PyVT)634Mul/LellJ; The

Jackson Laboratory, Bar Harbor, ME] [16] on an albino C57Bl/6 background. When tumor-

bearing animals were euthanized, the tumors and mammary fat pads were excised and

weighed. The mammary fat pads were formalin fixed and stained with carmine as previously

described [16]. All animal studies were performed in compliance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

The protocols were approved by the Institutional Animal Care and Use Committee of UC San

Diego (Protocol numbers: S01162, S04011).

Real time PCR

Total RNA was isolated from mammary tumors using the RNeasy kit (Qiagen, Valencia, CA)

according to the manufacturer’s instructions. First-strand cDNA was synthesized using an

MMLV-Reverse Transcriptase and random hexamers (Promega, Madison, MI) and then

amplified using primers listed in S1 Table. Semi-quantitative real time PCR was performed

using EvaGreen SYBR Green mastermix (Fisher Scientific, Houston, TX) in a Step One Plus

Real time PCR system (Applied Biosystems, Grand Island, NY). The gene expression levels

were calculated after normalization to the standard housekeeping genes, ß actin and glyceral-

dehyde 3 phosphate dehydrogenase (GAPDH), using the ΔΔCT method and expressed as the

relative mRNA level compared with the internal control.

PyVmT cell lines

Cell lines were derived from PyVmT WT or DKO transgenic tumors in the C57Bl/6 back-

ground as previously described [17, 18]. Tumor cells (105 to 106) were orthotopically injected

into the pectoral mammary glands of adult female mice in 2 mg/ml Matrigel (BD Biosciences,

San Jose, CA). The double knockout (i.e. MMP-2/-9-/-) cell lines and wild type cell line when

implanted into mice to generate orthotopic breast tumors will be referred to as DKO-T and

WT-T respectively. Because the individual cell lines had different growth rates, we injected the

cell lines at different times in an attempt to make the tumors a uniform size for imaging.

MMP-2/-9 in the tumor microenvironment
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RACPP cleavage

RACPPs were synthesized using standard solid phase 9-fluorenylmethyloxycarbonyl (Fmoc)

synthesis and characterized as previously reported [19]. Briefly, a fluorescent donor and accep-

tor are placed onto polycationic and polyanionic domains, respectively, in sufficient proximity

for fluorescence resonance energy transfer (FRET). If the linker between the polycation and

polyanion is cut, typically by a protease, the two halves of the RACPP dissociate, immediately

causing disruption of FRET and a large increase in the ratio of donor to acceptor emissions.

Also the polycation is taken up and retained at or near the site of proteolysis, while the polya-

nion is subject to pharmacokinetic washout, reinforcing the high ratio of donor to acceptor

emissions. As described in [19] the cleavable RACPP, with a PLGC(Me)AG linker sequence and

referred to as RACPP1 in the cited paper, could be cut by MMP2 (Kcat/Km = 36429 s-1M-1),

MMP-9 (Kcat/Km = 13503 s-1M-1), and somewhat by MMP14 (Kcat/Km = 17173 s-1M-1),

whereas the uncleavable control RACPP was resistant to such cleavage [19, 20]. We also synthe-

sized an RACPP with a cleavable sequence TLSLEH in the manner described above. This

sequence is selective for MMP-2 (Kcat/Km = 11405 s-1M-1) and slightly cleaved by MMP14

(Kcat/Km = 1200 s-1M-1) uncleaved by the related gelatinase MMP9. WT and DKO breast can-

cer cells (105 to 106 in 2 mg/ml Matrigel) were orthotopically injected into the mammary fat

pads of albino C57BL/6 WT and DKO mice. When both the WT and DKO tumors were palpa-

ble, 10nmol of RACPPs was dissolved in 100μl sterile water (Conc = 100uM) and administered

intravenously (retroorbital) while mice were under isoflurane anesthesia. Two hours after pep-

tide administration, mice were euthanized by isoflurane overdose and then cervical dislocation.

