
UC Irvine
ICS Technical Reports

Title
LEGEND : a language for generic component library description

Permalink
https://escholarship.org/uc/item/32q4v7qx

Author
Dutt, Nikil D.

Publication Date
1988-09-19

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32q4v7qx
https://escholarship.org
http://www.cdlib.org/

LEGEND : A LANGUAGE FOR

GENERIC COMPONENT LIBRARY DESCRIPTION

BY

NIKIL D. DUTT

Technical Report 89-29

Information and Computer Science
University of California at Irvine

Irvine, CA 92717

Keywords

Hardware Description Languages, High Level Synthesis,
Generator-Generator Languages, Design Component Data­
bases.

/I
L

ho,

Abstract

This paper describes a novel generator-generator language, LEGEND, for the

definition, generation and maintenance of generic component libraries used in high level

synthesis. Each LEGEND description generates a library generator GENUS, which is

organized as a hierarchy of generic component generators, component templates, and com­

ponent instances. Component instances from the GENUS library are used by high level

synthesis systems to transform the abstract behavior of a design into an interconnection of

generic components satisfying this behavior. Although existing hardware description

languages such as VHDL are very good for describing component libraries, they lack the

capability of generating these component libraries from a higher-level description.

LEGEND complements a language such as VHDL by providing a component library

generator-generator with behavioral models for simulation and. subsequent synthesis. The

components in a LEGEND generated library have realistic register transfer semantics,

including clocking, asynchrony and data bi-directionality. LEGEND is extensible, since its

simple syntax allows users to add new component types or modify existing component types

easily. The LEGEND generator-generator is currently implemented on SUN3's under

C/UNIX and is used by a suite of behavioral synthesis tools at U. C. Irvine.

LEGEND

TABLE OF CONTENTS

CHAPTER

1. Introduction 1

2. Previous Work ... 3
2.1. Hard ware Description Languages 3

2.2. Generic Component Characterization .. 4
2.3. Related Work .. 6

3. LEGEND: The Generator-Generator ... 6

3.1. GENUS System Overview .. 6

3.2. LEGEND Overview .. 10

4. LEGEND: Semantics and Usage ... 15

4.1. Port Naming Convention ... ·................. 16

4.2. Port Semantics .. 16

4.3. Component Control 16

4.4. Combinatorial Components 17

4.5. Sequential Components .. .,............ 17

4.6. Interface and Miscellaneous Components .. 19

4. 7. Accessing Components 20

5. VHDL Models for LEGEND Descriptions .. 21

6. Summary 23

7. Acknowledgements .. 25

8. References .. 25

9. APPENDIX A: LEGEND SYNTAX .. 26

September 19, 1988 LEGEND Pagei

1. Introduction

The task of high level synthesis involves the mapping of abstract behavioral design

descriptions into structural designs composed of components drawn from a generic com­

ponent library. The synthesized structural design must functionally implement the abstract

behavior under the set of high-level constraints given by the user. Once a feasible struc­

tural design of generic components is synthesized, it is passed on to a set oflogic and layout

synthesizers to implement the design in a particular target technology (3-micron CMOS, for

instance). With the the rapid advances in fabrication and layout technologies, it becomes

increasingly important to insulate lower-level technological changes from higher-level design

decisions, since these technology-specific designs become obsolete with even small changes

in the technology. This creates a huge bottleneck in the design cycle, since the whole

design process has to be restarted for every small change in the technology. A key to solv­

ing this design crisis in VLSI systems is technology independence: the concept of keeping

higher level design descriptions and decisions independent of the target technology. High­

level synthesis systems use components drawn from a generic component library to effect

this technology independence; structural designs composed of components drawn from a

generic library can be re-targeted to different technologies at the backend, without having

to redo the task of high-level synthesis.

This paper describes a novel generator-generator language, LEGEND, for the

definition, generation and maintenance of generic component libraries used in high level

synthesis. LEGEND's simple syntax and strong register-transfer semantics, coupled with its

extensibility, makes it a powerful language for facilitating efficient high-level synthesis.

September 19, 1988 LEGEND Page 1

- it is general; allows modeling of buses, storage elements, functional units and finite

state controllers.

