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Abstract 

This paper describes a novel generator-generator language, LEGEND, for the 

definition, generation and maintenance of generic component libraries used in high level 

synthesis. Each LEGEND description generates a library generator GENUS, which is 

organized as a hierarchy of generic component generators, component templates, and com­

ponent instances. Component instances from the GENUS library are used by high level 

synthesis systems to transform the abstract behavior of a design into an interconnection of 

generic components satisfying this behavior. Although existing hardware description 

languages such as VHDL are very good for describing component libraries, they lack the 

capability of generating these component libraries from a higher-level description. 

LEGEND complements a language such as VHDL by providing a component library 

generator-generator with behavioral models for simulation and. subsequent synthesis. The 

components in a LEGEND generated library have realistic register transfer semantics, 

including clocking, asynchrony and data bi-directionality. LEGEND is extensible, since its 

simple syntax allows users to add new component types or modify existing component types 

easily. The LEGEND generator-generator is currently implemented on SUN3's under 

C/UNIX and is used by a suite of behavioral synthesis tools at U. C. Irvine. 
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1. Introduction 

The task of high level synthesis involves the mapping of abstract behavioral design 

descriptions into structural designs composed of components drawn from a generic com­

ponent library. The synthesized structural design must functionally implement the abstract 

behavior under the set of high-level constraints given by the user. Once a feasible struc­

tural design of generic components is synthesized, it is passed on to a set oflogic and layout 

synthesizers to implement the design in a particular target technology (3-micron CMOS, for 

instance). With the the rapid advances in fabrication and layout technologies, it becomes 

increasingly important to insulate lower-level technological changes from higher-level design 

decisions, since these technology-specific designs become obsolete with even small changes 

in the technology. This creates a huge bottleneck in the design cycle, since the whole 

design process has to be restarted for every small change in the technology. A key to solv­

ing this design crisis in VLSI systems is technology independence: the concept of keeping 

higher level design descriptions and decisions independent of the target technology. High­

level synthesis systems use components drawn from a generic component library to effect 

this technology independence; structural designs composed of components drawn from a 

generic library can be re-targeted to different technologies at the backend, without having 

to redo the task of high-level synthesis. 

This paper describes a novel generator-generator language, LEGEND, for the 

definition, generation and maintenance of generic component libraries used in high level 

synthesis. LEGEND's simple syntax and strong register-transfer semantics, coupled with its 

extensibility, makes it a powerful language for facilitating efficient high-level synthesis. 
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- it is general; allows modeling of buses, storage elements, functional units and finite 

state controllers. 

This paper is organized as follows. Section 2 describes previous work on hard ware 

description languages, component generators and libraries. Section 3 briefly introduces the 

LEGEND language, and the semantics of the generated generic component library. Section 

4 illustrates how generic components and their instances are created and used. Section 5 

uses a simple example to show how components derived from LEGEND are simulated in 

VHDL. Section 6 concludes with the status of this research. 

2. Previous Work 

2.1. Hardware Description Languages 

Although a number of good hardware description languages have been described in 

the literature (DDL [DuDi67], AHPL [HiNa79], ISPS [Barb81), etc.), these have been used 

primarily for behavioral specification and synthesis; none of them have addressed the issue 

of how to describe, generate and maintain generic component libraries. 

More recently, VHDL [VHDL87] was proposed as a "standard" hardware description 

language for the specification and maintenance of design descriptions transcending several 

design levels including behavior, data-flow and micro-architectural structure. Although 

--
VHDL has good constructs for describing specific libraries and component instances, it 

does not have the capability of generating customized component libraries. In a high-level 

synthesis environment, what is lacking is a generator for VHDL component libraries. 

VHDL is also closely tied to a simulation model of computation, hence lacks several 
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Another problem with existing representations is that they treat "components", 

"wires", "ports", "buses", etc. differently. This limits the kinds of optimizations that can be 

performed by the synthesis tools. For instance, the concept of "unit merging" is similar to 

that of "bus merging", but these tasks are treated differently since "units" and "buses" have 

different rep re sen tations. 

Although components can perform several operations simultaneously, it is a difficult 

task to characterize operational simultaneity in a component for the task of synthesis. 

Since most behavioral languages have the notion of a single assignment operation, mapping 

an operation to a component that performs several operations simultaneously can be messy. 

