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ABSTRACT

Application of special isoparametric [inite elements is presented
for elastic-plastic analysis of shells of revolution. General iso-
parametric elements are sclected which in the form of a layered system
arc capable of representing a solid of revolulion. The customary
Kirchhoff-Love hypothesis is nol invoked and the solutions therefore
apply both to thin and thick shells of revolution. Sharp discontinui-
ties in geometry, circumferential ribs and/or grooves, as well as
cellular walls, may be studied. A special feature is the development
of an element permitting sliding at the element interfaces with or
without friction. The illustrative cxamples include a pressure vessel
with a circumferential crack in the wall thickness, a circular plate
consisting of two discs which can slide along their interface, and
shrink-fit of two thick-walled circular cylinders. The solutions are
limited to axially symmetric problems. Flow theory of plasticity is

used in the inelastic range.
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NOMENCLATURE

strain-displacement transformation matrix

stress-strain transformation matrix for clastic-plastic
deformation

stress—-strain transformation matrix for elastic deformations
(generalized Hooke's Law)

Young's Modulus

Tangent Modulus

Poisson's ratio

Lameé constantis

global coordinates
Jacobian transformation
field variable
interpolation polynomials
natural coordinates

infinitesimal strain components

plastic strain components

elastic strain components

equivalent plastic strain

stress components

deviatoric stress components

equivalent stress

yield (loading) function

hardening parameter

second invariant of deviatoric stress tensor
non-negative scalar

hardening function

Kronecker delta function

load ing paramectoer

ii
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1. INTRODUCTION

A computer program using isoparametric elements for clastic-plastic
analysis of axisymmetric thick-walled shells has been written. The
main purpose of the program is to determine the overall behavior and
ultimate load for shells with sharp discontinuities in wall thickness.
For detailed information about local stress and strain distribution
around the discontinuities a very fine finite element mesh has to be
used, for which the program is uneconomical.

A series of elements specially suited for analysis of thick shells
were selected from the family of isoparametric elements, and a
noncompatible version of these elcments was investigated in order to
reduce the band-width of the stiffness matrix.

The possibility of sliding interfaces between elements has been
introduced, and friction at this interface is included, either repre-
sented by discrete springs or by Coulomb's friction.

Flow theory of plasticity has been used in the inelastic analysis,
and a short review of this theory has been included. The efficiency of

highly refined elements in elastic~plastic analysis was also studied.



2. ISOPARAMETRIC FINITE ELEMENTS

2.1 Compatible Elements

The isoparametric family of finite elements is among the most
effective elements developed recently [1]. This family of elements
allows large flexibility in choice of element to fit geometry and con-
tinuity requirements on the displacement field. The present presenta-
tion gives a short review of the theoretical background pertinent to
the choice of element type in an elastic-plastic analysis of thick-
walled shells with sharp discontinuities in wall thickness.

On a general quadrilateral in a two-dimensional space with or

without curved sides, any field variable can be approximated by

9, (€. ¥, 2-1)

€
1]
7"' '\//] 4

where P, - are interpolation polynomials in terms of the natural
coordinates & and T, and Yi are the nodal point values of the
variable. The number of nodes and the order of the polynomials are
determined by the shape of the domain and the continuity requirements
on Y .

The basic concept of the isoparametric element is the choice of
the same interpolation formula for both the geometry and the displace-

ment field of the element

(2-2)
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where (ri,zi) and (ui,vi) are the nodal point coordinates and dis-
placements, respectively. This choice completely defines the geometry
of the element, and includes the constant straining and rigid body
modes. A natural extension of this concept is to use a higher order
approximateion for the displacements than for the geometry [2]. 1In
section 2.2 another variation of the basic concept is used, where an
incompatible displacement mode is added.

For the particular application at hand, the shape of the element
and the differentiability of the displacement field must be decided
upon apriori. In a shell type structure an accurate representation of
the geometry may be necessary, and the most suitable elements for such
application are given in Fig. 1. Besides the requirement on representa-
tion of geometry, the order of the polynomials @i(g,wp is mainly
determined by the following considerations:

For simulation of flexural behavior, at least a linear variation
of curvature in the g-direction should be included. This implies that
@i should be at least of order three in & . In a pure bending mode
a lower order polynomial would give excessive strain energy associated
with shear deformation. This problem has been avoided by Doherty,
et al. [3] by using different integration points for the numerical
evaluation of the energy associated with bending and of that with
shear. For elastic-plastic analysis, however, this approach is not
easily applicable due to the progressive yielding in the element.

In order to reduce the band-width and number of equations, the



minimum number of nodes in the Trdirection must be used. A linear
variation of displacements in this direction, (NP8-1), gives for a
rectangular element a constant €n strain component. In the thin
shell theory such a restriction on the displacement field is immaterial
since en is not a primary kinematic variable, but is rather deter-
mined from constitutive theory. However, using this assumption in a
thick-shell approach gives for pure bending errors in the order of
10-15% in the displacements. The reason for this is that in pure
bending Hooke's law gives €n = - V€§ )

and the formulation of the problem using variational principles gives

i.e., linear variation in T,

excessive energy in the element when the assumed displacement field

is incompatible with the actual one. Except for materials where
Poisson's ratio equals zero, the linear variation in the displacement
field in the Trdirection is therefore insufficient. It should be fur-
ther noted that in elastic-plastic deformation part of the element may
be plastic, and hence en may actually be discontinuous within the
element.