This paper is organized as follows. Section 2 describes previous work on hard ware

description languages, component generators and libraries. Section 3 briefly introduces the

LEGEND language, and the semantics of the generated generic component library. Section

4 illustrates how generic components and their instances are created and used. Section 5

uses a simple example to show how components derived from LEGEND are simulated in

VHDL. Section 6 concludes with the status of this research.

2. Previous Work

2.1. Hardware Description Languages

Although a number of good hardware description languages have been described in

the literature (DDL [DuDi67], AHPL [HiNa79], ISPS [Barb81), etc.), these have been used

primarily for behavioral specification and synthesis; none of them have addressed the issue

of how to describe, generate and maintain generic component libraries.

More recently, VHDL [VHDL87] was proposed as a "standard" hardware description

language for the specification and maintenance of design descriptions transcending several

design levels including behavior, data-flow and micro-architectural structure. Although

--
VHDL has good constructs for describing specific libraries and component instances, it

does not have the capability of generating customized component libraries. In a high-level

synthesis environment, what is lacking is a generator for VHDL component libraries.

VHDL is also closely tied to a simulation model of computation, hence lacks several

September 19, 1988 LEGEND Page 3

Another problem with existing representations is that they treat "components",

"wires", "ports", "buses", etc. differently. This limits the kinds of optimizations that can be

performed by the synthesis tools. For instance, the concept of "unit merging" is similar to

that of "bus merging", but these tasks are treated differently since "units" and "buses" have

different rep re sen tations.

Although components can perform several operations simultaneously, it is a difficult

task to characterize operational simultaneity in a component for the task of synthesis.

Since most behavioral languages have the notion of a single assignment operation, mapping

an operation to a component that performs several operations simultaneously can be messy.

This requires a many-to-one mapping from the language operators to the structural com­

ponent. In fact, the component may generate outputs for which there are no corresponding

behavioral variables (the carry-out on an adder, for example). The other problem is the

representation of costs for simultaneous operations performed by component. A carry-out

on an adder component is obtained for no cost when the adder is explicitly performing an

"add" operation in the language. However, if only the carry-out is required (without the

sum), the cost of this operation is now that of the addition. Hence we need the notion of

"operation classes" which is introduced in this paper. Operation classes permit the

representation of simultaneous operations and combined costs for synthesis.

Finally, many behavioral systems do not have explicit behavioral models for com­

ponents in the data base. This is essential if the user wishes to perform simulation to verify

the correctness of a structural design.

September 19, 1988 LEGEND Page 5

[LiGa89], EXEL [DuGa89], MILO [VaGa88), etc.). This section describes the hierarchy in

GENUS, the functions used to create and access elements in GENUS, and describes how a

particular technology library may be used to restrict the generators to produce only those

generic components that can be feasibly realized using that library.

3.1.1. GENUS Hierarchy

GENUS is organized into 4 levels of hierarchy, where each level inherits attributes

from its parent level. This representation closely models a hierarchical object oriented

database.

Figure 1 shows a sample GENUS snapshot, where instances I1 through 15 are children

of the class of 4-bit register components. The register components are generated from the

class of register generators by specifying some or all of the register parameters (in this par­

ticular example, only the number of bits was specified). Finally, the register generator class

belongs to the sequential type class, where all elements are activated by a clock

The type class describes the abstract functionality of elements in GENUS. Sample

type attributes include combinatorial, sequential, interface and miscellaneous.

A generator class is used to generate a family of similar components and instances.

LEGEND descriptions (described later in this section) are used to maintains lists of all the

possible parameters, definitions for each operation performed by a generated component.

A component is generated by passing a list of parameters to the parent LEGEND gen­

erator descriptor. For instance, in Figure 1, a 4-bit register component is generated by

specifying the bit-width attribute to the register generator. All possible parameters for a

September 19, 1988 LEGEND Page7

3.1.2. Using GENUS

The most common operations performed on the generic component library are the

creation of components and instances, and the querying of a GENUS library for various

attributes.

Since the library is organized hierarchically, any attempt to create a new component

or instance must begin at the parent generator class. Functions for creating new com­

ponents are passed a parameter list; the parent generator class is searched to see if a com­

ponent is already generated by matching the parameter values. Similarly, the request to

create a new instance of a component is passed a parameter list to the root generator class.