The skin was removed and mice were imaged as previously described [19]. Briefly, Cy5 was

excited at 620/20 nm and the emission intensity was measured in 10-nm increments, ranging

from 640–680 nm, through a tunable crystal emission filter. Numerator (Cy5) and denominator

(Cy7) values were generated by integrating the spectral images over 660–720 nm and 760–830

nm, respectively. Custom software divided the Cy5 emission by the Cy7 emission to create a

pseudocolor ratio value image, ranging from blue (lowest ratio) to red (highest ratio). Ratios

were quantitated using ImageJ. To compare the data from two independent sets of experiments

in albino C57BL/6 mice, the ratios were normalized, adjusting the values for each separate

experiment by dividing each ratio value by the lowest ratio for that experiment of mice (as a

result, the lowest ratio for each experiment was set to one).

Immunofluorescence

Perfusion fixed py8119-lentiGFP tumor samples from mice that were treated with Cy5:Cy7

RACPP were suspended in 20% sucrose solution overnight at 4C prior to embedding in OCT

solution. 10μm sections were made and treated with a 1:1000 dilution of Alexa405 conjugated

primary antibody to F4/80 marker for macrophages (Abcam, Cambridge, UK). The slides

were placed in a humidifier chamber overnight at 4C followed by washes with PBS and cover-

slipped. Three color confocal imaging was performed using the Nikon A1 system with laser

lines 405nm, 488nm and 640nm.

Immunohistochemistry

To further determine whether the tumor cells or host stroma contributed more to the MMP-

2/-9-cleavable RACPP ratios, we cryosectioned (10 μm) and then imaged the tumors harvested

from the C57Bl/6 experiment using a confocal microscope (Nikon Instruments Inc, Melville,

NY). Additional sections (5 μm) were stained for neutrophils using the NIMP-R14 antibody

(Abcam, Cambridge, UK) with standard immunohistochemical (IHC) methods. Since macro-

phages are a major source of MMP-2/-9 activity, we examined their infiltration into tumors.

MMP-2/-9 in the tumor microenvironment
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Formalin fixed, paraffin embedded tumor samples were sectioned at 7 μm and stained with

the F4/80 antibody (BM8; eBioscience, San Diego, CA, dilution 1:200) following antigen

retrieval in citrate buffer pH 6.0, 0.05% tween 20. Antibody visualization was with ImmPACT

DAB staining (Vector Laboratories Inc, Burlingame, CA). Slides were scanned using a Nano-

zoomer and analyzed using Aperio Imagescope software (Leica Biosystems Inc, Buffalo Grove,

IL).

Statistics

Breeding results were analyzed using the Chi-square test. Normally distributed data were ana-

lyzed using the Student’s t test or by ANOVA followed by multiple comparisons using the

Holm-Sidak correction. They are presented as means ± SEM. Nonparametric data were ana-

lyzed using the Mann-Whitney test. All data were analyzed using Graphpad Prism software

(Graphpad Prism, La Jolla, CA).

Results and discussion

Reduced fecundity and compromised growth in DKO mice

Given the fundamental roles that MMP-2/-9 play in tissue homeostasis, it is reasonable to

hypothesize that a loss of both enzymes could result in reduced fertility and offspring viability.

While it has previously been shown that MMP-2 deficiency does not affect breeding success,

developmental delays were observed over a 7 week period following birth [14]. In addition,

loss of MMP-2 has been reported to affect bone development in a different strain background

and may play a role in the reduced growth rate [21]. It is also known that when MMP-14, an

upstream regulator of gelatinases is knocked down, development is severely hampered [22].

The loss of MMP-9 results in smaller litter sizes and an increased percentage of infertile breed-

ing pairs [23] however, these changes do not appear to be due to impaired embryonic and fetal

development as heterozygous matings resulted in the expected Mendelian frequencies of

MMP9+/+, MMP9+/- and MMP9-/- mice [15, 24]. Similarly, we observed a reduced litter size in

our DKO mice as follows: WT breeding 6.27 pups ± 0.31 vs DKO breeding 4.76 pups ± 0.31

(mean ± SEM, p< 0.001). However, only 70% of the DKO mice that were expected according

to Mendelian ratios survived to weaning (S2 Table). These results indicate a significant func-

tional overlap between the two enzymes in reproduction such that the DKO exacerbates the

MMP-9 null phenotype, skewing the normal Mendelian ratios and reducing the number of

viable DKO mice.

