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Abstract

This paper introduces computational tools for cell classification into normal and

abnormal, as well as content-based-image-retrieval (CBIR) for cell recommenda-

tion. It also proposes the radial feature descriptors (RFD), which define evenly

interspaced segments around the nucleus, and proportional to the convexity of

the nuclear boundary. Experiments consider Herlev and CRIC image databases

as input to classification via Random Forest and bootstrap; we compare 14

different feature sets by means of False Negative Rate (FNR) and Kappa (κ),

obtaining FNR= 0.02 and κ = 0.89 for Herlev, and FNR= 0.14 and κ = 0.78 for

CRIC. Next, we sort and rank cell images using convolutional neural networks

and evaluate performance with the Mean Average Precision (MAP), achieving

MAP= 0.84 and MAP= 0.82 for Herlev and CRIC, respectively. Cell classi-

fication show encouraging results regarding RFD, including its sensitivity to

intensity variation around the nuclear membrane as it bypasses cytoplasm seg-

mentation.
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1. Introduction

Cervical cancer affects women globally and it is one of the leading causes of

female death by cancer in developing countries. In the 1970s, cervical cancer was

one of the most common causes of American women death by cancer. Recently,

the death rate has gone down by more than 50%, with the Pap test being the5

main reason for this improvement [1].

Worldwide, the Pap test is the most commonly used method for the early

identification [2] of precancerous lesions during primary screening. The exami-

nation relies on a cytologist who visually searches for abnormal cells, focusing on

features associated with morphological alterations, such as the cytoplasm and10

nucleus sizes, chromatin distribution in the cell nuclei, the shape of cell clumps,

and the nucleus/cytoplasm ratio. Cell screening remains the most common ap-

proach worldwide, however the reliance upon manual examination by different

pathologists hinders the ability of public health programs to scale to the pop-

ulation growth. The major challenge in automating cervical cancer screening15

has been the use of large image databases from conventional Pap tests as in-

put to segmentation algorithms. Particularly, the cytoplasm segmentation of

overlapping cells poses substantial uncertainty during cell analysis.

This paper proposes a computational approach to address limitations of pre-

vious cell recognition systems, and Figure 1 summarizes the proposed workflow20

for cervical cell image analysis. We perform classification and retrieval tests on

digitized microscopy from conventional Pap smears coming from two datasets:

(a) Herlev [3], a public database of cervical cells that includes masks for nuclear

and cytoplasmic areas; (b) the Cell Recognition for the Inspection of the Cervix

(CRIC) database, which contains high-resolution labeled digitized micrographs.25

Our cell recognition algorithms provide color-based cell segmentation, as

well as cell classification and image retrieval. In order to detect the nuclear area

for CRIC images, we propose a segmentation algorithm for nuclei detection,

which combines 2 unsupervised algorithms: mean shift and k-means. We also
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developed a new algorithm for radial feature descriptions (RFD), as illustrated30

in Figure 1(c); this cell feature can bypass the cytoplasm boundary detection

in order to capture information inside and around the nucleus for cytoplasm

characterization. The advantage of this approach is that it uses narrow bands

around the nucleus, which targets the cytoplasm texture while remaining inde-

pendent of its boundaries. Because the cytoplasm edge detection of overlapping35

cells is an ill-defined and computationally intense task [4, 5], alternatives to such

a step can enable real-time analysis, and improve classification accuracy.

We compare RFD with other 13 different feature sets, based on previously

published work [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]; among them, 7

feature sets were designed specifically for cell classification [6, 7, 8, 9, 10, 11, 12].40

Ultimately, features sets consist of the concatenation of descriptors provided by

each feature extraction method. Using images from both databases, each feature

set is input to a Random Forest algorithm [19] that classifies cells into normal or

abnormal. In addition, we also perform Content-Based Image Retrieval (CBIR)

experiments to sort and rank cells under cosine similarity as a key step into45

enabling cell recommendation systems.

The main contributions of our work are: a) design RFD as a set of descriptors

to quickly and accurately profile cells, without prior cytoplasm segmentation;

b) catalog digital micrographs of high-resolution together with ground-truth;

c) classification, sorting and ranking results using 14 different recognition ap-50

proaches, which includes two convolutional neural networks.

Section 2 discusses the related studies, focusing on reviewing algorithms

for cell segmentation and descriptors. Section 3 introduces the cell databases

used to test the algorithms. Section 4 describes the proposed color-based nuclei

segmentation technique to generate the ground truth (masks) for the CRIC55

database. In Section 5, we introduce the radial feature descriptors for cervical

cell images. Meanwhile, Section 6 describes the methodology that we used to

classify abnormal and normal nuclei from both cell image data sets. Section 7

discusses the classification and CBIR experiments and compares the results from

different cell descriptors. Finally, Section 8 summarizes the main findings and60
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Figure 1: From raw micrographs to cell classification: (a) color transformation, (b) border

detection, (c) intensity spectrum, (d) batch processing, and (e) Random Forest classification.

conclusions of this paper.

2. Related Work

2.1. Automating Pap Smear Analysis

Automated detection systems for Pap smear images either aim to separate

cells into two classes, normal and abnormal, or they perform multiclass classifi-65

cation of the samples, according to the lesion levels. There is a vast literature

on the methods used for automatic cervical cell analysis [20], mostly focusing

on cell segmentation and classification tasks, detecting nucleus and cytoplasm.