The above considerations are illustrated by the analysis of a
circular plate under uniform loading, Fig. 2. In the actual analysis
only half the plate thickness was considered, and boundary conditions
were applied at the middle surface. The transverse displacement and
stresses, normalized with respect to the Timoshenko solution, is given
in Tables I-1IV.

Of the two compatible elements, (NP8-1) and (NP10), the latter
is the superior one and is chosen as the basic element. The merits

of the incompatible element (NP8-3) will be discussed in the next sec-

tion. For structures where the elements are only connected in the



TABLE I

[47]

Transverse Displacement v/vO
r/a 0.0 0.25 0.50 0.75
NP8-1 0.9269 0.9270 0.9263 0.8974
NP10 0.9994 0.99%1 1.000 0.9695
NP8-3 1,0257 1.0274 1.0293 1.0000
TABLE II
Radial Stress o /o
r'r
r/a 0.0 0.0833 0.1666 0.25 0.50 0.75
NP8-1 1.0937 1.0910 1.0912 1.0946 1.0995 1.0872
NP10 1.0022 1.0011 1.0006 1.0024 1.0037 0.9987
NP8-3 0.9602 0.9819 0.9942 1.0024 1.0150 1.0192
TABLE III
Hoop Stress © /CJ0
e 78
r/a 0.0 0.0833 0.1666 0.25 0.50 0.75
NP8-1 1.0937 1.0913 1.0895 1.0891 1.0786 1.0498
NP1O 1.0022 1.0017 1.0011 1.0012 1.0007 0.9992
NP8-3 0.9602 0.9763 0.9857 0.9965 1.0098 1.0199
TABLE 1V
Vertical Stress Oz/q
r/a 0.0 0.0833 0.1666 0.25 0.50 0.75
NP8-1 66.9 66 .4 65.2 63.5 53.4 36.0
NP10 0.6 0.1 0.3 0.3 0.4 0.7
NP8-3 12 .4 11.5 11.8 9.6 7.2 4.2
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E-direction (NP10) gives a reasonable band-width. However, for sandwich
shells and shells with sharp discontinuities in the thickness, several
elements must be used over the thickness. In such cases it may be
advantageous to convert from using a two-layered system to one of one
layer, by a combination of the elements shown in Fig. 1. It should,
however, be noted that by connecting one element with a quadratic dis-
placement field to two elements with a linear displacement field, con-

tinuity is only obtained in a restricted sense.

2,2 Incompatible Element

In order to reduce the band-with compared to element (NP10), an
incompatible element (NP8-3) was investigated. This element is similar
to element (NP8-1), except that an incompatible displacement mode is

added [4]. This additional mode is given by

u u
= ¢ (§,M ‘ a' no summation on « (2-4)
v « v
o
with
9, (6D = 1a - 1) (2-5)

ua and va are internal degrees of freedom that are condensed
out by static condensation before the element stiffness is assembled
into the system stiffness. This displacement mode is incompatible along
the element sides & = * 1 . However, it improves the behavior of the
element as seen from Tables 1-1V.

This element was, however, not chosen as the basic one due to the
relatively high o% stresses in the above example. For elastic-

4

plastic analysis these stresses might well initiate premature yielding.



3. INCREMENTAL THEORY OF PLASTICITY

The theory of plasticity is usually divided into two subclasses,
the flow theory and the deformation theory. The deformation (or
Hencky) theory gives a relationship between total stress and strain,
where the total plastic strain components are a function of the current
stress. This approach is similar to the treatment of nonlinear elas-
ticity, except for the inclusion of the concept of elastic unloading
from the plastic region. The flow theory, on the other hand, is an
incremental theory that gives a relationship between increments of
plastic strain and increments of stress. Whereas the former is inde-~
pendent of the loading path, the latter has to be integrated along the
loading path in order to get the total strains. For proportional or
radial loading, i.e., where the ratios between the stress components
are kept constant during the deformation, it can be shown that the two
theories give the same result, However, for non-radial loading the
flow theory is considered the superior one, and is therefore chosen in
this study.

In the flow theory the behavior of a structure is governed by three
conditions:

i) The initial yield condition
ii) The flow rule

iii) The hardening rule

Although many mathematical forms have been proposed for the initial
yield condition, the most general ones express the yield function as a
function of the state of stress and a hardening parameter K .

The one most commonly used is von Mises condition, which is given

by



f=J,-K =0 3-1)

where J2 is the second invariant of the deviatoric stress tensor, and

the hardening factor K 1is taken as the yield stress in pure shear.

Assuming the existence of a plastic potential, g , the flow rule

gives the plastic strain increment as

de?_ =dA %
ij J0, .
1)

(3-2)

where dA is a non-negative scalar. In most cases the potential g
is taken to be identical to the yield function f .