This requires a many-to-one mapping from the language operators to the structural com­

ponent. In fact, the component may generate outputs for which there are no corresponding 

behavioral variables (the carry-out on an adder, for example). The other problem is the 

representation of costs for simultaneous operations performed by component. A carry-out 

on an adder component is obtained for no cost when the adder is explicitly performing an 

"add" operation in the language. However, if only the carry-out is required (without the 

sum), the cost of this operation is now that of the addition. Hence we need the notion of 

"operation classes" which is introduced in this paper. Operation classes permit the 

representation of simultaneous operations and combined costs for synthesis. 

Finally, many behavioral systems do not have explicit behavioral models for com­

ponents in the data base. This is essential if the user wishes to perform simulation to verify 

the correctness of a structural design. 
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[LiGa89], EXEL [DuGa89], MILO [VaGa88), etc.). This section describes the hierarchy in 

GENUS, the functions used to create and access elements in GENUS, and describes how a 

particular technology library may be used to restrict the generators to produce only those 

generic components that can be feasibly realized using that library. 

3.1.1. GENUS Hierarchy 

GENUS is organized into 4 levels of hierarchy, where each level inherits attributes 

from its parent level. This representation closely models a hierarchical object oriented 

database. 

Figure 1 shows a sample GENUS snapshot, where instances I1 through 15 are children 

of the class of 4-bit register components. The register components are generated from the 

class of register generators by specifying some or all of the register parameters (in this par­

ticular example, only the number of bits was specified). Finally, the register generator class 

belongs to the sequential type class, where all elements are activated by a clock 

The type class describes the abstract functionality of elements in GENUS. Sample 

type attributes include combinatorial, sequential, interface and miscellaneous. 

A generator class is used to generate a family of similar components and instances. 

LEGEND descriptions (described later in this section) are used to maintains lists of all the 

possible parameters, definitions for each operation performed by a generated component. 

A component is generated by passing a list of parameters to the parent LEGEND gen­

erator descriptor. For instance, in Figure 1, a 4-bit register component is generated by 

specifying the bit-width attribute to the register generator. All possible parameters for a 
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3.1.2. Using GENUS 

The most common operations performed on the generic component library are the 

creation of components and instances, and the querying of a GENUS library for various 

attributes. 

Since the library is organized hierarchically, any attempt to create a new component 

or instance must begin at the parent generator class. Functions for creating new com­

ponents are passed a parameter list; the parent generator class is searched to see if a com­

ponent is already generated by matching the parameter values. Similarly, the request to 

create a new instance of a component is passed a parameter list to the root generator class. 

If a component for this parameter list does not already exist, a new one is created. Finally, 

the instance itself is created. 

A variety of query functions access the GENUS database at each level. Queries may 

be initiated at the root (generator), or at a particular level of the hierarchy. For instance, 

a query to find the number of 4-bit registers instantiated in the database starts at the regis­

ter generator (the root of the register hierarchy) with the appropriately configured parame­

ter list. On the other hand, a query to check if instance 14 in Figure 1 has a RESET port 

begins at the instance level and necessitates a look-up of its parent's attribute list (the 4-bit 

register component) for the existence of a RESET port. 

When the cgmpleted structural (generic) design is to be mapped to a particular tech­

nology library, certain generic components may not exhibit a clean mapping to the 

corresponding technology library components. The task of performing this technology map­

ping can become very cumbersome unless the user provides technology specific hints to 

GENUS so that a only "feasible" set of components are generated for the particular 
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NAME: 
CLASS: 
MAX....PARAMS: 
PARAMETERS: 

NUM_8TYLES: 
STYLES: 
NUMJNPUTS: 
INPUTS: 
NUM_OUTPUTS: 
OUTPUTS: 
CLOCK: 
NUM...ENABLE: 
ENABLE: 

COUNTER 
Clocked 
7 
GC_COMPILER....NAME, GCJNPUT_WIDTH (%w), GC....NUM_FUNCTIONS, 
GC_FUNCTIONJ,IST, GC_8ET_ VALUE, GC_8TYLE, GC...ENABLE...FLAG 
2 
SYNCHRONOUS, RIPPLE 
1 
IO[%w] 
1 
OO[%w] 
OLK 

