UC Irvine
ICS Technical Reports

Title
LEGEND : a language for generic component library description

Permalink
https://escholarship.org/uc/item/32a04v7gx

Author
Dutt, Nikil D.

Publication Date
1988-09-19

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/32q4v7qx
https://escholarship.org
http://www.cdlib.org/

61f
a7,
(S

ho, §7-29

LEGEND : A LANGUAGE FOR

GENERIC COMPONENT LIBRARY DESCRIPTION

BY
NIKIL D. DUTT

Technical Report 89-29

Information and Computer Science
University of California at Irvine
Irvine, CA 92717

Keywords

Hardware Description Languages, High Level Synthesis,
Generator-Generator Languages, Design Component Data-
bases.

Abstract

This paper describes a novel generator-generator language, LEGEND, for the
definition, generation and maintenance of generic component libraries used in high level
synthesis. Each LEGEND description generates a library generator GENUS, which is
organized as a hierarchy of generic component generators, component templates, and com-
ponent instances. Component instances from the GENUS library are used by high level
synthesis systems to transform the abstract behavior of a design into an interconnection of
generic components satisfying this behavior. Although existing hardware description
languages such as VHDL are very good for describing component libraries, they lack the
capability of generating these component libraries from a higher-level description.
LEGEND complements a language such as VHDL by providing a component library
generator-generator with behavioral models for simulation and subsequent synthesis. The
components in a LEGEND generated library have realistic register transfer semantics,
including clocking, asynchrony and data bi-directionality. LEGEND is extensible, since its
simple syntax allows users to add new component types or modify existing component types
easily. The LEGEND generator-generator is currently implemented on SUN3’s under

C/UNIX and is used by a suite of behavioral synthesis tools at U. C. Irvine.

LEGEND

TABLE OF CONTENTS

CHAPTER
1. INBroduction ..uiieioiiieieiriiiiini e e e e r e e n 1
2. Previotus WOork ... s 3
2.1. Hardware Description Languagescccccovvviiniieeriiiinininieeennininnnnneeeee e 3
2.2. Generic Component Characterizationcccceeeririinienneieniinnneneeeesannns 4
2.3. Related WOTKooooiiiiiiiiiiiiicriir et serareae e e e ee e e 6
3. LEGEND: The Generator-Generatorcc.ccccccvvriiiiiiieniieeniniinnieerenerereeeeenens 6
3.1. GENUS System OVEIVIEWcccouviiiiiiiiiieiiiiiniiicriereiiniieeesnoneerenesrees 6
3.2. LEGEND OVEIVIEW ...ooviiviuiriiiiiiiiiiiiiiieenieeesesinieetesesssissneseessssisnsnssesees 10
4. LEGEND: Semantics and USAgecccevvirimuiiiiiiiiiniiiiniitinneessnnineeensnneeeens 15
4.1. Port Naming Conventionccccovvmiiiiiiiiinirinineeeiniinennn, e 16
4.2, Port Semanticsccvvviviiiiiiiiiiiiiieiii e e 16
4.3. Component Controlccooieiiiiuvuirnuieinrririerierreerreeeriieseesinnsssersarraenne 16
4.4. Combinatorial Componentscccccovviiiuiiriiierririsiierrieeiinreesesseesssennns 17
4.5. Sequential Componentscccccevvvvumirrurniieinririeerreeeniee. e 17
4.6. Interface and Miscellaneous Componentscovvevireerninenrereernensinnnee 19
4.7. Accessing COIMPOIENTS ...veviiririereirieiienenireeeaniieeessnneessemeresenineeesssisenees 20
5. VHDL Models for LEGEND DeScriptionsccceeeeevrierieerineeniinneeersnsssssienens 21
B. SUININATY .eeivivrriiierereiiinneiiaieeseeoisressesissseessssiaseessasssesessssesssrssresssssseesssnsnessens 23
7. Acknowledgementsccoviveiiniiiiniiiiiiiin i 25
8. REfETenCES . ivviviiiiiiiiiriiieec e s e e e 25
9. APPENDIX A: LEGEND SYNTAX iiiiiiriiiiinerniinesesierin et sninee e snnanees 26

September 19, 1988 LEGEND Page i

LIST OF FIGURES

Figure 1. Hierarchy in GENTUS ...ccioiiiiiiiiiiiirtetirrneretie e e sree s enaenn st sra s snnen 8
Figure 2. Sample LEGEND Description For a Counter Generator

.. 11
Figure 3. Macro-Expand Feature
.. 15
Figure 4. Combinatorial Components
.. 18
Figure 5. Sequential Components
.. 19
Figure 6. Interface and Miscellaneous Components
.. 20
Figure 7. Generic Component Access: General FOImcccvvvveeveeeeenesensenennn, 20
Figure 8. Sample ALU Instance Callcccccveeuiiievuiviriiieieiiecereeseeeeeeeee e 21
Figure 9. List of Compiler Global Symbols
.. 22
Figure 10. List of Compiler Global Symbols (Cont’d)
.. 23
Figure 11. Generated VHDL Model for 4-Bit Up/Down Counter
.. 24

September 19, 1988 LEGEND Page ii

1. Introduction

The task of high level synthesis involves the mapping of a,bs;tract behavioral design
descriptions into structural designs composed of components drawn from a generic com-
ponent library. The synthesized structural design must functionally implement the abstract
behavior under the set of high-level constraints given by the user. Once a feasible struc-
tural design of generic components is synthesized, it is passed on to a set of logic and layout
synthesizers to implement the design in a particular target technology (3-micron CMOS,Afor
instance). With the the rapid advances in fabrication and layout technologies, it becomes
increasingly important to insulate lower-level technological changes from higher-level design
decisions, since these technology-specific designs become obsolete with even small changes
in the technology. This creates a huge bottleneck in the design cycle, since the whole
design process has to be restarted for every small change in the technology. A key to solv-
ing this design crisis in VLSI systems is technology independence: the concept of keeping
higher level design descriptions and decisions independent of the target technology. High-
level synthesis systems use components drawn from a generic component library to effect
this technology independence; structural designs composed of components drawn from a

generic library can be re-targeted to different technologies at the backend, without having

to redo the task of high-level synthesis.

