UC Davis

UC Davis Previously Published Works

Title

Two Rh III -substituted polyoxoniobates and their base-induced transformation: [H 2 RhNb 9 O 28] 6— and [Rh 2 (OH) 4 Nb 10 O 30] 8—

Permalink

https://escholarship.org/uc/item/32n4q5qq

Journal

Dalton Transactions, 44(47)

ISSN

1477-9226

Authors

Son, Jung-Ho Casey, Willam H

Publication Date

2015-12-21

DOI

10.1039/c5dt03797b

Peer reviewed

Dalton Transactions

COMMUNICATION

View Article Online
View Journal | View Issue

Cite this: *Dalton Trans.*, 2015, **44**, 20330

Received 29th September 2015, Accepted 9th November 2015

DOI: 10.1039/c5dt03797b

www.rsc.org/dalton

Two Rh^{III}-substituted polyoxoniobates and their base-induced transformation: $[H_2RhNb_9O_{28}]^{6-}$ and $[Rh_2(OH)_4Nb_{10}O_{30}]^{8-}$ †

Jung-Ho Son*a and Willam H. Caseya,b

Two new rhodium-substituted polyoxoniobates, $[H_2RhNb_9O_{28}]^{6-}$ (RhNb₉) and $[Rh_2(OH)_4Nb_{10}O_{30}]^{8-}$ (Rh₂Nb₁₀) are reported. The two distinct Rh^{III}-substituted niobate clusters behave differently when the pH is raised with TMAOH: the Rh₂Nb₁₀ is stable until pH \sim 12.7, but RhNb₉ dissociates to form RhNb₅ and RhNb₁₀, similar to some of our other metal-substituted niobates, such as the MNb₉ ions (M = Cr or Mn), which transform to MNb₁₀ when the solution pH is raised.

Transition-metal (TM) - substituted polyoxometalates are an important class of materials. The TM-substitution can add catalytic function to the cluster and the polyoxometalate framework adds great redox properties, especially for polyoxomolybdates and -tungstates. In the polyoxoniobate system, a series of TM-substituted decaniobate-type [MNb₉O₂₈]^{x-} (MNb₉, M = Cr-Ni) have been synthesized recently² and add to the Ti-, V- and Cu-substituted polyoxoniobates that were previously known.³ In these studies, the substitution is limited to the early transition metals. For the heavier transition metals, there have been structures reported for Re(CO)3-, CpRh- or Pt-coordinated (capped) hexaniobates (Nb₆). However, substitution of 2nd- or 3rd-row transition metals in the polyoxoniobates as atoms internal to the structure, rather than as capping atoms, has not yet been reported to our knowledge, although among the group V polyoxometalates, $[H_2Pt^{IV}V_9O_{28}]^{5-}$ is known in the polyoxovanadate system.5

Here we report the synthesis, structure, characterization and photocatalytic H_2 evolution study of two Rh^{III} -substituted niobates. The two compounds reported here have the stoichiometry: $[H_2RhNb_9O_{28}]^{6-}$ $(RhNb_9)$ and $[Rh_2(OH)_4Nb_{10}O_{30}]^{8-}$ (Rh_2Nb_{10}) as tetramethylammonium (TMA) salts (Fig. 1). The structures of these clusters resemble those of two

Substitution of Rh^{III} in the polyoxoniobate structure was challenging. Our previous methods employed for MNb9 (M = Cr-Ni) generally showed low yield for rhodium substitution (less than 1%).2 The low yield might be a result from the notoriously slow reaction rate of ligand substitutions at the RhIII center. When we attempted to circumvent the slow kinetics with temperature, we found that some RhIII was reduced to Rh⁰ as a gray or black powder mixed with the crude product at the hydrothermal reaction conditions when the temperature was higher than 120 °C. In order to solve this problem, we added hydrogen peroxide in the reaction mixture to prevent reduction of Rh^{III}. Correspondingly the yields were improved when H₂O₂ was added (40% and 7% for Rh₂Nb₁₀ and RhNb₉, respectively). Hydrogen peroxide also might have helped to dissociate the rather stable Nb₆ or Nb₁₀ ions and facilitate the formation of RhIII-substituted structures.8