However, highly accurate results of cytoplasm segmentation have been mostly

restricted to synthetic images [4, 21, 22, 23] and real non-overlapping cells [5].70
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Improvements on real cells segmentation [5, 24] have shown new potential to

analyze cervical cell using computer-aided systems for Pap tests.

Even when manual or semi-automatic delineation drives the cell segmenta-

tion, shape descriptors can be automatically calculated to quantify the cell size,

nucleus-cell area ratio, roundness, and elongation. Shape features have been75

used to classify cells into normal and abnormal patterns [11]; however, these

methods often behave accurately for only a small number of cells, and they rely

on the segmentation of both the nucleus and cytoplasm boundaries. In addition,

texture features are useful to represent chromatin distribution patterns in cell

nuclei where atypical concentrations are often associated with cancer cells [25].80

2.2. Nucleus Segmentation

Most description methods for Pap smear images have focused on nucleus

segmentation [5, 20, 26]. Li et al. [5] introduced a method that depends on

converting cell images to the CIELAB color space. Next, it extracts the L com-

ponent, and then applies the non-local mean filter to reduce background noise,85

which provides enhanced input data for the k-means clustering algorithm to

extract the initial contours of the nucleus. These rough contours initialize the

Radiating Gradient Vector Flow (RGVF) Snake [5] to estimates more accurate

nucleus boundaries. Experimental results showed highly accurate pixel classifi-

cation, which achieved 0.9197% of Zijdenbos similarity index (ZSI) [27] for the90

Herlev database.

Alternative unsupervised machine learning schemes in [21, 26] proposed

graph-based algorithms to segment the nucleus and cytoplasm of cervical cells

with different degrees of overlap in seconds. Despite those methods continuing

to be among the best algorithms, as discussed in [24], accuracies drop drasti-95

cally when applied to conventional Pap smears. Section 4 presents unsupervised

machine learning schemes that evolved from this previous work and addresses

digitized Pap tests from real-world scenarios.
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2.3. Cell Description

Previous research on cervical cell analysis consider information about nu-100

clei [11], cytoplasm or both [25, 10]. Promising algorithms to identify cells

using shape [11, 10] and texture features [28, 29] continue to be published,

with more recent proposals constructing feature vectors using hybrid feature

sets [24, 21, 25, 30, 9].

Marinakis et al. [10] extracted a set of 20 features from the nucleus and105

cytoplasm for classification experiments using the Herlev database. This set

of features comprises shape attributes, such as area, diameter, and elongation,

in addition to intensity attributes, such as brightness, maxima and minima;

these are calculated using the maximum/minimum intensity value within a 3x3

neighborhood of a specific area. The feature selection in [10] used a genetic110

algorithm to search for the best performing subset, which achieved FN and FP

of 2.66% and 10.74%, respectively, when labeling cells into two classes using the

10-fold cross-validation and Nearest Neighbor.

In contrast, Plissiti and Nikou [11] extracted a set of 9 shape and intensity

features from the nucleus region, such as area, diameter, elongation, brightness,115

maxima, and minima. These authors achieved a harmonic mean (H-mean) of

the sensitivity and the specificity of 0.74 in classifying cells into two classes using

Fuzzy C-Means on the Herlev database.

Bejnordi et al. [25] introduced a set of structural texture features to quantify

nuclear chromatin patterns in cells from conventional Pap smears. The results120

of the feature selection showed that the structural texture feature was the most

relevant in the classification experiments. When combining structural and con-

ventional features, the best classification performance was 95.4% for normal and

abnormal cell discrimination.

The combined use of shape and texture features was also reported by Mari-125

arputham et al. [9], who used 7 features sets that included the relative size of the

nucleus and cytoplasm, the dynamic range, and the first 4 moments of the in-

tensities, relative displacement of nucleus within the cytoplasm, Gray Level Co-

occurrence Matrix (GLCM) [13], Local Binary Pattern histogram (LBP) [16],
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Tamura features [31], and Edge Orientation Histogram (EOH) [32]. Next, they130

applied support vector machines (SVM) to the images from the Herlev database

and achieved a precision of 97.38% for normal squamous, 93.89% for interme-

diate squamous, 86.90% for columnar, 87.33% for mild dysplasia, 58.52% for

severe dysplasia, 84.72% for carcinoma, and 83.62% for moderate dysplasia.

Previous investigations show that textural information plays a key role in135

the description of biological data, with applications ranging from face recogni-

tion [33, 34, 35] to cell classification [4, 36, 37] of cervical cells from Pap smears,

which motivates our proposal of a new descriptor based on the nucleus edge; it

computes the texture information around the nuclear membrane using images

from the Herlev and CRIC databases. Despite the presence of many different140

scientific publications, they lack a common metric to compare the cell analysis

performance, therefore we propose the evaluation of 14 different cell descrip-

tion methods using the same classifier and the same performance metrics: false

negative rate and the κ index.