This paper describes a novel generator-generator language, LEGEND, for the
definition, generation and maintenance of generic component libraries used in high level
synthesis. LEGEND’s simple syntax and strong register-transfer semantics, coupled with its

extensibility, makes it a powerful language for facilitating efficient high-level synthesis.

September 19, 1988 LEGEND Page 1

Each generic component from a generated library is instantiated by specifying its
parameters which define its structural, operational and performance attributes. Typical
parameters include the component’s style (eg. slow or fast), functionality (eg. add and
increment for an arithmetic unit), input-output characteristics (ports on the component),
size (eg. number of words for a memory), bit-width and representation (eg. two’s comple-
ment). Hence each LEGEND generator is a template for a generic microarchitectural com-
ponent; depending on the design requirements, components may be built from these tem-

plates by supplying the necessary parameters.

There are several advantages in maintaining a library of generic components:

- generic components are functionality generators.

- they provide a truly “"generic” view of structural elements; this makes the task of
behavior-to-structure synthesis independent of technological details.

- it permits efficient synthesis_ by generating the structure for only the functionality
desired (for example, only the ADD and AND functions for an ALU).

- details of control encoding for components can be hidden from behavioral synthesis
by requiring one control line per function; a technology mapper and logic optimizer
can perform the encoding later.

- each component has associated functions that return estimates for area, power and
delay based_on the parameters used to invoke a component; this permits feedback of
low-level information.

- it hides technology dependence of component implementation.

- it simplifies retargetting of a design to new libraries.

- it is extensible; new component types can be characterized and added to the library.

September 19, 1988 LEGEND Page 2

- it is general; allows modeling of buses, storage elements, functional units and finite

state controllers.

This paper is organized as follows. Section 2 describes previous work on hardware
description languages, component generators and libraries. Section 3 briefly introduces the
LEGEND language, and the semantics of the generated generic component library. Section
4 illustrates how generic components and their instances are created and used. Section 5
uses a simple example to show how components derived from LEGEND are simulated in

VHDL. Section 6 concludes with the status of this research.
2. Previous Work

2.1. Hardware Description Languages

Although a number of good hardware description languages have been described in
the literature (DDL [DuDi67], AHPL [HiNa79], ISPS [Barb81], etc.), these have been used
primarily for behavioral specification and synthesis; none of them have addressed the issue

of how to describe, generate and maintain generic component libraries.

More recently, VHDL [VHDL87] was proposed as a “"standard"” hardware description
language for the specification and maintenance of design descriptions transcending several
design levels including behavior, data-low and micro-architectural structure. Although
VHDL has goodﬂ constructs for describing specific libraries and component instances, it
does not have the capability of generating customized component libraries. In a high-level
synthesis environment, what is lacking is a generator for VHDL com.ponent libraries.

VHDL is also closely tied to a simulation model of computation, hence lacks several

September 19, 1988 LEGEND Page 3

hardware semantics at the register transfer level.

2.2. Generic Component Characterization

Abstract component characterization is an important task in high level synthesis, since
these component models determine the "goodness” of a synthesized design. Currently, most
behavioral synthesis systems use a two level representation for the component data base.
The parent level describes the components with their attributes and characteristics, while
the lower level describes instances duplicated from these components, possibly with some
limited amount of parameterization for the size or bit-width [McPC88]. For instance, an
ALU component can be instantiated with a specified bit-width, but the functions performed
by the ALU are fixed. This two-level representation is not powerful enough to handle more
general types of components which have almost all of their attributes (including functional-
ity and structural ports) parameterized. A hierarchical representation, using the notion of
of "types", "generators”, "components” and "instances" introduced in this paper, overcomes

this problem.

Quite often, the component data base is embedded within the synthesis system as part
of the synthesis code. This makes the task of generic library management cumbersome.
Since there is no clean separation between the synthesis code and the underlying com-
ponent database, modification of an existing component or addition of a new component
necessitates rewriting parts of the synthesis code. Furthermorc;, since the models of these
components are often tied to a particular technology library, a lot of effort is required to
retarget the components to a new technology library. What is desired is a clean separation

between the synthesis tasks and the components used for synthesis.

September 19, 1988 LEGEND Page 4

Another problem with existing representations is that they treat "components",
"wires", "ports”, "buses”, etc. differently. This limits the kinds of optimizations that can be
performed by the synthesis tools. For instance, the concept of "unit merging" is similar to

that of "bus merging", but these tasks are treated differently since "units" and "buses” have

different representations.

Although components can perform several operations simultaneously, it is a difficult
task to characterize operational simultaneity in a component for the task of synthesis.
Since most behavioral languages have the notion of a single assignment operation, mapping
an operation to a component that performs several operations simultaneously can be messy.
This requires a many-to-one mapping from the language operators to the structural com-
ponent. In fact, the component may generate outputs for which there are no corresponding
behavioral variables (the carry-out on an adder, for example). The other problem is the
representation of costs for simultaneous operations performed by component. A carry-out
on an adder component is obtained for no cost when the adder is explicitly performing an
"add" operation in the language. However, if only the carry-out is required (without the
sum), the cost of this operation is now that of the addition. Hence we need the notion of
“operation classes" which is introduced in this paper. Operation classes permit the

representation of simultaneous operations and combined costs for synthesis.

Finally, many behavioral systems do not have explicit behavioral models for com-

ponents in the data base. This is essential if the user wishes to perform simulation to verify

the correctness of a structural design.