The solution after hydrothermal reaction was typically a mixture of Nb₁₀, Nb₆, RhNb₉ and Rh₂Nb₁₀ ions, as found by electrospray-ionization mass spectra (ESI-MS). We took advantage of the slightly different solubility of each compound to facilitate separation and purification of the Rh-substituted

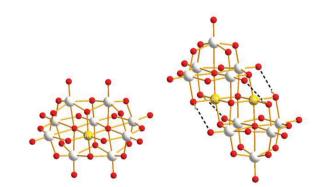


Fig. 1 Ball-and-stick model of RhNb $_9$ (left) and Rh $_2$ Nb $_{10}$ (right) (Nb: gray, Rh: gold, O: red). Intramolecular hydrogen bonds are shown with dashed line in Rh $_2$ Nb $_{10}$.

 Cr^{III} -substituted niobates, $[H_2CrNb_9O_{28}]^{6-}$ ($CrNb_9$) and $[Cr_2(OH)_4Nb_{12}O_{30}]^{8-}$ (Cr_2Nb_{10}) that we previously described.^{2,6}

^aDepartment of Chemistry, University of California, Davis, One Shields Ave. Davis, CA 95616, USA. E-mail: junghoson@gmail.com

^bDepartment of Chemistry, Department of Earth and Planetary Sciences, University of California, Davis, One Shields Ave. Davis, CA 95616, USA

[†]Electronic supplementary information (ESI) available: Experimental details, ESI-MS, FT-IR, UV-Vis data. CCDC 1417431 and 1417432. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt03797b

molecules. After washing with isopropanol, the product was extracted with ethanol. The ethanol extract was a mixture of Rh_2Nb_{10} and Nb_6 ions, and the precipitate that remained after ethanol extraction was a mixture of Nb_{10} and $RhNb_9$. The $RhNb_9$ was separated from Nb_{10} by extraction with ethanol/methanol mixture. Mild heating of the ethanol extract for a few hours caused condensation of more soluble Nb_6 into less soluble Nb_{10} precipitate. The ethanolic orange solution that remained after this heating step consisted of mostly Rh_2Nb_{10} . The crystalline products of Rh_2Nb_{10} and $RhNb_9$ were obtained after solvent evaporation.

Dalton Transactions

In the crystal structure of RhNb₉, Rh^{III} is substituted at the central metal site so that it does not possess a terminal oxo group, as we also observed in the MNb₉O₂₈ (M = Cr-Ni) series.2 The RhIII metal is disordered among the two central sites due to the centrosymmetry, and the sum of RhIII occupancy in those two sites is 1.12, which agrees with stoichiometry of RhNb₉. Bond valence sum (BVS) calculation of the Rh site is (3.03), indicating the oxidation state of Rh^{III}. The BVS values of two Rh- μ_2 -O-Nb (1.37 and 1.38) are much lower than other bridging oxygen atoms, which suggest that those are protonated, similarly to the substituted MNb9 (M = Cr-Ni).2 The structure of Rh₂Nb₁₀ is similar to Cr₂Nb₁₀, and it can be described as two RhNb5 Lindqvist-type clusters fused by two μ_4 -O atoms linking two Rh^{III} and two μ_3 -O atoms linking RhIII and NbV. The oxidation state of rhodium in Rh₂Nb₁₀ is also Rh^{III}, as determined by BVS calculation (2.95). The Rh-O bond lengths in Rh₂Nb₁₀ are longer and more regular (2.0245(16)-2.0605(16) Å) than Cr-O bonds in Cr₂Nb₁₀ (1.9428(13)-2.0131(12) Å). In the structure of Rh₂Nb₁₀, four protons are found on the four Rh-µ2-O-Nb, like in the structure of Cr₂Nb₁₀. Those protons form intramolecular hydrogen bonds to the neighbouring Nb=O (H···O distances of 2.309 and 2.386 Å). The ESI-MS spectra of the RhNb₉ and Rh₂Nb₁₀ agree with their assigned stoichiometries (Fig. S1†).

