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Abstract

Classi�cation and Characterization of Exotic Quantum Systems: From Band Theory to

Black Holes

by

Alexander D. Rasmussen

Exotic quantum systems � those with macroscopic quantum behavior with no classical

analogue � have been a mainstay of condensed matter theory since the discovery of the

quantum Hall e�ect. Since then, several families of related systems have been uncovered.

Some, such as topological insulators, were predicted �rst and found experimentally later.

Others are more elusive, like strongly correlated bosonic symmetry protected topological

phases in high dimension, of which concrete evidence is still lacking. In this dissertation,

we study several examples of exotic quantum systems. For SPT phases, we present a

physically motivated classi�cation scheme for interacting bosons and a bulk signature

independent of boundary. We then construct a new, beyond Landau-Ginzburg second-

order phase transition between two ordered phases of the Heisenberg magnet on the

triangular lattice. Finally, we investigate an in�nite family of spin liquid states, and

conjecture on their connection to black holes.
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Chapter 1

Introduction

1.1 What is an Exotic Quantum System?

A very brief history of quantum mechanics could be composed of examples where a

physical system is thought of as �essentially� quantum mechanical, only to admit a se-

miclassical picture that captures the relevant physics. Starting from Planck's blackbody

radiation and continuing through speci�c heat of crystals, magnetism, and super�uidity,

the macroscopic measurements in these systems are reproduced by considering semiclas-

sical expansions or saddle-point approximations.

However, this trend has been broken in more modern times. Starting with the disco-

very of the quantum hall e�ect (QHE) and continuing on to spin liquids, topological order,

symmetry protected topological (SPT) phases, and non-Landau-Ginzburg-Wilson-Fisher

(LGWF) phase transitions, it has become clear that there exist systems with macroscopic

quantum mechanical behavior that does not admit a semiclassical understanding.

Unfortunately (from a de�nitional standpoint), the mechanisms obstructing a semi-

classical expansion in each of the examples above are largely distinct. For the purposes

of this dissertation, we de�ne an �exotic quantum system� as a system with macroscopic
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Introduction Chapter 1

quantum behavior and no classical analogue. This de�nition is vague by construction,

given the varied and distinct phenomena which we want to include under its umbrella1.

And, due to this vagueness, it is inevitable that we will have to manually include or

exclude speci�c systems due to heuristic properties.

An important property of these exotic quantum systems is universality. When dis-

cussing phase transitions, this refers to the idea that many critical points are described

by the same conformal �eld theory (CFT). The notion of universality relevant to exotic

quantum systems, instead, is that many of the macroscopic properties are independent of

particular microscopic realizations. In SPT phases, for example, this is due to the topo-

logical term in the Lagrangian being insensitive to the lattice. This type of universality,

ultimately, is why this area of research is relevant to real systems.

In this dissertation, we explore several varieties of exotic quantum systems. We

focus on two particular aspects: classi�cation and characterization. The former concerns

our attempts to identify, label, and count the distinct sub-types of a particular system

(such as SPT phases with a particular symmetry). The latter involves understanding the

physical properties of the system, such as ground state degeneracy, boundary terms, or

local indistinguishability.

1.2 SPT Phases

The history of SPT phases has a rather unique property when compared to other ma-

jor discoveries: the theory came �rst2 � twice! The �rst prediction involved 2d graphene

and then quantum wells, while the second involved 3d crystals. This already hints at an

important part of SPT physics, the dimension of spacetime.

The theoretical prediction of the 2d quantum spin Hall (QSH) e�ect was put forth by
1Compare to how a spin liquid is not a banana.
2The integer QHE may be roughly considered a �gravitational SPT,� but only in the loosest sense.
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Kane and Mele, following some work by Haldane[1, 2]. In this state, there are two counter-

propagating spin-up and spin-down channels, similar to the ordinary quantum Hall e�ect.

However, this state requires conservation of Sz, which can be broken by magnetic �elds

or impurities. Even in the presence of Sz-breaking impurities, it was shown[3] that there

is nevertheless a topological invariant that distinguishes this insulating state from the

ordinary ground state.

This new phase (distinct from QSH due to lack of Sz symmetry) can be considered

the �rst SPT phase[4]. In this phase, the �protecting� symmetry is time reversal3. The

key physics that distinguishes this phase from the trivial insulator is the existence of

gapless boundary edge modes that are stable in the presence of time reversal symmetry.

Remarkably, this e�ect been observed in two-dimensional quantum wells[6].

In three dimensions, the story is similar. A topological invariant can be de�ned for 3d

band structures[7, 8] in the same fashion using time reversal invariance. The boundary

physics of a 3d topological insulator also includes a special gapless boundary, which

is a single Dirac cone. This was observed experimentally in heavy spin-orbit coupled

materials[9].

Generalizing these ideas requires analyzing several aspects of SPT phases. First, we

need a de�nition of �phase� that is agnostic to symmetries and order parameters. Second,

we need to determine what bulk physics are necessary to ensure that the boundary is

nontrivial. Finally, we need to know what distinguishes an SPT boundary from a trivial

boundary. Once all of these are determined, we can attempt to classify all SPT phases

with a particular symmetry.

There are two important parts of de�ning an SPT phase: symmetry and bulk gap.

Two Hamiltonians are said to be in the same phase if we can continuously deform one into

the other without closing the bulk gap. This can involve tuning interaction strengths,

3In the ten-fold way, this is class AII[5]
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hopping coe�cients, and so on. However, the path connecting two di�erent Hamiltonians

can generically require breaking a symmetry present at either endpoint. For SPT phases,

we de�ne two phases to be distinct if they cannot be connected smoothly without closing

the bulk gap or breaking a symmetry. It is in this sense that a symmetry is �protecting�

� for as long as the symmetry and bulk gap are preserved, the system cannot leave the

phase.

We note here that SPT physics (like many examples in condensed matter) is entirely a

question of quantum ground states. Much of this physics is only accessible at extremely

low temperature, so that the thermal occupation of excited states does not ruin the

delicate quantum correlations. The bulk gap is essential for this, since the low-energy

dynamics will be exponentially suppressed. It also allows for a well-de�ned notion of

�bulk� and �boundary,� which would be impossible in the presence of gapless excitations.

As has been seen above, SPT physics necessitates a bulk gap. We want to compare

SPT phases to trivial insulating phases, so we also impose several other conditions. In

fact, the SPT bulk is in many ways indistinguishable from a trivial bulk. We require that

both SPT and trivial bulk have not only bulk gap but also be short range entangled and

have a unique ground state on a torus. We also require that the relevant symmetry4 act

locally, linearly, and on-site[10]. This prevents systems with topological order, spontane-

ous symmetry breaking, or gauge structure from being SPT phases, which is reasonable

since the trivial phase is just an ordinary band gap insulator.

Though the bulk is uninteresting in many ways, the boundary of an SPT bulk di�ers

wildly from the boundary of the trivial bulk. The trivial boundary is much like the bulk:

gapped, nondegenerate, and short-range entangled. SPT boundaries necessarily violate

these conditions. Provided that the dimension is large enough, SPT boundaries can

4I.e., the one that �protects� the boundary. There may be many symmetries in the system, not all
relevant to the SPT
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be gapless, spontaneously break discrete or continuous symmetries, or be topologically

ordered. The relevant symmetries may also act projectively, or not on-site, or even

nonlocally as well. Most importantly, the d−1-dimensional boundary of a d-dimensional

SPT bulk cannot be realized as a consistent lattice model by itself in d− 1 dimensions.

These conditions on the boundary are enough to justify the �exotic� label, but they

conceal a much richer structure than at �rst glance. Speci�cally, an SPT boundary always

supports a 't Hooft anomaly for the symmetry[11]. Like all anomalies, it means that the

classical Lagrangian has a symmetry but the quantum path integral does not. In this

case, the anomaly is exposed by attempting to gauge the symmetry. When a regulator is

imposed, the gauging procedure is obstructed, which precludes a lattice model. To avoid

this obstruction, the symmetry action can be realized projectively or not on-site, but this

will necessarily be di�erent from the symmetry action in the bulk. Correspondingly, the

bulk of an SPT has so-called �anomaly in�ow,� which allows the anomalous boundary to

be regularized in the presence of the bulk.

The two famous systems described above and found experimentally �t into this picture

exactly. For the QSH-like phase with just time reversal, there is a protected gapless

boundary state. For the topological insulator, the single Dirac cone makes sense as a

�eld theory, but any real lattice model always generates two Dirac cones in the IR. In

this case, the anomaly is due to the parity symmetry.

SPT phases are notable for their variety, both in type and boundary physics. A large,

concerted e�ort in the community has yielded classi�cations for how many SPT's of a

given symmetry G exist, for both fermions and bosons. In Ch 2, analyze this problem

by considering symmetry action on nonlinear sigma models (NLSMs). While it is known

that the NLSM classi�cation is incomplete, more opaque mathematical constructions

have claimed to be more complete. Whether or not there are still SPT phases beyond

the known lists, and how they are all realized physically, remain open questions.
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1.3 Non-LGWF Phase Transitions

Possibly one of the most important paradigms in condensed matter physics is the

Landau-Ginzburg-Wilson-Fisher theory of second order phase transitions[12]. By brin-

ging symmetry to the forefront and using very general arguments about scale invariance,

LGWF theory is able to predict a large number of experimentally or numerically veri�-

able observations. Most importantly, it works for both classical and quantum systems,

where the latter is implemented in one higher dimension.

The grand success of LGWF theory can be attributed to two key facts. First, many

physical systems can have the same symmetry. In LGWF theory, the critical point �eld

theory is built out of a symmetry-breaking order parameter and several phenomenological

constants. In conjunction with the renormalization group (RG), we can vastly restrict

the form of the e�ective �eld theory by only considering symmetry-respecting operators.

Second, the renormalization group allows us to construct the e�ective �eld theory for

a given phase without needing to know the precise lattice theory. If we can �nd a small

set of relevant operators, this allows us to construct the phase diagram proximate to a

given critical point and approximate the scaling dimensions of operators. In conjunction

with symmetry, this allows us to make very precise predictions about experimentally

accessible measurements.

In LGWF theory, phases and critical points are distinguished by an order parameter,

which is the expectation value of an operator charged under a symmetry. Ordered and

disordered phases are distinguished by whether or not this expectation value takes non-

zero values, which correspond to symmetry broken and symmetric phases, respectively.

Importantly, the �eld theory at the critical point is constructed using a �eld with the

same symmetry properties as the order parameter.

Universality is perhaps the most appealing aspect of LGWF theory. Since the critical

6
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behavior is dependent solely on symmetries of the order parameter, the dimension, and

the relevant operators in the Lagrangian, many systems with very di�erent microscopic

theories may have their phase transition described by the same conformal �eld theory.

This enables us to make very general statements about the properties of symmetry broken

phases (along with Goldstone's theorem).

Since the critical �eld theory depends on a single order parameter, it is di�cult

and non-universal to describe phase transitions between two ordered phases that break

di�erent symmetries. The critical point of the LGW phase transition happens when

the gap to excitations closes and the order parameter vanishes, so with more than one

symmetry either the gaps have to close together (�ne-tuning) or separately (two critical

points and an intermediate phase).

However, it is nevertheless possible to derive a generic, second-order transition be-

tween two ordered phases by moving beyond the LGWF paradigm. Such non-LGWF

transitions have been established for the square lattice Heisenberg antiferromagnet[13]

by including a dynamical gauge �eld in the critical action and analyzing the scaling di-

mensions of monopoles. This approach is beyond LGWF because it is an un�ne-tuned

critical point between two phases that break very di�erent symmetries, and its behavior

is described by fractionalized degrees of freedom instead of an order parameter.

Much like how the topological term in an SPT obstructs a classical interpretation

(due to the anomaly), the non-LGW transitions with the aforementioned structure are

also exotic quantum systems. In fact, this connection is nearly exact, because the same

topological terms that give rise to the boundary anomaly on an SPT are present in

these types of non-LGWF transitions[14]. However, the systems in question exist as

well-de�ned quantum �eld theories, and the �anomaly� is not realized in the same way.

This is a relatively new �eld, but there is ample numerical and physical evidence[13]

to suggest that the non-LGWF behavior is more general than planar antiferromagnets.

7
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Moreover, there may be other ways to modify LGW theory than have been studied, so

likely this �eld is much larger than expected. In Ch. 4 we examine a previously unknown

but physically relevant phase transition between two ordered states of the triangular

lattice antiferromagnet, which indeed cannot �t into LGWF theory.

1.4 Spin Liquids and Gauge Theories

The role of quantum �uctuations in destroying ordered states at zero temperature

is generically a very hard problem. In the case of antiferromagnetism, for example,

frustration and lattice e�ects can lead to new lower-energy states than the ordered Néel

state. Originally studied in the context of high-Tc superconductivity, a �spin liquid� state

has no magnetic order, usually one electron per unit cell, and fractionalized excitations.

One particular type of spin liquid state is the short-range resonating valence bond

(RVB) state[15]. This state is formed by pairing nearest-neighbor spin-1
2
into spin singlets

across lattice links, and then considering superpositions of assignments of bonds on the

lattice. Provided that the bonds are �uctuating (and do not settle into a particular

crystalline order), this state breaks neither the spin rotation symmetry nor the point-

group symmetries.

But, is the RVB state actually the ground state of a frustrated quantum magnet? This

is a very common question for candidate spin liquid states, as the interactions generally

require numerics to calculate energies. For the triangular[16] and kagome[17], there is

good evidence to suggest that this Z2 short-range RVB state can indeed exist. A similar

state was proposed for the frustrated antiferromagnet on the square lattice[18].

The most important example of 3+1d spin liquid to this dissertation is the pyrochlore

U(1) spin liquid. Like the RVB states described earlier, the Heisenberg antiferromagnet

on a pyrochlore lattice can be described using a short-range RVB-based dimer model.

8
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This model has a stable phase[19] that is, remarkably, gapless. The gapless mode5 does

not come about from an a spontaneously broken symmetry that acts on sites. In fact, no

symmetry is strictly necessary to stabilize the phase � only the local dimer constraint.

Many spin liquid phases share one very important property: their low energy dyna-

mics are captured by gauge theories[15]. Indeed, even the names are chosen to re�ect the

gauge group. In the Hamiltonian formulation, a gauge theory is the natural description

of a theory with a local constraint (i.e. conserved quantity) that generates a local action

of a symmetry. In spin liquids arising from short-range RVB or dimer model, this local

constraint is that each spin is paired to exactly one other spin; equivalently, each site

touches exactly one dimer.

While quantum gauge theories, especially the U(1) Maxwell theory, may be seem

semi-classical at �rst glance, they should also be classi�ed as �exotic matter.� The most

poignant example is 2 + 1d QED, where monopole events present in the path integral

proliferate and obliterate the gauge structure[20, 21]. Since these events are not controlled

by terms in the classical Lagrangian, the full quantum theory has to be analyzed to ensure

that the gauge theory exists, and that it is the correct description for a stable phase of

matter.