September 19, 1988 LEGEND Page 5

2.3. Related Work

Similar work on hierarchical library generator-generators has been described at lower
levels of the design process. At the layout level, DPL [BaHa80] provided an object-oriented
hierarchical representation of layout (cell) objects. Palladio [BrTF83] describes another
object-oriented representation to model designs across a number of design levels; however,
it was never used in any synthesis environment. More recently, Fred [Wolf89] describes an
interesting object-oriented approach for representing designs and constraints at the module
and layout level. Fred uses the ETHEL language to describe a module’s physical and lay-
out characteristics. None of this work has examined the representation of generic com-

ponent libraries for high level synthesis and generators for such libraries.

3. LEGEND: The Generator-Generator

LEGEND is a language used to generate a particular instance of a generic component
library, GENUS [Dutt88], for use in a high-level synthesis system. To understand the syn-
tax and semantics of LEGEND, it is necessary to understand the organization of a typical
GENUS component library. This section will briefly outline the GENUS organization and

its semantics, before describing the LEGEND language.

3.1. GENUS System Overview

Every high:ievel synthesis system uses an implicit or explicit generic component
library. The abstract behavior of the design is implemented as a structural realization of
interconnected component instances drawn from this generic library. GENUS is hierarchi-

cal generic component library used by several high-level synthesis tools at U.C. Irvine (VSS

September 19, 1988 LEGEND Page 6

[LiGa89], EXEL [DuGa89], MILO [VaGa88], etc.). This section describes the hierarchy in
GENUS, the functions used to create and access elements in GENUS, and describes how a
particular technology library may be used to restrict the generators to produce only those

generic components that can be feasibly realized using that library.

3.1.1. GENUS Hierarchy

GENUS is organized into 4 levels of hierarchy, where each level inherits attributes

from its parent level. This representation closely models a hierarchical object oriented

database.

Figure 1 shows a sample GENUS snapshot, where instances I1 through I5 are children
of the class of 4-bit registe;‘ components. The register components are generated from the
class of register generators by specifying some or all of the register parameters (in this par-
ticular example, only the number of bits was specified). Finally, the register generator class

belongs to the sequential type class, where all elements are activated by a clock.

The type class describes the abstract functionality of elements in GENUS. Sample

type attributes include combinatorial, sequential, inter face and miscellaneous.

A generator class is used to generate a family of similar components and instances.
LEGEND descriptions (described later in this section) are used to maintains lists of all the

possible parameters, definitions for each operation performed by a generated component.

A component is generated by passing a list of parameters to the parent LEGEND gen-
erator descriptor. For instance, in Figure 1, a 4-bit register component is generated by

specifying the bit-width attribute to the register generator. All possible parameters for a

September 19, 1988 LEGEND Page 7

TYPES

Combinatorial Sequential Interface Miscellaneous
Y v v

y .

l 1 1 1 GENERATORS
Counter Register
Y

(param: #bits = 8) COMPONENTS
Y

ol o 13 14 15 INSTANCES

Figure 1. Hierarchy in GENUS

particular generator need not be specified; missing parameters are assigned default values.

Instances are "carbon-copies” of a generated component, with unique names. These
GENUS elements are the ones actually used for connectivity in the structural design. Since
an instance inherits all of its attributes from the parent component, only the connectivity of

the instance is stored in its representation.

September 19, 1988 LEGEND Page 8

3.1.2. Using GENUS

The most common operations performed on the generic component library are the
creation of components and instances, and the querying of a GENUS library for various

attributes.

Since the library is organized hierarchically, any attempt to create a new component
or instance must begin at the parent generator class. Functions for creating new com-
ponents are passed a parameter list; the parent generator class is searched to see if a com-
ponent is already generated by matching the parameter values. Similarly, the request to
create a new instance of a component is passed a parameter list to the root generator class.

If a component for this parameter list does not already exist, a new one is created. Finally,

the instance itself is created.

A variety of query functions access the GENUS database at each level. Queries may
be initiated at the root (generator), or at a particular level of the hierarchy. For instance,
a query to find the number of 4-bit registers instantiated in the database starts at the regis-
ter generator (the root of the register hierarchy) with the appropriately configured parame-
ter list. On the other hand, a query to check if instance I4 in Figure 1 has a RESET port
begins at the instance level and necessitates a look-up of its parent’s attribute list (the 4-bit

register component) for the existence of a RESET port.

When the completed structural (generic) design is to be mapped to a particular tech-
nology library, certain generic components may not exhibit a clean mapping to the
corresponding technology library components. The task of performing this technology map-
ping can become very cumbersome unless the user provides technology specific hints to

GENUS so that a only "feasible" set of components are generated for the particular

September 19, 1988 LEGEND Page 9

technology library.

This task is accomplished through the technology library restrictor, which prunes the
parameter list for a generator so that only "well-behaved” generic components are gen-

erated.

3.2. LEGEND Overview

A LEGEND description uses a special notation for describing individual generic com-
ponent generators. Each generic component generator is characterized by a unique name
and a list of attributes describing the type class, implementation styles, parameters, port
information and functionality. The LEGEND description can be tailored to a particular
generic component library by specifying the necessary component generator types. In addi-
tion, ;ach component generator can produce simulatable VHDL behavioral models for the
generated components; these models can be used to verify the behavior of a synthesized
design. The LEGEND library description is parsed into the internal data structures used to
represent the GENTUS library. Appendix A contains the complete syntax of the LEGEND
language; we will use Figure 2 to show the LEGEND definition for a counter generator,
which will be used as a running example in this section. The ports for a component are
categorized into data inputs (INPUTS) outputs (OUTPUTS), while control-specific ports

are listed under CLOCK, ENABLE, CONTROL and ASYNC entries.

3.2.1. Name

This specifies a unique name for a generator.