3. Materials145

3.1. Herlev Database

Researchers from the Herlev University Hospital, Denmark, created a public

database known as Herlev [3], which consists of 917 labeled single cells from

Pap tests, acquired at a magnification of 0.201 µm/pixel. The Herlev database

Figure 2: Cervical cell samples from the Herlev image database. (a) Intermediate squamous

cell carcinoma in situ. (b) Mild squamous non-keratinizing dysplasia. (c) Moderate squamous

non-keratinizing dysplasia. (d) Severe squamous non-keratinizing dysplasia. (e) Columnar

epithelial. (f) Intermediate squamous epithelial. (g) Superficial squamous epithelial. White

boundaries are masks that correspond to the nucleus and cytoplasm.
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is divided into seven cell types and two classes: 675 abnormal cell images (squa-150

mous cell carcinoma in situ intermediate - 150, mild squamous non-keratinizing

dysplasia - 182, moderate squamous non-keratinizing dysplasia - 146, and se-

vere squamous non-keratinizing dysplasia - 197 ) and 242 normal cell images

(columnar epithelial cells - 98, intermediate squamous epithelial cells - 70, and

superficial squamous epithelial cells - 74).155

This database has been widely used for the development and tests of new

cervical cell classification systems [11, 10, 28, 9, 6, 12, 8]. Figure 2 shows image

samples from the Herlev database: the white boundaries highlight the ground-

truth images segmented by a specialist.

3.2. CRIC Database160

The CRIC database1 contains more than 2,000 cervical cells from 169 digi-

tized Pap smear glass slides, each with 1,392×1,040 pixels, acquired with a Carl

Zeiss microscope with a Zeiss AxioCam MRc camera at 40× magnification, gen-

erating images of 0.255 µm/pixel. Figure 3 displays a sample image from the

CRIC database. These anonymized images are collected by providers of the165

Brazilian Universal Health-care System known as S.U.S., and made available to

our team through the Science without Borders program.

Similar to the Herlev, the CRIC collection contains cells from routine conven-

tional Pap smears. In addition, CRIC has unique and essential characteristics,

such as including overlapping cells, debris, and other findings that are inherent170

to Pap tests. The CRIC database samples come from a broad racial diversity,

which is a trace of the Brazilian population. Although the CRIC database has

labels for each normal and abnormal cell, they lack nuclei segmentations. Con-

sequently, this paper also includes our nucleus segmentation method (Figure 4),

which automates the mask image generation for the CRIC.175

1Original cervical cell images will be available upon paper acceptance at

http://bit.ly/centercric.
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Figure 3: CRIC database image with cell samples: (a) original image, and (b) information

about nuclei positions and classification. Blue points indicate the nucleus of normal cells and

red spots indicate abnormal cells.

4. Proposed Cell Segmentation from Color Images

Our automated cell segmentation algorithm has three main steps: region

clustering, ranking of cell regions, and cell individualization. Using the CRIC

database, we extract the green channel from the RGB color images as this is

the most correlated to the nuclear materials: the dying protocol tags nucleus in180

purple, which is a mixture of red and blue [38]. Our experiments include tests

that handle several color models, including Lab, RGB, and HSV[39].

The first step relies on the mean shift pre-processing algorithm to promote

pixel intra-class homogeneity, followed by a rough pixel grouping that uses the

k-means algorithm (k = 2) for region clustering based on color features. The185

next image transformation uses a morphological opening operation for noise

reduction associated to small debris with a circular structural element of size

equals to 10 pixels.

The following step extracts shape features from pre-classified regions and

then separates these regions into clumps (cell clusters), nucleus candidates, and190

artifacts (e.g., white blood cells such as neutrophils). The clumps are all regions

with area greater than 4,000 pixels, which return to the region clustering step.

The nuclei candidates are all regions with area and compactness greater than

9



Figure 4: Flowchart of the proposed segmentation methodology. Our method has three steps:

region clustering, pre-classification of region cells; and database creation.

600 pixels and 0.3, respectively; all nuclei candidates are inputs for the cell

individualization step. The artifacts are the regions that do not follow the195

previous conditions, therefore they are removed.

The last step detects individual cells and creates a database of single cells,

with a cropped tile centered around the corresponding nucleus.

Figure 4 illustrates the main steps of the segmentation process, and the

Algorithm 1 shows additional details of each step. After the segmentation,200

images are organized into a test set that comprises masks of 1,004 abnormal

and 1,466 normal cell images from the CRIC database.
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Algorithm 1 Proposed algorithm for nucleus cell segmentation.

1: procedure Segmentation(Image)

2: Extract green channel from RGB

3: Compute mean shift algorithm

4: Compute k-means

5: Compute open morphology

6: for each region do

7: Compute area

8: Compute compactness

9: if area > 600 & area < 4000 & compactness > 0.3 then

10: Crop region

11: else if area > 4000 then

12: go to line 3

13: else

14: Remove region

5. New Radial Feature Descriptors

According to previous work using the Herlev database [11, 10], features from

the whole cell lead to higher cell classification accuracy than feature vectors ex-205

tracted from the nucleus only. Accounting for such findings, we designed RFD

to describe information that combines both the nucleus and the cytoplasm tex-

ture, while only relying on the nucleus segmentation. This descriptor associates

the radial histogram (RH) and the gray-level run length matrix (GLRLM) [40]

to deliver information about the intensity variation within the cytoplasmic area.210

Previous methods based on radial information [41, 42] report improved stability

of features at different resolutions, more efficient computations, and robustness

to noise; these are some of the motivations to extend radial-based descriptors

to applications in cell analysis, as described in the next section.
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(a) (b)

Figure 5: Intensity variation around the nucleus of an abnormal cell: (a) a grayscale cell image

with the green contour corresponding to the nucleus mask, and (b) intensities of all pixels for

each θ in (a).