If a component for this parameter list does not already exist, a new one is created. Finally,

the instance itself is created.

A variety of query functions access the GENUS database at each level. Queries may

be initiated at the root (generator), or at a particular level of the hierarchy. For instance,

a query to find the number of 4-bit registers instantiated in the database starts at the regis­

ter generator (the root of the register hierarchy) with the appropriately configured parame­

ter list. On the other hand, a query to check if instance 14 in Figure 1 has a RESET port

begins at the instance level and necessitates a look-up of its parent's attribute list (the 4-bit

register component) for the existence of a RESET port.

When the cgmpleted structural (generic) design is to be mapped to a particular tech­

nology library, certain generic components may not exhibit a clean mapping to the

corresponding technology library components. The task of performing this technology map­

ping can become very cumbersome unless the user provides technology specific hints to

GENUS so that a only "feasible" set of components are generated for the particular

September 19, 1988 LEGEND Page 9

NAME:
CLASS:
MAX....PARAMS:
PARAMETERS:

NUM_8TYLES:
STYLES:
NUMJNPUTS:
INPUTS:
NUM_OUTPUTS:
OUTPUTS:
CLOCK:
NUM...ENABLE:
ENABLE:

COUNTER
Clocked
7
GC_COMPILER....NAME, GCJNPUT_WIDTH (%w), GC....NUM_FUNCTIONS,
GC_FUNCTIONJ,IST, GC_8ET_ VALUE, GC_8TYLE, GC...ENABLE...FLAG
2
SYNCHRONOUS, RIPPLE
1
IO[%w]
1
OO[%w]
OLK

CEN
NUM_CONTROL: 3
CONTROL: CLOAD, CUP, CDOWN
NUM....ASYNC: 2
ASYNC: ASET, ARESET
NUM_OPERATIONS: 3
OPERATIONS:

(

VHDL_MODEL:
OP _CLASSES:

(LOAD)
(INPUTS:
(OUTPUTS:
(CONTROL:
(OPS: (LOAD:
(COUNT_UP)

IO)
00)
CLO AD)
00 =IO)))

(OUTPUTS: 00)
(CONTROL: CUP)
(OPS: (COUNT_UP: 00 = 00 + 1)))
(COUNT_DOWN)
(OUTPUTS: 00)
(CONTROL: CD OWN)
(OPS: (COUNT_DOWN: 00 = 00 - 1)))
counter_vhdl.c
default

Figure 2. Sample LEG END Description For a Counter Generator

3.2.2. aass

Specifies if the generator is of type class clocked or combinational. When a component

is clocked, certain semantics are associated with the ports on the component.

The CLOCK entry specifies the name of the clock line(s) for the component (currently

only one clock line is assumed). For edge-triggered components, the attribute

"RISING_EDGE" or "FALLING_EDGE" indicates when the clock is active.

September 19, 1988 LEGEND Page 11

3.2.4. Styles

The STYLES entry indicates the list of possible implementation styles for generating

instances of the component. For the counter in Figure 0, the implementation styles are

SYNCHRONOUS and RIPPLE.

3.2.5. Ports

Ports are specified under the INPUTS, OUTPUTS, INPUT_OUTPUTS, CONTROL,

CLOCK, ASYNC and ENABLE entries. Ports specified under CONTROL, CLOCK,

ASYNC and ENABLE are assumed to be one bit wide by default. For the INPUTS and

OUTPUTS, each port has a bit-width specified within the "[" and "]" pair. A parameter­

ized variable (which starts with the character "% ") may be used when necessary.

3.2.6. Operations

Each operation that can be performed by a generated component is described by its

name, input, output and control port information.

3.2.7. VlIDL_MODEL

The behavioral operation of a generated component is modeled in VHDL. This VHDL

model is generated by the C routine indicated in this entry. The VHDL models are

described further in section 5.