In 3 + 1d, the gauge theory picture is even weirder. The pyrochlore U(1) spin liquid

is so named because the low-energy dynamics are best described in terms of a Maxwell-

like gauge �eld. The gapless, collective Sz mode is the photon. Unlike the 2 + 1d case,

this phase is describe by a stable RG �xed point. While there are magnetic monopoles,

self-duality of the theory prevents them from proliferating. This stands in stark contrast

to almost all other known gapless phases, which are either Goldstone modes or critical

points between two phases.

Experimental detection of spin liquids is considerably di�cult. There has been some

5This mode is closely related to the Rokhsar-Kivelson resonon.
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progress in using large organic molecules to create triangular lattices, but the physical

signatures of the spin liquid probe the physics indirectly. Thus, we cannot simply look

for a bulk excitation gap, but instead look for things like ground state entropy. For the

pyrochlore U(1) phase, things are even more complicated � the gapless photon is di�cult

to separate from the phonon modes inherent in the crystal.

In this dissertation, we present work in Ch. 5 that generalizes the pyrochlore phase

to an in�nite family of related phases. Notable for being stable, gapless phases in 3 + 1d

with lattice models, these phases have recently become the subject of intense interest

due to the excitations possessing a fracton structure. They also generalize the ideas of

topological order, despite the presence of a gapless gauge boson.

The connection between spin liquids and gauge theories points towards even more

structure. In Ch 6, we discuss how the asymptotic symmetries of Minkowski spacetime

are intimately connected to certain �ux integrals in gauge theories emerging from spin

liquids, which in turn are connected to particular classes of dimer coverings of the lattice.

These �ux integrals have come under recent investigation due to their connection to so-

called �higher form symmetries,� where spontaneous breaking of a 1-form symmetry is

the same as the gauge theory decon�ning[22]. As such, spin liquid phases may correspond

to symmetry broken phases, albeit of a much more complicated symmetry.

1.5 Topological Order

The last type of intrinsically quantum system relevant to this dissertation is topo-

logical order. These systems have been of particular interest in recent years following

the realization[23, 24] that they can be used to perform quantum computations. As we

have noted above, if the boundary of an SPT is fully symmetric and gapped, then it is

topologically ordered; the stability of the SPT phase ensures that the computation state

10
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is protected from disorder.

Topological order gets its name from the system having a ground state degeneracy

on a manifold with nonzero genus[25, 26, 27, 21]. Often we consider the d-dimensional

torus, T d. Alternatively, the system can be described by a topological quantum �eld

theory (TQFT) that is independent of the metric. We require that there be an energy

gap to the �rst excited state, which ensures that the degeneracy is exponentially small

in the limit of in�nite system size.

Another de�nition is that the system has several locally indistinguishable ground

states. By this, we mean that the ground states cannot be connected via local operators

or measurements. However, they can be connected by global operators, which are by

de�nition sensitive to the topological properties of the manifold.

In 2 + 1d, topologically ordered systems can support special type of excitations that

are neither fermions nor bosons. These �anyons� can have any statistics but are not

truly local particles. Nevertheless, it is thought that they can be manipulated using local

operations to braid and fuse6, and by doing so perform quantum computation.

The most commonly invoked example of topological order is the decon�ned Z2 gauge

theory. For a particular choice of couplings, this is also known as the Kitaev toric code.

The degenerate ground states on a torus are reached by winding electric charges around

the large loops (or, equivalently, threading magnetic �ux). The anyons are the electric

charge and �ux, which in 2 + 1d are both point-like objects on the lattice.

For discrete gauge groups, there are analogues of the toric code that are also to-

pologically ordered. But what about continuous groups? Flux-winding arguments are

common[28, 29] for analyzing integer and fractional quantum hall states with real elec-

trons. They also appear in the pyrochlore U(1) spin liquid and its related family, as we

examine in Ch. 5.
6The braiding and fusion data is contained within a modular tensor category.
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Topological order, as de�ned above, requires a gap7. Thus, the gapless photon in the

pyrochlore U(1) spin liquid should seemingly disqualify it from being called topologically

ordered. However, with an appropriate analysis of low-lying photon excitations and

�ux-winding operators, we see in Ch. 6 that there is nevertheless a notion of �gapless�

topological order that incorporates the all-important local indistinguishability.

7When considering real crystals, one may ignore the phonons[30]
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1.6 Permissions and Attributions

• The content of chapter 2 is the result of a collaboration with Zhen Bi, Kevin

Slagle, and Cenke Xu, and has previously appeared in Physical Review B 91 134404

(2015) and arXiv:1309.0515. It is reproduced here with the permission of APS

(https://journals.aps.org/copyrightFAQ.html#thesis).

• The content of chapter 3 is the result of a collaboration with Yi-Zhuang You, Zhen

Bi, Kevin Slagle, and Cenke Xu, and has previously appeared in Physical Review

Letters 112 247202 (2014) and arXiv:1312.0626. It is reproduced here with the

permission of APS.

• The content of chapter 4 is the result of a collaboration with Chao-Ming Jian, Alex

Thomson, Zhen Bi, and Cenke Xu, and has previously appeared in arXiv:1710.04668

and is in review at several journals.

• The content of chapter 5 is the result of a collaboration with Yi-Zhuang You and

Cenke Xu, and has previously appeared in arXiv:1601.08235.

• The content of chapter 6 is the result of a collaboration with Adam Jermyn and has

previously appeared in Physical Review B 97 165141 (2018) and arXiv:1703.04772.

It is reproduced here with the permission of APS.
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Chapter 2

SPT's and Sigma Models

2.1 Why NLSM?

Symmetry protected topological (SPT) phases are one of the most important broad

classes of exotic matter, and have recently been an area of intense research. Starting

with the theoretical predication and subsequent experimental veri�cation of such phases,

an enormous e�ort has gone into trying to classify and understand these new, disordered

phases of matter.

The mathematical structure of these phases is particularly rich. Early attempts

to classify bosonic SPT phases used the group cohomology of the symmetry group G,

Hd+1(G,U(1)), by studying how group elements act on local sites and then requiring a

consistency condition[31]. Later work extended this by considering the cobordism group

of BG, the classifying space of G[32].

However, these formal models are somewhat di�cult to understand physically, and

so we would like a more familiar construction. For bosons1, this is easily achieved using

1Bosonic SPT phases are necessarily interacting, otherwise the bosons would simply condense in to
a BEC.
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a nonlinear sigma model (NLSM) description. In addition to describing order-disorder

transitions in magnets, a NLSM �eld theory can incorporate a topological term. While

these topological terms do not modify the bulk equations of motion, they have dramatic

e�ects on the boundary physics, giving rise to exactly the right behavior to be an SPT.

2.2 Nonlinear Sigma Model Classi�cation of Bosonic

SPT Phases

Symmetry protected topological (SPT) phase is a new type of quantum disordered

phase. It is intrinsically di�erent from a trivial direct product state, when and only

when the system has certain symmetry G. In terms of its phenomena, a SPT phase on

a d−dimensional lattice should satisfy at least the following three criteria:

(i). On a d−dimensional lattice without boundary, this phase is fully gapped, and

nondegenerate;

(ii). On a d−dimensional lattice with a (d− 1)−dimensional boundary, if the Hamil-

tonian of the entire system (including both bulk and boundary Hamiltonian) preserves

certain symmetry G, this phase is either gapless, or gapped but degenerate.

(iii). The boundary state of this d−dimensional system cannot be realized as a

(d− 1)-dimensional lattice system with the same symmetry G.

Both the 2d quantum spin Hall insulator [1, 3, 33] and 3d Topological insulator [8, 7,

34] are perfect examples of SPT phases protected by time-reversal symmetry and charge

U(1) symmetry. In this paper we will focus on bosonic SPT phases. Unlike fermion

systems, bosonic SPT phases are always strongly interacting phases of boson systems.

Notice that the second criterion (ii) implies the following two possibilities: On a

lattice with a boundary, the system is either gapless, or gapped but degenerate. For
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example, without interaction, the boundaries of 2d QSH insulator and 3d TBI are both

gapless; but with interaction, the edge states of 2d QSH insulator, and 3d TBI can both

be gapped out through spontaneous time-reversal symmetry breaking at the boundary,

and this spontaneous time-reversal symmetry breaking can occur through a boundary

transition, without destroying the bulk state [35, 36, 37]. When d ≥ 3, the degeneracy

of the boundary can correspond to either spontaneous breaking of G, or correspond to

certain topological degeneracy at the boundary. Which case occurs in the system will

depend on the detailed Hamiltonian at the boundary of the system. For example, with

strong interaction, the boundary of a 3d TBI can be driven into a nontrivial topological

phase [38, 39, 40, 41].

The concept of SPT phase was pioneered by Wen and his colleagues. A mathematical

paradigm was developed in Ref. [31, 42] that systematically classi�ed SPT phases based

on the group cohomology of their symmetry G. But this approach was unable to reveal

all the physical properties of the SPT phases. In the last few years, SPT phase has

rapidly developed into a very active and exciting �eld [31, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 40, 54, 55, 56], and besides the general mathematical classi�cation, other

approaches of understanding SPT phases were also taken. In 2d, it was demonstrated

that the SPT phases can be thoroughly classi�ed by the Chern-Simons �eld theory [47],

although it is unclear how to generalize this approach to 3d. Nonlinear Sigma model

�eld theories were also used to describe some SPT phases in 3d and 2d [50, 48, 49], but

a complete classi�cation based on this �eld theory is still demanded.

The goal of this paper is to systematically classify and describe bosonic SPT phases

with various continuous and discrete symmetries in all dimensions, using semiclassical

nonlinear Sigma model (NLSM) �eld theories. At least in one dimensional systems,

semiclassical NLSMs have been proved successful in describing SPT phases. The O(3)
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NLSM plus a topological Θ−term describes a spin-1 Heisenberg chain when Θ = 2π:

S1d =

∫
dxdτ

1

g
(∂µ~n)2 +

i2π

8π
εabcεµνn

a∂µn
b∂νn

c, (2.1)

and it is well-known that the spin-1 antiferromagnetic Heisenberg model is a SPT phase

with 2-fold degeneracy at each boundary [57, 58, 59, 60, 61, 62].

In this paper we will discuss SPT phases with symmetry ZT
2 , Z2, Z2 × Z2, Z2 × ZT

2 ,

U(1), U(1) × Z2, U(1) o Z2, U(1) × ZT
2 , U(1) o ZT

2 , Zm, Zm × Z2, Zm o Z2, Zm × ZT
2 ,

Zm o ZT
2 , SO(3), SO(3) × ZT

2 , Z2 × Z2 × Z2. Here we use the standard notation: ZT
2

stands for time-reversal symmetry, G× ZT
2 and Go ZT

2 stand for direct and semidirect

product between unitary group G and time-reversal symmetry. A semidirect product

between two groups means that these two group actions do not commute with each

other. More details will be explained when we discuss the classi�cation of these states.

We will demonstrate that a d−dimensional SPT phase with any symmetry mentioned

above can always be described by an O(d+ 2) NLSM in (d+ 1)−dimensional space-time,

namely all the 1d SPT phases discussed in this paper can be described by Eq. 2.1, all

the 2d and 3d SPT phases can be described by the following two �eld theories:

S2d =

∫
d2xdτ

1

g
(∂µ~n)2

+
i2πk

Ω3

εabcdn
a∂τn

b∂xn
c∂yn

d, (2.2)

S3d =

∫
d3xdτ

1

g
(∂µ~n)2

+
i2π

Ω4

εabcden
a∂τn

b∂xn
c∂yn

d∂zn
e, (2.3)
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The O(d+2) vector is a Landau order parameter with a unit length constraint: (~n)2 = 1.

Ωd is the surface area of a d−dimensional unit sphere. The 2d action Eq. 2.2 has a level−k

in front of its Θ−term, whose reason will be explained later. Di�erent SPT phases in

the same dimension are distinguished by the transformation of the O(d+ 2) vector under

the symmetry. The classi�cation of SPT phases on a d−dimensional lattice is given

by all the independent symmetry transformations of ~n that keep the entire Lagrangian

(including the Θ−term) invariant. This classi�cation rule will be further clari�ed in the

next section.

An O(d + 2) NLSM can support maximally O(d + 2) symmetry and other discrete

symmetries such as time-reversal. We choose the 17 symmetries listed above, because

they can all be embedded into the maximal symmetry of the �eld theory, and they are

the most physically relevant symmetries. Of course, if we want to study an SPT phase

with a large Lie group such as SU(N), the above �eld theories need to be generalized to

NLSM de�ned with a symmetric space of that Lie group. But for all these physically

relevant symmetries, our NLSM is already su�cient.

In principle, a NLSM describes a system with a long correlation length. Thus a NLSM

plus a Θ−term most precisely describes a SPT phase tuned close to a critical point (but

still in the SPT phase). When a SPT phase is tuned close to a critical point, the NLSM

not only describes its topological properties (e.g. edge states etc.), but also describes its

dynamics, for example excitation spectrum above the energy gap (much smaller than

the ultraviolet cut-o�). When the system is tuned deep inside the SPT phase, namely

the correlation length is comparable with the lattice constant, this NLSM can no longer

describe its dynamics accurately, but since the topological properties of this SPT phase

is unchanged while tuning, these topological properties (like edge states) can still be

described by the NLSM. The NLSM is an e�ective method of describing the universal

topological properties, as long as we ignore the extra nonuniversal information about
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dynamics, such as the exact dispersion of excitations, which depends on the details of

the lattice Hamiltonian and hence is not universal.

Besides the classi�cation, our NLSMs in all dimensions can tell us explicit physical

information about this SPT phase. For example, the boundary states of 1d SPT phases

can be obtained by explicitly solving the �eld theory reduced to the 0d boundary. The

boundary of a 3d SPT phase could be a 2d topological phase, and the NLSMs can

tell us the quantum number of the anyons of the boundary topological phases. The

boundary topological phases of 3d SPT phases with U(1) and time-reversal symmetry

were discussed in Ref. [48]. We will analyze the boundary topological phases for some

other 3d SPT phases in the current paper.

Our formalism not only can study each individual SPT phase, it also reveals the

relation between di�erent SPT phases. For example, using our formalism we are able

to show that there is a very intriguing relation between SPT phases with U(1) × (o)G

symmetry and SPT phases with Zm×(o)G symmetry, where G is another discrete group

such as Z2, ZT
2 . Our formalism demonstrates that after breaking U(1) to Zm, whether the

SPT phase survives or not depends on the parity of integer m. We also demonstrate that

when m is an even number, we can construct some extra SPT phases with Zm × (o)G

symmetry that cannot be deduced from SPT phases with U(1) × (o)G symmetry by

breaking U(1) down to Zm. Our �eld theory also gives many of these SPT states a

natural �decorated defect" construction, which will be discussed in more detail in the

next section.