The yield condition (3-1) can in a more general form be given as a
function of stress and plastic strain. Using the isotropic hardening
rule which predicts a uniform expansion of the initial yield function

with increasing stresses, one has

f=£(,) - HGED =0 (3-3)

Here H(EP) is a function of effective plastic strain, and gives a
measure of the strain hardening.
During loading from one plastic state to another the following

relation holds

gf, 7. . afp ac;. =0 (3-4)
ij Y e J
ij

From (3-2) and (3-4) one gets [5]

of of
p aci. ackl
de; s =~ ¥  of 4o, (3-5)
aep 3o

mn mn



The generalized Hooke's law is given by

_ E _
495 = Bk %%a T Eija
with
= 6 6 +
Eigky = R0 * 815y

and the Lamé constants

E \ =

(de

+ A6, .0

(3-6)

ij k1 (3-7)

VE

L N G N

Combining Egs.

ship is found [6]

ad+va-2v

(3-2,4,5,6) the incremental stress-strain relation-

doij = Cijkl dekl (3-8)
with
of of
C = - E 3~
ijk1 Eijkl ijmn dC folo} Erskl (3-9)
mn rs
-1
b T E gi gi B aip 22 (3-10)
J ij “kl Qe ij
1]
Here « 1is a loading parameter which is equal to one for loading

or neutral loading,

a=1 if do
o0, . ij
1)
o =0 if of do
do. . ij
1)

and zero for unloading,

(61, i.e.,

(3-11)

Following [6] this can be further simplified to

; = (b 6 . + 6.6
% k1 wo, j1 7 i ik’

2 1
5 . - h —
1% T @9 2 55 3%k

(3-12)
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where
Et
C=%
h o= 2(1 +v@A - ;)
E[3 - (A - 2VW]
1
= - = o
Sij c’ij 3 6ij kk
0= ./3J2
Recalling that in the present study 313 = 323 = 013 = 023 =0
one can now determine cijkl and substitute it into the expression for

the tangent stiffness matrix.
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4. SOLUTION METHOD

‘The use of thce flow theory of plasticity implies that an incre-
mental solution method has 1o be used. It is, however, well known that
such methods have a tendency to diverge from the true solution. There-
fore a "one—stcp iteration" or "out-of-balance force' method was used
to counteract this tendency.

For each load increment the variational (or virtual work) method
will, in an average sense, give equilibrium between applied external
load increment and the increment of internal stress field. For an
inelastic analysis, however, equilibrium between total external load and
total stress field cannot be expected.

The "one—step iteration" procedure is illustrated in Fig. 3. At
the load level Ri the incremental method gives the displacement ri ,
while the correct one is r: . The equilibrium load associated with the
displacement r, is R: . For this displacement there exists an

out-of-balance force

Having computed the tangent stiffness associated with ri and

Ri , the next load increment is taken as

*
BRiyg = Ryy — By SRy - Ry + OR;

The effect of this can be seen in Fig. 3. The pure incremental
method will go from point 1 to point 3. The "one-step iteration"
method, however, goes from point O to point 4 without ever formally
updating the displacement or loading for the previous step. The method

is illustrated in numerical Example No. 1. The equilibrium nodal load



12
vector {R*} can easily be found in terms of the total stress field
{o} by the principle of virtual work

(o) (r*} = [ (6¢) [0} av
\'
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5. SPECIAL FEATURES

5.1 8Sliding Interfaces with Elastic Springs

The finite element idealization of the structure easily accommo-
dates the possibility of a sliding surface within the structure. Such
cases might arise in circular plates constructed from two or more layers
welded together only around their circumferential boundary, or in shrink
fits of axisymmetric structures. The different layers might also be
joined together by discrete bolts or screws, the effect of which may
be idealized by discrete springs.

A general idealization of a slip-surface is shown in Fig. 4.

The local coordinates s and t are tangential and normal to the
slip-surface, respectively. Node 1 of element 1 and node j

of element 2 have different global nodal numbers, and are connected
with a system of springs.

Defining the displacement u and v in the local coordinate

system s, t, on has the following stiffness relationship:

~ 1) .

K2 0 —K2 0 ui R11

0 Kl 0 -Kl vi R12

. _ = (5_1)

- 0

Kz 0 K2 uj RJl

- 0 py

0 Kl K1 vj RJz

— - — —J - -
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or

(k] {u} = {R) (5-2)

Since the system stiffness matrix is given in global coordinates,

(5-2) must be transformed into

(Kl {u} = {Rr} (5-3)

where

[K] = [A1T[K] [A]

{R} = {R} [A]

and [A] is the transformation matrix between the local coordinates
(s,t), and the global system (r,z).

In the case of an elastic spring acting between the nodes i and
J » the spring constants K1 and Kz will be given. However, if no
such spring exists, but the surfaces are free to slide along each other,
K2 is zero. 1In most cases there is physical contact between the two
elements along the surface, and hence node i and J are free to move
apart in the t direction, but cannot move together. Thus an itera-
tive or incremental approach has to be used, in which the spring constant
Kl is assigned the value zero if the normal stress across the surface

is positive, and an infinite value otherwise. Numerically the latter

might be obtained by either assigning vl = ;j as boundary condition



and modifying the system stiffness matrix accordingly, or simply

assigning K1 the value of the diagonal element associated with

node i 1in the system stiffness matrix, multiplied by a large number,
6 . .

say 10 . For most practical purposes this has the same effect, and the

latter method is chosen in the program.