CEN 
NUM_CONTROL: 3 
CONTROL: CLOAD, CUP, CDOWN 
NUM....ASYNC: 2 
ASYNC: ASET, ARESET 
NUM_OPERATIONS: 3 
OPERATIONS: 

( 

VHDL_MODEL: 
OP _CLASSES: 

(LOAD) 
(INPUTS: 
(OUTPUTS: 
(CONTROL: 
(OPS: (LOAD: 
(COUNT_UP) 

IO) 
00) 
CLO AD) 
00 =IO))) 

(OUTPUTS: 00) 
(CONTROL: CUP) 
(OPS: (COUNT_UP: 00 = 00 + 1))) 
(COUNT_DOWN) 
(OUTPUTS: 00) 
(CONTROL: CD OWN) 
(OPS: (COUNT_DOWN: 00 = 00 - 1))) 
counter_vhdl.c 
default 

Figure 2. Sample LEG END Description For a Counter Generator 

3.2.2. aass 

Specifies if the generator is of type class clocked or combinational. When a component 

is clocked, certain semantics are associated with the ports on the component. 

The CLOCK entry specifies the name of the clock line(s) for the component (currently 

only one clock line is assumed). For edge-triggered components, the attribute 

"RISING_EDGE" or "FALLING_EDGE" indicates when the clock is active. 
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3.2.4. Styles 

The STYLES entry indicates the list of possible implementation styles for generating 

instances of the component. For the counter in Figure 0, the implementation styles are 

SYNCHRONOUS and RIPPLE. 

3.2.5. Ports 

Ports are specified under the INPUTS, OUTPUTS, INPUT_OUTPUTS, CONTROL, 

CLOCK, ASYNC and ENABLE entries. Ports specified under CONTROL, CLOCK, 

ASYNC and ENABLE are assumed to be one bit wide by default. For the INPUTS and 

OUTPUTS, each port has a bit-width specified within the "[" and "]" pair. A parameter­

ized variable (which starts with the character "% ") may be used when necessary. 

3.2.6. Operations 

Each operation that can be performed by a generated component is described by its 

name, input, output and control port information. 

3.2.7. VlIDL_MODEL 

The behavioral operation of a generated component is modeled in VHDL. This VHDL 

model is generated by the C routine indicated in this entry. The VHDL models are 

described further in section 5. 
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NAME: 
CLASS: 
MAXY ARAMS: 
PARAMETERS: 

MUX 
Oombina.t oriaJ 
5 
GO_COMPILER...NAME, GCJNPUT_WIDTH (%w), GC_NUMJNPUTS (%n), 
GO_ENABLEYLAG, GCJNVERTYLAG 

NUMJNPUTS: %n 
INPUTS: &get_component_pinJta.me_list(MUX, INPUT, %n, %w) 
NUM_OUTPUTS: 1 
OUTPUTS: OO[%w] 
NUM_CONTROL: %n 
CONTROL: &get_component_pinJtame_list(MUX, CONTROL, %n, 1) 
NUM_ENABLE: 1 
ENABLE: OEN 
NUM_OPERATIONS: %n 
OPERATIONS: 

macro_expand ($i = 0 to %n-1) 
{ 

( ( &get_componen tJunction(MUX, $i)) 

} 
VHDL_MODEL: 
OP _CLASSES: 

(INPUTS: &get_component_pinJtame(MUX, INPUT, $i)) 
(OUTPUTS: 00) 
(CONTROL: &get_component_pinJtame(MUX, CONTROL, $i)) 
(OPS: ( 00 = &get_component_pin_name(MUX, INPUT, $i)))) 

mux_vhdl.c 
default 

Figure 3. Macro-Expand Feature 

3.2.10. Estimation Functions 

The initial version of each generated GENUS generic component library use estimators 

derived from Chippe's model of function units [BrGa87]. Functions for area, speed and 

power return estimates based on the size, functionality and bit-width of a generated com-

ponent. 

4. LEGEND: Semantics and Usage 

As mentioned earlier, LEGEND-generated components in the GENUS library belong 

one of several type classes, based on their properties and/or functions. This section 

describes the semantics, assumptions and naming conventions associated with these com-

ponents. It then describes how components and instances can be accessed. 
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4.4. Combinatorial C.Omponents 

Figure 4 shows a table of combinatorial components available in the generic com­

ponent library. Both primitive logic gates and bit-wise logic gates are described in the 

table. Except for the primitive and bit-wise logic gates, each component has an optional 

enable input. The logic unit (LU) performs all 16 possible logical functions of two inputs. 