Although no significant difference in survival of weaned male and female DKO mice was

observed, we found mild but significant early growth retardation in DKOs of both sexes (S1

Fig), which has not been observed in single KO mice. Male DKO mice were more compro-

mised at an early age compared with their WT counterparts (~57% reduction in body weight

at 3–6 weeks, recovering to 86% by 12 weeks; Part A of S1 Fig) than female DKO mice (~84%

reduction in body weight from week 6; Part B of S1 Fig), underscoring the important role

MMP-2/-9 play in normal development.

DKO mice have delayed wound healing

At a cellular level, wound healing has much in common with normal development, and

numerous studies suggest that MMP-2/-9 play active roles in this process [25]. Accordingly,

we observed a delay in primary wound healing in DKO mice compared with WT mice. First,

at 11 days post-incision, wound areas for the DKO mice were significantly larger (9.67 ± 2.09

mm2) than those for the WT mice (0.12 ± 0.03 mm2; mean ± SEM, p<0.001; n = 6 mice [total

MMP-2/-9 in the tumor microenvironment
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of 12 wounds] per group) (Fig 1A and 1B. Additionally, even though two vertical incisions

were made to create the wound, the scab area that formed as part of the wound healing process

remained and even crossed from one incision side to the other in four of six DKO mice (Fig

1A), while the WT mice were almost completely healed by Day 11. We speculate that this hori-

zontal breakdown of the wound in the DKO mice may be due to the slight tension placed on

the skin across the back following placement of the wound clips. The poor response in DKO

mice may be attributed to a number of factors that occur during the healing period. First,

although MMP expression in healthy skin is low [26], MMP-9 expression can be induced at

the leading edge of migrating epithelial cells, enabling these cells to move through the ECM

and re-epithelialize the wounded area [27–30]. MMP expression can also be upregulated in

inflammatory cells, such as macrophages, T cells and eosinophils, which infiltrate the wound

and assist with pathogen clearance [31, 32]. There is a complex pattern of expression involving

high MMP-9 expression in the early inflammatory phase and a later increase in MMP-2

expression that occurs during the proliferative phase of wound repair [33]. MMP-2 is also

found in immune cells and it promotes functional recovery after spinal cord injury [34]. Con-

sistent with previous work, delayed wound healing in DKO compared to WT mice in our

study was associated with aberrant re-epithelialization of the injured area, however further

study is needed to clarify the overlapping mechanistic roles of MMP-2/-9 in wound healing.

To evaluate wound healing at the microscopic level, we measured the distance between

healthy hair follicles. The distance between hair follicles was significantly larger for the DKO

mice than for the WT mice (3.74 ± 0.3 mm v. 0.70 ± 0.13 mm; mean ± SEM, p<0.001; n = 12

wounds/group) (Fig 1C and 1D), indicating that wound healing had not progressed normally

for the DKO mice. Interestingly, wound healing in a model of laser-induced choroidal neovas-

cularization, mimicking human age-related macular degeneration, is nearly completely pre-

vented in DKO mice, while the wound healing in single KOs is only partially impaired [35].

This is thought to be due to an effect of MMP-2/-9 on fibrinolysis, which supports angiogene-

sis. Thus, inadequate vascularization may also play a role in our observation of impaired

wound healing.

Site-specific effect on tumor growth

Since MMP-2/-9 have long been associated with cancer progression either through their effects

on matrix degradation or as regulators of growth factor and cytokine bioactivity [36], we next

examined their role in tumor growth in the PyVmT transgenic mouse model of breast cancer

[16, 37]. Due to the complex breeding and relatively poor breeding success in generating

PyVmT positive DKO female mice, we had a limited number of mice in this study. We used

semi-quantitative real time PCR to confirm the loss of MMP-2/-9 expression. Our analysis ver-

ified that the only enzymes that were significantly downregulated in our panel of 20 MMPs

were MMP-2 and MMP-9, although there was an interesting trend towards downregulation of

a number of other MMPs in the absence of active MMP-2/-9. Additionally, we were unable to

identify RNA from any alternative MMPs that were upregulated to compensate for the loss of

MMP-2/-9 in the DKO mice compared to WT mice (S2 Fig).