The pH-dependent stability of the RhIII-substituted niobate clusters were studied by using ESI-MS. When titrated with TMAOH, the golden yellow color of Rh₂Nb₁₀ solution did not change until highly basic conditions (pH ~ 12.9, Fig. S2†), and most of the Rh₂Nb₁₀ clusters remained intact for months at this strongly basic condition, as checked by ESI-MS (Fig. S3†). When the solution of RhNb9 was titrated with TMAOH to this condition, the solution color slowly changed from orange to faint yellow overnight (Fig. S2†). The ESI-MS spectra of the solution after one day (Fig. 2) indicated dissociation of RhNb₉ to RhNb5 and Nb6. Also, formation of a new RhNb10 was detectable via ESI-MS, which could have formed by self-assembly of dissociated fragments (Fig. 2). It is most likely that this RhNb₁₀ would have a similar structure of previously reported $[H_2Mn^{IV}Nb_{10}O_{32}]^{8-}$ (MnNb₁₀), in view of their similar ESI-MS pattern.9 This observation spurred us to further investigate other TM-substituted polyoxoniobate clusters. We added 50 mg of TMAOH·5H₂O to each aqueous solution containing 30 mg of MNb₉ (M = Ti, Cr-Ni) and Cr₂Nb₁₀ clusters to make pH ~ 12.6 and monitored the solution by using ESI-MS (Fig. S4–S10†). The Cr₂Nb₁₀ clusters were stable at this pH for

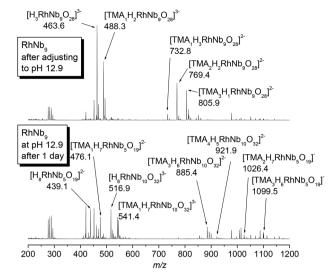
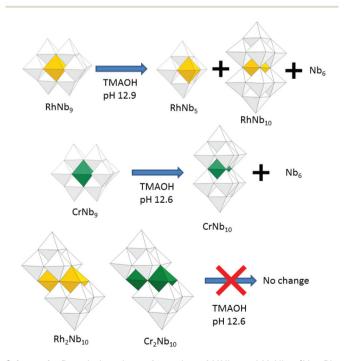



Fig. 2 Change of ESI-MS spectra of RhNb $_9$ when the solution pH was adjusted to 12.9.

a long period of time, like Rh₂Nb₁₀ (Fig. S4†). The TiNb₉, CrNb₉ and MnNb₉ clusters changed in a few days at this highpH condition. Some Ti₂Nb₈ clusters, ^{3a,c,d} formed after a week when the pH of TiNb₉ was increased (Fig. S5†). Considerable amount of CrNb₁₀ formed after a few days from the CrNb₉ solution at high pH (Fig. S6†). This result shows that Cr^{III}- and Rh^{III}-substituted polyoxoniobates are not only structurally similar, but also transform *via* similar pathways at high pH (Scheme 1). The color of MnNb₉ solution changed from purple

Scheme 1 Base-induced transformation of MNb₉ and M_2Nb_{10} (M = Rh, Cr).

to brown with time, suggesting oxidation of Mn^{III} , and ESI-MS spectra after 19 days showed formation of small amount of $Mn^{IV}Nb_{10}$ (Fig. S7†). However, species such as $MnNb_5$ or $CrNb_5$ was not detectable, which suggests that they are unstable. Other MNb_9 clusters (M=Fe-Ni) were relatively stable at the high pH, but small amount of Nb_6 as a decomposition product was detected (Fig. S8–S10†). Thus M_2Nb_{10} (M = Rh^{III} or Cr^{III}) seems to be more stable than MNb_9 at high pH. This higher stability of M_2Nb_{10} is partly attributable to the existence of

intramolecular hydrogen bonds, which hold the structure

together, perhaps making it less susceptible to base hydrolysis.

Communication

When titrated with acid, Rh_2Nb_{10} was evident in the ESI-MS spectra until pH 4.0, and $RhNb_9$ was stable until pH 4.5 (Fig. S11 and S12†), although we recognize that the kinetics of dissociation may be suppressed by inclusion of the $Rh^{\rm III}$. Both solutions formed hydrous niobium-oxide precipitate below those pH values, which could form without dissociating the structures. On the other hand, we note that the stability window of Rh_2Nb_{10} (4 < pH < 13) is similar to Cr_2Nb_{10} . The $RhNb_9$ exhibited a wider stability range (4.5 < pH < 12) than other MNb_9 clusters (M = Cr-Ni) in general.