September 19, 1088 LEGEND Page 10

NAME: COUNTER

CLASS: Clocked

MAX_PARAMS: 7

PARAMETERS: GC_COMPILER_NAME, GC_INPUT_WIDTH (%w), GC_NUM_FUNCTIONS,
GC_FUNCTION_LIST, GC_SET_VALUE, GC_STYLE, GC_ENABLE_FLAG

NUM_STYLES: 2

STYLES: SYNCHRONOQUS, RIPPLE
NUM_INPUTS: 1
INPUTS: 10{%w]
NUM_OUTPUTS: 1
OUTPUTS: 00[%w]
CLOCK: CLK
NUM_ENABLE: 1
ENABLE: CEN
NUM_CONTROL: 3
CONTROL: CLOAD, CUP, CDOWN
NUM_ASYNC: 2
ASYNC: ASET, ARESET
NUM_OPERATIONS: 3
OPERATIONS:
((LOAD)
(INPUTS: 10)
(OUTPUTS: 00)
(CONTROL: CLOAD)
(OPS: (LOAD: 00 = I0)))
((COUNT_UP)
(OUTPUTS: 00)
(CONTROL: CUP)
(OPS: (COUNT_UP: 00 = 00 + 1))
((COUNT_DOWN)
(OUTPUTS: 00)
(CONTROL: CDOWN)

(OPS: (COUNT_DOWN: 00 = 00 - 1)))
VHDL_MODEL: counter_vhdl.c
OP_CLASSES: default

Figure 2. Sample LEGEND Description For a Counter Generator

3.2.2, Class

Specifies if the generator is of type class clocked or combinational. When a component

is clocked, certain semantics are associated with the ports on the component.

The CLOCK entry specifies the name of the clock line(s) for the component (currently
only one clock line is assumed). For edge-triggered components, the attribute

"RISING_EDGE" or "FALLING_EDGE" indicates when the clock is active.

September 19, 1988 LEGEND Page 11

The ENABLE attribute, when assigned a port name, activates the component for
clocked behavior. For instance, in Figure 0, the counter exhibits synchronous operation
only when CEN is high. If no port is specified for the ENABLE entry, a clocked com-

ponent is assumed to be enabled all the time.

The CONTROL attributes specify the clocked control with one line per function. For
instance, the counter in Figure 0 has separate lines for the synchronous operations LOAD,

COUNT_UP and COUNT_DOWN.

The ASYNC ports specify control lines that invoke asynchronous behavior: they over-
ride any clocked control that may be simultaneously active. For example, the ASET port

in Figure 0 is an asynchronous set line for the counter.

The semantics of the CLOCK, ENABLE, CONTROL and ASYNC lines are implicit in

the definition of a component.

For combinational generators, there are no entries under CLOCK and ASYNC in the
table. The ENABLE entry is optional; if it is specified, a component is generated with an
enable line. For combinational generators exhibiting multi-function behavior, each function

is assigned a unique CONTROL line.

3.2.3. Parameters

The MAX_PARAMS and PARAMETERS entries indicate the number and global
symbols used to describe the generic generator. For the counter in Figure 0, the
parameterized input width is represented by the variable "%w"; this variable is used in the

rest of the component description as a parameterized variable.

September 19, 1988 LEGEND Page 12

3.2.4. Styles

The STYLES entry indicates the list of possible implementation styles for generating

instances of the component. For the counter in Figure 0, the implementation styles are

SYNCHRONOUS and RIPPLE.

3.2.5. Ports

Ports are specified under the INPUTS, OUTPUTS, INPUT_OUTPUTS, CONTROL,
CLOCK, ASYNC and ENABLE entries. Ports specified under CONTROL, CLOCK,
ASYNC and ENABLE are assumed to be one bit wide by default. For the INPUTS and
OUTPUTS, each port has a bit-width specified within the "[" and "]" pair. A parameter-

ized variable (which starts with the character "%") may be used when necessary.

3.2.6. Operations

Each operation that can be performed by a generated component is described by its

name, input, output and control port information.

3.2.7. VHDL_MODEL

The behavioral operation of a generated component is modeled in VHDL. This VHDL

model is generated by the C routine indicated in this entry. The VHDL models are

described further in section 5.

September 19, 1988 LEGEND Page 13

3.2.8. Op_classes

Each entry here describes the list of possible operations that may be performed in
parallel for the generated component. We can associate cost functions for implementing
any combination of these operations in each OP_CLASS. This permits realistic modeling of
structural components. A “"default” op.class indicates that each operation is mutually

exclusive and cannot be performed simultaneously with any other operation.

3.2.9. Macro Expansion and Port Naming

For generated components that have a parameterizable number of ports (or opera-
tions), the list of port names are generated by calling special functions that return a name
or a list of names. These function names start with the special symbol "&" to distinguish
them from other names in the table. Similarly, the operations perfbrmed by a component
may depend on some arguments of the parameter list. Hence the "macro-expand" feature is
used to describe this functionality. Figure 3 shows a sample definition for a MUX com-
ponent. The index of the macro-expand loop is a variable whose name begins with a "$".
Note that in the parameter list, the input width and the number of inputs are parameter-
ized (and represented by %w and %n respectively). Since the input port names depend on
the number of inputs, we use the function "&get_component_pin_name_list" to generate

the list of pin-names for the MUX inputs.

Further, in dFigure 2, the operation of the MUX component is dependent on the
number of inputs and the input and control port names, all of which are parameterized.
Hence we use the macro-expand feature to describe the functionality by looping through

every input and control pair.