5.2 Sliding Interfaces with Friction

In structures with sliding interfaces, as above, we may wish to
include the effect of friction between the two layers. Friction gives
rise to energy dissipation in the form of heat, and hence the principle
of minimum potential cnergy is not valid. However, a virtual work

expression can rcadily be written of the form

[ o, be dV o+ O/I |t 8u. |dT =j P, bu_dA (5-4)
J 1) 1) 1 1 1 1
.

vV A

Here body forces arc for simplicity assumed absent. [ is the
surface over which friction takes place, and f‘ and Qg are respec-
tively the traction and the relative virtual displacement tangential to
' . A friction parameter « takes on the value of one when friction
takes place, and the value of zero otherwise. Equation (5-4) is
actually a statement of energy balance, i.e., applied external work is
cqual to strain energy stored in the system and friction energy dis-
sipated, The traction [A takes on the role as an initial stress, and
can casily be converted to a fictitious external load in the cquilibrium

cqualions,

The traction t tangential to the surface is given by

t(E) = 7_(E)dT (5-5)
~ T TE 5



e &) 0 (2 -

For simplicity let T denote T

(Al

and Ti the value of 171

mg '’

al the nodal points of the sliding surface.

U3

By interpolation

T(E) = wi(E)Ti , 1 =1,4 (5-7)

Let u1i and u2i denote the nodal displacements of node i in

element 1 and 2 respeclively

b“ll

. o) 0 6v11
du = (cosY sin¥ - cosY - sinY) (5-8)

0 ¢ :
6v24
where
0 3 0
. - ? Yy ¢, 0 9, ©

(5-9)

From these equations the ”equivalent” loading can be given as:

) 0
(Rf> = Seqye f T(E) (cosY sinY - cos¥ - sinV¥) dl’ (5-10)
0 ¢
r
Friction will now take place whenever T < uo and simultane-
g m
ously 0 , where p is a coefficient of friction. Due to the

Ty <
il
necessity of testing on friction, the solution has 1o be found incre-
mentally, where the present stress ratio will determine the value of «
for the next load increment. The parameter ©6 determines the sign of

{Rf} according to the sign of the relative displacement between the

two elements at the previous load increment.
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6. NUMERICAL EXAMPLES

6.1 Elastic-Plastic Analysis of Simply Supported Beam

This example is included in order to illustrate the effect of the
"one—step iteration" procedure. A simply supported beam shown in
Fig. 5 was analyzed using both the pure incremental and the "one—step
iteration' method, and compared to the exact solution [7]. A total of
11 load increments was used. As can be seen from the normalized load-
deflection curves in Fig. 5, the improvement in convergence is substan-
tial, allowing larger step size to be used. The additional computational

eftort is negligible.

6.2 Elastic-Plastic Analysis of Imperfect Torispherical Head

A torispherical head with radial circumferential crack half way
through the wall thickness was studied. The overall behavior and ulti-
mate strength of this pressure vesscl is compared with a similar un-
cracked shell. No attempt was made to investigate the local stress
and strain distribution in the immediate neighborhood of the crack.

Such a study would require a very fine finite element mesh at the root

of the crack, and would involve the theory of fracture mechanics. For

this study the material was assumed to be ductile enough to accommodate
the plastic strains at the tip of the crack without local fracture.

The torispherical head has a skirt diametcer, D = 100 in,, the radius
of the sphere R =D, the meridional radius of the torus r = 0.2D , and
the uniform shell thickness h = 0.02 D . The material is assumed to be

. . . . . 4 .
elastic-perfectly plastic with yield stress ¢ = 3 x 10  psi, and

y
. . 7 . .
Young's modulus and Poisson's ratio 3 x 10° psi and 0.3, respectively.

The radial crack is located at the junction between the sphere and
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the torus, which is the region of highest meridional moment. The c¢rack
is on the inner face at the shell. On the basis of an elastic analysis
the stresses both for the cracked and uncracked head is obtained,

Fig. 6. As can be scen, the effect of the crack is restricted to the
region immediately around the crack, and the stress increase locally is
approximately 70%. 1In spite of this stress increase, the ultimate load
for the cracked shell is only reduced by 6%, Fig. 7. The propagation
of elastic-plastic boundaries is shown in Fig. 8. As can be seen, the
crack initiates the formation of a plastic zone at the root of the crack,
but this zone does notl significantly alter the final collapse mechanism.
Both shells were analyzed using 32 elements, arranged in two layers
over the thickness. 1n the region closest to the crack 16 Gauss points
were used over the shell thickness, while 8 points were used in the re-

maining part of the shell,

6.3 Elastic-Plastic Analysis of Layered Circular Plate

A circular plate constructed of two discs welded together along
their outer boundary was analyzed. The diameter of the plate is 48 in.,
and the thickness of cach disc is 3 in. The plate is loaded by a ring
Toad, and the material propertics were assumed to be the same as in the
previous example.  The analysis shows that welding along the outer
boundary introduccs a distributed radial moment along the boundary in
order to maintain compatibility between the discs. This can be seen
from Fig. 9, where the vertical deflection along a radius is plotted
both for a homogeneous and a layered plate. The load-deflection curves
are given in Fig. 10, where the normalizing factors are the load and

deflection at initial yielding for the respective homogeneous plates.
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6.4 Shrink-rit of Two Cylindrical Discs