5.1. Radial Histogram215

Nucleus texture plays a major role in cervical cell description because the

chromatin distribution in normal cells is more homogeneous than those in ab-

normal cells, which presents high intensity variation. Therefore, the loosely

packed form of chromatin (euchromatin) is often associated to normal cells [43].

In contrast, abnormal cells usually have a more dense chromatin distribution,220

which visually translates into high pixel intensity inside the nucleus while pixels

near the nucleus boundary look blurry and indistinct.

Figure 5(a) illustrates the significant intensity variation from the nucleus to

cytoplasm. The curves in Figure 5(b) show such variation along the segments

at different angles; segments start inside the nucleus with ramifications towards225

the cell cytoplasm. This sample illustrates that the intensity variation across

the abnormal cell is not constant.

The RH defines evenly interspaced segments around the cell nucleus, and pro-

portional to the convexity of the nuclear boundary; it depends on lines around

the nucleus edges at various angles to compute the intensity variation along ra-230

dial lines. A crucial parameter of this descriptor is the number of angles, which
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is proportional to the number of points at the nuclear perimeter. To speed up

the calculations, we insert the parameter n, where 0 < n ≤ 1, to control the

number of edge points in the computation of RH. The angle between two lines

arising from two consecutive points at the boundary defines the angle = 2π
n .235

The number of pixels in each line varies according to the nucleus size, which

defines the parameter d, which is the distance between the nucleus center of

mass and the nucleus boundary.

We compute the descriptor using the nucleus masks of cell images from both

databases. From the nucleus mask, we extract a set of edge points Pe and we240

then compute the center of mass (Pc) of the nucleus region. Our method selects

n points from the set Pe, i.e., {p1, p2, · · · , pn}, following the criteria:

pj = p ∈ Pe | θj = arctan(∆y/∆x) ' j × 2π

n
, (1)

where, ∆x = xpj − xpc , ∆y = ypj − ypc , j = 1 · · ·n and p is a point in the

Pe. The values xpj , ypj are coordinates of a particular point in the Pe set and

xpc , ypc are the coordinates of Pc. Our algorithm searches for n contour points

separated by the same angle related to the center of mass of the nucleus contour.

We then define an external point (p+j ) and an internal point (p−j ) for each pj

previously computed. These points are used to calculate the intensity variation

into the cervical cell. They are defined as the points at a distance of Dj from

pj towards the center (p−j ) and away from it (p+j ). The distance Dj is given by

Dj = |Pc − pj | ∗ d, (2)

where |·| denotes the modulus, d is a parameter that controls the size of Dj , and

∗ stands for multiplication. Ultimately, we calculate the histogram of all pixels

within the interval [pj+, p
j
−] for j = 1 · · ·n.245

We notice that the computational complexity for RH was O(n ∗ d), where n

is the number of points used from the nucleus edge.
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Figure 6: Gray level run length matrix computation: (a) gray level image with intensity values

between 0 and 3, and (b) GLRLM histogram.

5.2. Gray-Level Run Length Matrix

The Gray-Level Run Length Matrix (GLRLM) is a two-dimensional his-

togram H of elements, where each element h(i, j) contains the total number of250

occurrences of runs (i.e., a set of pixels with the same value) in a given direction

θ = {0◦, 45◦, 90◦, 135◦} [40] [44]. Run-length statistics capture the coarseness

of a textured region in a specific direction, which has applications ranging from

brain tumor detection [14] to soil image analysis [45].

The GLRLM captures the chromatin distribution, which is critical for sepa-255

rating normal and abnormal cells. Figure 6 shows how to compute the GLRLM

for a general purpose application; notice these calculations occur only inside the

nucleus region. From H, we empirically selected and extracted the following fea-

tures: Short Run Emphasis, Long Run Emphasis, Gray Level Non-uniformity,

Run Length Non-uniformity, Run Percentage, Low Gray Level Run Emphasis,260

High Gray Level Run Emphasis, Short Run Low Gray Level Emphasis, Short

Run High Gray Level Emphasis, Long Run Low Gray Level Emphasis, and

Long Run High Gray Level Emphasis [40, 44]. Notice that we use four different

directions (0◦, 45◦, 90◦, 135◦) for each of these features.

The concatenation of both RH and GLRLM into a single feature vector gives265

rise to RFD, with RH comprising 256 features derived from the histogram of

an 8-bit intensity image, and GLRLM leads to a feature vector of 44 attributes.

Therefore, RFD has dimensionality equals to 300.
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6. Metrology for Quantitative Microscopy

Here, we classify images from the Herlev and CRIC databases as normal or270

abnormal cells, and in seven lesion levels. We carried out the classification of

both databases running the Random Forest [19] algorithm. We also carried

out sorting and ranking experiments using CBIR for cell images from both

databases. In this process, we used the cosine distance metric to compute the

similarity between feature vectors [46].275

6.1. Parameter Estimation

We estimate parameters for the Random Forest classifier by computing the

features for each image database, then obtaining a feature vector database.