September 19, 1988 LEGEND Page 14

NAME: MUX

CLASS: Combinatorial

MAX_PARAMS: 5

PARAMETERS: GC_COMPILER_NAME, GC_INPUT_WIDTH (%w), GC_NUM_INPUTS (%n),
GC_ENABLE_FLAG, GC_INVERT_FLAG

NUM_INPUTS: %n

INPUTS: &get_compornent_pin_name_list(MUX, INPUT, %n, %w)
NUM_OUTPUTS: 1

QUTPUTS: 00[%w]

NUM_CONTROL: %n

CONTROL: &get_component_pin_name_list(MUX, CONTROL, %n, 1)
NUM_ENABLE: 1

ENABLE: CEN

NUM_OPERATIONS: %n

OPERATIONS:

macro_expand ($i = 0 to %n-1)

((&get_component_function(MUX, $i))

(INPUTS: &get_component_pin_name(MUX, INPUT, $i))
(OUTPUTS: 00)

(CONTROL: &get_component_pin_name(MUX, CONTROL, §i))
(OPS: (00 = &get_component_pin_name(MUX, INPUT, $i))))

}
VHDL_MODEL: mux_vhdl.c

OP_CLASSES: default

Figure 3. Macro-Expand Feature

3.2.10. Estimation Functions

The initial version of each generated GENUS generic component library use estimators
derived from Chippe’s model of function units [BrGa87]. Functions for area, speed and

power return estimates based on the size, functionality and bit-width of a generated com-

ponent,

4. LEGEND: Semantics and Usage

As mentioned earlier, LEGEND-generated components in the GENUS library belong
one of several type classes, based on their properties and/or functions. This section
describes the semantics, assumptions and naming conventions associated with these com-

ponents. It then describes how components and instances can be accessed.

September 19, 1988 LEGEND Page 15

4.1. Port Naming Convention

Ports on each component are categorized into data input, data output, data input-
output, control, asynchronous, enable and clock types. Input ports names begin with an
“I", output port names begin with an "Q", input-output port names begin with a “B" (for
Bidirectional), control and enable port names begin with a "C", the clock is labeled "CLK",

while async ports begin with an "A".

4.2. Port Sermntics

Sequential components are assumed to have a clock input; synchronous operations are
performed when the clock is high and the enable line (if any) is high. Asynchronous opera-
tions override the clocked operations. For combinatorial components, there is no port of
type‘"CLOCK"; operations are inhibited only if the associated "ENABLE" line for the com-

ponent is low. Non-sequential components do not have asynchronous ports.

4.3. Component Control

In our model of a generic component, a multi-operation component has a separate con-
trol line for each operation. This feature makes each component in a generated library
truly generic, since the task of control encoding is left to a technology mapper at the time
of circuit realization. Because of this assumption, a component which is controlled by a
line wider than a single bit has this control line labeled as an input. An example is the
select input for a SELECTOR component which is wider than a single bit for more than 2
data inputs; this line is labeled "ISEL" and is treated as an input port. for consistency.

Similarly, the address lines for memories and register files are treated as inputs.

September 19, 1988 LEGEND Page 16

4.4. Combinatorial Components

Figure 4 shows a table of combinatorial components available in the generic com-
ponent library. Both primitive logic gates and bit-wise logic gates are described in the
table. Except for the primitive and bit-wise logic gates, each component has an optional
enable input. The logic unit (LU) performs all 16 possible logical functions of two inputs.
The MUX component selects input I<i> when control line C<i> is high, and permits the
generation of an inverted output. The selector component chooses the input whose guard
value matches the value on the single input line ISEL. The DECODER takes an n-bit
input and outputs 2" single bit lines, where Hné iis 1 when the input equals the value of i.
Conversely, and ENCODER component takes 2" boolean inputs and produces n encoded
outputs (where the encoding is determined by the encoder type). The COMPARATOR,
SHIFTER, ADD_SUB, MULT and DIV components are self-explanatory. The ALU can
perform four arithmetic, five comparison and all sixteen logical operations. At the time of

instantiation, a subset of these functions may be chosen for implementation.

4.5. Sequential Components

Figure 5 shows the list of available sequential components. As mentioned earlier, each
sequential component is assumed to have a port named "CLK". If asynchronous ports exist
for the component, they override the clocked, synchronous behavior of the component. A
register component may have the positive output "OQ", the negated output "OQN" or both
outputs generated. Both registers and counters must have a set-value specified at instan-
tiation time. The counter component can count up and down, besides doing a synchronous

load and an asynchronous set and reset. For the register-file component, each port pair

September 19, 1988 LEGEND Page 17

LIST OF COMBINATORIAL w
Type Functions Data I/0 Control Attributes
Logic GAND, GOR, 10: input #input bits
Gates GNAND, GNOR | 00: output
(Single) GXOR, GXNOR
GNOT
Bitwise AND, OR, I0..I<n-1>:input #inputs (n)
Logic NAND, NOR 00: output #bits
Gates XOR, XNOR
Logic ZERO, ONE 10,11: input CZERO, CONE #input bits,
Unit AND, NAND 00: outpat CAND, CNAND #functions,
RINHI(xy") CRINHI func. list
LNOT, LID CLNOT, CLID
LINHI(xy) CLINHI
RID(y) CRID
XOR, OR CXOR, COR
NOR, XNOR CNOR, CXNOR
RNOT(y') CRNOT
LIMPL(x+y') CLIMPL
RIMPL(x'+y) CRIMPL
Mux Mux 10..I<n-1>: input CI0..CI<n-1> #bits, #inputs
input i 00: output inv?
Selector Select (on ISEL,10..I<n-1>: input #ibits, #inputs,
guard val) 00: output guards, c-width,
else_flag
Decoder 10: input input_width(n),
00..02"-1 type,
else-option
Encoder 10..12%-1 #outputs(n),
00..0<n-1> type
Comparator | EQ, NEQ 10, I1: inputs CEQ, CNEQ, #¥bits
GT, LT OEQ, ONEQ, OGT, CGT, CLT, #functions
GEQ, LEQ OLT,0GEQ,OLEQ: outputs | CGEQ, CLEQ fanc-list
Shifter SHRo, SHR1, 10, ILIN, IRIN, CSHRO, CSHR1, Wbits,
SHLo, SHL1, ISHNUM: input CSHLO, CSHL1, $functions,
ROTR, ROTL, 00: output CROTR, CROTL func-list, mode,
ASHL, ASHR CASHL, CASHR fill, maxshift
Barrel SHR, SHR, Io, ISHNUM, ILR, CSHR, CSHR, #bits, maxshift,
Shifter ASHL, ASHL, IROT,IFILL,IMODE: input | CASHL, CASHL, $functions,
ROTR, ROTL, 00: output CROTR, CROTL func-list
Adder/ +, - Io, I1, CADD #bits,
ICIN: input #fns, fn-list,
Subtractor 00, OCOUT: output CSUB style, #pipe-st
ALU {+,- INC,DEC} 10, I1: input 1-per fn #¥bits,
{>,<,=,!=,ZRO} | 00, 5-cond, style, #fns
{16 logic fns} OCOUT: output func-list, #pipe-st
Multiplier *. 10, I1: input ¥bits,
00: output style, #pipe-st
Divider / 1o, I1: input #bits,
00: output style, #pipe-st