September 19, 1988 LEGEND Page 13

NAME:
CLASS:
MAXY ARAMS:
PARAMETERS:

MUX
Oombina.t oriaJ
5
GO_COMPILER...NAME, GCJNPUT_WIDTH (%w), GC_NUMJNPUTS (%n),
GO_ENABLEYLAG, GCJNVERTYLAG

NUMJNPUTS: %n
INPUTS: &get_component_pinJta.me_list(MUX, INPUT, %n, %w)
NUM_OUTPUTS: 1
OUTPUTS: OO[%w]
NUM_CONTROL: %n
CONTROL: &get_component_pinJtame_list(MUX, CONTROL, %n, 1)
NUM_ENABLE: 1
ENABLE: OEN
NUM_OPERATIONS: %n
OPERATIONS:

macro_expand ($i = 0 to %n-1)
{

((&get_componen tJunction(MUX, $i))

}
VHDL_MODEL:
OP _CLASSES:

(INPUTS: &get_component_pinJtame(MUX, INPUT, $i))
(OUTPUTS: 00)
(CONTROL: &get_component_pinJtame(MUX, CONTROL, $i))
(OPS: (00 = &get_component_pin_name(MUX, INPUT, $i))))

mux_vhdl.c
default

Figure 3. Macro-Expand Feature

3.2.10. Estimation Functions

The initial version of each generated GENUS generic component library use estimators

derived from Chippe's model of function units [BrGa87]. Functions for area, speed and

power return estimates based on the size, functionality and bit-width of a generated com-

ponent.

4. LEGEND: Semantics and Usage

As mentioned earlier, LEGEND-generated components in the GENUS library belong

one of several type classes, based on their properties and/or functions. This section

describes the semantics, assumptions and naming conventions associated with these com-

ponents. It then describes how components and instances can be accessed.

September 19, 1988 LEGEND Page 15

4.4. Combinatorial C.Omponents

Figure 4 shows a table of combinatorial components available in the generic com­

ponent library. Both primitive logic gates and bit-wise logic gates are described in the

table. Except for the primitive and bit-wise logic gates, each component has an optional

enable input. The logic unit (LU) performs all 16 possible logical functions of two inputs.

The MUX component selects input l<i> when control line C<i> is high, and permits the

generation of an inverted output. The selector component chooses the input whose guard

value matches the value on the single input line ISEL. The DECODER takes an n-bit

input and outputs 2n single bit lines, where line i is 1 when the input equals the value of i.

Conversely, and ENCODER component takes 2n boolean inputs and produces n encoded

outputs (where the encoding is determined by the encoder type). The COMPARATOR,

SHIFTER, ADD_SUB, MULT and DIV components are self-explanatory. The ALU can

perform four arithmetic, five comparison and all sixteen logical operations. At the time of

instantiation, a subset of these functions may be chosen for implementation.

4.5. Sequential Components

Figure 5 shows the list of available sequential components. As mentioned earlier, each

sequential component is assumed to have a port named "CLK". If asynchronous ports exist

for the component, they override the clocked, synchronous behavior of the component. A

register component may have the positive output "OQ", the negated output "OQN" or both

outputs generated. Both registers and counters must have a set-value specified at instan­

tiation time. The counter component can count up and down, besides doing a synchronous

load and an asynchronous set and reset. For the register-file component, each port pair

September 19, 1988 LEGEND Page 17

LIST OF SEQUENI'I.AL OOMPONEN'IS

Type Functions Data-~o control async attributes
Register load, shl, shr, Io, LIN, RIN: input, CLOAD, CSHL, A CLEAR, #bits, .t'rns,

OQ, OQN: output CSHR, CEN ASET type, set-val, en
OQ?, OQN?

Counter load, up, IO: input CLOAD, CUP, A CLEAR #bits, .t'rns,
down, clear, 00: output CDOWN, OEN ASET set-val, style,
set type, enable

Register File IO, .. ,I< n-1> CRo,cwo, .. #bits, #words
IAO, .. ,IA<n-1> CR<n-1> ,CW<n-1> .t'ports,

port_a.ttr, en

Stack/ push, pop IO: input, CPU SH, #bits, #words,
FIFO 00: output CPOP,CEN type, enable

Memory read, write IO, IADDR, CWRITE, CREAD, #bits, #words,
IA_ VALID: input CEN enable
OD_READY,
00: output

Figure 5. Sequential Components

(I<i> ,O<i>) has associated with it an address line A<i>, and a port-attribute which

indicates if that port is of type input, output or bidirectional.