Next, we split data into two subsets: the first one corresponds to 30% of the

samples and it is used for parameter estimation while the second subset, i.e. the280

classification experiment uses 70% of the data.

The following variables of the Random Forest algorithm are part of the

parameter estimation: the number of trees in the forest, the function to measure

the quality of a split using Gini index [19], the maximum depth of the tree,

the maximum number of features to consider when looking for the best split,285

the minimum number of samples required to split an internal node, and the

minimum number of samples required to be at a leaf node. Table 1 shows the

range of parameter values used for the Random Forest.

6.2. Performance Evaluation and Classification

Both Herlev and CRIC databases are unbalanced, therefore the Kappa index290

(κ) [47], which does not depend on data balancing, is a better choice to evaluate

the classification performance than the Receiver Operating Characteristic Curve

(ROC) [48]. The κ also allows to establish the accuracy level according to: Bad,

Reasonable, Good, Very Good, and Excellent. Related papers [6, 8, 49] on cell

classification have adopted κ for performance evaluation.295

In addition, we calculate the False Negative Rate (FNR) to identify the

best feature-set/classifier combination since FNR is a critical information for
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Table 1: Parameters of the Random Forest Classifier where s is the size of the feature vector

(number of features), and range(α, β, δ) is a function that returns values between α and β

with steps of δ.

Parameters Range

Number of trees range(10, 1000, 50)

Quality of a split Gini, entropy

Maximum depth range(1, 100, 1)

Max features range(1, s, 1)

Min samples (internal node) range(1, s, 1)

Min samples (leaf node) range(1, s, 1)

health care systems; FNR indicates the ratio between the number of abnormal

cells, which are classified as normal cells. In order to evaluate and compare the

CBIR experiments, we compute the Mean Average Precision (MAP) [50], that300

measures the ranking quality and is a well-known performance metric for CBIR.

6.3. Simulations with 0.632 Bootstrap

The bootstrap method [51] creates several subsets from the original dataset

without using prior information. Given a dataset x = (x1, x2, ..., xN ) of size N ,

we generateM randomly distributed subsets. Each bootstrap sample, defined by305

x∗ = x∗1, x
∗
2, ..., x

∗
N , is composed of N feature vectors from the original dataset.

Assume that ε(x∗m

train,x∗m

test) is the evaluation rate for training with x∗m

train

and testing with x∗m

test. Using the bootstrap technique, we generate M training

sets (x∗1

train,x∗2

train, ...,x∗M

train) where each x∗m

train = x∗
m

1 , x∗
m

2 , ..., x∗
m

N is obtained

by choosing N attribute vectors, with replacement, from the original dataset x.310

We define the testing set by x∗m

test, this set consists of attribute vectors that do

not appear in x∗m

train.

ε0.632 = ε(x,x)− ŵm0.632 (3)

where ε(x,x) is the index for training/testing with the original dataset x and:

ŵm0.632 = 0.632[ε(x,x)− ε(x∗m

train,x
∗m

test)]. (4)
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The estimate for the 0.632 method is calculated by averaging Eq. 4 over M

bootstrap samples. The ε0.632 value estimate is then given by

ε0.632 = 0.368ε(x,x) +
0.632

M

M∑
m=1

ε(x∗m

train,x
∗m

test). (5)

Further details about the 0.632 bootstrap estimator can be found in [51]315

7. Results and Discussion

We analyzed cell images from Herlev and CRIC data sets, focusing on sep-

arating abnormal from normal cells. We ran our unsupervised segmentation

algorithm to samples from CRIC to obtain masks, and used the Herlev masks

as made available in [3]. Our experiments considered fourteen sets of image320

descriptors, which are input as separate feature vectors to the Random Forest

algorithm to classify cervical cells. These vectors are also used as signatures to

retrieve cells by similarity, which depend on the cosine distance measure as part

of our CBIR experiments.

In all experiments, we normalize the features in the [0, 1] interval. After the325

parameter estimation procedure, the optimum values obtained for the Random

Forest classifier were: number of trees = 910, quality of split = gini, maximum

depth = 95, max features = 9, min samples (internal nodes) = 3, min samples

(leaf node) = 2.

RFD-based features depend on n and d parameters ranging over the interval330

[0.1, 1.0] with steps of 0.2. We compared RFD results with thirteen other feature

extraction methods from the literature. In addition, we also assessed separately

six sets of image descriptors with different dimensionality (dim):

1. GLCM [13] derived metrics, such as contrast, dissimilarity, energy, homo-

geneity, correlation, second angular moment (dim = 6);335

2. Histogram features, such entropy, mean, energy, variance, roughness, skew-

ness and kurtosis from the image histogram (dim = 7);
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Figure 7: Image segmentation results for the CRIC database: (a) original image, (b)cropped

samples from the original image, and (c) the corresponding nuclei segmentation results.