NLSMs with a Θ−term can also give us the illustrative universal bulk ground state

wave function of the SPT phases. This was discussed in Ref. [50]. These wave functions

contain important information for both the boundary and the bulk defects introduced

by coupling the NLSM to an external gauge �eld [50, 63]. It was also demonstrated that

the NLSMs are useful in classifying and describing symmetry enriched topological (SET)
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phases [64], but a complete classi�cation of SET phases based on NLSMs will be studied

in the future.

In the current paper we will only discuss SPT states within cohomology. It is now

understood that the group cohomology classi�cation is incomplete, and in each dimension

there are a few examples beyond cohomology classi�cation [65, 32, 66]. These beyond-

cohomology states all involve gravitational anomalies [67] or mixed gauge-gravitational

anomalies [66]. Generalization of our �eld theory to the cases beyond group cohomology

can be found in another paper [68].

2.3 Strategy and Clari�cation

2.3.1 Edge states of NLSMs with Θ−term

In d−dimensional theories Eq. 2.1,2.2 and 2.3 (d denotes the spatial dimension), when

Θ = 2π, their boundaries are described by (d−1)+1−dimensional O(d+2) NLSMs with

a Wess-Zumino-Witten (WZW) term at level-1. When d = 1, the boundary of Eq. 2.1

with Θ = 2π is a 0+1d O(3) NLSM with a Wess-Zumino-Witten term at level k = 1 [62]:

Sb =

∫
dτ

1

g
(∂τ~n)2 +

∫
dτdu

i2π

8π
εabcεµνn

a∂µn
b∂νn

c. (2.4)

The WZW term involves an extension of ~n(τ) to ~n(τ, u):

~n(τ, 0) = (0, 0, 1), ~n(τ, 1) = ~n(τ). (2.5)

The boundary action Sb describes a point particle moving on a sphere S2, with a 2π

magnetic �ux through the sphere. The ground state of this single particle quantum

mechanics problem is two fold degenerate. The two fold degenerate ground states have

20



SPT's and Sigma Models Chapter 2

the following wave functions on the unit sphere:

U = (cos(θ/2)eiφ/2, sin(θ/2)e−iφ/2)t,

~n = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) . (2.6)

The boundary doublet U transforms projectively under symmetry of the SPT phase, and

its transformation can be derived explicitly from the transformation of ~n. For example if

~n transforms as ~n→ −~n under time-reversal, then this implies that under time-reversal

φ→ φ, θ → π + θ, and U → iσyU .

When d = 2, the boundary is a 1+1-dimensional O(4) NLSM with a WZW term at

level k = 1, and it is well-known that this theory is a gapless conformal �eld theory if the

system has a full O(4) symmetry [69, 70]. The 1d boundary could be gapped but still

degenerate if the symmetry of ~n is discrete (the degeneracy corresponds to spontaneous

discrete symmetry breaking); when d = 3, the boundary is a 2+1d O(5) NLSM with a

WZW at level k = 1, which can be reduced to a 2+1d O(4) NLSM with Θ = π after the

�fth component of ~n is integrated out [48]. This 2 + 1d boundary theory should either be

gapless or degenerate, and one particularly interesting possibility is that it can become

a topological order, which will be discussed in more detail in section IIF. Starting with

this topological order, we can prove that this 2 + 1d boundary system cannot be gapped

without degeneracy.

All components of ~n in Eq. 2.1,2.2 and 2.3 must have a nontrivial transformation

under the symmetry group G, namely it is not allowed to turn on a linear �Zeeman" term

that polarizes any component of ~n. Otherwise the edge states can be trivially gapped,

and the bulk Θ−term plays no role.

21



SPT's and Sigma Models Chapter 2

2.3.2 Phase diagram of NLSMs with a Θ−term

In our classi�cation, the NLSM including its Θ−term is invariant under the symmetry

of the SPT phase, for arbitrary value of Θ. For special values of Θ, such as Θ = kπ

with integer k, some extra discrete symmetry may emerge, but these symmetries are

unimportant to the SPT phase. However, these extra symmetries guarantee that Θ = kπ

is a �xed point under renormalization group (RG) �ow. In 1+1d NLSMs, the RG �ow

of Θ was calculated explicitly in Ref. [71, 72] and it was shown that Θ = 2πk are stable

�xed points, while Θ = (2k + 1)π are instable �xed points, which correspond to phase

transitions; in higher dimensions, similar explicit calculations are possible, but for our

purposes, we just need to argue that Θ = 2πk are stable �xed points under RG �ow.

The bulk spectrum of the NLSM with Θ = 2πk is identical to the case with Θ = 0: in

the quantum disordered phase the bulk of the system is fully gapped without degeneracy.

Now if Θ is tuned away from 2πk: Θ = 2πk ± ε, this perturbation cannot close the bulk

gap, and since the essential symmetry of the SPT phase is unchanged, the SPT phase

including its edge states should be stable against this perturbation. Thus a SPT phase

corresponds to a �nite phase Θ ∈ (2πk − δ1, 2πk + δ2) in the phase diagram.

There is a major di�erence between Θ−term in NLSM and the Θ−term in the re-

sponse action of the external gauge �eld. In our description, a SPT phase corresponds to

the entire phase whose stable �xed point is at Θ = 2π (or 2πk with integer k). Tuning

slightly away from these stable �xed points will not break any essential symmetry that

protects the SPT state, and hence it does not change the main physics. The theory

will always �ow back to these stable �xed points under RG (this RG �ow was computed

explicitly in 1 + 1d in Ref. [71, 72], and a similar RG �ow was proposed for higher di-

mensional cases [73]). The Θ−term of the external gauge �eld after integrating out the

matter �elds is protected by the symmetry of the SPT phase to be certain discrete value.
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For example Θ = π for the ordinary 3d topological insulator [74, 75] is protected by

time-reversal symmetry. Tuning Θ away from π will necessarily break the time-reversal

symmetry.

2.3.3 Zk or Z classi�cation?

In the classi�cation table in Ref. [31, 42], one can see that in even dimensions, there

are many SPT states with Z classi�cations, but in odd dimensions, Z classi�cation never

appears. This fact was a consequence of mathematical calculations in Ref. [31, 42], but

in this section we will give a very simple explanation based on our �eld theories.

The manifold of O(d+ 2) NLSM is Sd+1, which has a Θ−term in (d+ 1)−dimensional

space-time due to homotopy group πd+1[Sd+1] = Z. However, this does not mean that

the Θ−term will always give us Z classi�cation, because more often than not we can

show that Θ = 0 and Θ = 2πk with certain nonzero integer k can be connected to each

other without any bulk transition.

For example, let us couple two Haldane phases to each other:

L =
1

g
(∂µ~n

(1))2 +
i2π

8π
εabcεµνn

(1)
a ∂µn

(1)
b ∂νn

(1)
c

+ 1→ 2 + A(~n(1) · ~n(2)). (2.7)

When A < 0, e�ectively ~n(1) = ~n(2) = ~n, then the system is e�ectively described by one

O(3) NLSM with Θ = 4π; while when A > 0, e�ectively ~n(1) = −~n(2) = ~n, the e�ective

NLSM for the system has Θ = 0. When parameter A is tuned from negative to positive,

the bulk gap does not close. The reason is that, since Θ = 2π in both Haldane phases,

the Θ−term does not a�ect the bulk spectrum at all. To analyze the bulk spectrum (and

bulk phase transition) while tuning A, we can just ignore the Θ−term. Without the
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Θ−term, both theories are just trivial gapped phases, and an inter-chain coupling can

not qualitatively change the bulk spectrum unless it is strong enough to overcome the

bulk gap in each chain. We have explicitly checked this phase diagram using a Monte

Carlo simulation of two coupled O(3) NLSMs, and the result is exactly the same as what

we would expect from the argument above. Thus the theory with Θ = 4π and Θ = 0 are

equivalent.

By contrast, if we couple two chains with Θ = π each, then the cases A > 0 and < 0

correspond to e�ective Θ = 0 and 2π respectively, and these two limits are separated by a

bulk phase transition point A = 0, when the system becomes two decoupled chains with

Θ = π each. And it is well-known that a 1 + 1d O(3) NLSM with Θ = π is the e�ective

�eld theory that describes a spin-1/2 chain [57, 58], and according to the Lieb-Shultz-

Matthis theorem, this theory must be either gapless or degenerate [76]. This conclusion

is consistent with the RG calculation in Ref. [71, 72], and a general nonperturbative

argument in Ref. [73].

In fact when Θ = 4π the boundary state of Eq. 2.1 is a spin-1 triplet, and by tuning

A, at the boundary there is a level crossing between triplet and singlet, while there is no

bulk transition. This analysis implies that with SO(3) symmetry, 1d spin systems have

two di�erent classes: there is a trivial class with Θ = 4πk, and a nontrivial Haldane class

with Θ = (4k + 2)π.

If we cannot connect Θ = 4π to Θ = 0 without closing the bulk gap, then the

classi�cation would be bigger than Z2. For example, let us consider the 2d SPT phase

with U(1) symmetry which was �rst studied in Ref. [44]. This phase is described by

Eq. 2.2. B ∼ n1 + in2 and B′ ∼ n3 + in4 (n1 · · ·n4 are the four components of O(4)

vector ~n in Eq. 2.2) are two complex boson (rotor) �elds that transform identically under

the global U(1) symmetry. Now suppose we couple two copies of this systems together
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through symmetry allowed interactions:

S = S1 + S2 + A1B1B
†
2 + A2B1B

′†
2

+ A3B
′
1B
†
2 + A4B

′
1B
′†
2 +H.c. (2.8)

No matter how we tune the parameters Ai, the resulting e�ective NLSM always has

Θ = 4π instead of Θ = 0 (this is simply because (−1)2 = (−1)4 = +1). This implies

that we cannot smoothly connect Θ = 4π to 0 without any bulk transition. Thus the

classi�cation of 2d SPT phases with U(1) symmetry is Z instead of Z2. This is why

in 2d (and all even dimensions), many SPT states have Z classi�cation, while in odd

dimensions there is no Z classi�cation at all, namely all the nontrivial SPT phases in odd

dimensions correspond to Θ = 2π. Thus in Eq. 2.2 we added a level−k in the Θ−term.

2.3.4 NLSM and �decorated defect" construction of SPT states

Ref. [53] has given us a physical construction of some of the SPT states in terms of the

�decorated domain wall" picture. For example, one of the 3d ZA
2 ×ZB

2 SPT state can be

constructed as follows: we �rst break the ZB
2 symmetry, then restore the ZB

2 symmetry

by proliferating the domain wall of ZB
2 , and each ZB

2 domain wall is decorated with a 2d

SPT state with ZA
2 symmetry. This state is described by Eq. 2.3 with transformation

ZB
2 : n1,2 → −n1,2, na → na(a = 3, 4, 5);

ZA
2 : n1,→ n1, na → −na(a = 2, · · · 5). (2.9)
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Here ni is the ith component of vector ~n. To visualize the �decorated domain" wall pic-

ture, we can literally make a domain wall of n1, and consider the following con�guration

of vector ~n: ~n = (cos θ, sin θN2, sin θN3, sin θN4, sin θN5), where ~N is a O(4) vector with

unit length, and θ is a function of coordinate z only:

θ(z = +∞) = π, θ(z = −∞) = 0. (2.10)

Plug this parametrization of ~n into Eq. 2.3, and integrate along z direction, the Θ−term

in Eq. 2.3 precisely reduces to the Θ−term in Eq. 2.2 with k = 1, and the O(4) vector

~n = ~N . This is precisely the 2d SPT with Z2 symmetry. This implies that the ZB
2 domain

wall is decorated with a 2d SPT state with ZA
2 symmetry.

Many SPT states can be constructed with this decorated domain wall picture. Some

3d SPT states can also be understood as �decorated vortex", which was �rst discussed

in [48]. This state has U(1)× ZT
2 symmetry, and the vector ~n transforms as

U(1) : (n1 + in2)→ (n1 + in2)eiθ, n3,4,5 → n3,4,5,

ZT
2 : ~n→ −~n. (2.11)

If we make a vortex of the U(1) order parameter (n1, n2), Eq. 2.3 reduces to Eq. 2.1 with

O(3) order parameter (n3, n4, n5). Thus this SPT can be viewed as decorating the U(1)

vortex with a 1d Haldane phase, and then proliferating the vortices.

2.3.5 Independent NLSMs

Let us take the example of 1d SPT phases with Z2 × ZT
2 symmetry. As we claimed,

all 1d SPT phases in this paper are described by the same NLSM Eq. 2.1. With Z2×ZT
2
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symmetry, there seems to be three di�erent ways of assigning transformations to ~n that

make the entire Lagrangian invariant:

(1) : Z2 : ~n→ ~n, ZT
2 : ~n→ −~n.

(2) : Z2 : n1,2 → −n1,2, n3 → n3

ZT
2 : ~n→ −~n

(3) : Z2 : n1,2 → −n1,2, n3 → n3

ZT
2 : n3 → −n3, n1,2 → n1,2. (2.12)

However the NLSMs de�ned with these three di�erent transformations are not totally

independent from each other. Let us parameterize the O(3) vectors ~n(i) with transfor-

mations (1), (2) and (3) as:

~n(i)(~r) = (n
(i)
1 , n

(i)
2 , n

(i)
3 ) =

(
sin(θ

(i)
~r ) cos(φ

(i)
~r ), sin(θ

(i)
~r ) sin(φ

(i)
~r ), cos(θ

(i)
~r )
)
, (2.13)

φ
(i)
~r and θ

(i)
~r are functions of space-time. Under Z2 and ZT

2 symmetry, θ(i) and φ(i)

transform as

Z2 : θ(i) → θ(i),

27



SPT's and Sigma Models Chapter 2

φ(1) → φ(1), φ(i) → φ(i) + π, (i = 2, 3);

ZT
2 : θ(i) → π − θ(i),

φ(i) → φ(i) + π, (i = 1, 2), φ(3) → φ(3). (2.14)

First of all, since θ(i) have the same transformation for all i, we can turn on strong

coupling between the three NLSMs to make θ(1) = θ(2) = θ(3) = θ. Now we can construct

~n(3) using the parametrization of ~n(1) and ~n(2):

n
(3)
1 = sin(θ) cos(φ(1) + φ(2)),

n
(3)
2 = sin(θ) sin(φ(1) + φ(2)),

n
(3)
3 = cos(θ). (2.15)

It is straightforward to prove that ~n(3) de�ned this way transforms identically with the

case (3) in Eq. 2.12, also the topological number of ~n(3) in 1+1d space-time is the sum

of topological numbers of ~n(1) and ~n(2). More explicitly, an instanton of ~n(a) is a domain

wall of n(a)
3 decorated with a vortex of φ(a). As we explained above, with appropriate

coupling between these vectors, we can make θ(1) = θ(2) = θ(3) = θ, and φ(3) = φ(1) +φ(2).