The analysis of shrink-fit problems is illustrated by a case whore
two cylindrical discs are joined together, This class of problems can
be solved by two different methods:

1. The two parts are connected with discrete springs at the
interface where the parts are to be joined together. The
stiffness of these springs should be ”large” compared to the
elements of the system stiffness matrix. Al either end of
the springs a sclf-cquilibrating set of forces should be
applied. The magnitude of these forces should be such that
they produce a displacement in the springs that is equal to
the difference between the radii of the two parts being
assembled,

In the present case the stiffness of the springs was
varied between 108 and 1016 without any significant change
in the results. Larger values, however, gave numerical
problems and inaccurate results,

2. The alternative method is to prescribe such displacement
in cither the inner or outer disc so that the two parts fit
together and to connect the two parts. Then the whole system
is released and it will return to an equilibrium position.

Numerically, the first method is superior, since the problem can
be solved directly, while the second method solves the problem in two
steps. For elastic systems the two methods give identical results.
However, il the difference in radii between the (wo parts is large, the
scecond method may result in plastic deformations during step one, and

the final state of stress will include large residual stresses.  The
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method of superposition does not apply to inelastic cases. This is
illustrated by a numerical example. The inner disc has radii of

6.0 in. and 8.0 in., and the outer one has radii 7.9 in. and 9.9 in.
The thickness of both discs is 1.0 in, Method 1 gives results that are
identical to Timoshenko's classical solution, while method 2 gives
large residual stresses and different displacements, Fig. 11. The
stresses are normalized with respect to the radial and hoop stress at

the inner face of the outer disc.
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7. CONCLUSION

An effective program for elastic-plastic analysis of axisymmetric
thick-walled shells using isoparametric elements has been developed.
As stated earlier, the procedure is applicable to shells of revolution
with sharp discontinuities in geometry. The solution is well adapted
to thick-walled pressure vessels since shearing deformations are
included. However, the following note of caution regarding the use of
these refined elements in elastic-plastic analysis should be made:

The result of an elastic-plastic analysis is primarily dependent
on the number of integration points and their location. This information
is used in the evaluation of Eq. (3-10). The number of points needed
is almost independent of the kinematics of the element selected. For
solid elements it is not feasible to obtain a relationship between
strains and stress resultants by integration across the thickness.
Therefore the matrix multiplications in Eq, (3-10) must be made at each
integration point. By reducing the number of degrees of freedom per
element, the number of numerical operations per integration point can
be substantially reduced. Therefore the use of highly refined elements
usually is not an optimum choice. For example, it may be more economical
to use a larger number of elements of type (NP8—2) than a relatively few

elements of type (NP1O).
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APPENDIX A. INTERPOLATION POLYNOMIALS

The following interpolation polynomials have been used.

Element (NP8-1)

1 2
® =35 A+ DA - D1 +98)

1 2
¢2=§§(1—TD(1-§)("1+9§)

9 2
P = 335 a+7m7Q@-38)@A - €)

9
9, =3 A-DA-3Da- &)

9 2
P =33 A+ DA +30DQA - §)
9 2
P =35 A - MDA +3D)HA - €)
=2 1 1 + E) 1 92)
9, =35 1+ M € (-1 + 9g
-1 a 1 1 2
Pg =33 1 - DA +E 1 +98)

Element (NP8-2)

¢, =7 1+ DA -OC1+7- 8
_1

9, =3 A -1Ha-8©
=2 A-PA-DE1-T- 6
1 2

o =7 A-Era .+
1

9 =7 - E)a -1

(p6=-§-(l+ﬂ)(1+§)(—l+ﬂ+§)
1 2

%, =3 A +HA-T

PA+E(E1-~17+E)

o
n
N
=
I



Element (NP8-3)

As clement (NP8-1) except for the added polynomial

a- 1

D]

Py T

Element (NP9-1)

9 =35 (- D{oa - &) + 10 - 96 - 8T}

1 2 2 2
9 =33 (§- Do - €) - na - 9€) - 87}
I 2
93 =33 1 -39DA -E)XA + D
9 2
9, =33 1 -3A-EH5A-TD
=2 1 3 1 2 1
CPS"EZ—( +3)A -gE)H)@A + M
9 2
9 =33 1 +39)A - EHA - D

1 2
(p7 = 33 A +8@a+meg ~-1)
1 2

1
% =7 A-9a-1m

2
9, =33 1 -DHEOE -1DA + D
9 =35 A - DOL -DA-T
%3 =2p (1-3DA - E)A + 1)

9 =3 1-3D0- ) A -1
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Element (NP9-2) (cont.)