The UV-Vis spectra of RhNb₉ and Rh₂Nb₁₀ are shown in Fig. 3. The Rh₂Nb₁₀ shows about twice the absorption of visible light relative to the RhNb₉ ion, as expected from the stoichiometry of the clusters. The absorption band of Rh₂Nb₁₀ (440 nm) is more blue shifted compared to that of RhNb₉ (475 nm), which is responsible for the slightly different colors of the solutions of Rh₂Nb₁₀ (golden yellow) and RhNb₉ (orange-red). These absorption bands correspond to 1 A_{1g} to 1 T_{1g} or 1 T_{2g} transition of Rh^{III}. The RhNb₉ and Rh₂Nb₁₀ clusters were also characterized by using FT-IR (Fig. S13†). The FT-IR spectrum of Rh₂Nb₁₀ show similar feature to that of Cr₂Nb₁₀ and that of RhNb₉ is similar to those of MNb₉, which reflect their structural similarity.

TM-substituted polyoxometalates, including polyoxoniobates, have recently been actively studied for use in the watersplitting reaction to generate $\rm H_2$ and/or $\rm O_2$ for energy applications. ¹¹ We studied $\rm H_2$ evolution from RhNb₉ and Rh₂Nb₁₀



Fig. 3 UV-Vis spectra of 2 mM solution of Rh_2Nb_{10} and $RhNb_9$ without background electrolyte.

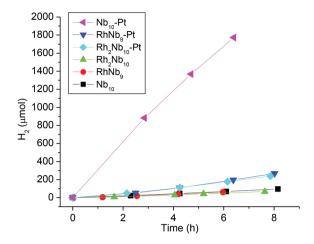


Fig. 4 Comparison of H_2 -evolution activity from the methanol/water solutions (20% v/v) of RhNb₉, Rh₂Nb₁₀ and Nb₁₀, with and without H_2 PtCl₆.

ions as a continuation of our previous H₂-evolution study of the MNb₉ ions (M = Cr-Ni). When irradiated with visible light, similarly to the MNb9 ions, neither RhNb9 nor Rh2Nb10 solutions (20% v/v methanol/water) evolved H₂. Methanol was used as a sacrificial oxidant. The solution did not evolve H2 without methanol. When a full spectrum from Xe lamp (without UV filter) was employed, however, H2 evolution was observed (50 μ mol g⁻¹ h⁻¹ and 43 μ mol g⁻¹ h⁻¹, for RhNb₉ and Rh₂Nb₁₀, Fig. 4). After irradiation, the originally orange-red or yellow solution of RhNb9 and Rh2Nb10 turned greenish brown with small amount of colloids, which probably indicate partial reduction of RhIII to RhO. We have found such colloids in our previous work and are not surprised by them.2 The RhII is known to exhibit a green color. 10 We do not know the amount of RhIII that has been reduced, but comparison of the peak intensities in ESI-MS spectra of the solution before and after irradiation indicated that most of the clusters remained intact (Fig. S14 and S15†). The UV-Vis spectra of Rh₂Nb₁₀ before and after the irradiation also did not change considerably, but absorption of RhNb9 solution increased after irradiation, undoubtedly due to the presence of the colloids mentioned above (Fig. S16 and S17†). In the previous H2 evolution study of the MNb₉ ions (M = Cr-Ni), we found that a significant amount of MNb9 decomposed into Nb6 and Nb10, with corresponding changes in the UV-Vis spectrum due to the colloid formation. Among them, formation of colloids from NiNb9 and CoNb₉ positively affected H₂ evolution, while colloid formation from other MNb9 (M = Cr-Fe) did not increase the amount of H2 evolution. In our previous work we have found that the colloids were mixed TM-niobium oxide and they were amorphous, as determined by XRD, TEM and EDX. The relative lack of Nb6 and Nb10 decomposition products s after irradiation in the present RhNb9 and Rh2Nb10 suggests that these rhodium RhNb9 and Rh2Nb10 clusters are more stable, perhaps only kinetically so, under the irradiation of intense light when compared to MNb₉ (M = Cr-Ni). We also compared