3. Histogram of oriented gradients (HOG) [15] with features whose dimen-

sionality is proportional to HOG parameters, here 20 blocks, 12 sub-blocks

using 12 directions (dim = 2, 880);340

4. LBP [16] with features proportional to the pixel depth, here 8-bit images

(dim = 256);

5. Two Convolutional Neural Networks (CNNs): the Inception-Resnet-v2, a

CNN trained with the ImageNet [52] database (dim = 1, 536), and the

LeNet [18], a shallower CNN than the Inception-Resnet-v2 but suitable345

deep learning algorithm to describe and classify image databases with a

small amount of samples (dim = 192).

Figure 7a shows an original image from the CRIC database, Figure 7b shows

samples of cropped cells from this image, and Figure 7c shows the corresponding

nuclei segmentation results from our unsupervised algorithm.350

7.1. Binary Class Labeling

Table 2 shows the indexes FNR and κ obtained with the bootstrap method

using the Herlev and CRIC databases, respectively. We report the result of the

best set of parameters for RH and RFD, which are n = 0.7 and d = 0.5. In
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addition, we observed that lower values of n and d resulted in lower classification355

rates. For example, if we use n = 0.1, then the descriptor will consider only

10% of the nucleus edge pixels, which is seldom enough information for RFD to

ascertain that normal and abnormal cells are different. Similar analysis applies

to the parameter d that manages the number of pixels of each line: if d is too

small (e.g., d = 0.1), then fewer pixels will be analyzed across the nucleus and360

cytoplasm regions.

Table 2: Cell classification with RFD and its individual components using GT (Herlev) and

the proposed segmentation method (CRIC): accuracy in terms of FNR and κ.

Herlev CRIC

FNR κ FNR κ

GLRLM 0.02±0.01 0.86±0.04 0.19±0.02 0.73±0.02

RH 0.02±0.01 0.86±0.04 0.14±0.03 0.78±0.03

RFD 0.02±0.01 0.89±0.04 0.15±0.03 0.77±0.03
Bold numbers indicate the best results.

For higher values of these parameters, information redundancy dominates

the metric, which is detrimental to the cell classification; higher values of n lead

to the inclusion of repeated data, as illustrated in the lower resolution images

with less than 360 points at the nucleus edge. Analogously, higher values of d365

will add outliers, such as points outside the cytoplasm. The best result that

the proposed method and its individual components achieved for the Herlev

images was κ = 0.89. Our proposed RH descriptor reached the best results

both for Herlev and CRIC, while our other proposal, RFD, reached slightly

inferior results in comparison with GLRLM and RH (FNR= 0.02±0.01) for the370

CRIC database. For CRIC, the best result was achieved using only RH, while

RFD attained the second best result. Our hypothesis is that the lower accuracy

rate of the GLRLM affects RFD negatively. Because the CRIC masks are the

result of an unsupervised segmentation algorithm (Section 4), the nucleus edge

detection was rougher than the ground truth of Herlev, which also impacted the375

accuracy rate.

Figure 8 presents both the segmentation and classification results, with cor-
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Figure 8: The result for both segmentation and classification algorithms applied to an image

from the CRIC database: (a) original image with GT for each nucleus obtained from the clas-

sification algorithm, and (b) classification of each segmented region. Black edges correspond

to the segmentation results.

rect classification of all of the abnormal cells and no false negatives. Although

there are a few non-nucleus regions detected as potential cells, our method did

not classify any of them as abnormal cells. Consequently, poor segmentation380

of some regions did not impact the FNR. Using only nuclear regions, the chal-

lenge is the description of chromatin texture and engineering feature vectors.

Therefore, we compared the RFD with seven different other methods that were

available in the literature. To produce a fair comparison, we applied the same

classification methodology to all feature sets. Table 3 shows a comparative385

analysis using the Herlev and CRIC datasets.

Methods from the literature, with the exception of [11], relied on nucleus

and cytoplasm segmentations. Because the CRIC database contains only the

nucleus segmentation, we compared the results for the CRIC database with

the result of the method developed by [11], which uses nuclei regions as input,390

and the general purpose methods applied in the nucleus region. Plissiti et

al. [11] achieved κ = 0.74 ± 0.02 and FNR= 0.18 ± 0.02 and, therefore, it

underperformed RFD in terms of both Kappa (κ = 0.78 ± 0.03) and False
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Table 3: Comparative analysis for classification experiments: FNR and κ using Herlev and

CRIC database.

Methods
Herlev CRIC

FNR κ FNR κ

[6] 0.02±0.02 0.84±0.04 - -

[7] 0.02±0.02 0.86±0.04 - -

[8] 0.03±0.02 0.83±0.04 - -

[9] 0.01±0.01 0.82±0.05 - -

[10] 0.03±0.02 0.82±0.04 - -

[11] 0.05±0.01 0.76±0.03 0.18±0.02 0.74±0.02

[12] 0.02±0.02 0.88±0.04 - -

[13] 0.07±0.03 0.56±0.06 0.22±0.05 0.50±0.03

[14] 0.02±0.01 0.83±0.04 0.32±0.06 0.50±0.03

[15] 0.26±0.04 0.77±0.04 0.50±0.05 0.43±0.04

[16] 0.21±0.06 0.75±0.05 0.27±0.04 0.65±0.03

[17] 0.01±0.01 0.77±0.05 0.04±0.02 0.74±0.05

[18] 0.01±0.01 0.78±0.04 0.10±0.02 0.72±0.03

RFD 0.02±0.01 0.89±0.04 0.14±0.03 0.78±0.03
− represents the methods that rely on the cytoplasm segmentation. Bold numbers

indicate the best results.