9
cp5=-37 a +35)@a - §2)(1 + M

9
% =25 A +3DA - EHA -1
1 2 2 2
cp7=3—2(1+g){- 91 - EH- MA - 98) + 87N }
9 =35 A + O 90 - €) + 1A - 95> + 8T )
1 2
9% =5 1 +OA-T)

Element (NP10O)

As element (NP9-1) except for

L

53 A+ D {- 9a0 - gz) - Q- ggz) + snz}

©
)
I

1 2 2
;p8=§3(1+§)[-9(1—g)+T1(1-9g2)+8T1}

1

0 =3 A-90a-1
1

910=5 (1L + DA =T

Nodal Point Coordinates

The corner points for all elements have the coordinates € = £ 1
and T = * 1. The midside points in (NP8-2) have € = £ 1 and T =0
and € =0 and M= %= 1. In the remaining elements the nodes on sides

T = £ 1 have coordinates € = = 1/3. The 9th nodal point in (NP9-1)

and (NP9-2) is given by € = -1, N =0, and € = + 1, T = 0, respectively.
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APPENDIX B. DERIVATION OF STIFFNESS MATRIX

The geometry and displacement field of the element is given by

Eqs. (2-2) and (2-3)

r \Ii r,
=) @& (2-2)
z i=1 %3
u N u
v .
=) 9 (6D * (2-3)
v i-1 vy

For small displacement analysis of axisymmetric deformation the

strain-displacement relations are given by

) (2 ]

ov
€z L oz L
{ (B-1)

It
Al

u
ee r
du v
L.arg) X * E;:J

In order to evaluate Eq. (B-1) the chain rule of differentiation

has to be inverted to give

el 3
ar 1 g
= 15T [J1 (B-2)
9 2
Xz oM

where [J] 1is the Jacobian of the transformation (2-2), and is given

by
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&2 _
ol o
[J1 = (B-3)
or  dr
ELIE
5] =det g =& X _ & o (B-4)

Using (2-2), (2-3) and (B-2), Eq. (B-4) can be evaluated

1= 0y, gi®5, 75 = 4, 0Ta®s, 6% T T Py, T %, 1P, 00%
1,j = 1,N
Let
(Pl =9. 9. .. - O, =3
®1,%5,0 7 1,0 %, o
5| = <> [p] {2} (B-6)

The strain component er is found by

€ = - - - u =2 (p, Lu. @ Z, - Q. L0 Q. .z)
r -3 T3] \S TR M) T Ti,€v, M i, Mivti, g
e ==t u (0. @ -9, P, Dz, = L «w>p {z} (B-7)
SO P B R £ TR A6 T IR £ 115 18 S B K |

Define

{v} = T%T [pl {z)

1
Y; = <r> [P —
{v} T (P] (B-8)
94
o} = +
Following the procedure for €. the total strain-displacement

relationship can be written
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(Y - =
Er Y1 (0} Y2 (0] YN 0 ul
\%
1
€Z L (0] Xl 0O X2 (6] XN
< - < r
€e Gl (6] G2 0 GN 0 .
UN
3 L x, Y, X, ¥ X, Y, | v
L rz) 1 1 2 2 N N L NJ
or
{e} = [B] {u} (B-9)

Using the principle of virtual work the well known expression for

the stiffness matrix is obtained.

+1  +1
(K] =2nJ‘ f [B(%JD]T[C] [B(E, D] « r(g,M - lJ| dTd € (B~10)

-1 -1
The evaluation of Eq. (B-10) is done numerically using Gaussian
quadrature. It should be noted that the selection of number of integra-
tion points is primarily dependent on the degree of accuracy needed in

the determination of elastic-plastic zones within the element.
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APPENDIX C. COMPUTER PROGRAM INPUT

This appendix gives a brief description of the input format for the
program. A more detailed discussion of the program capabilities,

storage requirements, etc., is contained in Appendix D.

Card No. 1. Control Card (15)

Column 1-5: Number of independent structures to be analyzed in one

run (NUMSTR)

Card No. 2, Title Card (72H)

Column 2-72; Alphanumeric information to be printed in the output

heading

Card No. 3. Control Card (91I5)

Column 1-5: Number of nodal points (NUMNP)
" 6-10: Number of elements (NUMEL)
" 11-15: Number of points where boundary conditions are applied

(NUMBC) (max. 40 points)

16-20: Problem index (IPLANE)

I

(IPLANE 0, axisymmetric problem)
(IPLANE = 1, plane stress problem)
" 21-25: Number of pressure cards (NUMPC)
26-30: Number of load increments (NUMLI)
31-35: Number of nodes with applied concentrated loads or
prescribed displacements (NUMCL)
! 36-40: Link index (NUMLE)

(NUMLE = 0, no interface with friction or discrete

springs)



Column 41-45:

31

(NUMLE = 1, interface with friction or discrete springs
present)

Number of load increments before the friction or spring

system is activated (MUMLE)

(If not needed leave blank.)