Figure 4. Combinatorial Components

September 19, 1988

LEGEND

Page 18

LIST OF SEQUENTIAL COMPONENTS
Type Functions Data-i/o control async attributes
Register load, shl, shr, | I0, LIN, RIN: input, | CLOAD, CSHL, ACLEAR, | #bits, #fns,
0Q, OQN: output CSHR, CEN ASET type, set-val, en
0Q?, OQN?
Counter load, up, I0: input CLOAD, CUP, ACLEAR | #bits, #fns,
down, clear, 00: output CDOWN, CEN ASET set-val, style,
set type, enable
Register File 10,..,J<n-1> CR0,CWOo,.. #bits, #words
1A0,..,JA<n-1> CR<1n-1>,0W<n-1> #ports,
port_attr, en
Stack/ push, pop I0: input, CPUSH, #bits, #words,
FIFO 00: output CPOP, CEN type, enable
Memory read, write 10, IADDR, CWRITE,CREAD, #bits, #words,
IA_VALID: input CEN enable
OD_READY,
00: output

Figure 5. Sequential Components

(I<i>,0<i>) has associated with it an address line A<i>, and a port-attribute which

indicates if that port is of type input, output or bidirectional.

4.6. Interface and Miscellaneous Components

Figure 6 shows the list of interface, bus, switchbox, clock and delay components. An
interface component has several attributes that describes its function
(buffer/clock_driver/...), mode (input/output/...), level (CMOS/TTL/...),
output_type(inverting/non-inverting) and drive (L/M/H). The port component models
ports on a design, with the attributes number_of_bits and port_mode. The port component
is useful in constructing a hierarchy of designs. The BUS and WIRED-OR components are
similar, except that the the BUS component has tristate drivers at each input to the bus.
CONCAT and EXTRACT components simply model switchbox operations for merging
streams of data and extracting substreams of data. At present, the clock generator com-

ponent is used for modeling a very simple system clock, using the attributes clock-period

and duration-high. The DELAY component is used to model a delay element on a logic

September 19, 1988 LEGEND Page 19

LIST OF INTERFA(& BUS, SWITCHBOX AND MISC. CL)_MP#ONENTS
Type Functions Datal/O Control Async | Attributes
Interface Buffer I0: input CEN #bits,
Units Clock Driver 00: output function
mode:(i, o, i/0),
Schmidt Trigger level:(CMOS,TTL, ..)
Tristate output:(inv/non-inv)
drive:(l, m, h)

Port 10: input #bits,

Q0: output mode:(i, o, i/o)
BUS 10..I<n-1>: input C0..C<n-1> #bits,

00: output n-in, fan-out
WIRED-OR n-inputs #bits, n-in,

l-output fan-out
Switchbox 00 = 10@..@I<n-1> | I0,..,J<n-1>: input #inputs,
Concat 00: output widtho,..,width<n-1>
Switchbox 01 = Tofi:j} 10: input inp-width,
Extract Ol1: output 1,r index
Clock 00: output CEN clock-period,
Generator duration-high
Delay Delay § 10:in, O0:out delay-value (§)

path.

Figure 6. Interface and Miscellaneous Components

4.7. Accessing Components

Library generators, components and instances are accessed using the appropriate
access function with the gemerator name and a variable number of arguments. Figure 7
shows the general form of an access function. This call specifies the name of the library
component and a list of attributes, with the list being terminated by a "0". The call to a

generic_component_routine returns an object of the appropriate type (generator,

< generic_component_routine>(GC_COMPILER_NAME, <name>, <attribute_list>, 0)

Figure 7. Generic Component Access: General Form

LEGEND

September 19, 1988

Page 20

component or instance). A set of standard query routines can be applied to the object to
extract any attribute or characteristic for it. Figure 8 shows a sample call used to generate
an instance of an ALU. The arguments in the call consist of pairs of reserved global sym-
bols (which begin with the letters "GC_") and the appropriate value or list. The size of a
list must always precede the list itself. For instance, in Figure 8, GC_NUM_FUNCTIONS
is assigned the value "8" before specifying the GC_FUNCTION_LIST which consists of 8
operations that the ALU instance will perform. Figure 9 and Figure 10 show the list of glo-
bal symbols reserved for indicating the type of argument specified in a call, together with
their possible values. Appendix A in [Dutt88] has a complete list of generator calls for all

the generic components.