4.6. Interface and :rv.Iiscel1aneous Components

Figure 6 shows the list of interface, bus, switchbox, clock and delay components. An

interface component has several attributes that describes its function

(buffer/ clock_driver / ...), mode (input/output/ ...), level (CMOS/TTL/ ...),

output_type(inverting/non-inverting) and drive (L/M/H). The port component models

ports on a design, with the attributes number_of_bits and port_m.ode. The port component

is useful in constructing a hierarchy of designs. The BUS and WIRED-OR components are

similar, except that the the BUS component has tristate drivers at each input to the bus.

CONCAT and EXTRACT components simply model switchbox operations for merging

streams of data and extracting substreams of data. At present, the clock generator com-

ponent is used for modeling a very simple system clock, using the attributes clock-period

and duration-high. The DELAY component is used to model a delay element on a logic

September 19, 1988 LEGEND Page 19

component or instance). A set of standard query routines can be applied to the object to

extract any attribute or characteristic for it. Figure 8 shows a sample call used to generate

an instance of an ALU. The arguments in the call consist of pairs of reserved global sym-

bols (which begin with the letters "GC_") and the appropriate value or list. The size of a

list must always precede the list itself. For instance, in Figure 8, GC_NUMJ'UNCTIONS

is assigned the value "8" before specifying the GCJ'UNCTION_LIST which consists of 8

operations that the ALU instance will perform. Figure 9 and Figure 10 show the list of glo-

bal symbols reserved for indicating the type of argument specified in a call, together with

their possible values. Appendix A in [Dutt88] has a complete list of generator calls for all

the generic components.

5. VHDL Models for LEGEND Descriptions

LEGEND generates VHDL models for specifying the behavior of generated com-

ponents. LEGEND thus complements and overcomes a deficiency in VHDL by providing ai

generator-generator language for VHDL component libraries. These VHDL models can be

used for functional simulation of synthesized register-transfer designs, and can also be used

for lower-level synthesis of individual components at the logic and gate levels.

get_gc_instance(

September 19, 1988

0)

GC_COIY.IPILER...NAME, ALU,
GC_BIT_WIDTH, 16,
GC__NUM_FUNCrIONS, 8,
GC_E'UNCTION_LIST, +, -, INC, DEC, >, <, =, AND,
GC_ENABLE_FLAG, FALSE,
GC_8TYLE, CLA,

Figure 8. Sample ALU Instance Call

LEGEND Page 21

GENERIC OOMPONENT GLOBALS

Name Possible Value:i Default Value

GO_DECODER_TYPE GC_BINARY, GC_l3CD GC_BINARY

GO_ENCODER_TYPE GC_BINARY, GC_l3CD GC_BINARY

GC_REGISTER_TYPE GC_LATCH, GC_D_F'F GC.J)_F'F

GO_COUNTER_TYPE GC_BINARY, GC_BCD, GC_JOHNSON, GC_GRAY GC_BINARY

G0_8TACK_TYPE GC_8TACK, GC_F'IFO

G0_8HIFT_MODE GC_F'ILL, GC_EXTEND GCYILL

G O_F'ILLJNPUT O, 1 0

GO_SHIFT_DISTANCE <integer>

GO_OLOCKYERIOD <integer>

GO_OLOCKJIIGH <integer>

GO_DELAY_VALUE <integer>

GO_LEFTJNDEX <integer>

GO_RIG HTJND EX <integer>

GOJNTERF ACE_F'UNOTION GO_BUFFER, GC_OLOCK_DRIVER, GC_8CHMIDT, GO_TRISTATE

GCJNTERFACE_MODE GCJNPUT, GC_OUTPUT, GC_BIDIRECTIONAL

G OJNTERF ACE_LEVEL GC_CMOS, GO_TTL, GC_EOL

GCJNTERF ACE_DRIVE GC_LOW, GC_MEDIUM, GCJiIGH

GO_F' AN_OUT <integer>

GO_SET_VALUE <integer>

GC_OOUNTER_MODE GC_8YNCHRONOUS, GC_RIPPLE GC_8YNOHRONOUS

GO_REGYOS_OUT TRUE, FALSE TRUE

GO_REGJNVERT OUT TRUE, FALSE FALSE

Figure 10. List of Compiler Global Symbols (Cont'd)

A typical VHDL model generated for a 4-bit up/down counter is shown in Figure 11.