Integration index (INDX)

(INDX = 0, integration points given individually for

(INDX = 1, same integration points for all elements)
Number of integration points in E-direction (NIX)

Number of integration points in Trdirection (NIY)

(Leave Col. 6-15 blank if INDX = 0.)

(ISTR1 = 0, stresses not computed at nodal points)

(ISTR1 =1, stresses computed at nodal points)

(ISTRZ = 1, nodal point stresses transformed to E-T

Displacement index (IDISP)

(IDISP = 1, transform displacements to E-T) coordinates)

Card No. 4. Control Card (615)
Column 1-5:
each element)
" 6-10
" 11-15
" 16-20: Stress index (ISTR1)
" 21-25: Stress index (ISTR2)
coordinates)
" 26-30:
Card No. 5. Nodal Point Data (2F20.10)

Column 1-20:

LA

Total of NUMNP cards.

21-10:

r coordinate (XR)

7. coordinate (X7Z)




Card No. 6. Elastic Constants (E10.3, F5.3)

Column 1-10: Young's Modulus (E)

" 11-15: Poisson's ratio (u)

Card No. 7. Material Index (I5)

Column 1-5: Number of points describing the stress-strain

relationship (NUMSP 2 2)

Card No. 8. Material Properties (2F10.5, E10.5)

Column 1-10: Strain at point i (ei)
" 11-20: Stress at point i (ci)

" 21-30: Tangent modulus at point i (Eti)

Total of NUMSP cards. Point 1 has €, = 0, Oi, Et1

Card No. 9. Nodal Point Numbering (1315)

Reference Fig. 1 for numbering sequence for each element type.
Total of NUMEL cards.
Column 1-5: Nodal point 1
" 6-10: Nodal point 2
" 11-15: Nodal point 3

o 16-20: Nodal point 4

" 21-25 Nodal point 5
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Column 26-30: Nodal point 6

31-35: Nodal point 7

36-40: Nodal point 8

41-45: Nodal point 9 (Blank for NP8-1, NP8-2)
46~50: Nodal point 10 (Only for NP1O)

51-55: Element type (NTYPE)

1 for NP8-1

I

NTYPE

2 for NP8-2

NTYPE

NTYPE = 3 for NPS-1

]

NTYPE 4 for NP9-2

1}

NTYPE 5 for NP10O

56-60: Number of integration points in E-direction

61-65: Number of integration points in Trdirection

(Col. 56-65 left blank if INDX = 1)

Card No. 10. Boundary Conditions (315, F10.5)

Column 1-5: Nodal point where B.C. are prescribed
" 6-10: Horizontal (or l-direct.) 0 = Free
1 = Fixed

" 11-15: Vertical (or 2-direct.) 2 = Prescribed displacement

1"

16-20: Angle in degrees for skew B.C. (&)

Total of NUMBC cards.

Z4A 2

»r
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Card No. 11. Sliding Interfaces (215, F5.3)

This card should only be included if NUMLE #% O,

Column 1-5: Number of element interfaces that can slide (NUMIF)
" 6-10: Interface index (INDF)
(INDF = 0, Coulomb's friction)
(INDF = 1, discrete springs or idealized friction)

1

11-15: Coefficient of friction (XMU)

Card No. 12, Nodal Points (815)

This card should only be included if NUMLE # O.

Column 1-5: Nodal point 1

6-10: Nodal point 2

11-15: Nodal point 3

16-20: Nodal point 4

w

21-25: Nodal point
26-30: Nodal point 6
31-35: Nodal point 7

36-40: Nodal point 8

(Column 31-40 left blank if element NP8-2 is used)

Total of NUMIF cards.

Card No. 13. Discrete Springs (8E10.5)

This card should only be included if NUMLE %# O and INDF = 1.

Total of NUMIF cards.

Column 1-10: Elastic spring constant Kl at node 1

" 11-20: Elastic spring constant K2 at node 1

" 21-30: Elastic spring constant K, at node 2
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Column 31-40: Elastic spring constant K2 at node 2
etc.

(Column 65~80 left blank if element NP8-2 is used.)

K

1 spring in Tkdirection

K

9 spring in E~direction

Card No. 14. Spring Options (815)

This card should only be included if NUMLE # O and INDF = 1.

Total of NUMIF cards.

Column 1-5: Linkage index in Thdirection at node 1, (ISP)
6-10: Linkage index in E~direction at node 1, (IFC)
11-15: Linkage index in Thdirection at node 2
16-20: Linkage index in E-direction at node 2
21-25: Linkage index in Trdirection at node 3
26-30: Linkage index in E-direction at node 3
31-35: Linkage index in Thdirection at node 4

36~-40: Linkage index in E-direction at node 4

(Col. 31-40 left blank if element NP8-2 is used.)
ISP = 0; free to move in Trdirection
ISP = 1; fixed in Trdirection

ISP = 2; prescribed spring, can take tension

il
w

ISP ; prescribed spring, cannot take tension
IFC = 0; free to slide in E-direction
IFC = 1; fixed in E-direction

IFC = 2; prescribed spring, can take tension

IFC = 3; idealized friction



0; pure incremental analysis

LNDX = 1; one-step iteration method

Card No. 15, Loading Card (I5)
Column 1-5: Loading index (LNDX)
LNDX =
Card No. 16.