The MUX component selects input l<i> when control line C<i> is high, and permits the 

generation of an inverted output. The selector component chooses the input whose guard 

value matches the value on the single input line ISEL. The DECODER takes an n-bit 

input and outputs 2n single bit lines, where line i is 1 when the input equals the value of i. 

Conversely, and ENCODER component takes 2n boolean inputs and produces n encoded 

outputs (where the encoding is determined by the encoder type). The COMPARATOR, 

SHIFTER, ADD_SUB, MULT and DIV components are self-explanatory. The ALU can 

perform four arithmetic, five comparison and all sixteen logical operations. At the time of 

instantiation, a subset of these functions may be chosen for implementation. 

4.5. Sequential Components 

Figure 5 shows the list of available sequential components. As mentioned earlier, each 

sequential component is assumed to have a port named "CLK". If asynchronous ports exist 

for the component, they override the clocked, synchronous behavior of the component. A 

register component may have the positive output "OQ", the negated output "OQN" or both 

outputs generated. Both registers and counters must have a set-value specified at instan­

tiation time. The counter component can count up and down, besides doing a synchronous 

load and an asynchronous set and reset. For the register-file component, each port pair 
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LIST OF SEQUENI'I.AL OOMPONEN'IS 

Type Functions Data-~o control async attributes 
Register load, shl, shr, Io, LIN, RIN: input, CLOAD, CSHL, A CLEAR, #bits, .t'rns, 

OQ, OQN: output CSHR, CEN ASET type, set-val, en 
OQ?, OQN? 

Counter load, up, IO: input CLOAD, CUP, A CLEAR #bits, .t'rns, 
down, clear, 00: output CDOWN, OEN ASET set-val, style, 
set type, enable 

Register File IO, .. ,I< n-1> CRo,cwo, .. #bits, #words 
IAO, .. ,IA<n-1> CR<n-1> ,CW<n-1> .t'ports, 

port_a.ttr, en 

Stack/ push, pop IO: input, CPU SH, #bits, #words, 
FIFO 00: output CPOP,CEN type, enable 

Memory read, write IO, IADDR, CWRITE, CREAD, #bits, #words, 
IA_ VALID: input CEN enable 
OD_READY, 
00: output 

Figure 5. Sequential Components 

(I<i> ,O<i>) has associated with it an address line A<i>, and a port-attribute which 

indicates if that port is of type input, output or bidirectional. 

4.6. Interface and :rv.Iiscel1aneous Components 

Figure 6 shows the list of interface, bus, switchbox, clock and delay components. An 

interface component has several attributes that describes its function 

(buffer/ clock_driver / ... ), mode (input/output/ ... ), level (CMOS/TTL/ ... ), 

output_type(inverting/non-inverting) and drive (L/M/H). The port component models 

ports on a design, with the attributes number_of_bits and port_m.ode. The port component 

is useful in constructing a hierarchy of designs. The BUS and WIRED-OR components are 

similar, except that the the BUS component has tristate drivers at each input to the bus. 

CONCAT and EXTRACT components simply model switchbox operations for merging 

streams of data and extracting substreams of data. At present, the clock generator com-

ponent is used for modeling a very simple system clock, using the attributes clock-period 

and duration-high. The DELAY component is used to model a delay element on a logic 
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component or instance). A set of standard query routines can be applied to the object to 

extract any attribute or characteristic for it. Figure 8 shows a sample call used to generate 

an instance of an ALU. The arguments in the call consist of pairs of reserved global sym-

bols (which begin with the letters "GC_") and the appropriate value or list. The size of a 

list must always precede the list itself. For instance, in Figure 8, GC_NUMJ'UNCTIONS 

is assigned the value "8" before specifying the GCJ'UNCTION_LIST which consists of 8 

operations that the ALU instance will perform. Figure 9 and Figure 10 show the list of glo-

bal symbols reserved for indicating the type of argument specified in a call, together with 

their possible values. Appendix A in [Dutt88] has a complete list of generator calls for all 

the generic components. 