These VHDL models are currently simulated on the Vantage VHDL simulator [Van.t89].

6. Summary

This paper described the features of LEGEND, a novel language used to define, gen-

erate, maintain, and upgrade generic component libraries used in high level synthesis.

LEGEND provid~s a powerful generator-generator environment with a consistent hierarchi-

cal organization of generic components and instances. LEGEND complements VHDL, a

standard hardware description language, by providing a library generator facility. Each

generated component has a simulatable VHDL model generated for it. The semantics of

LEGEND model register-transfer behavior such as asynchrony and clocking realistically.

September 19, 1988 LEGEND Page 23

7. Acknowledgements

I'd like to thank William Carrasco for helping me with the generation of VHDL models

for components in the GENUS library.

8. References

[BaHa80] J. Batali and A. Hartheimer, "The Design Procedure Language Manual," A.I.
Memo No. 598, MIT A.I. Laboratory, Sept. 1980.

[Barb81] M. R. Barbacci, "Instruction Set Processor Specification (ISPS)," IEEE Tran­
sactions on Computers, vol. c-30, no. 1, January 1981.

[BrGa87] Forrest D. Brewer, Daniel D. Gajski, "Knowledge Based Control in Micro­
Architecture Design" 24th IEEE Design Automation Conference Miami, Fl
(July, 1987).

[DuDi68] J.R. Duley and D.L. Dietmeyer, "A Digital System Design Language (DDL),"
IEEE Trans. Computers, Vol C-17, Sept. 1968.

[DuGa89] N.D. Dutt and D. Gajski, "EXEL: A Language for Interactive Behavioral Syn­
thesis," Proc. Ninth International Symposium on Computer Hardware Descrip­
tion Languages, Washington D.C., June 1989.

[Dutt88] N. D. Dutt, "GENUS: A Generic Component Library for High Level Synthesis,"
Tech Rep 88-22, U.C. Irvine, Sept. 1988.

[HiNa79] F.J. Hill and Z. Navabi, "Extending Second Generation AHPL," Proc. Fourth
International Symposium on Hardware Description Languages, Palo Alto, CA,
Oct. 1979.

[LiGa88] J. S. Lis and D. D. Gajski, "VSS: A VHDL Synthesis System," Technical Report
(in preparation), University of California at Ir.vine, April 1988.

[McPC88] M.C. McFarland, A.C. Parker and R. Camposano, "Tutorial on High Level Syn­
thesis," 25th Design Automation Conference, July 1988.

[VaGa88] N. Vander Zanden and D. D. Gajski, "MILO: A Microarchitecture and Logic
Optimizer," Proc. 25th Design Automation Conference, Anaheim, CA, June
1988. __

[VHDL87] VHDL Tutorial for IEEE Standard 1076 VHDL, CAD Language Systems Inc.,
June 1987.

[Vant89]

[Wolf89]

Vantage VHDL Simulator, Vantage Analysis Systems Inc., 1989.

Wayne Wolf, "How to Build a Hardware Description and Measurement System
on an Object-Oriented Programming Langauge," IEEE Trans. Computer
Aided-Design, Vol. 8, No. 3, March 1989.

September 19, 1988 LEGEND Page 25

gen_vhdl

gen_op _cla.sses

gen_op _cla.ssJist

op_cla.ss

cla.ssJist

cla.ssJist_i. tem

September 19, 1988

identifter

shiftop_bina.ry
rel op
relop_two
band
bxor
bor
and
xor
or
not
TINO
TDEC
TC LEAR
TSET
TUSHL
CASE
IF
identifier

I identifier DOT identifier

TOP _CLASSES COLON gen_op_classJist
TOP _CLASSES COLON DEF AULT
empty

gen_op_classJist comma op_class
I op_class

LP AREN cla.ssJist RP AREN

cla.ssJist comma. classJist_i.tem
I cla.ssJist_i.tem

gen_op

LEGEND Page 28