While no significant difference in the overall tumor burden between the PyVmT;WT and

PyVmT;DKO mice was found (Fig 2A), our analysis showed a slight, but significant, reduction

in tumor growth in the #4 mammary fat pad (0.431 ± 0.074 g v. 0.136 ± 0.051 g; mean ± SEM,

p< 0.05) (Fig 2B). This difference could be visualized in whole mounts of the #4 mammary

gland at 24 weeks of age, which showed a reduction in the amount of carmine stained mam-

mary epithelial tissue in the PyVmT;DKO gland (Fig 2C). Interestingly, iNOS-/- mice show a

similar site-specific reduction in mammary tumor growth in the inguinal fat pads [16], which

MMP-2/-9 in the tumor microenvironment
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are the largest of the mammary fat pads and contain a central lymph node. Since MMP-2/-9

and iNOS are key effectors of macrophages, we further investigated whether this growth retar-

dation was primarily due to loss of MMP activity in the tumor cells or stromal cells particularly

macrophages, using an orthotopic tumor cell injection model.

The results of orthotopic tumor cell injections supported a role for MMP-2/-9 in tumor

growth. In one set of C57BL/6 mice used for imaging (Fig 3A), we recorded the tumor weights

Fig 1. Delayed wound healing in DKO mice. A. Representative WT and DKO mice on Day 11 following the creation of bilateral,

vertical, 8-mm wounds. The initial wounds were located as indicated by the arrows in the WT panel, with aberrant healing in the

DKO apparent B. Quantitation of the day 11 skin surface wound area (n = 6 mice and 12 wounds per group). C. H&E stained cross-

sections of skin from WT and DKO mice at day 11 after wounding with wound margins indicated by dashed lines. These skin tissue

of the wounded area was collected [dotted black box, A and C (enlarged)] and sectioned perpendicular to the length on the wound

(white stipple) to determine distance between hair folicles on either side of the incision. D. Quantitation of the distance between

healthy hair follicles adjacent to the wound (n = 2–3 sections per wound; 12 wounds per group). Data are means ± SEM, analyzed

by Student’s t test. ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0198464.g001
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and observed the highest tumor weight for the WT tumor in WT mice (0.355 ± 0.09 g;

mean ± SEM, p< 0.05 compared to WT tumors in DKO mice, 0.07 ± 0.06 g, DKO tumors in

WT mice, 0.07 ± 0.03 g and DKO tumors in DKO mice, 0.07 ± 0.02 g) (Fig 3C). The WT

tumor cell-stroma combination resulted in tumors that were almost 5-fold larger than any of

the other combinations: WT tumors in DKO mice; DKO tumors in WT mice; and DKO

tumors in DKO mice, suggesting that loss of MMP-2/-9 activity in either the tumor cells or the

host stroma could reduce tumor growth. Based on these data, we posited that both the tumor

and host stroma require MMP-2/-9 to promote tumor growth, resulting in a larger tumor size.

It merits noting that in other experiments; the WT tumors were injected after the DKO tumors

were already palpable. This was because the WT tumor cell line had a faster growth rate in
vitro and in vivo than the DKO tumor cells, which is consistent with a tumor cell growth-pro-

moting role for MMP-2/-9 in this strain.

MMP-2/-9 tumor cell genotypes contribute more than stromal genotypes to

RACPP cleavage

ACPPs and, more recently, RACPPs, have proven useful in detecting protease activity in can-

cer [9, 11, 38, 39]. A role for stromal-derived MMPs in cancer progression has become increas-

ingly apparent as MMP expression is frequently higher in stromal cells than tumor cells [40]

and MMP-2/-9 expression can be increased in stromal cells by paracrine stimulation or direct

contact with malignant tumor epithelium [41]. We applied this technology to our tumor cell

injection model in a 4-way comparison (WT tumor cells in WT mice; DKO tumor cells in WT

mice; WT tumor cells in DKO mice; and DKO tumor cells in DKO mice) to study the contri-

bution of MMP-2/-9 stromal versus tumor cell activity in more detail (Fig 3A). The normalized

Cy5/Cy7 ratio for the WT tumors in WT mice (1.87 ± 0.11; 5 mice with 7 tumors/group) was

significantly higher than the ratio for the DKO tumors in WT mice (1.34 ± 0.07; p<0.003) or

the DKO tumors in DKO mice (1.20 ± 0.08; p< 0.0002). The WT tumors in DKO mice

(1.67 ± 0.11) also had significantly higher ratios than the DKO tumors in DKO mice

(p< 0.008). The difference in ratios between the DKO tumors in WT mice and WT tumors in