Negative Rate (FNR= 0.14±0.03) for CRIC. The lower FNR may be due to the

quality of the cell image segmentation. RFD yielded κ = 0.89, outperforming395

the other methods for Herlev. Although the best rate for the FNR was obtained

with the method introduced by Mariarputham et al. [9], it reached the lowest

κ.

7.2. Multiclass Labeling

Table 4 presents results for seven types of cells from the Herlev database. We400

run the one-against-all classification using all feature extraction methods, which

performed poorly due to the small number of images per cell class. Moreover, the

seven classes are unbalanced and there is a great diversity of nuclear structures

within abnormal classes.
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Table 4: Comparative analysis of FNR and κ using GT for seven classes in Herlev database.

CI LD MD NC NI NS SD

[6]

κ 0.58±0.07 0.70±0.05 0.49±0.06 0.65±0.08 0.89±0.05 0.90±0.05 0.47±0.06

FNR 0.36±0.08 0.24±0.07 0.45±0.07 0.33±0.09 0.11±0.08 0.10±0.07 0.43±0.06

[7]

κ 0.66±0.05 0.72±0.04 0.53±0.05 0.76±0.08 0.88±0.05 0.92±0.04 0.55±0.06

FNR 0.32±0.07 0.23±0.06 0.46±0.05 0.26±0.09 0.10±0.08 0.08±0.07 0.40±0.06

[8]

κ 0.64±0.06 0.72±0.05 0.50±0.07 0.73±0.07 0.88±0.07 0.91±0.05 0.50±0.06

FNR 0.33±0.08 0.24±0.05 0.47±0.07 0.27±0.09 0.12±0.08 0.08±0.07 0.44±0.06

[9]

κ 0.51±0.07 0.65±0.05 0.41±0.04 0.44±0.07 0.69±0.10 0.76±0.10 0.46±0.05

FNR 0.53±0.05 0.39±0.05 0.61±0.03 0.58±0.05 0.37±0.11 0.31±0.11 0.55±0.05

[10]

κ 0.64±0.05 0.74±0.05 0.52±0.06 0.71±0.06 0.89±0.04 0.91±0.05 0.51±0.05

FNR 0.34±0.07 0.23±0.06 0.47±0.06 0.30±0.07 0.11±0.07 0.08±0.06 0.45±0.06

[11]

κ 0.46±0.06 0.55±0.06 0.49±0.05 0.61±0.07 0.66±0.08 0.86±0.04 0.43±0.06

FNR 0.47±0.06 0.37±0.07 0.44±0.06 0.37±0.08 0.32±0.11 0.13±0.07 0.47±0.06

[12]

κ 0.65±0.07 0.75±0.04 0.52±0.07 0.72±0.06 0.90±0.05 0.91±0.06 0.50±0.06

FNR 0.32±0.08 0.23±0.06 0.48±0.07 0.30±0.08 0.10±0.07 0.10±0.07 0.45±0.06

RFD

κ 0.51±0.05 0.66±0.05 0.44±0.05 0.55±0.08 0.74±0.09 0.87±0.06 0.50±0.05

FNR 0.53±0.04 0.34±0.05 0.58±0.03 0.50±0.06 0.33±0.10 0.16±0.08 0.52±0.04
CI: carcinoma in situ, LD: light dysplastic, MD: moderate dysplastic. NC: normal

columnar, NI: normal intermediate, NS: normal superficial, SD: severe dysplastic.

Bold numbers indicate the best results.

Using the CRIC database, we compare our algorithm results to those ob-405

tained with the algorithm proposed by Plissiti et al. [11]. Our approach achieved

the best κ value for five classes. For FNR, the Plissiti et al. [11] algorithm pro-
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duced the best result among the other methods. This may happen because these

methods relied on cytoplasm segmentation, which affected the final result.

7.3. Content-Based Image Retrieval for Cell Recommendation410

A Content-Based Image Retrieval (CBIR) system is a search engine that

uses similarity metrics to retrieve and rank images from a database by compar-

ing their feature vectors to an input query [36, 37]. Besides the classification

procedure, we also performed the CBIR experiments to explore the RFD gener-

alization for image recommendation tasks. We computed the MAP [50] metric415

for performance evaluation, considering: (a) the whole database (MAP), (b)

only images of normal cells (MAPn), and (c) only images of abnormal cells

(MAPan). Table 5 shows the results using the Herlev and CRIC databases for

the proposed descriptor and its individual components. RFD achieved MAP

values equal to 0.84 and 0.82 for Herlev and CRIC, respectively.420

Table 5: Cell-image retrieval with RFD and its individual components using GT from Herlev

and from CRIC (proposed segmentation method): accuracy in terms of MAP.

Herlev CRIC

MAP MAPn MAPan MAP MAPn MAPan

GLRLM 0.76±0.16 0.68±0.20 0.84±0.12 0.71±0.18 0.79±0.13 0.63±0.23

RH 0.79±0.16 0.76±0.18 0.81±0.13 0.70±0.16 0.80±0.12 0.61±0.20

RFD 0.84±0.14 0.81±0.18 0.88±0.10 0.82±0.15 0.86±0.12 0.77±0.17
Bold numbers indicate the best results.