Thus a domain wall of n(3)
3 is also a domain wall of n(1)

3 and n(2)
3 , while the vortex number

of φ(3) is the sum of vortex number of φ(1) and φ(2). Thus the Θ−term of ~n(3) reduces to

the sum of Θ−terms of ~n(1) and ~n(2). In this example we have shown that NLSMs (1)

and (2) in Eq. 2.12 can �merge" into NLSM (3). Thus the three NLSMs de�ned with
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transformations (1), (2) and (3) are not independent from each other. 2 The consequence

of this analysis is that if all three theories exist in one system, although each theory is

a nontrivial SPT phase individually, we can turn on some symmetry allowed couplings

between these NLSMs and cancel the bulk topological terms completely, and drive the

entire coupled system to a trivial state.

Also, for either NLSM (1) or (2) in Eq. 2.12, we can show that Θ(i) = 0 and 4π

can be connected to each other without a bulk transition (using the same method as

the previous subsection). Then eventually the 1d SPT phase with Z2 × ZT
2 symmetry is

parametrized by two independent Θ−terms, the �xed point values of Θ(1) and Θ(2) can

be either 0 or 2π, thus this SPT phase has a (Z2)2 classi�cation, which is consistent with

the classi�cation using group cohomology. NLSMs with transformations (1), (2) are two

�root phases" of 1d SPT phases with Z2 × ZT
2 symmetry. All the other SPT phases can

be constructed with these two root phases.

For most SPT phases, we can construct the NLSMs using the smallest representa-

tion (fundamental representation) of the symmetry groups G, because usually (but not

always!) NLSMs constructed using higher representations can reduce to constructions

with the fundamental representation with a di�erent Θ. For example, the 1d SPT phase

with U(1)oZ2 symmetry can be described by Eq. 2.1 with the following transformation

U(1) : (n1 + in2)→ eiθ(n1 + in2), n3 → n3,

Z2 : n1 → n1, n2,3 → −n2,3, (2.16)

namely B ∼ (n1 + in2) is a charge-1 boson under the U(1) rotation, and the edge state

2The �merging" argument is usually easy to implement for systems with simple symmetries, but
we should admit that for higher dimensions and complicated symmetries, the �merging" argument can
become rather involved.
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of this SPT phase carries charge-1/2 of boson B. We can also construct an O(3) NLSM

using charge-2 boson B′ ∼ (n′1 + in′2) ∼ (n1 + in2)2 that transforms as B′ → B′e2iα, then

mathematically we can demonstrate that the NLSM with Θ = 2π for order parameter

~n′ = (n′1, n
′
2, n3) reduces to a NLSM of ~n with Θ = 4π, hence it is a trivial phase.

More explicitly, let us take unit vector ~n = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)), and

vector ~n′ = (sin(θ) cos(2φ), sin(θ) sin(2φ), cos(θ)), then we can show that when ~n has

topological number 1 in 1+1d space-time, ~n′ would have topological number 2. This

means that if there is a Θ−term for ~n′ with Θ = 2π, it is equivalent to a Θ−term for ~n

with Θ = 4π.

Physically, the edge state of NLSM of ~n′ with Θ = 2π carries a half-charge of B′,

which is still a charge-1 object, so it can be screened by another charge-1 boson B. Hence

in this case NLSM constructed using charge-2 boson B′ would be trivial.

However, later we will also show that when the symmetry group involves Zm with

even integerm > 2, then using higher representations of Zm we can construct SPT phases

that cannot be obtained from the fundamental representation of Zm.

2.3.6 Boundary topological order of 3d SPT phases

The (d − 1)−dimensional boundary of a d−dimensional SPT phase must be either

degenerate or gapless. When d = 3, its 2d boundary can spontaneously break the sym-

metry, or have a topological order [48]. We can use the bulk �eld theory Eq. 2.3 to derive

the quantum numbers of the anyons at the boundary.

Let us take the 3d SPT phase with Z2 × ZT
2 symmetry as an example. One of the

SPT phases has the following transformations:

Z2 : na → −na(a = 1, · · · 4), n5 → n5;
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ZT
2 : ~n→ −~n. (2.17)

The 2+1d boundary of the system is described by a 2+1d O(5) NLSM with a Wess-

Zumino-Witten (WZW) term at level k = 1:

S =

∫
d2xdτ

1

g
(∂µ~n)2

+

∫ 1

0

du
i2π

Ω4

εabcden
a∂xn

b∂yn
c∂zn

d∂τn
e, (2.18)

where ~n(x, τ, u) satis�es ~n(x, τ, 0) = (0, 0, 0, 0, 1) and ~n(x, τ, 1) = ~n(x, τ). If the time-

reversal symmetry is preserved, namely 〈n5〉 = 0, we can integrate out n5, and Eq. 2.18

reduces to a 2+1d O(4) NLSM with Θ = π:

S =

∫
d2xdτ

1

g
(∂µ~n)2 +

iπ

Ω3

εabcdn
a∂τn

b∂xn
c∂yn

d. (2.19)

In Eq. 2.19 Θ = π is protected by time-reversal symmetry.

In the following we will argue that the topological terms in Eq. 2.18 and Eq. 2.19

guarantee that the 2d boundary cannot be gapped without degeneracy. One particularly

interesting possibility of the boundary is a phase with 2d Z2 topological order [48]. A

2d Z2 topological phase has e and m excitations that have mutual semion statistics [23].

The semion statistics can be directly read o� from Eq. 2.19: if we de�ne complex boson

�elds z1 = n1 + in2 and z2 = n3 + in4, then the Θ−term in Eq. 2.19 implies that a vortex

of (n3, n4) carries half charge of z1, while a vortex of (n1, n2) carries half charge of z2, thus

vortices of z1 and z2 are bosons with mutual semion statistics. This statistics survives

after z1 and z2 are disordered by condensing the double vortex (vortex with vorticity 4π)

of either z1 or z2 at the boundary, then the disordered phase must inherit the statistics
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and become a Z2 topological phase [48]. The vortices of (n1, n2) and (n3, n4) become the

e and m excitations respectively. Normally a vortex defect is discussed in systems with

a U(1) global symmetry. We do not assume such U(1) global symmetry in our case, this

symmetry reduction is unimportant in the Z2 topological phase.

At the vortex core of (n3, n4), namely the m excitation, Eq. 2.18 reduces to a 0 + 1d

O(3) NLSM with a WZW term at level 1 [77]:

Sm =

∫
dτ

1

g
(∂τ ~N)2 +

∫ 1

0

du
i2π

8π
εabcεµνN

a∂µN
b∂νN

c, (2.20)

where ~N ∼ (n1, n2, n5). This 0+1d �eld theory describes a single particle moving on a 2d

sphere with a magnetic monopole at the origin. It is well known that if there is a SO(3)

symmetry for ~N , then the ground state of this 0d problem has two fold degeneracy, with

two orthogonal solutions

um = cos(θ/2)eiφ/2, vm = sin(θ/2)e−iφ/2,

~N = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) . (2.21)

Likewise, the vortex of (n1, n2) (e excitation) also carries a doublet (ue, ve). Under the

Z2 transformation, φ→ φ+π, thus ue,m and ve,m carry charge ±1/2 of the Z2 symmetry,

namely under the Z2 transformation:

Z2 : Ue,m → iσzUe,m, (2.22)

where Ue,m = (ue,m, ve,m)t.

Under time-reversal transformation T , ~N → − ~N , θ → θ + π. Thus the e and m
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doublets transform as

ZT
2 : Ue,m → iσyUe,m, (2.23)

thus the e and m anyons at the boundary carry projective representation of ZT
2 which

satis�es T 2 = −1.

Based on this Z2 topological order, we can derive the phase diagram around the Z2

topological order, and show that this boundary cannot be gapped without degeneracy.

For example, starting with a 2d Z2 topological order, one can condense either e or m exci-

tation and kill the topological degeneracy. However, because Ue,m transform nontrivially

under the symmetry group, condensate of either e or m will always spontaneously break

certain symmetry and lead to degeneracy. For example, the condensate of e excitation

has nonzero expectation value of (n3, n4, n5) ∼ U †e~σUe, which necessarily spontaneously

breaks the Z2 or ZT
2 symmetry.

We also note that one bulk BSPT state can have di�erent boundary states, which

depends on the details of the boundary Hamiltonian. Recently a di�erent boundary

topological order of BSPT state was derived in Ref. [78], but the bulk state is the same

as ours.

2.3.7 Rule of classi�cation

With all these preparations, we are ready to lay out the rules of our classi�cation:

1. In d−dimensional space, all the SPT phases discussed in this paper are described

by a (d+1)−dimensional O(d+2) NLSM with a Θ−term. The O(d+2) vector �eld ~n is an

order parameter, namely it must carry a nontrivial representation of the given symmetry.

In other words, no component of the vector �eld transforms completely trivially under

the symmetry, because otherwise it is allowed to turn on a strong linear �Zeeman" term
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to the trivial component, and then the system will become a trivial direct product state.

2. The classi�cation is given by all the possible independent symmetry transformati-

ons on vector order parameter ~n that keep the Θ−term invariant, for arbitrary value of

Θ. Independent transformations mean that any NLSM de�ned with one transformation

cannot be obtained by �merging" two (or more) other NLSMs de�ned with other trans-

formations. SPT phases constructed using independent NLSMs are called �root phases".

All the other SPT phases can be constructed with these root phases.

3. With a given symmetry, and given transformation of ~n, if Θ = 2πk and Θ = 0 can

be connected without a bulk transition, this transformation will contribute classi�cation

Zk; otherwise the transformation will contribute classi�cation Z.

Using the rule and strategy discussed in this section, we can obtain the classi�cation of

all SPT phases in all dimensions. In this paper we will systematically study SPT phases

in one, two and three spatial dimensions with symmetries ZT
2 , Z2, Z2 × Z2, Z2 × ZT

2 ,

U(1), U(1) × Z2, U(1) o Z2, U(1) × ZT
2 , U(1) o ZT

2 , Zm, Zm × Z2, Zm o Z2, Zm × ZT
2 ,

ZmoZT
2 , SO(3), SO(3)×ZT

2 , Z2×Z2×Z2. The �nal classi�cation of the SPT phases we

study in this paper is consistent to the classi�cation based on group cohomology [31, 42].

2.4 1d SPT phase with Z2 × Z2 × ZT
2 symmetry

Before we discuss our full classi�cation, let us carefully discuss 1d SPT phases with

Z2×Z2×ZT
2 symmetry as an example. These SPT phases were discussed very thoroughly

in Ref. [79]. There are in total 16 di�erent phases (including the trivial phase). The goal of

this section is to show that all these phases can be described by the same equation Eq. 2.1

with certain transformation of ~n, and the projective representation of the boundary states

given in Ref. [79] can be derived explicitly using Eq. 2.6.

For the consistency of notation in this paper, Rz and Rx in Ref. [79] will be label-
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led ZA
2 and ZB

2 here. Let us consider one example, namely Eq. 2.1 with the following

transformation:

ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n2 → −n2, n1,3 → n1,3. (2.24)

Now let us parametrize ~n as

~n = (sin θ cosφ, sin θ sinφ, cos θ) , (2.25)

then θ and φ transform as

ZA
2 : θ → θ, φ→ φ+ π,

ZB
2 : θ → π − θ, φ→ −φ,

ZT
2 : θ → θ, φ→ −φ. (2.26)

These transformations lead to the following projective transformation of edge state

Eq. 2.6:

ZA
2 : U → iσzU,

ZB
2 : U → σxU,
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ZT
2 : U → U. (2.27)

Thus this NLSM corresponds to phase E5 in Ref. [79].

The 16 phases in Ref. [79] correspond to the following transformations of O(3) vector

~n:

E0 : Trivial phase, Θ = 0;

E ′0 : ZA
2 , Z

B
2 : ~n→ ~n, ZT

2 : ~n→ −~n;

E1 : ZA
2 : ~n→ ~n,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : ~n→ −~n,

E ′1 : ZA
2 : ~n→ ~n,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;

E3 : ZB
2 : ~n→ ~n,

ZA
2 : n1,2 → −n1,2, n3 → n3,
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ZT
2 : ~n→ −~n,

E ′3 : ZB
2 : ~n→ ~n,

ZA
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;

E5 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n2 → −n2, n1,3 → n1,3;

E ′5 : E5 ⊕ E ′0;

E7 : ZA
2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;

E ′7 : ZA
2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1,2 → −n1,2, n3 → n3,
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ZT
2 : ~n→ −~n;

E9 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n3 → −n3, n1,2 → n1,2;

E ′9 : E9 ⊕ E ′0,

E11 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n1 → −n1, n2,3 → n2,3;

E ′11 : E11 ⊕ E ′0;

E13 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : ~n→ −~n;

E ′13 : E13 ⊕ E ′0. (2.28)
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All the phases except for the trivial phase E0 have Θ = 2π in Eq. 2.1. Here E5 ⊕ E ′0

means it is a spin ladder with symmetry allowed weak interchain couplings, and the two

chains are E5 phase and E ′0 phase respectively. For all the 16 phases above, we can

compute the projective representations of the boundary states using Eq. 2.6, and they

all precisely match with the results in Ref. [79].

2.5 Full classi�cation of SPT phases

2.5.1 SPT phases with Z2 symmetry

In 1d and 3d, there is no Z2 symmetry transformation that we can assign vector ~n

that makes the actions Eq. 2.1 and Eq. 2.3 invariant, thus there is no SPT phase in 1d

and 3d with Z2 symmetry. However, in 2d there is obviously one and only one way to

assign the Z2 symmetry:

Z2 : (n1, n2, n3, n4)→ −(n1, n2, n3, n4). (2.29)

Then when Θ = 2π this 2+1d O(4) NLSM describes the Z2 SPT phase studied in Ref. [43].

Using the method in section IIC, one can show that with the transformation Eq. 2.29,

the 2+1d O(4) NLSM Eq. 2.2 with Θ = 4π is equivalent to Θ = 0, thus the classi�cation

in 2d is Z2.

In Ref. [50], the authors also used this NLSM to derive the ground state wave function

of the SPT phase:

|Ψ〉 =
∑

(−1)dw|C〉, (2.30)

where |C〉 standards for an arbitrary Ising �eld con�guration, while dw is the number of
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Ising domain walls of this con�guration. This wave function was also derived in Ref. [43]

with an exactly soluble model for this SPT phase.

The classi�cation of SPT phases with Z2 symmetry is:

1d : Z1, 2d : Z2, 3d : Z1. (2.31)

Here Z1 means there is only one trivial state, and Z2 means there is one trivial state and

one nontrivial SPT state.