Load Intensities (513, 8F8.3)

This card should only be included if NUMPC > O.

Total of NUMPC cards.

Col

"

Card

umn 1-3:

10-12:

13-15:

16-23:

24-31:

32-39:

40-47:

48-55:

56-63:

64~-71:

72~80:

No. 17,

Load index (ILOAD)
ILOAD = 0; horizontal and vertical load
ILOAD = 1; tangential and normal load
Nodal point 1 mn
Nodal point 2 i g Ai_;
Nodal point 3
Nodal point 4
Horiz. (tang.) load intensity at node 1
Vert. (norm.) load intensity at node 1
Horiz. (tang.) load intensity at node 2
Vert. (norm.) load intensity at node 2
Horiz. (tang.) load intensity at node 3
Vert. (norm.) load intensity at node 3
Horiz. (tang.) load intensity at node 4
Vert. (norm.) load intensity at node 4
(Col. 13-15 and 64-80 left blank if element NP8-2 is used.)

Concentrated Nodal Loads (I5, 2E15.8)

This card should only be included if NUMCL > O.

Total of NUMCL cards.

36
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Column 1-5: Node with concentrated load or prescribed displacement

1"

6-15: Horizontal load X radius, or displacement

16-25: Vertical load X radius, or displacement

If the displacements are prescribed along skew boundary, they should

be given in direction 1 and 2, respectively. See Card No. 10.

NOTE: For axisymmetric problems the nodal loads given
above are the actual load per unit length, multi-

plied by the radial coordinate of the nodal point.

Card No. 18. Load Factor (8F10.5)

Total number of NUMLI/8 cards.

Column 1-10: Load proportionality factor for step 1 (DCOF)
" 11-20: Load proportionality factor for step 2

etc.
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APPENDIX D, REMARKS ON THE USE OF THE PROGRAM

1, Output Information

The program prints the following output:
i) Input data
ii) Nodal point loads computed from load intensities
iii) Displacement increments and total displacements in global
coordinates
iv) Total displacements in E€-T) coordinates (if wanted)
v) Stress distribution at integration points
vi) Stress distribution at nodal points (if wanted)

vii) Total stresses at nodal points in E-T) coordinates (if wanted)

2. Size Limitations

The core storage requirements are separated into a fixed and a
variable part. The fixed part consists of instructions, non-subscripted
variables and arrays independent of the size of each individual problem.
The variable part consists of the array A which appears in blank COMMON.
The maximum dimension of A is limited to the number MTOT, which for a
machine with 64 K storage equals 3100010.

The capacity of the program is simply governed by the field length
given on the job card. If this number implies a variable storage less
that MTOT, the blank COMMON will be truncated accordingly.

For the binary version the fixed storage requirement is approxi-

mately 420008. The variable requirement (in decimal) is given by:

43 X NUMNP + 13 X NUMEL + 13 X NUMPC + NUMEQ X NBNWD

The last term in this sum is associated with the stiffness matrix,

which is stored completely in core. An out-of-core equation-solver
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could reduce the storage requirement substantially, but would on the

other hand slow down the solution process.

3. Time

For elements with a large number of degrees of freedom the program
is relatively slow, as pointed out in the conclusions. The time needed
will be highly dependent on the number of integration points chosen,
and engineering judgment should be used here. For most problems, the
computer time used will be divided equally between the central and

peripheral processor.

4. Additional Remarks on the Input

Card No. 4: The number MUMLE is given in order fo be able to solve
problems like shrink-fits., Here part of the structure
is free to move indepently of the other during the first
MUMLE load increments. From here on the linkage system
is activated and the entire structure deforms as an

integral unit.

Card No. 5: The coordinates of the corner points in each element can
be chosen arbitrarily. The coordinates of the interior
points, however, must be given according to the element
type used. For all elements except (NP8-2), the nodes
3,5 and 4,6 trisect the element sides | =+ 1 and T = - 1,
respectively. The nodes 9 and 10 must bisect the element
side € = - 1 and € = + 1, In element (NP8~2) all interior
points are located at midside.

For elements with curved sides it may be difficult to

determine the coordinates such that these requirements are



Card No.

Card No.

Card No.

4:

9

18:

40
fulfilled. It should, however, be noted that the final
results are dependent on how closely these requirements

can be satisfied.

The number of integration points in either direction may
be 2, 3, 4, 6, 8, 10, 12 or 16. For most cases 4 points
are sufficient in the g-direction. The number needed in
the Thdirection depends on the element type used, and on
whether an elastic or plastic analysis is performed. For
elastic cases 2 points should be used for element NP8-1,
and 3 points for all other elements (2 points here would
give a singular stiffness matrix). For plastic analysis
6-8 points are usually sufficient, but engineering judg-

ment should be used.

The load level for each increment is governed by the load
proportionality factor DCOF. This factor is given as a
percentage of the total load previously given in the
input. For a pure incremental analysis this factor should
be given as load increment in percent of total load. 1If
"out-of-balance force' method is used, the load factor

should give the total load on the structure at any time.
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