We assessed the CBIR experiments using the same feature vectors employed

for the classification experiments. Table 6 shows results for Herlev and CRIC

databases, using the features based on the proposed descriptor set. We achieved

the best MAP and MAPn values for both databases, which led us to conclude

that RFD outperformed the other features for normal cell retrieval. Concerning425

MAPab, the method introduced in [11] attained the best result for the Her-

lev database while Lenet [18] outperformed the others for the CRIC database.

Although those methods outperformed RFD, they did not succeed in both
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Figure 9: Graphical result for a CBIR experiment using RFD. The first eight rows of the first

column contains abnormal cell queries and the other rows contains normal cell queries. Green

and red edges corresponds to images correctly and incorrectly recommended, respectively.

databases, simultaneously, as RFD did. Figure 9 illustrates the CBIR result

using RFD and cell samples from the CRIC image database.430

7.4. Processing Time

We compared the processing time of our algorithm to the one proposed by

Sarwar et al. [12], which achieved the second best κ and FNR values. The
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Table 6: Comparative analysis for CBIR experiments: MAP using Herlev and CRIC database.

Methods
Herlev CRIC

MAP MAPn MAPab MAP MAPn MAPab

[6] 0.71±0.21 0.68±0.36 0.85±0.07 - - -

[7] 0.79±0.18 0.67±0.28 0.91±0.07 - - -

[8] 0.77±0.21 0.69±0.36 0.85±0.07 - - -

[9] 0.72±0.18 0.62±0.30 0.82±0.06 - - -

[10] 0.81±0.19 0.74±0.31 0.88±0.07 - - -

[11] 0.81±0.17 0.69±0.25 0.93±0.10 0.70±0.20 0.73±0.19 0.66±0.20

[12] 0.81±0.19 0.74±0.31 0.88±0.07 - - -

[13] 0.57±0.08 0.34±0.13 0.79±0.03 0.58±0.14 0.64±0.18 0.51±0.10

[14] 0.63±0.14 0.45±0.18 0.81±0.10 0.57±0.13 0.64±0.11 0.50±0.15

[15] 0.60±0.06 0.40±0.09 0.79±0.02 0.61±0.08 0.79±0.06 0.44±0.10

[16] 0.55±0.06 0.23±0.08 0.86±0.03 0.56±0.08 0.52±0.07 0.60±0.09

[17] 0.70±0.16 0.56±0.27 0.85±0.06 0.69±0.14 0.62±0.17 0.77±0.10

[18] 0.69±0.15 0.53±0.26 0.86±0.05 0.81±0.21 0.75±0.25 0.87±0.18

RFD 0.84±0.14 0.81±0.18 0.88±0.10 0.82±0.15 0.86±0.12 0.77±0.17
− indicates methods dependent on cytoplasm segmentation. Bold numbers indicate

the best results.

average nucleus computation time for the algorithm introduced by Sarwar et

al. [12] during feature extraction was 0.035s; however, it required an average time435

of 5.68s to remove the background and segment the cytoplasm region because

they apply the algorithm proposed by Li et al.’s [5].

The overall processing time of the RFD to extract the features using our

non-optimized Python code took 0.06s on average for Herlev images and 0.04s

for CRIC images on a PC with a 3.1 GHz Intel Core i7 processor and 16 GB440

RAM.

Our five implemented modules, the nucleus segmentation, the feature extrac-

tion, the classification, the retrieval and the evaluation tasks, are Python code

that leverages important scientific packages, such as numpy, scipy, scikit-image,

scikit-learn, and tensorflow.445
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8. Conclusion

The main biological motivation of characterizing cells by texture are: (a)

the level of chromatin distribution inside the nucleus indicates abnormality in

the cell; (b) normal cells present less variation of intensity inside the nucleus;

(c) the transition between nucleus and cytoplasm is smoother in abnormal cells;450

(d) it is possible to classify and retrieve overlapping cells with a high degree of

accuracy.

In this paper, we proposed an unsupervised nuclei segmentation method

that was designed to obtain masks for a new cell database (CRIC) with high

image resolutions, combining mean shift and k-means clustering. We also in-455

troduced the radial feature descriptors (RFD), which characterize cells through

a mechanism of by-passing the cytoplasm segmentation in favor of texture fea-

ture extraction at the cytoplasmic zone. Our experiments included a public

database (Herlev) and its respective ground truth, as well as the new database.

RFD showed promising results when tested against both image databases.460

Testing all these methods enabled us to deliver a compact indicator of the

intensity variation of the nuclei, enabling fast cell classification. We investigated

several parameters and metrics and reached a processing time of ≈0.04s/cell in

the worst case scenarios, i.e., near real-time feedback. We also compared RFD

with other thirteen sets of well-known descriptors, performing cell classification465

and CBIR experiments, and RFD proved competitive. Our results in terms of

the performance evaluation metrics are encouraging because the κ and MAP

reached high values while the FNR achieved low values for both databases.

Future work will include investigation of larger datasets and new metrics

coming from the RFD histogram, such as entropy, skewness, energy, and kurto-470

sis, which may allow more compact representation to speed-up the characteri-

zation process.
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