2.5.2 SPT phases with ZT
2 symmetry

In 2d, there is no way to assign ZT
2 symmetry to the O(4) NLSM order parameter in

Eq. 2.2 to make the Θ−term invariant, thus there is no bosonic SPT phase in 2d with

ZT
2 symmetry. In 1d and 3d, there is only one way to assign the ZT

2 symmetry to vector

~n:

ZT
2 : ~n→ −~n, (2.32)

and Θ = 0 and Θ = 4π are equivalent. Thus in both 1d and 3d, the classi�cation is

Z2. Notice that time-reversal is an antiunitary transformation, thus i → −i under ZT
2 ;

also since our NLSMs are de�ned in Euclidean space-time, the Euclidean time τ = it is

invariant under ZT
2 .

Using the method in section II.F, one can demonstrate that the boundary of the 3d

SPT state with ZT
2 symmetry is a 2d Z2 topological order, whose both e andm excitations

are Kramers doublet, i.e. the so called eTmT state.
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The classi�cation of SPT phases with ZT
2 symmetry is:

1d : Z2, 2d : Z1, 3d : Z2. (2.33)

Now it is understood that in 3d there is bosonic SPT state with ZT
2 symmetry that

is beyond the group cohomology classi�cation [48], and there is a explicit lattice con-

struction for such state [80]. This state is also beyond our current NLSM description.

However, a generalized �eld theory which involves both the NLSM and Chern-Simons

theory can describe at least a large class of BSPT states beyond group cohomology. This

will be discussed in a di�erent paper [68].

2.5.3 SPT phases with U(1) symmetry

In 1d and 3d, there is no way to assign U(1) symmetry to vector ~n that keeps the

entire Lagrangian invariant. But in 2d, bosonic SPT phase with U(1) symmetry was

discussed in Ref. [44], and its �eld theory is given by Eq. 2.2. And since in this case we

cannot connect Θ = 2πk and Θ = 0 without a bulk transition, the classi�cation is Z.

The classi�cation of SPT phases with U(1) symmetry is:

1d : Z1, 2d : Z, 3d : Z1. (2.34)

2.5.4 SPT phases with U(1) o Z2 symmetry

U(1) o Z2 is a subgroup of SO(3). In 1d, there is only one way of assigning the

symmetry to vector ~n that keeps the entire Lagrangian invariant:

U(1) : (n1 + in2)→ eiθ(n1 + in2), n3 → n3,
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Z2 : n1 → n1, n2,3 → −n2,3. (2.35)

Here Z2 is a particle-hole transformation of rotor/boson �eld b ∼ n1 + in2. n3 can be

viewed as the boson density, which changes sign under particle-hole transformation. One

can check that the U(1) and Z2 symmetry de�ned above do not commute with each

other. The boundary state of this 1d SPT phase is given in Eq. 2.6. Under U(1) and Z2

transformation, the boundary doublet U transforms as

U(1) : U → eiθσ
z/2U, Z2 : U → σxU. (2.36)

In 3d, there is also only one way of assigning the symmetry to the O(5) vector:

U(1) : (n1 + in2)→ eiθ(n1 + in2), nb → nb, b = 3, 4, 5;

Z2 : n1 → n1, nb,→ −nb, b = 2, · · · 5. (2.37)

In both 1d and 3d, Θ = 4π is equivalent to Θ = 0, thus in both 1d and 3d the classi�cation

is Z2.

In 2d, there are two independent ways of assigning U(1) oZ2 transformations to the

O(4) vector ~n:

(1) : U(1) : (n1 + in2)→ eiθ(n1 + in2),

(n3 + in4)→ eiθ(n3 + in4);

Z2 : n1, n3 → n1, n3, n2, n4 → −n2,−n4;
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(2) : U(1) : ~n→ ~n, Z2 : ~n→ −~n. (2.38)

The transformation (1) contributes Z classi�cation, while transformation (2) contributes

Z2 classi�cation, i.e. in 2d the classi�cation is Z × Z2. The �nal classi�cation of SPT

phases with U(1) o Z2 symmetry is:

1d : Z2, 2d : Z× Z2, 3d : Z2. (2.39)

2.5.5 SPT phases with U(1)× Z2 symmetry

In both 1d and 3d, there is no way of assigning U(1)× Z2 transformations to vector

~n that keeps the Θ term invariant. But in 2d, we can construct three root phases:

(1) : U(1) : (n1 + in2)→ eiθ(n1 + in2),

(n3 + in4)→ eiθ(n3 + in4);

Z2 : ~n→ ~n;

(2) : U(1) : ~n→ ~n, Z2 : ~n→ −~n;

(3) : U(1) : (n1 + in2)→ eiθ(n1 + in2),

n3,4 → n3,4;

Z2 : n1,2 → n1,2, n3,4 → −n3,4. (2.40)
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The �rst transformation contributes classi�cation Z, while transformations (2) and (3)

both contribute classi�cation Z2, thus the �nal classi�cation of SPT phases with U(1)×Z2

symmetry is:

1d : Z1, 2d : Z× (Z2)2, 3d : Z1. (2.41)

2.5.6 SPT phases with U(1) o ZT
2 symmetry

A boson operator b with U(1) oZT
2 symmetry transforms as b→ b under ZT

2 . In 1d,

the only U(1) o ZT
2 symmetry transformation that keeps Eq. 2.1 invariant is the same

transformation as ZT
2 SPT phase, namely vector ~n does not transform under U(1), but

changes sign under ZT
2 .

In 2d, the only transformation that keeps Eq. 2.2 invariant is

U(1) : (n1 + in2)→ eiθ(n1 + in2), n3,4 → n3,4;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4), (2.42)

and this NLSM gives classi�cation Z2.

The NLSMs for U(1)oZT
2 SPT phases in 3d have been discussed in Ref. [48], and in

3d the classi�cation is (Z2)2. Thus the �nal classi�cation of SPT phases with U(1)oZT
2

symmetry is:

1d : Z2, 2d : Z2, 3d : (Z2)2. (2.43)
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2.5.7 SPT phases with U(1)× ZT
2 symmetry

In 1d, there are two independent transformations that keep Eq. 2.1 invariant:

(1) : U(1) : (n1 + in2)→ eiθ(n1 + in2), n3 → n3;

ZT
2 : n1,2 → n1,2, n3 → −n3,

(2) : U(1) : ~n→ ~n,

ZT
2 : ~n→ −~n. (2.44)

In 2d there is no U(1)×ZT
2 transformation that keeps Eq. 2.2 invariant. In 3d the NLSMs

for U(1) × ZT
2 SPT phases were discussed in Ref. [48]. The �nal classi�cation of SPT

phases with U(1)× ZT
2 symmetry is:

1d : (Z2)2, 2d : Z1, 3d : (Z2)3. (2.45)

2.5.8 SPT phases with Z2 × Z2 symmetry

In 1d, there is only one Z2 × Z2 transformation that keeps Eq. 2.1 invariant:

ZA
2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1 → n1, n2,3 → −n2,3. (2.46)
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The boundary state U de�ned in Eq. 2.6 transforms as

ZA
2 : U → iσzU, ZB

2 : U → σxU. (2.47)

Thus ZA
2 and ZB

2 no longer commute with each other at the boundary.

In 2d, there are three independent Z2 × Z2 transformations (three di�erent root

phases):

(1) : ZA
2 : ~n→ −~n, ZB

2 : ~n→ ~n;

(2) : ZA
2 : ~n→ ~n, ZB

2 : ~n→ −~n;

(3) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,2 → n1,2, n3,4 → −n3,4. (2.48)

In 3d, there are also two independent Z2 × Z2 transformations that keep Eq. 2.3

invariant (two root phases):

(1) : ZA
2 : n1,2 → −n1,2, na → na(a = 3, 4, 5);

ZB
2 : n1,→ n1, na → −na(a = 2, · · · 5);

(2) : ZB
2 : n1,2 → −n1,2, na → na(a = 3, 4, 5);

ZA
2 : n1,→ n1, na → −na(a = 2, · · · 5). (2.49)
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As we discussed in section II.F, the boundary of these 3d SPT phases can have 2d Z2

topological order. A 2d Z2 topological phase has e and m anyon excitations, and these

anyons correspond to vortices of certain components of order parameter ~n. If the e and

m anyons correspond to vortices of (n3, n4) and (n1, n2) respectively, then according to

Eq. 2.20, the e excitation corresponds to a 0+1d O(3) WZW model for vector (n1, n2, n5),

and the m excitation corresponds to a 0 + 1d WZW model for vector (n3, n4, n5). The

boundary anyons of phase (1) transform as:

(1) : ZA
2 : Ue → iσzUe, Um → Um;

ZB
2 : Ue → σxUe, Um → iσyU∗m. (2.50)

Notice that under ZB
2 , a vortex of (n1, n2) becomes an antivortex, thus the transformation

of Um under ZB
2 involves a complex conjugation. The transformation of boundary anyons

of phase (2) is the same as Eq. 2.50 after interchanging ZA
2 and ZB

2 .

The �nal classi�cation of SPT phases with Z2 × Z2 symmetry is:

1d : Z2, 2d : (Z2)3, 3d : (Z2)2. (2.51)

2.5.9 SPT phases with Z2 × ZT
2 symmetry

In 1d and 3d, the SPT phases with Z2 × ZT
2 symmetry are simply SPT phases with

U(1) × ZT
2 symmetry after reducing U(1) to its subgroup Z2. The classi�cation is the

same as the U(1) × ZT
2 SPT phases discussed in the previous subsection. In 2d, there

are two di�erent root phases that correspond to the following transformations:

(1) : Z2 : n1,2 → −n1,2, n3,4 → n3,4,
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ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

(2) : Z2 : ~n→ −~n,

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4). (2.52)

The �nal classi�cation of SPT phases with Z2 × ZT
2 symmetry is:

1d : (Z2)2, 2d : (Z2)2, 3d : (Z2)3. (2.53)

2.5.10 SPT phases with Zm symmetry

In 1d and 3d, there are no nontrivial Zm transformations that can keep Eq. 2.1 and

Eq. 2.3 invariant. In 2d, we can construct the following root phase:

Zm : (n1 + in2)→ ei2πk/m(n1 + in2);

(n3 + in4)→ ei2πk/m(n3 + in4),

k = 0, · · ·m− 1 (2.54)

Using the method in section II, we can demonstrate that with these transformations,

Eq. 2.2 with Θ = 2πm and Θ = 0 are equivalent to each other, thus the classi�cation is

Zm in 2d.
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The �nal classi�cation of SPT phases with Zm symmetry is:

1d : Z1, 2d : Zm, 3d : Z1. (2.55)

2.5.11 SPT phases with Zm o Z2 symmetry

In 1d, there is one SPT phase with U(1) o Z2 symmetry. Naively one would expect

that when U(1) is broken down to Zm, this SPT phase survives and becomes a SPT phase

with Zm o Z2 symmetry. However, this statement is only true for even m, and when m

is odd the U(1) o Z2 SPT phase becomes trivial once U(1) is broken down to Zm.

The 1d U(1) o Z2 SPT phase is described by a 1d O(3) NLSM of vector ~n with

Θ = 2π, and B ∼ (n1 + in2) is a charge-1 boson under the U(1) rotation. Because the

classi�cation of 1d U(1)oZ2 SPT phase is Z2, Θ = 2π is equivalent to Θ = 2πm for odd

m. As we discussed in section IID, this NLSM with Θ = 2πm is equivalent to another

NLSM de�ned with ~n′ and Θ = 2π, where B′ ∼ (n′1 + in′2) ∼ (n1 + in2)m is a charge-m

boson. Under Z2 transformation, n′1 → n′1, n
′
2 → −n′2.

Now let us break U(1) down to its subgroup Zm. B′ transforms trivially under Zm,

thus we are allowed to turn on a Zeeman term Re[B′] ∼ n′1 which fully polarizes n′1 and

kills the SPT phase. Thus the original U(1) o Z2 SPT phase is instable under U(1) to

Zm breaking with odd m.

The discussion above is very abstract, let us understand this result physically, and

we will take m = 3 as an example. With a full SO(3) symmetry and Θ = 2π in the bulk,

the ground state of the boundary is a spin-1/2 doublet in Eq. 2.6. The excited states

of the boundary include a spin-3/2 quartet. When Θ = 6π in the bulk, the boundary

ground state is a spin-3/2 quartet. The spin-3/2 and spin-1/2 states can have a boundary

transition (level crossing at the boundary) without closing the bulk gap, thus Θ = 2π
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and 6π are equivalent in the bulk. Now let us take Θ = 6π in the bulk, and break the

SO(3) down to Z3 o Z2. Then we are allowed to turn on a perturbation cos(3φ) at the

boundary (which precisely corresponds to the Zeeman coupling Re[B′] ∼ n′1 discussed

in the previous paragraph), which will mix and split the two states Sz = ±3/2 at the

boundary, and the boundary ground state can become nondegenerate. Thus when m is

odd, the U(1)oZ2 SPT phase does not survive the symmetry breaking from U(1) to Zm.

The same situation occurs in 2d and 3d. There is a 3d SPT phase with U(1) o Z2

symmetry, but once we break the U(1) down to Zm, this SPT phase does not survive

when m is odd. When m is even, besides the phase deduced from U(1)oZ2 SPT phase,

one can construct another root phase:

Z2 : n1,2 → −n1,2, na → na (a = 3, 4, 5);

Zm : n1,→ n1, na → (−1)kna (a = 2, · · · 5),

k = 0, · · ·m− 1. (2.56)

Here na(a = 2, · · · 5) still carries a nontrivial representation of Zm for even integer m.

na with a = 3, 4, 5 can be viewed as the real parts of charge-m/2 bosons, while n2 is the

imaginary part of such charge-m/2 boson. This construction does not apply for odd m.

In 2d, for arbitrary m > 1, the U(1) o Z2 SPT phases survive under U(1) to Zm

symmetry breaking. With even m, another root phase can be constructed

Zm : n1,2 → (−1)kn1,2, n3,4 → n3,4;

Z2 : n1,2 → n1,2, n3,4 → −n3,4,
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k = 0, · · ·m− 1. (2.57)

Here n1 and n2 are both the real parts of the charge-m/2 bosons.

The �nal classi�cation of SPT phases with Zm o Z2 symmetry is:

1d : Z(2,m), 2d : Zm × Z2 × Z(2,m), 3d : (Z(2,m))
2. (2.58)

2.5.12 SPT phases with Zm × Z2 symmetry

The case m = 2 has already been discussed. When m > 2, one would naively expect

these SPT phases can be interpreted as U(1)×Z2 SPT phases after breaking U(1) to its

Zm subgroup, but again this is not entirely correct. In 1d there is no SPT phase with

U(1) × Z2 symmetry, simply because we cannot �nd a nontrivial transformation of ~n

under U(1) × Z2 that keeps Eq. 2.1 invariant. But when m is an even number, we can

construct one SPT phase with Zm × Z2 symmetry using Eq. 2.1:

Zm : n1,2 → (−1)kn1,2, n3 → n3,

Z2 : n1 → n1, n2,3 → −n2,3,

k = 0, · · ·m− 1. (2.59)

The Zm and Z2 transformations on ~n commute with each other.