DKO mice did not quite reach significance (p<0.06). The WT tumors in WT mice did not

have significantly higher ratios than the WT tumors in DKO mice (p = 0.25), nor did the DKO

tumors in WT mice have significantly higher ratios than the DKO tumors in DKO mice

Fig 2. Modest effect of DKO on mammary tumorigenesis. A. Comparison of tumor burden in PyVmT;WT (N = 10) and PyVmT;DKO mice

(N = 5) aged 22–25 weeks. B. Tumor burden by mammary gland site from pectoral (#1, 2, 3) to inguinal (#4, 5). Data are means ± SEM analyzed by

Student’s t test, � p< 0.05. C. Whole mounts of the #4 inguinal mammary glands indicate delayed tumorigenesis in the DKO.

https://doi.org/10.1371/journal.pone.0198464.g002

MMP-2/-9 in the tumor microenvironment

PLOS ONE | https://doi.org/10.1371/journal.pone.0198464 September 24, 2018 8 / 17

https://doi.org/10.1371/journal.pone.0198464.g002
https://doi.org/10.1371/journal.pone.0198464


(p = 0.31) (Fig 3B), suggesting that a tumor cell’s ability to activate MMP-2/-9 is more impor-

tant than the host genotype to the imaging ratio. Measurement of the tumor weights indicated

that MMP-2/-9 play an important role in tumor growth (Fig 3C), which is not surprising given

their role in cellular migration and angiogenesis [42].

Since the DKO tumors grew at a slower rate than the WT tumors, we carried out experi-

ments in which we injected the WT tumor cells when the DKO tumor was just palpable. We

tested an MMP-2 selective RACPP (cleavable sequence TLSLEH) in WT, 2KO and DKO mice

and found that loss of MMP-2 in the host significantly reduced cleavage of the probe, validat-

ing the selectivity of this cleavage sequence (Fig 3D and 3E). WT tumors, regardless of mouse

genotype, showed high Cy5/Cy7 ratios owing to cleavage of the MMP-2 selective sequence; the

WT groups and their ratios were: WT tumor in WT mice (5.3 ± 0.35); WT tumor in 2KO mice

(5.3 ± 0.53) and WT tumor in DKO mice (5.2 ± 0.61). These data support the involvement of

Fig 3. The tumor cell genotype contributes more than the stromal genotype to MMP-2/-9 activity in cleaving the MMP-2/-9-cleavable

RACPP. A. C57BL/6 mice (WT and DKO) with orthotopic WT and DKO tumors (T) in their bilateral mammary fat pads. After 2 h

incubation with an intravenously administered MMP-2/-9-cleavable RACPP, the tumors were imaged. B. The tumor ratios (Cy5 emission/Cy

7 emission, corresponding to cleaved/uncleaved ACPP) were quantified (N = 5 mice/group; N = 7 tumors/group). The data from two sets of

independent experiments, which had the same relative comparison between tumor groups with different overall ratio ranges, were

normalized so the sets could be combined. Each set was normalized to its lowest ratio (all values divided by the lowest ratio value) such that

the lowest ratio for each set was re-mapped onto the value one. C. The tumor weights from one of the C57BL/6 mouse strain experiments; the

weight was highest for the WT-tumor (T) in WT-mouse (M). Data are means ± SEM analyzed by one-way ANOVA and Holm-Sidak’s

multiple comparisons test. D. Ratiometric images Cy5/Cy7 2 h after intravenous injection of MMP-2 selective RACPP, with cleavable

sequence TLSLEH, in WT, 2KO (N = 4 mice per WT or KO group; N = 8 tumors/group) and DKO mice (N = 3 mice/group; N = 6 tumors/

DKO group). In each mouse, the WT tumor is on the left and the DKO tumor is on the right. E. Quantified tumor ratios of Cy5 emission/Cy7

emission for the cohort of 11 mice imaged with the MMP2-selective RACPP, stratified by tumor type and mouse strain.

https://doi.org/10.1371/journal.pone.0198464.g003
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tumor derived MMP-2 in promoting high cleavage of the MMP-2 selective RACPP. While we

have tested the specificity of our cleavable sites with a variety of enzymes (S3 Table), it is

important to recognize the complexity of the tumor microenvironment and the involvement

of other families of enzyme that could modulate the response from our imaging agents. How-

ever, a comparison of WT tumor (5.3 ± 0.35) and DKO tumor (4.8 ± 0.17) ratios in WT mice

show statistically significant difference when either ratio is compared with the Cy5/Cy7 ratio

in DKO tumor in DKO mice (3.6 ± 0.29, p<0.01). These data indicate there is a contribution

from host MMPs. Overall, our data suggest that the tumor cell genotype contributes more

than the stromal genotype to the detection ratios we observed for the MMP-2/-9-cleavable

RACPPs in tumors.