Dalton Transactions Communication

H₂-evolution activity of the clusters when H₂PtCl₆ was added as a cocatalyst. In the existence of Pt, Nb₁₀ solution showed ~20 fold increase in the H_2 evolution (1385 μ mol g⁻¹ h⁻¹) and amount of precipitate was negligible, but H2 evolution from RhNb9 and Rh2Nb10 after adding H2PtCl6 showed only about 3 fold increases (167 and 152 µmol g⁻¹ h⁻¹, respectively) and conspicuous gray-black precipitate formed in the solution (Fig. 4). This presumed Pt-Rh-NbOx precipitate must be responsible for the slight increase of the H₂ evolution, but we did not attempt to characterize it further. The different precipitation behavior of Nb₁₀ and RhNb₉/Rh₂Nb₁₀ after photocatalytic reaction might be due to their different stabilities upon addition of acidic H₂PtCl₆. And the lower H₂ evolution activity of RhNb₉/Rh₂Nb₁₀ compared to Nb₁₀ is likely due to the reduced amount of dissolved clusters in solution caused by precipitation, as seen in ESI-MS (Fig. S14 and S15†).

Conclusions

Two types of new rhodium-substituted polyoxoniobates were synthesized and isolated. The evidences of base-promoted transformation of RhNb₉ to RhNb₅ and RhNb₁₀ suggest a new synthetic strategy for new polyoxoniobates. Such a reaction can be a useful post-synthetic pathway for new polyoxoniobates, instead of commonly employed hydrothermal reaction in the polyoxoniobate chemistry. The transformation of MnNb9 and CrNb₉ at high pH shows that the stabilities of each TM-substituted decaniobate are different, even if they form similar dissociation products at high pH. The RhIII-substituted polyoxoniobates discussed here are important because these can serve as feedstock to make even more TM-substituted polyoxoniobates, such as RhNb5 which might have terminal Rh-OH groups.

We thank Jiarui Wang and Prof. Frank E. Osterloh for H2 evolution measurement. This work was supported by an NSF CCI grant through the Center for Sustainable Materials Chemistry, number CHE-1102637.

Notes and references

- 1 (a) L. C. W. Baker, V. S. Baker, K. Eriks, M. T. Pope, M. Shibata, O. W. Rollins, J. H. Fang and L. L. Koh, J. Am. Chem. Soc., 1966, 88, 2329; (b) L. C. W. Baker and J. S. Figgis, J. Am. Chem. Soc., 1970, 92, 3794-3797; (c) T. J. R. Weakley, J. Chem. Soc., Dalton Trans., 1973, 341-346; (d) C. L. Hill and R. B. Brown Jr., J. Am. Chem. Soc., 1986, 108, 536-538; (e) M. Faraj and C. L. Hill, J. Chem. Soc., Chem. Commun., 1987, 1487-1489; (f) J. Hu and R. C. Burns, J. Mol. Catal. A: Chem., 2002, 184, 451-464; (g) J.-H. Choi, J. K. Kim, D. R. Park, T. H. Kang, J. H. Song and I. K. Song, J. Mol. Catal. A: Chem., 2013, 371, 111-117.
- 2 (a) J.-H. Son, J. Wang and W. H. Casey, Dalton Trans., 2014, **43**, 17928–17933; (b) J.-H. Son, C. A. Ohlin and W. H. Casey, Dalton Trans., 2013, 42, 7529-7533.