5. VHDL Models for LEGEND Descriptions

LEGEND generates VHDL models for specifying the behavior of generated com-
ponents. LEGEND thus complements and overcomes a deficiency in VHDL by providing ai
generator-generator language for VHDL component libraries. These VHDL models can be
used for functional simulation of synthesized register-transfer designs, and can also be used

for lower-level synthesis of individual components at the logic and gate levels.

get_gc_instance(GC_COMPILER_NAME, ALT,
GC_BIT_WIDTH, 16,
GC_NUM_FUNCTIONS, 8,
GC_FUNCTION_LIST, +, -, INC, DEC, >, <, =, AND,
GC_ENABLE_FLAG, FALSE,
GC_STYLE, CLA,
0)

Figure 8. Sample ALU Instance Call

September 19, 1988 LEGEND Page 21

GENERIC COMPONENT GLOBALS

Name

Possible Values

Default Value

GC_COMPILER_NAME

< component-name>

GC_NUM_FUNCTIONS < integer>
GC_FUNCTION_LIST < list-of-character-strings>
GC_NUM_PORTS <integer>
GC_PORT=A’ITRIBUTE_LIST < list-of-character-airings>

GCNUM_GUARDS

< integer>

GC_GUARD_LIST

< list-of-guard-values>

GC_INPUT_WIDTH_LIST

< list-of-integers>

GC_NUM_WORDS < integer>
GC_NUM_INPUTS < integer>
GC_NUM_OUTPUTS < integer>
GC_INPUT_WIDTH <integer>
GC_CONTROL_WIDTH <integer>

GC_ADDER_STYLE GC_RIPPLE_CARRY, GC_CARRY_LOOKAHEAD GC_RIPPLE_CARRY
| GC_ALU_STYLE GC_RIPPLE_CARRY, GC_CARRY.LOOKAHEAD GC_RIPPLE_CARRY
GC_MULT_STYLE GC_ARRAY, GC_WALLACE_DADDA, GC_ITERATIVE GC.ARRAY
GC.DIV_STYLE GC_RESTORING, GC_NON_RESTORING, GC_MULTIPLICATIVE | GC_RESTORING
| GC_COUNTER_STYLE GC_RIPPLE_CARRY, GC_CARRY._LOOKAHEAD GC_RIPPLE_CARRY
GC.ENABLE_FLAG TRUE, FALSE FALSE

| GC_INVERT_FLAG TRUE, FALSE FALSE

GC_ELSE_FLAG TRUE, FALSE FALSE .
| GC.SET_FLAG TRUE, FALSE FALSE

GC_RESET_FLAG TRUE, FALSE FALSE
GC_PIPELINE_FLAG TRUE, FALSE FALSE .
GC_PIPELINE_STAGES <integer>

GC_PIPELINE_DELAY <integer>

Figure 9. List of Compiler Global Symbols
September 19, 1988 LEGEND Page 22

GENERIC COMPONENT GLOBALS

Name Possible Values Default Value
GC_DECODER_TYPE GC_BINARY, GC_BCD GC_BINARY
GC_ENCODER_TYPE GC_BINARY, GC_BCD GC_BINARY
GC_REGISTER_TYPE GC_LATCH, GC_D_FF GC_D_FF
GC_COUNTER_TYPE GC_BINARY, GC_BCD, GC_JOHNSON, GC_GRAY GC_BINARY
GC_STACK_TYPE GC_STACK, GC_FIFO

GC_SHIFT_MODE GC_FILL, GC_EXTEND GC_FILL
GC_FILL_INPUT 0, 1 0
GC_SHIFT_DISTANCE <integer>

GC_CLOCK_PERIOD <integer>

GC_CLOCK_HIGH <integer>

GC_DELAY_VALUE <integer>

GC_LEFT_NDEX <integer>

GC_RIGHT_INDEX < integer>

GC_INTERFACE_FUNCTION GC_BUFFER, GC_CLOCK_DRIVER, GC_SCHMIDT, GC_TRISTATE
GC_INTERFACE_MODE GC_INPUT, GC_OUTPUT, GC_BIDIRECTIONAL

GC_INTERFACE_LEVEL GC_CMOS, GC_TTL, GC_ECL

GC_INTERFACE_DRIVE GC_LOW, GC_MEDIUM, GC_HIGH

GC_FAN_OUT <integer>

GC_SET_VALUE <integer> -
GC_COUNTER_MODE GC_SYNCHRONOUS, GC_RIPPLE GC_SYNCHRONOUS
GC_REG_PO0S_OUT TRUE, FALSE TRUE
GC_REG_INVERT_OUT TRUE, FALSE FALSE

Figure 10. List of Compiler Global Symbols (Cont’d)

A typical VHDL model generated for a 4-bit up/down counter is shown in Figure 11.

These VHDL models are currently simulated on the Vantage VHDL simulator [Vant89)].

6. Summary

This paper described the features of LEGEND, a novel language used to define, gen-

erate, maintain, and upgrade generic component libraries used in high level synthesis.

LEGEND provides a powerful generator-generator environment with a consistent hierarchi-

cal organization of generic components and instances. LEGEND complements VHDL, a

standard hardware description language, by providing a library generator facility. Each

generated component has a simulatable VHDL model generated for it. The semantics of

LEGEND model register-transfer behavior such as asynchrony and clocking realistically.

September 19, 1988

LEGEND

Page 23

use work.defs.all;

entity counter is

port (Inl : in bit_vector(3 downto 0);
CLK, Cen : in bit;
CLOAD, CUP, CDOWN : in bit;
Outl : out bit_vector(3 downto 0);
Aset, Areset : in bit
)

end counter;

architecture counter_behavior of counter is
begin
process
variable temp : bit_vector(3 downto 0);
begin
if (Aset or Areset) = '0’ then
if (CLK and Cen) = '1' then
if Cload = '1’ then
temp := Inl;
else
if Cup = '1’ then
temp := inc(temp);
else
if Cdown = '1’ then
temp := decr(temp);
end if;
end if;
end if;
end if;
else
if Aset = '1' then
temp := "1111"%
else
if Areset = '1’ then
termp := "0000";
end if;
end if;
end if;
Outl <= temp;
wait on CLK, Aset, Areset;
end process;
end counter_behavior;

configuration counter_config of counter is
for counter_behavior

end for;
end counter_config;

Figure 11. Generated VHDL Model for 4-Bit Up/Down Counter

The LEGEND generator-generator is implemented on SUN3’s under C/UNIX, and is used
by a suite of behavioral synthesis tools at U.C. Irvine. Future work will address the model-

ing of better estimators for generic components in the generated libraries.