Host stroma influences the tumor ratio at a microscopic level

The importance of MMP-2/-9 in the tumor cells was more apparent at the microscopic level,

as WT tumor cells implanted in WT mice had higher ratios than those implanted in DKO

mice (4.35 ± 0.25 and 3.34 ± 0.24, respectively, p = 0.01), indicating that more subtle differ-

ences could be detected with higher magnification (Fig 4A and 4B). In contrast, the ratios for

DKO tumors in either WT or DKO mice were not significantly different (2.13 ± 0.12 and

2.16 ± 0.13, respectively; p = 0.87). MMP-2/-9 expression in mammary carcinoma cells is asso-

ciated with epithelial to mesenchymal transition and increased tumor cell invasivesness [43],

so it is not surprising that our invasive WT cell line affects the RACPP ratios more than the

DKO cell line. Importantly, our RACPP findings were consistent at both the macroscopic and

microscopic levels. MMP-2/-9 activatable RACPPs coupled with chemotherapeutic agents

have been shown to be effective in reducing breast cancer burden in animal models [44]. Our

results suggest this efficacy is due in part to the ability of these agents to target both tumor cells

and their associated tumor-promoting stroma.

In addition to examining the ratios at a microscopic level, we examined the tumor mor-

phology after H&E staining and found that while the WT tumors were dense with tumor cells,

the DKO tumors had a looser tissue organization (Fig 4A). The differences in growth rates,

which reflect tumor heterogeneity and different mammary tumor subtypes explains the differ-

ences in their morphology [18].

Fig 4. At the microscopic level, the host stroma enhances the WT-T ratio. A. The ratios for tumor sections (10 μm; WT-T in WT-M and DKO-M and

DKO-T in WT-M and DKO-M) were evaluated with confocal microscopy and then the tissue sections were stained with H&E to examine the morphology.

B. Quantitation of the ratios corresponding to 4–6 confocal images per group. Data are means ± SEM analyzed by one-way ANOVA and Sidak’s multiple

comparisons test.

https://doi.org/10.1371/journal.pone.0198464.g004
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Since the infiltrating cells had the morphology of macrophages, we carried out experiments

in which Py8119GFP tumors were injected with RACPPs and later stained with the macro-

phage marker F4/80 (Fig 5A). We found that indeed, the cells with high RACPP signal at the

periphery of the tumors were macrophages (Fig 5G and 5H). Macrophages were distributed

throughout the stromal areas surrounding the tumor cells and showed accumulation of

RACPP (Fig 5B–5D). RACPP positive macrophages present in the center of the tumors

showed less cleavage, likely due to reduced MMP-2/-9 activity (Fig 5I and 5J). At higher mag-

nification, we were able to clearly show that the tumor cells were also positive for RACPP, but

at a lower intensity than the macrophages (Fig 5E–5L). However, because of the abundance of

the tumor cells, they contribute significantly to the total RACPP signal observed (Fig 5E and

5F). Our data indicate that RACPPs are useful tools to localize MMP-2/-9 activity in vivo and

confirm that MMP-2/-9 activity is present in both tumor cells and macrophages.

To further understand the ratio enhancement for WT tumors in WT mice (v. DKO mice),

we quantitated the number of macrophages infiltrating the tumors. As expected, the majority

of the infiltration was at the periphery of the tumor and WT tumor cells had a significantly

Fig 5. RACPP ratios are higher in macrophages than tumor cells. A. Immunofluorescence staining with F4/80 pan macrophage antibody

marker (yellow) on WT Py8119-GFP (green) tumor tissue excised from WT C57Bl6-albino mice injected with MMP cleavable RACPP (Cy5:

red). B. Macrophage infiltration surrounding tumor cells. C. Macrophage distribution in the tissue and D. overlay with Cy5 from cleaved

RACPP due to MMP-2/-9 activity. E,F. Much of the Cy5 from cleaved RACPP is seen in stromal region surrounding tumor cells with

dimmer puncta seen on the Cy5 image alone. G,H. Higher magnification images demonstrating high Cy5 signal in the macrophages at the

tumor periphery rather than I, J. those at the tumor center. K,L. Higher magnification showing accumulation of Cy5 from cleaved RACPP in

the tumor cells.

https://doi.org/10.1371/journal.pone.0198464.g005
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greater ability to recruit host macrophages into the tumor than DKO tumor cells (Fig 6A–6F).