- M. Nyman, L. J. Criscenti, F. Bonhomme, M. A. Rodriguez and R. T. Cygan, J. Solid State Chem., 2003, 176, 111-119; (b) C. A. Ohlin, E. M. Villa, J. C. Fettinger and W. H. Casey, Dalton Trans., 2009, 2677-2678; (c) E. M. Villa, C. A. Ohlin, J. R. Rustad and W. H. Casey, J. Am. Chem. Soc., 2009, 131(45), 16488–16492; (d) E. M. Villa, C. A. Ohlin and W. H. Casey, J. Am. Chem. Soc., 2010, 132(4), 5264-5272; (e) G. Guo, Y. Xu, J. Cao and C. Hu, Chem. Commun., 2011, 47, 9411-9413; (f) P. Huang, C. Qin, X.-L. Wang, C.-Y. Sun, G.-S. Yang, K.-Z. Shao, Y.-Q. Jiao, K. Zhou and Z.-M. Su, Chem. Commun., 2012, 48, 103-105; (g) J.-H. Son, C. A. Ohlin, E. C. Larson, P. Yu and W. H. Casey, Eur. J. Inorg. Chem., 2013, 1748-1753; (h) Y.-T. Zhang, P. Huang, C. Qin, L.-K. Yan, B.-Q. Song, Z.-X. Yang, K.-Z. Shao and Z.-M. Su, Dalton Trans., 2014, 43, 9847-9850; (i) P. Huang, E.-L. Zhou, X.-L. Wang, C.-Y. Sun, H.-N. Wang, Y. Xing, K.-Z. Shao and Z.-M. Su, CrystEng-Comm, 2014, 16, 9582-9585; (j) J.-Y. Niu, G. Chen, J.-W. Zhao, P.-T. Ma, S.-Z. Li, J.-P. Wang, M.-X. Li, Y. Bai and B.-S. Ji, Chem. - Eur. J., 2010, 16, 7082-7086.
- 4 (a) A. V. Besserguenev, M. H. Dickman and M. T. Pope, Inorg. Chem., 2001, 40(11), 2582-2586; (b) P. A. Abramov, M. N. Sokolov, A. V. Virovets, S. Floquet, M. Haouas, F. Taulelle, E. Cadot, C. Vicent and V. P. Fedin, Dalton Trans., 2015, 44(5), 2234–2239; (c) P. A. Abramov, C. Vicent, N. B. Kompankov, A. L. Gushchin and M. N. Sokolov, Chem. Commun., 2015, 51, 4021-4023.
- 5 U. Lee, H.-C. Joo, K.-M. Park, S. S. Mal, U. Kortz, B. Keita and L. Nadjo, Angew. Chem., Int. Ed., 2008, 47, 793-796.
- 6 J.-H. Son, C. A. Ohlin and W. H. Casey, Dalton Trans., 2012, 41, 12674-12677.
- 7 (a) J. S. Loring, J. Rosenqvist and W. H. Casey, J. Colloid Interface Sci., 2004, 274(1), 142-149; (b) J. R. Houston, P. Yu and W. H. Casey, Inorg. Chem., 2005, 44(14), 5176-5182.
- 8 C. A. Ohlin, E. M. Villa, J. Fettinger and W. H. Casey, Angew. Chem., Int. Ed., 2008, 47, 8251-8254.
- 9 J.-H. Son and W. H. Casey, Dalton Trans., 2013, 42, 13339-13342.
- 10 F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, Wiley-Interscience, New York, 6th edn, 1999.
- 11 (a) Z. Zhang, Q. Lin, D. Kurunthu, T. Wu, F. Zuo, S.-T. Zheng, C. J. Bardeen, X. Bu and P. Feng, J. Am. Chem. Soc., 2011, 133, 6934-6937; (b) P. Huang, C. Qin, Z.-M. Su, Y. Xing, X.-L. Wang, K.-Z. Shao, Y.-Q. Lan and E.-B. Wang, J. Am. Chem. Soc., 2012, 134, 14004-14010; (c) Z.-L. Wang, H.-Q. Tan, W.-L. Chen, Y.-G. Li and E.-B. Wang, Dalton Trans., 2012, 41, 9882-9884; (d) J.-H. Son, J. Wang, F. E. Osterloh, P. Yu and W. H. Casey, Chem. Commun., 2014, 50, 836-838; (e) H. Lv, J. Song, H. Zhu, Y. V. Geletii, J. Bacsa, C. Zhao, T. Lian, D. G. Musaev and C. L. Hill, J. Catal., 2013, 307, 48-54; (f) H. Lv, W. Guo, K. Wu, Y. V. Geletii, Z. Chen, S. M. Lauinger, J. Bacsa, D. G. Musaev, T. Lian and C. L. Hill, J. Am. Chem. Soc., 2014, 136, 14015-14018.