September 19, 1988 LEGEND Page 24

7. Acknowledgements

I’d like to thank William Carrasco for helping me with the generation of VHDL models

for components in the GENTUS library.

8. References

[BaHa80]
[Barb81]

[BrGa87]

[DuDi68]

[DuGa89]

[Dutt8s)

[HiNa79]

[LiGa88]
[McPC88]

[VaGa88]

[VHDLS?7]

[Vant89]
[Wolf89]

J. Batali and A. Hartheimer, "The Design Procedure Language Manual," A.L
Memo No. 598, MIT A.IL Laboratory, Sept. 1980.

M. R. Barbacci, "Instruction Set Processor Specification (ISPS)," IEEE Tran-
sactions on Computers, vol. c-30, no. 1, January 1981.

Forrest D. Brewer, Daniel D. Gajski, ‘“Knowledge Based Control in Micro-
Architecture Design” 24th IEEFE Design Automation Conference Miami, Fl

(July, 1987).

J.R. Duley and D.L. Dietmeyer, "A Digital System Design Language (DDL),"
IEEFE Trans. Computers, Vol C-17, Sept. 1968.

N.D. Dutt and D. Gajski, "EXEL: A Language for Interactive Behavioral Syn-
thesis," Proc. Ninth International Symposium on Computer Hardware Descrip-
tion Languages, Washington D.C., June 1989.

N. D. Dutt, “GENUS: A Generic Component Library for High Level Synthesis,”
Tech Rep 88-22, U.C. Irvine, Sept. 1988.

F.J. Hill and Z. Navabi, "Extending Second Generation AHPL," Proc. Fourth
International Symposium on Hardware Description Languages, Palo Alto, CA,

Oct. 1979.

J. S. Lis and D. D. Gajski, "VSS: A VHDL Synthesis System,"” Technical Report
(in preparation), University of California at Irvine, April 1988.

M.C. McFarland, A.C. Parker and R. Camposano, “Tutorial on High Level Syn-
thesis,” 25th Design Automation Con ference, July 1988.

N. Vander Zanden and D. D. Gajski, "MILO: A Microarchitecture and Logic
Optimizer," Proc. 25th Design Automation Conference, Anaheim, CA, June

1988. .

VHDL Tutorial for IEEE Standard 1076 VHDL, CAD Language Systems Inc.,
June 1987.

Vantage VHDL Simulator, Vantage Analysis Systems Inc., 1989.

Wayne Wolf, “How to Build a Hardware Description and Measurement System
on an Object-Oriented Programming Langauge,” IEEE Trans. Computer
Aided-Design, Vol. 8, No. 3, March 1989.

September 19, 1988 v LEGEND Page 25

9. APPENDIX A: LEGEND SYNTAX

legend_description :

LEGEND SYNTAX

list_of_generators

1

list_of_generators list_of_generators generator_spec
| list_of_generators
generator_spec gen_name
gen_class
gen_style_Jist
gen_param Jist
gen_port_def_Jist
gen_op_list
gen_vhdl
gen_op_classes
gen_name TNAME COLON identifier
gen_class TCLASS COLON class_type
H
class_type : TCLOCKED
: | TCOMBINATORIAL
H
gen_style_list : TSTYLE COLON style_list
| empty
style_list style_list comma gen_style
gen_style
gen_style identifier
gen_param_list : TPARAM COLON param_lJist
| empty
3
param_list : param_list comma param_jtem
| param_item
H
param_jtem - identifier

gen_port_def Jist

H

gen_port_def Jist gen_port_def

| gen_port def

3
gen_port_def : gen_port_type COLON gen_port_list
gen_port_type TINPUTS

September 19, 1988 LEGEND

Page 26

gen_port_Jist

gen_port_name

gen_op_list

op_list

op_list_item

gen_op_name

commutative_jndicator

op_port_map_list

op_port_map

op_port_type

op_map_list

op_map

gen_op

TCLOCK
TENABLE
TCONTROL
TASYNC
TOUTPUTS
TINPUT_OUTPUTS

gen_port_Jist comma gen_port_name
gen_port_name

identifier

TOPS COLON op_list

oplist op_list_item
opJlist_item

gen_op_name LPAREN op_port_map_Jlist commutative_indicator RPAREN

gen_op

semicolon TCOMMUTATIVE
empty

op.port_map_list semicolon op_port_map
op_port_map

op_port_type COLON op_map_list

TINPUTS
TCONTROL
TASYNC
TENABLE
TOUTPUTS
TINPUT_OUTPUTS
TCLOCK

op.map_list comma op_map
op_map

DIGSEQ

concatop
genlop

mulop

addop
shiftop_unary

September 19, 1988 LEGEND Page 27

gen_vhdl

gen_op_classes

gen_op_class_list

op_class

class_list

clags_list_item

September 19, 1988

shiftop_binary
relop
relop_two
band
bxor

bor

and

xor

or

not

TINC
TDEC
TCLEAR
TSET
TUSHL
CASE

IF
identifier

H

identifier
identifier DOT identifier

TOP_CLASSES COLON gen_op_class_list

TOP_CLASSES COLON DEFAULT
empty

gen_op_class_list comma op_class
op_class

.
)

LPAREN class_list RPAREN

class_list comma class_list_jitem
class_list_item

gen_op

LEGEND

Page 28