5. VHDL Models for LEGEND Descriptions 

LEGEND generates VHDL models for specifying the behavior of generated com-

ponents. LEGEND thus complements and overcomes a deficiency in VHDL by providing ai 

generator-generator language for VHDL component libraries. These VHDL models can be 

used for functional simulation of synthesized register-transfer designs, and can also be used 

for lower-level synthesis of individual components at the logic and gate levels. 

get_gc_instance( 

September 19, 1988 

0) 

GC_COIY.IPILER...NAME, ALU, 
GC_BIT_WIDTH, 16, 
GC__NUM_FUNCrIONS, 8, 
GC_E'UNCTION_LIST, +, -, INC, DEC, >, <, =, AND, 
GC_ENABLE_FLAG, FALSE, 
GC_8TYLE, CLA, 

Figure 8. Sample ALU Instance Call 
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GENERIC OOMPONENT GLOBALS 

Name Possible Value:i Default Value 

GO_DECODER_TYPE GC_BINARY, GC_l3CD GC_BINARY 

GO_ENCODER_TYPE GC_BINARY, GC_l3CD GC_BINARY 

GC_REGISTER_TYPE GC_LATCH, GC_D_F'F GC.J)_F'F 

GO_COUNTER_TYPE GC_BINARY, GC_BCD, GC_JOHNSON, GC_GRAY GC_BINARY 

G0_8TACK_TYPE GC_8TACK, GC_F'IFO 

G0_8HIFT_MODE GC_F'ILL, GC_EXTEND GCYILL 

G O_F'ILLJNPUT O, 1 0 

GO_SHIFT_DISTANCE <integer> 

GO_OLOCKYERIOD <integer> 

GO_OLOCKJIIGH <integer> 

GO_DELAY_VALUE <integer> 

GO_LEFTJNDEX <integer> 

GO_RIG HTJND EX <integer> 

GOJNTERF ACE_F'UNOTION GO_BUFFER, GC_OLOCK_DRIVER, GC_8CHMIDT, GO_TRISTATE 

GCJNTERFACE_MODE GCJNPUT, GC_OUTPUT, GC_BIDIRECTIONAL 

G OJNTERF ACE_LEVEL GC_CMOS, GO_TTL, GC_EOL 

GCJNTERF ACE_DRIVE GC_LOW, GC_MEDIUM, GCJiIGH 

GO_F' AN_OUT <integer> 

GO_SET_VALUE <integer> 

GC_OOUNTER_MODE GC_8YNCHRONOUS, GC_RIPPLE GC_8YNOHRONOUS 

GO_REGYOS_OUT TRUE, FALSE TRUE 

GO_REGJNVERT OUT TRUE, FALSE FALSE 

Figure 10. List of Compiler Global Symbols (Cont'd) 

A typical VHDL model generated for a 4-bit up/down counter is shown in Figure 11. 

These VHDL models are currently simulated on the Vantage VHDL simulator [Van.t89]. 

6. Summary 

This paper described the features of LEGEND, a novel language used to define, gen-

erate, maintain, and upgrade generic component libraries used in high level synthesis. 

LEGEND provid~s a powerful generator-generator environment with a consistent hierarchi-

cal organization of generic components and instances. LEGEND complements VHDL, a 

standard hardware description language, by providing a library generator facility. Each 

generated component has a simulatable VHDL model generated for it. The semantics of 

LEGEND model register-transfer behavior such as asynchrony and clocking realistically. 
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gen_vhdl 

gen_op _cla.sses 

gen_op _cla.ssJist 

op_cla.ss 

cla.ssJist 

cla.ssJist_i. tem 

September 19, 1988 

identifter 

shiftop_bina.ry 
rel op 
relop_two 
band 
bxor 
bor 
and 
xor 
or 
not 
TINO 
TDEC 
TC LEAR 
TSET 
TUSHL 
CASE 
IF 
identifier 

I identifier DOT identifier 

TOP _CLASSES COLON gen_op_classJist 
TOP _CLASSES COLON DEF AULT 
empty 

gen_op_classJist comma op_class 
I op_class 

LP AREN cla.ssJist RP AREN 

cla.ssJist comma. classJist_i.tem 
I cla.ssJist_i.tem 

gen_op 
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