Interestingly, a lack of MMP-2 or MMP-2/-9 in the host tissues reduced the effectiveness of

WT tumor cells in recruiting macrophages (Fig 6G), which is possibly due to a motility defect

in the KO macrophages resulting from a reduction in their matrix degradation abilities. DKO

mice also failed to recruit macrophages in the choroidal neovascularization model although

the mechanism was not determined [35]. The effects of the KO mice on macrophage recruit-

ment into WT tumors was less prominent in the tumor center (Fig 6H), likely due to the

decreased number of macrophages capable of penetrating into the tumor center resulting in

greater variability between tumors in different animals. Overall, our results in mouse mam-

mary tumors are consistent with previous studies showing that human colorectal cancer cells

induce stromal macrophage MMP-2/-9 production [45, 46].

We also evaluated the number of neutrophils, which produce MMP-2/-9, in tumor sections

(S3 Fig). Neutrophils were a potential candidate cell type contributing to additional activity in

the WT tumor in WT mice because neutrophils secrete MMP-9 without tissue inhibitor

Fig 6. Tumor associated macrophage (TAM) infiltration is modulated by MMP-2/-9. Panels A-F are representative sections stained

with F4/80 to identify TAM infiltration in the various tumor cell/host mouse genotype combinations. A. WT-T in WT mouse. B. WT-T in

2KO mouse. C. WT-T in DKO mouse. D. DKO-T in WT mouse. E. DKO-T in 2KO mouse. F. DKO-T in DKO mouse. Scale bar 100 μm.

G. Macrophage infiltration at the periphery (0.5 mm into the tumor). H. Macrophage infiltration into the center of the tumor (1 mm in

from the tumor boundary). N = 6–8 tumors per condition. Data are means ± SEM.

https://doi.org/10.1371/journal.pone.0198464.g006
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metalloproteinase 1 (TIMP-1), whereas many other cell types secrete MMP-9 and TIMP-1

together[47]. Neutrophil counts had a trend towards higher levels in WT mice than DKO mice

(16.21 ± 4.05 v. 8.25 ± 2.06 neutrophils / mm2, p<0.07), but it was clear that macrophages

were the major myeloid cells present in the tumors.

The in vivo studies undertaken naturally have limitations due to the complexities of the

tumor microenvironment. Although we have relatively specific probes that have been tested

with a variety of related enzymes, there remains the possibility that other enzymes may modu-

late the response from our imaging agents. In addition, although significant MMP-2/-9 activity

resides in macrophages, the F4/80 macrophage marker does not differentiate the gradient of

macrophage subtypes known to impact tumor biology, and further studies will be needed to

determine the role of specific macrophage subsets in our model system. However, these limita-

tions do not detract from the significant results observed that is related to MMP-2/-9 activity.

Conclusions

Our data comparing WT and DKO mice confirm an important role for MMP-2/-9 in wound

healing and tumorigenesis. In the in vivo tumor microenvironment, our data show that the

majority of MMP-2/-9 activity is associated with the tumor cell genotype in our model system.

The complex interplay between tumor cells and host cells is exemplified by the data indicating

that WT host macrophages recruited by WT tumor cells play an important role in RACPP

cleavage. While a new generation of more specific MMP-2/-9 inhibitors has been developed

and is undergoing clinical trials [7], several alternative strategies targeting macrophage activity

have been proposed. Exploiting drugs that inhibit macrophage recruitment into tumors [48],

harnessing macrophage FcγR-mediated processing for local delivery of antibody-drug conju-

gates [49], or macrophage mediated drug delivery to the tumor’s extracellular matrix [49] may

prove beneficial in slowing tumor progression. RACPP-drug conjugates can be selectively

delivered to tumors [44, 50] and our results confirm that they can be processed both in tumor

cells and tumor-associated macrophages to provide therapeutic benefits.
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