Again this construction applies to even integer m only. The boundary states of this
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1d SPT phase have the following transformations:

Zm : U → (iσz)kU, Z2 : U → σxU ;

k = 0, · · ·m− 1. (2.60)

Thus the boundary states carry projective representations of Zm ×Z2, and the transfor-

mations of Zm and Z2 do not commute.

Similar situations occur in 3d. In 3d, we can construct two root phases for even m,

even though there is no SPT phase with U(1)× Z2 symmetry in 3d :

(1) : Zm : n1,2 → (−1)kn1,2, na → na(a = 3, 4, 5);

Z2 : n1,→ n1, na → −na (a = 2, · · · 5);

(2) : Z2 : n1,2 → −n1,2, na → na(a = 3, 4, 5);

Zm : n1,→ n1, na → (−1)kna(a = 2, · · · 5);

k = 0, · · ·m− 1. (2.61)

The boundary of these 3d SPT phases can have 2d Z2 topological order. If the e and

m anyons correspond to vortices of (n3, n4) and (n1, n2) respectively, then the boundary

anyons of phase (1) transform as:

(1) : Zm : Ue → (iσz)kUe, Um → Um;
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Z2 : Ue → σxUe, Um → iσyU∗m. (2.62)

The transformation of boundary anyons of phase (2) can be derived in the same way.

In 2d all the Zm × Z2 SPT phases can be deduced from U(1) × Z2 SPT phases, by

breaking U(1) down to its Zm subgroup. Thus cases (1), (2) and (3) in Eq. 2.40 seem to

reduce to SPT phases with Zm×Z2 symmetry after breaking U(1) down to Zm. However,

case (3) in Eq. 2.40 becomes the trivial phase when m is odd. In case (3) of U(1) × Z2

SPT phase (Eq. 2.40), the NLSM is constructed with a charge-1 boson B ∼ (n1 + in2),

and because case (3) contributes classi�cation Z2, Θ = 2πm is equivalent to Θ = 2π

for odd m. Also, the NLSM with Θ = 2πm is equivalent to the NLSM with Θ = 2π

constructed using a charge-m boson B′ ∼ (n′1 + in′2) ∼ (n1 + in2)m. Now let us break the

U(1) symmetry down to Zm. Because B′ is invariant under Zm and Z2, we can turn on a

linear Zeeman term that polarizes Re[B′] ∼ n′1, and destroy the boundary states. Thus

the NLSM constructed with the charge-m boson B′ is trivial once we break U(1) down

to Zm. This implies that when m is odd, case (3) in Eq. 2.40 becomes a trivial phase

once U(1) is broken down to Zm.

The �nal classi�cation of SPT phases with Zm × Z2 symmetry is:

1d : Z(2,m), 2d : Zm × Z2 × Z(2,m), 3d : (Z(2,m))
2. (2.63)

2.5.13 SPT phases with Zm o ZT
2 symmetry

Again, the situation depends on the parity of m. If m is odd, then in 1d and 3d

the only SPT phase is the SPT phase with ZT
2 only. In 2d and 3d the U(1) o ZT

2 SPT

phases (except for the one with ZT
2 symmetry only) do not survive when U(1) is broken

down to Zm with odd m. The reason is similar to what we discussed in the previous two
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subsections.

When m is even, then in 1d besides the Haldane phase with ZT
2 symmetry, we can

construct another SPT phase:

Zm : n1,2 → (−1)kn1,2, n3 → n3,

k = 0, · · ·m− 1;

ZT
2 : ~n→ −~n. (2.64)

Here n1 and n2 are both imaginary parts of charge-m/2 bosons. The boundary state is

a Kramers doublet and transforms as

Zm : U → (iσz)kU, ZT
2 : U → iσyU ;

k = 0, · · ·m− 1. (2.65)

In 2d, we can construct two di�erent root phases:

(1) Zm : (n1 + in2)→ (n1 + in2)ei2πk/m,

n3, n4 → n3, n4;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

(2) Zm : ~n→ (−1)k~n;
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ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

k = 0, · · ·m− 1. (2.66)

Phase (1) is the same phase as the 2d U(1)oZT
2 SPT phase, after breaking U(1) to Zm;

phase (2) is a new phase, where n1 is the real part of a charge-m/2 boson, while n2,3,4

are the imaginary parts of such charge-m/2 bosons.

Using similar methods, we can construct three root phases in 3d for even m. Two of

the phases can be deduced from the 3d U(1) o ZT
2 SPT phases. The third root phase

has the following transformation:

Zm : n1,2 → (−1)kn1,2, na → na(a = 3, 4, 5);

ZT
2 : ~n→ −~n;

k = 0, · · ·m− 1. (2.67)

Both n1 and n2 are imaginary parts of charge-m/2 bosons.

Just like the 3d SPT phase with U(1) o ZT
2 symmetry, the 2d boundary of the 3d

Zm o ZT
2 SPT phase described by Eq. 2.67 can have a Z2 topological order with electric

and magnetic anyons. The electric and magnetic anyons are both Kramers doublet,

and only one of them has a nontrivial transformation under Zm: Zm : U → (iσz)kU ,

(k = 0, · · ·m− 1).
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The �nal classi�cation of SPT phases with Zm o ZT
2 symmetry is:

1d : Z2 × Z(2,m), 2d : (Z(2,m))
2, 3d : Z2 × (Z(2,m))

2. (2.68)

2.5.14 SPT phases with Zm × ZT
2 symmetry

In 1d and 3d, the SPT phases with Zm × ZT
2 symmetry can all be deduced from

U(1)×ZT
2 symmetry by breaking U(1) down to Zm. Again, when m is odd, some of the

SPT phases become trivial, for the same reason as what we discussed before.

In 2d there is no SPT phase with U(1)× ZT
2 symmetry, but when m is even we can

construct two root phases, which cannot be deduced from U(1)× ZT
2 SPT phases:

(1) : Zm : ~n→ (−1)k~n;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

(2) : Zm : n1,2 → (−1)kn1,2, n3,4 → n3,4;

ZT
2 : n1 → n1, na → −na(a = 2, 3, 4);

k = 0, · · ·m− 1. (2.69)

The �nal classi�cation of SPT phases with Zm × ZT
2 symmetry is:

1d : Z2 × Z(2,m), 2d : (Z(2,m))
2, 3d : Z2 × (Z(2,m))

2. (2.70)
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2.5.15 SPT phases with SO(3) symmetry

In 1d, the SO(3) symmetry leads to the Haldane phase, which is described by Eq. 2.1

with Θ = 2π. In 3d, there is no way to assign SO(3) symmetry to the �ve-component

vector ~n which makes the Θ−term invariant, thus there is no 3d SPT phase with SO(3)

symmetry.

In 2d, Ref. [46] has given a nice way of describing SPT phase with SO(3) symmetry,

which is a principal chiral model de�ned with group elements SO(3). We will argue that

the SO(3) principal chiral model in Ref. [46] can be formally rewritten as the O(4) NLSM

Eq. 2.2, because we can represent every group element Gab (3× 3 orthogonal matrix) as

a SU(2) matrix Z:

Gab =
1

2
tr[Z†σaZσb], (2.71)

and the SU(2) matrix Z is equivalent to an O(4) vector ~n with unit length: Z = n4I2×2 +

i~n · ~σ. We propose that the minimal SO(3) SPT phase discussed in Ref. [46] can be

e�ectively described by Eq. 2.2 with Θ = 8π:

S2d =

∫
d2xdτ

1

g
(∂µ~n)2 +

i8π

12π2
εabcdεµνρn

a∂µn
b∂νn

c∂ρn
d

=

∫
d2xdτ

1

g
tr[∂µZ†∂µZ] +

i8π

24π2
tr[(Z†dZ)3]. (2.72)

Physically, Eq. 2.72 with Θ = 8π gives SU(2) Hall conductivity σSU(2) = 8, or equi-

valently SO(3) Hall conductivity σSO(3) = 2, which is the same as the principal chi-

ral model in Ref. [46]. Mathematically, when the �eld Z has a instanton number∫
d3x tr[(Z†dZ)3]/(24π2) = +1 in the 2+1d space-time, the SO(3) matrix �eld Gab

de�ned in Eq. 2.71 will have instanton number
∫
d3x tr[(G−1dG)3]/(24π2) = +4. This
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factor of 4 is precisely why Θ = 8π in Eq. 2.72.

In order to represent Gab as Z, we need to introduce a Z2 gauge �eld that couples

to Z, because Z is a �fractional" representation of Gab, and Gab is invariant under gauge

transformation Z → −Z. In the language of lattice gauge theory, our statement in the

previous paragraph implies that one of the possible con�ned phases of this Z2 gauge �eld

is trivial in the bulk without any extra symmetry breaking or topological degeneracy,

namely the vison (a dynamical Z2 π−�ux coupled to Z) in the bulk can condensed

without breaking any symmetry. This is indeed possible, because if we weakly break the

SU(2) symmetry down to U(1), Eq. 2.72 describes a bosonic integer quantum Hall state

with Hall conductivity 8. A π−�ux in this system carries charge 4, which can be fully

screened by four bosons, while maintaining its bosonic statistics. Thus a vison can safely

condense in the bulk, con�ne the �eld Z, and drive the system into a SO(3) SPT phase.

The �nal classi�cation of SPT phases with SO(3) symmetry is:

1d : Z2, 2d : Z, 3d : Z1. (2.73)

2.5.16 SPT phases with SO(3)× ZT
2 symmetry

In 1d, there are two di�erent SPT root phases with SO(3) × ZT
2 symmetry, which

correspond to the following transformations of O(3) vector ~n:

(1) : SO(3) : na → Gabnb, ZT
2 : ~n→ −~n;

(2) : SO(3) : ~n→ ~n, ZT
2 : ~n→ −~n. (2.74)

In 2d, the SPT phases with SO(3) × ZT
2 symmetry were discussed in Ref. [49], and
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it is described by Eq. 2.2 with transformation

SO(3) : na → Gabnb(a, b = 1, 2, 3), n4 → n4;

ZT
2 : na → na(a = 1, 2, 3), n4 → −n4. (2.75)

In 3d, there are three root phases for SO(3)×ZT
2 SPT phases, two of which have the

following �eld theory:

(1) : SO(3) : ~n→ ~n, ZT
2 : ~n→ −~n;

(2) : SO(3) : na → Gabnb(a, b = 1, 2, 3), n4,5 → n4,5

ZT
2 : ~n→ −~n; (2.76)

phase (1) is simply the SPT phase with ZT
2 symmetry only. After we break the SO(3)

symmetry down to its inplane O(2) subgroup, phase (2) will reduce to a SPT phase with

U(1)× ZT
2 symmetry discussed in Ref. [48], which is a phase whose bulk vortex line is a

1d Haldane phase with ZT
2 symmetry.

Besides the two phases discussed above, there should be another root phase (3) that

will reduce to the U(1)×ZT
2 SPT phase whose boundary is a bosonic quantum Hall state

with Hall conductivity ±1, when time-reversal symmetry is broken at the boundary [48].

In the next two paragraphs we will argue without proof that this third root phase can

be described by Eq. 2.3 with the following de�nition and transformation of O(5) vector
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order parameter ~n:

(3) : Z = n4I2×2 +
3∑

a=1

inaσ
a,

ZT
2 : Z → iσyZ, n5 → −n5;

Θ = 8π in bulk. (2.77)

Here Z is still the �fractional" representation of SO(3) matrix Gab introduced in Eq. 2.71.

If we break the ZT
2 symmetry at the boundary of phase (3), the boundary becomes a

2d SO(3) SPT phase with SO(3) Hall conductivity ±1 (when SO(3) is broken to U(1),

the boundary becomes a bosonic integer quantum Hall state with Hall conductivity ±1),

thus it cannot be realized in a pure 2d bosonic system without degeneracy.

In principle Z is still coupled to a Z2 gauge �eld. We propose that the con�ned phase

of this Z2 gauge �eld is the desired SO(3) × ZT
2 SPT phase. In the con�ned phase of a

3d Z2 gauge �eld, the vison loops of the Z2 gauge �eld proliferate. Since the Z2 gauge

�eld is coupled to the fractional �eld Z, a vison loop of this Z2 gauge �eld is bound

with a vortex loop of SO(3) matrix �eld Gab [81], which is de�ned based on homotopy

group π1[SO(3)] = Z2, thus the con�ned phase of the Z2 gauge �eld is a phase where

the SO(3) vortex loops proliferate. If we reduce the SO(3) symmetry down to its inplane

U(1) symmetry, the vison loop reduces to the vortex loop of the U(1) phase. When a

bulk vortex (vison) loop ends at the boundary, it becomes a 2d vortex (vison). This

2d vortex is a fermion, because according to the previous paragraph, once the ZT
2 is

broken at the boundary, the boundary becomes a boson quantum Hall state with Hall

conductivity ±1. This is consistent with the results for U(1)× ZT
2 SPT phase discussed

in Ref. [48, 50, 40]. Thus the SPT phase described by Eq. 2.77 is a phase where SO(3)
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vortex loops proliferate, and the SO(3) vortices at the boundary are fermions.

The �nal classi�cation of SPT phases with SO(3)× ZT
2 symmetry is:

1d : (Z2)2, 2d : Z2, 3d : (Z2)3. (2.78)

2.5.17 SPT phases with Z2 × Z2 × Z2 symmetry

In 1d, we can construct three di�erent root phases:

(1) : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n1 → n1, n2,3 → −n2,3;

ZC
2 : ~n→ ~n;

(2) : ZB
2 : n1,2 → −n1,2, n3 → n3;

ZC
2 : n1 → n1, n2,3 → −n2,3;

ZA
2 : ~n→ ~n;

(3) : ZC
2 : n1,2 → −n1,2, n3 → n3;

ZA
2 : n1 → n1, n2,3 → −n2,3;

ZB
2 : ~n→ ~n. (2.79)
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In 2d there are seven di�erent root phases:

(1) : ZA
2 : ~n→ −~n, ZB

2 , Z
C
2 : ~n→ ~n;

(2) : ZB
2 : ~n→ −~n, ZC

2 , Z
A
2 : ~n→ ~n;

(3) : ZC
2 : ~n→ −~n, ZA

2 , Z
B
2 : ~n→ ~n;

(4) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,2 → n1,2, n3,4 → −n3,4;

ZC
2 : ~n→ ~n;

(5) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZC
2 : n1,2 → n1,2, n3,4 → −n3,4;

ZB
2 : ~n→ ~n;

(6) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,3 → −n1,3, n2,4 → n2,4;

ZC
2 : n1,4 → −n1,4, n2,3 → n2,3;
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(7) : ZA
2 : n2,3 → −n2,3, n1,4 → n1,4

ZB
2 : n1,2 → −n1,2, n3,4 → n3,4,

ZC
2 : n1,2 → n1,2, n3,4 → −n3,4. (2.80)

In 3d there are six di�erent root phases:

(1) : ZA
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZB
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZC
2 : ~n→ ~n;

(2) : ZB
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZA
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZC
2 : ~n→ ~n;

(3) : ZB
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZC
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZA
2 : ~n→ ~n;
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(4) : ZC
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZB
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZA
2 : ~n→ ~n;

(5) : ZA
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZC
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZB
2 : ~n→ ~n;

(6) : ZC
2 : n1,2 → −n1,2, na → na, (a = 3, 4, 5);

ZA
2 : n1 → n1, na → −na, (a = 2, · · · 5);

ZB
2 : ~n→ ~n;

(7) : ZA
2 : n1,2 → −n1,2, n3,4,5 → n3,4,5;

ZB
2 : n2,3 → −n2,3, n1,4,5 → n1,4,5;

ZC
2 : n4,5 → −n4,5, n1,2,3 → n1,2,3;

(8) : ZA
2 : n1,2 → −n1,2, n3,4,5 → n3,4,5;
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ZC
2 : n2,3 → −n2,3, n1,4,5 → n1,4,5;

ZB
2 : n4,5 → −n4,5, n1,2,3 → n1,2,3. (2.81)

All the other SPT phases can be constructed with these root phases above. Here we

will show one construction explicitly. For example, one may think the following state

should also exist in 3d:

ZB
2 : n1,2 → −n1,2, n3,4,5 → n3,4,5,

ZC
2 : n2,3 → −n2,3, n1,4,5 → n1,4,5,

ZA
2 : n4,5 → −n4,5, n1,2,3 → n1,2,3. (2.82)

But this state can be obtained by �merging" state (7) and (8) in Eq. 2.81. First of all,

since n(7)
1,3,5 transform exactly equivalently to n(8)

1,5,3 under all symmetries, we can turn on

coupling between ~n(7) and ~n(8) to make n(7)
1,3,5 = n

(8)
1,5,3. Now without loss of generality

these two vectors can be written as

~n(7) = (cos θN1, sin θ cosα(7), cos θN2,

sin θ sinα(7), cos θN3);

~n(8) = (cos θN1, sin θ cosα(8), cos θN3,
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sin θ sinα(8), cos θN2); (2.83)

where ~N is a unit three-component vector. All the symmetries transformations act on

~N and α(7), α(8), while θ is invariant under all symmetries.

Now let us de�ne a new vector ~n(9) using the parametrization of ~n(7) and ~n(8):

~n(9) = (cos θN2, sin θ cos(α(7) + α(8)), cos θN3,

sin θ sin(α(7) + α(8)), cos θN1); (2.84)

Obviously, the O(5) instanton number of ~n(9) is exactly the sum of instantons of ~n(7) and

~n(8). More importantly, ~n(9) transforms under all the symmetries as Eq. 2.82, and since

it can be �merged" from phase (7) and (8), it should not be viewed as an independent

root phase.

The �nal classi�cation of SPT phases with Z2 × Z2 × Z2 symmetry is:

1d : (Z2)3, 2d : (Z2)7, 3d : (Z2)8. (2.85)

2.6 Summary and Comments

In this work we systematically classi�ed and described bosonic SPT phases with a

large set of physically relevant symmetries for all physical dimensions. We have demon-

strated that all the SPT phases discussed in this paper can be described by three universal

NLSMs Eq. 2.1, 2.2 and 2.3, and the classi�cation of these SPT phases based on NLSMs

is completely identical to the group cohomology classi�cation [31, 42]. However, we have

66



SPT's and Sigma Models Chapter 2

not built the general connection between these two classi�cations, and it is likely that

SPT phases with some other symmetry groups (for example symmetry much larger than

O(d + 2)) can no longer be described by these three NLSMs any more. In Ref. [50, 49],

SPT phases that involve a large symmetry group PSU(N)= SU(N)/ZN were discussed,

and in these systems it was necessary to introduce NLSMs with a larger target manifold.

But it is likely that all the SPT phases with arbitrary symmetry groups (continuous or

discontinuous) can be described by a NLSM with certain continuous target manifold.

As we already mentioned, now it is clear that there is a series of BSPT states beyond

the group cohomology classi�cation, and a generalized �eld theory description for such

states will be given in Ref. [68]. Our NLSM can also be very conveniently generalized to

the cases that involve lattice symmetry such as inversion, as was discussed in Ref. [82], as

long as we require our order parameter ~n transform nontrivially under lattice symmetry.

We leave a thorough study of SPT states involving lattice symmetry to future studies.

Recently it was pointed out that after the 3d SPT state is coupled to gauge �eld,

the gauge defects, which in 3d can be loop excitations, can have a novel loop braiding

statistics [83]. In a recent work we showed that this loop statistics can also be computed

using our NLSM �eld theory discussed in this work [84].
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The Strange Correlator

3.1 Detecting SPT Phases

SPT phases are often described in terms of their anomalous boundary, which is to say

that the boundary �eld theory cannot be realized as a lattice model in the same number

of dimensions with a local, on-site action of the symmetry group. There are many

such boundaries for a given SPT phase, and they may be gapless, spontaneously break

symmetries, or be topologically ordered. The boundary �eld theory has an anomaly,

where the symmetry of the classical Lagrangian is not a symmetry of the quantum path

integral. This anomaly is necessary to cancel the bulk anomaly in�ow, rendering the full

system (bulk and boundary) well-de�ned in the presence of a regulator.

In addition to this, the bulk of the SPT is �trivial,� which is to say short-range

entangled, gapped, and unique on a torus. Thus, since the interesting physics is entirely at

the surface, many discussions of SPT phases are entirely focused on characterizing surface

behavior. For example, comparison of boundary topological order[51] can distinguish

di�erent SPT phases with the same symmetries.

However, the boundary physics is entirely derived from the bulk topological terms

68



The Strange Correlator Chapter 3

(see Ch 2), so one may naturally wonder if there is a computation that can distinguish

trivial bulk from SPT bulk without reference to the boundary. By considering certain

correlation functions calculated in the bulk of both SPT and trivial phases separated in

imaginary time, we can indeed distinguish the two phases.

3.2 Bulk detection via Strange Correlator

A short range entangled (SRE) state is a ground state of a quantum many-body

system that does not have ground state degeneracy or bulk topological entanglement

entropy. But a SRE state (for example the integer quantum Hall state) can still have

protected stable gapless edge states. Thus it appears that the bulk of all the SRE states

are identically trivial, and a nontrivial SRE state is usually characterized by its edge

states. In this paper we propose a diagnosis to determine whether a given many-body

wave function de�ned on a lattice without boundary is a nontrivial SRE state or a trivial

one. This diagnosis is based on the following quantity called �strange correlator" 1:

C(r, r′) =
〈Ω|φ(r)φ(r′)|Ψ〉

〈Ω|Ψ〉
. (3.1)

Here |Ψ〉 is the wave function that needs diagnosis, |Ω〉 is a direct product trivial

disordered state de�ned on the same Hilbert space. Our conclusion is that if |Ψ〉 is

a nontrivial SRE state in one or two spatial dimensions, then for some local operator

φ(r), C(r, r′) will either saturate to a constant or decay as a power-law in the limit

|r − r′| → +∞, even though both |Ω〉 and |Ψ〉 are disordered states with short-range

correlation.
1In the thermodynamic limit, both numerator and denominator of the strange correlator approach

zero, while their ratio remains a �nite constant. All the calculations in this paper were based on �nite
system size �rst, the thermodynamic limit is taken after taking the ratio.
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Þ

(a) (b)

Figure 3.1: (color online). (a) |Ψ〉 and 〈Ω| are given by in�nite time evolution of their
quantum �eld theories (QFT) from below and above respectively. The strange correlator
can be viewed as the correlator at the τ = 0 interface. (b) Under the Lorentz rotation,
the two QFT's are separated by the x = 0 interface, and the strange correlator can be
interpreted as the correlation function on this spatial interface.

Another possible way of diagnosing a SRE wave function is through its entanglement

spectrum [85]. If a SRE state has nontrivial edge states, an analogue of its edge states

should also exist in its entanglement spectrum [86]. However, many SRE states are

protected by certain symmetry, some SRE states are protected by lattice symmetries (for

example the spin-2 AKLT state on the square lattice requires translation symmetry). If

the cut we make to compute the entanglement spectrum breaks such lattice symmetry,

then the entanglement spectrum would be trivial, even if the original state is a nontrivial

SRE state. By contrast, the strange correlator in Eq. (3.1) is de�ned on a lattice without

edge, thus it already preserves all the symmetries of the system, including all the lattice

symmetries. Thus the strange correlator can reliably diagnose SRE states protected by

lattice symmetries as well.

The strange correlator can be roughly understood as follows: |Ψ〉 can be viewed as a

generic initial state evolved with a constant nontrivial SRE Hamiltonian from τ = −∞

to τ = 0; 〈Ω| is a state evolved from τ = +∞ to τ = 0 with a trivial Hamiltonian,

thus the strange correlator can be viewed as a �correlation function" at a temporal

domain wall of the QFT's at τ = 0, see Fig. 3.1(a). If there is an approximate Lorentz
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invariant description of the system, a space-time rotation can transform Eq. (3.1) to a

space-time correlation at a spatial interface between nontrivial and trivial SRE systems,

see Fig. 3.1(b). And for one and two spatial dimensions, a spatial interface between

trivial and nontrivial SRE states should have either long range or power-law correlation

between certain local operators, which after Lorentz rotation will lead to the conclusion

of this paper. A similar observation of Lorentz rotation was used to derive the bulk wave

function of topological superconductors [87].

For bosonic SRE states that are protected by certain symmetry (so called symmetry

protected topological (SPT) states [31, 42]), the argument above can be demonstrated

more explicitly. In Ref. [88], it was demonstrated that a large class of 1d and 2d bosonic

SPT states can be described by the following two nonlinear Sigma model (NLSM) �eld

theories:

S1d =

∫
dxdτ

1

g
(∂µ~n)2 +

i2π

8π
εabcεµνn

a∂µn
b∂νn

c, (3.2)

S2d =

∫
d2xdτ

1

g
(∂µ~n)2 +

i2π

12π2
εabcdεµνρn

a∂µn
b∂νn

c∂ρn
d. (3.3)

Here ~n(x) is an O(3) or O(4) vector order parameter with unit length constraint: (~n)2 = 1.

Di�erent SPT phases are distinguished from each other based on di�erent implementati-

ons of the symmetry group on the vector order parameter ~n. In both 1d and 2d, ground

state wave functions of SPT phases can be derived based on Eq. (3.2) and Eq. (3.3) (see

Ref. [50]):

|Ψ〉d ∼
∫

D~n(x) exp−
∫
Sd d

dx 1
G

(∇~n)2+WZWd[~n] |~n(x)〉, (3.4)

where Sd is the compacti�ed real space manifold, and WZWd[~n] is a real space Wess-

71



The Strange Correlator Chapter 3

Zumino-Witten term:

WZW1[~n] =

∫ 1

0

du
i2π

8π
εµνεabn

a∂µn
b∂νn

c, µ, ν = x, u

WZW2[~n] =

∫ 1

0

du
i2π

12π2
εabcdεµνρn

a∂µn
b∂νn

c∂ρn
d,

µ, ν, ρ = x, y, u. (3.5)

In contrast, the trivial state wave function is a superposition of all con�gurations of |~n(x)〉

without a WZW term. Based on the wave functions in Eq. (3.4), the strange correlator

of order parameter ~n(x) reads

C(r, r′) =

∫
D~n(x) na(r)nb(r′)e−

∫
Sd d

dx 1
G

(∇~n)2+WZWd[~n]∫
D~n(x) e−

∫
Sd ddx

1
G

(∇~n)2+WZWd[~n]
. (3.6)

Mathematically, this strange correlator can be viewed as an ordinary space-time correla-

tion function of a (d−1)+1 dimensional �eld theory with a WZW term, as long as we view

one of the spatial coordinate as the time direction. When d = 1, this strange correlator

is e�ectively a spin-spin correlation of one isolated free spin-1/2, and the correlation

is always long range. When d = 2, this strange correlator is e�ectively a space-time

correlation function of a (1 + 1)d O(4) NLSM with a WZW term, and when this model

has a full SO(4) symmetry, this theory is a SU(2)1 conformal �eld theory with power-law

correlation [89, 69]; when the symmetry of the system is a subgroup of SO(4), as long

as the residual symmetry prohibits any linear Zeeman coupling to order parameter ~n,

this (1 + 1)d system either remains gapless, or spontaneously breaks the symmetry and

develop long range order. Thus the strange correlator is either long range or decays with

a power-law.
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The two arguments above both rely on a certain continuum limit description of the

SRE state. However, for a fully gapped system, when the gap is comparable with

the ultraviolet energy scale of the system, a continuum limit description may not be

appropriate. In the rest of the paper, we will compute the strange correlator for several

examples of SRE states far from the continuum limit, i.e. the gap of the SRE states is

comparable with UV cut-o�. We will see that in some examples, the strange correlator is

indeed di�erent from the physical edge of the SRE state, but our qualitative conclusion

is still valid.

The �rst example we study is the AKLT state [59, 90] of the Haldane phase of spin-1

chain. In the Sz basis, the AKLT wave function is a �dilute" Néel state, namely it is

an equal weight superposition of all the Sz con�gurations with an alternate distribution

of |+〉 = |Sz = +1〉 and |−〉 = |Sz = −1〉, sandwiched with arbitrary numbers of

|0〉 = |Sz = 0〉 [91]:

|Ψ〉 =
∑ 1

N
|+ 0 · · · 0− 0 · · · 0 + · · · 〉 (3.7)

We choose the trivial state to be |Ω〉 = |000 · · · 〉. Straightforward calculation leads to

the following answer of the strange correlator:

C(r, r′) =
〈Ω|S+

r S−r′ |Ψ〉
〈Ω|Ψ〉

= 2, (3.8)

which is the expected long range correlation.

The second example we study is the two dimensional quantum spin Hall (QSH)

insulator with a Rashba spin orbit coupling. We will use the same notation as Ref. [3].
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Figure 3.2: (a) The amplitude of strange correlator in the momentum space. The inset
shows the Brillouin zone and the high symmetry points. (b) |Ck|−1 exhibits nice linearity
around the K point, establishing the 1/|k| divergence in |Ck|.

The QSH insulator Hamiltonian reads

H = t
∑
〈i,j〉

c†icj + iλSO
∑
〈〈i,j〉〉

νijc
†
is
zcj

+λR
∑
〈i,j〉

c†i (s× d̂ij)zcj + λv
∑
i

ξic
†
ici. (3.9)

λSO is the spin-orbit coupling that leads to the QSH topological band structure, λR is

the Rashba coupling that breaks the conservation of sz, and λv is a staggered potential

that leads to charge density wave. The electron operator ci carries spin and sublattice

indices, thus the strange correlator C(r, r′) is a 4 × 4 matrix. For QSH state |Ψ〉, we

choose λSO = t, λR = 0.5t, λv = 0; trivial state |Ω〉 is chosen to be a strong CDW state

with λSO = t, λR = 0.5t, λv = 10t. These two states are far from the continuum limit,

namely the gap is comparable with the UV cut-o�.

Fig. 3.2(a) shows the amplitude of strange correlator |Ck| = |〈Ω|c†A,↑,kcB,↑,k|Ψ〉/〈Ω|Ψ〉|

plotted in the momentum space. There is one clear singularity at the corner of the

Brillouin zone, which diverges as ∼ 1/|k|. This implies that in the real space the strange

correlator decays as |C(r, r′)| ∼ 1/|~r − ~r′|, which is consistent with the result obtained

from Lorentz transformation, despite the large bulk gap.

The third example we will study is the spin-2 AKLT state on the square lattice,[90,

74



The Strange Correlator Chapter 3

92] which is a SPT state protected by the on-site Z2 × Z2 and the lattice translation

symmetry,[93] whose wave function has a tensor product state (TPS) representation[94,

95]

|Ψ〉 =
∑
{mi}

tTr(⊗iTmi)|{mi}〉. (3.10)

Here mi = 0,±1,±2 labels the Sz quantum number of the spin-2 object on site i, and

|{mi}〉 is the state for the con�guration {mi} over the lattice. tTr traces out the internal

legs in the tensor network shown in Fig. 3.3(a), in which the vertex tensor is given by

Tms1s2s3s4 =

 4s1s2 : −s1 − s2 + s3 + s4 = m,

0 : otherwise,
(3.11)

with sj = ±1/2 labeling the spin-1/2 internal degrees of freedom. While the trivial state

|Ω〉 = |{∀i : mi = 0}〉 is chosen to be the direct product state of Sz = 0 on every site.

We look into the strange correlator

C(r, r′) =
〈Ω|S+

r S
−
r′ |Ψ〉

〈Ω|Ψ〉
=

tTr(T 0 · · ·T 1(r)T−1(r′) · · · )
tTr(T 0 · · · )

, (3.12)

which can be expressed as a ratio between two tensor networks: the denominator is a

uniform network of the tensor T 0 on each site, and the numerator is the same network

except for impurity tensors T±1 on site r and r′ respectively.

The evaluation of the tensor trace in Eq. (3.12) over the 2d lattice can be reformulated

as an (1+1) dimensional quantum mechanics problem in terms of the transfer matrix

for each row, which can then be studied by the density matrix renormalization group

(DMRG) method.[96, 97] The calculation is performed on an 128 × ∞ lattice with

periodic boundary condition along both directions. We found that the strange correlator

decays with oscillation (as in Fig. 3.3(b)), and its amplitude follows a power-law behavior
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Figure 3.3: (color online). (a) Tensor network representation of the 2d AKLT state. The
red (blue) legs represent the physical (internal) degrees of freedom. (b) Strange correlator
of the 2d AKLT state measured along the horizontal direction. (c) The amplitude follows
a power-law behavior in the log-log plot. The �nal deviation is due to the �nite-size e�ect.

|C(r, r′)| ∼ |r−r′|−η with the exponent η ' 0.32, see Fig. 3.3(c), which is consistent with

our previous �eld theory argument.

The last example we will study is the two dimensional bosonic SPT phase with Z2

symmetry which was �rst studied in Ref. [43]. The ground state wave function of this

SPT phase is

|Ψ〉 =
∑
{σi}

(−1)Nd exp
(
− β

2

∑
〈i,j〉

σiσj

)
|{σi}〉, (3.13)

which is a superposition of all the con�gurations of the Ising degree of freedom |{σi}〉

with a factor (−1) associated with each closed Ising domain wall (with Nd being the

number of domain wall loops). The trivial state |Ω〉 is simply an Ising paramagnet,

whose wave function is similar to Eq. (3.13) but without the domain wall sign structure

(−1)Nd . Compared with Ref. [43], we have added a factor exp(−β/2
∑
〈i,j〉 σiσj) to each

Ising con�guration to adjust the spin correlation length.

The strange correlator of the Z2 bosonic SPT phase can be viewed as a correlation
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Figure 3.4: (color online). (a) The strange correlator of the SPT state (in blue) at in�nite
distance |r − r′| → ∞, in comparison with that of the trivial state (in red). The SPT
strange correlator follows the power-law behavior (b) at the critical point and (c) in the
dense loop phase.

function of a �classical statistical mechanics model":

C(r, r′) =

∑
{σi} σrσr′(−1)Nde−β

∑
〈i,j〉 σiσj∑

{σi}(−1)Nde−β
∑
〈i,j〉 σiσj

. (3.14)

Our goal is to show that this is either a long range or power-law correlation for arbitrary β.

In other words, Eq. 3.14 is less likely to disorder than the ordinary 2d Ising model. This

result can be naively understood as follows: the ordinary 2d Ising model is disordered

at high temperature (small β) due to the proliferation of Ising domain walls. But in the

current model, due to the (−1) sign associated with each domain wall, the proliferation

of domain walls is suppressed, thus eventually the current Ising model Eq. (3.14) is not

completely disordered even for small β.
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This Ising model is dual to a loop model with the following partition function:

Z =
∑
C

KLnNd , (3.15)

where loops are the domain walls of the original Ising model, K = exp(−2β) is the

loop tension, n = −1 is the loop fugacity, L is the total length of loops, and Nd is the

total number of closed loops. If the loops do not cross, then according to Ref. [98], by

tuning K there is a phase transition between a small loop phase (which corresponds to

the Ising ordered phase) for small K, and a dense loop phase for large K. The critical

point and the dense loop phase are both critical with power-law correlations, and they

correspond to two di�erent conformal �eld theories with central charges c = −3/5 and

c = −7 respectively. If the loops are allowed to cross, the dense loop phase is driven

to a di�erent conformal �eld theory with c = −2, which is described by free symplectic

fermions.[99]

The Ising order parameter σi corresponds to the �twist" operator of the loop model,

because σi changes its sign when it crosses a loop. The twist operator is well-studied at the

critical point of loop models, and in our case with n = −1, at the critical point between

small and dense loop phases the scaling dimension of the twist operator is −1/10 [100],

which is con�rmed by our numerical calculation.

The tensor renormalization group (TRG) method[101, 102] has been applied to loop

models in Ref. [103]. Here we use the same approach to study the twist operator correla-

tions for the loop model in Eq. (3.15). For simplicity we forbid the loops to cross, so the

model never develops antiferromagnetic order even for negative β. For positive large β,

the strange correlator is long-ranged, see Fig. 3.4(a). As β decreases, the correlator grows

and diverges at the critical point βc ' 0.521 with a power-law C(r, r′) ∼ |r − r′|0.199 as

shown in Fig. 3.4(b), which con�rms the theoretical prediction of scaling dimension−1/10
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Figure 3.5: (color online). (a) Under Lorentz transformation, the density matrix of the
SRE edge states is mapped to the overlap between bulk ground state wave functions on a
manifold with open boundaries in one direction. The edge manifold may be partitioned
into the regions A (red) and B (blue). (b) The reduced density matrix in the region A
of the edge states corresponds to joining the boundaries of B together. (c) Trρ2

A is given
by doubling ρA and sealing the boundaries of regions A with each other, resulting in the
pants (double torus) topology. Trρ is simply obtained by rolling up (a). Their ratio gives
the Rényi entropy H2.

of twist operator [100]. Theoretically the entire dense loop phase (when β < βc) should be

controlled by one stable conformal �eld theory �xed point. Our numerical results suggest

that this �xed point is likely around β ∼ −0.1816, the power-law behavior of C(r, r′) at

this point (Fig. 3.4) is qualitatively consistent with the conclusion of this paper. 2

We have checked that the ordinary free electron 3d topological insulator also gives

us a very clear power-law decay of strange correlator. However, in general a strongly

interacting SRE state in three dimensional space can be more complicated, because its

two dimensional edge can be (1) a gapless (2 + 1)d conformal �eld theory, (2) long range

order that spontaneously breaks symmetry, (3) two dimensional topological phase [48].

Based on our Lorentz transformation argument, it is possible that 〈Ω|Ψ〉 is mapped to the

2For β far away from this �xed point, the �nite system size and error bar, as well as the
incommensurate oscillation of the strange correlator make it more di�cult to extract a conclusive scaling
dimension of σi. But we expect C(r, r

′) to crossover back to the same scaling behavior as the stable �xed
point β ∼ −0.1816 in the infrared limit for arbitrary β < βc. Our result may have also been strongly
a�ected by our choice of microscopic rules for loops close to each other. More recent studies by Sca�di
and Ringel [104] on the Levin-Gu model on a triangular lattice have successfully extracted a scaling
dimension consistent with the Coulomb gas prediction of the dense loop phase [100].
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partition function of a topological phase, then in this case the strange correlator C(r, r′)

may also be short ranged. Thus for 3d SRE states, besides the strange correlator, we

also need another method that diagnoses the situation when 〈Ω|Ψ〉 corresponds to a

topological phase partition function.

The method we propose is illustrated in Fig. 3.5, where the horizontal direction

represents the XY plane, while the vertical direction is the z axis of the three dimensional

space. We can �rst calculate the overlap between the given 3d wave function |Ψ〉 and the

trivial wave function on a 3d �pants"-like manifold in Fig. 3.5c (〈Ω|Ψ〉pants), which after

Lorentz transformation becomes Trρ2
A at the edge, where ρA is the reduced density matrix

of subsystem A at the boundary. The following quantity after Lorentz transformation

becomes the Rényi entanglement entropy of the edge topological phase:

S = − log

(
〈Ω|Ψ〉pants

(〈Ω|Ψ〉cylinder)2

)
. (3.16)

This quantity should scale as S = αL − γ, where γ is the analogue of the topological

entanglement entropy of the edge topological phase [105, 106]. Thus a 3d wave function

|Ψ〉 is still a nontrivial SRE state as long as γ de�ned above is nonzero, even if this wave

function has a short range strange correlator. We will leave the detailed study of this

proposal to future work.

In summary, we have proposed a general method to diagnose 1d and 2d SRE states

based on their bulk ground state wave functions. We expect our method to be useful

for future numerical studies of SRE states. In Ref. [107, 108, 109, 110], it was proposed

that interacting fermionic topological insulators and topological superconductors can be

characterized by the full fermion Green's function; Ref. [111] proposed a method to

diagnose bosonic SPT states characterized by group cohomology. The method proposed

in our current paper is applicable to both fermionic and bosonic SRE states.
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Chapter 4

Exotic Critical Points on SPT

Boundaries

4.1 Anomalies and DQCP

The theory of second order phase transitions pioneered by Landau, Ginzburg, Wilson,

and Fisher has had remarkable success describing order-to-disorder transitions in both

quantum and thermal systems. By using the order parameter �eld, the symmetries, and

the renormalization group, we can calculate many experimentally-veri�able quantities for

a wide variety of systems.

However, the theory is not suitable for building a generic second order phase transition

between two ordered phases. Doing so within the realm of LGWF theory requires either

�ne tuning the coupling constants so both order parameters vanish at the same point, or

using an intermediate phase with two critical points. On the square lattice Heisenberg

antiferromagnet, numerics imply[13] that a generic second order critical point should

exist between the Néel and VBS phases.

The original construction[13] was called �decon�ned criticality� due to the fact that
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the critical point between Néel and VBS phases included a new, dynamical U(1) gauge

�eld. The two ordered phases are reached by condensing either monopoles or pairs of

spinons.

A much more general approach was found later[14] that combined the two order

parameters into a larger �superspin.� Then, the action of this new �eld includes the

ordinary kinetic term plus a topological WZW term. All of the beyond-LGWF physics

is built into the WZW term, which drastically modi�es the critical point properties.

Importantly, it also modi�es the symmetry properties of the defects in the ordered phases.

On the triangular lattice, the picture is analogous. There is both magnetic order

and a VBS phase, but the VBS order parameter often encountered in experiments and

numerics is more complicated than for the square lattice. To �nd the correct the critical

point action, we use intuition from SPT �eld theories to build a NLSM into a large

Grasmannian manifold. This new manifold can support a WZW term, and this term

correctly modi�es the defect symmetry properties. Finally, we �nd a UV fermion action

for this manifold, and analyze the relevant terms to see that it describes a direct, second-

order transition.

4.2 DQCP on Triangular Lattice

The decon�ned quantum critical point (dQCP) [13, 112] was proposed as the �rst

explicit example of a direct un�ne-tuned quantum critical point 1 beyond the standard

Landau's paradigm, because the dQCP is sandwiched between two very di�erent ordered

phases with completely unrelated broken symmetries [13]. More precisely, the symme-

try that is spontaneously broken on one side of the transition is completely independent

from the symmetry that is broken on the other side. This scenario was forbidden in
1Here un�ne-tuned means that there is only one relevant operator allowed by the symmetry at the

dQCP, which is the tuning parameter.
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the standard Landau's paradigm, but was proposed to be possible in quantum spin sys-

tems [13, 112]. A lot of numerical work has been devoted to investigating the dQCP with

a full spin rotation symmetry [113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124],

as well as spin models with only in-plane spin symmetry [125, 126, 127, 128]. Recently

developed duality between strongly interacting QCPs in (2 + 1)d have further improved

our understanding of the dQCP [129, 130, 131, 132, 133, 134], and the predictions made

by duality has received numerical supports [135, 136].

Let us �rst summarize the key ingredients of the original dQCP on the square lat-

tice [13, 112]:

(1) This is a quantum phase transition sandwiched between the standard antiferro-

magnetic Néel state and the valence bond solid (VBS) state. The Néel state has ground

state manifold (GSM) equivalent to a two dimensional sphere (S2), i.e. all the con�-

gurations of the Néel vector form a manifold S2. Although the VBS only has four fold

degeneracy on the square lattice, there is a strong evidence that the four fold rotation

symmetry of the square lattice is enlarged to a U(1) rotation symmetry right at the

dQCP, and the VBS state has an approximate GSM S1 (one dimensional ring), which is

not a submanifold of the GSM of the Néel state on the other side of the dQCP. Thus we

can view the dQCP on the square lattice as a �S2-to-S1" transition.

In another proposed realization of the dQCP [77], the Néel order and the VBS order

are replaced by the quantum spin Hall order parameter and the s−wave superconductor,

thus in this realization the dQCP is literally a transition between S2 and S1.

(2) The vortex of the VBS order parameter carries a bosonic spinor (spin-1/2) of

the spin symmetry, and the Skyrmion of the Néel order carries lattice momentum. This

physics can be described by the NCCP1 model [13, 112]: L =
∑

α |(∂µ−iaµ)zα|2+r|zα|2+

· · · , where the Neél order parameter is ~N = z†~σz, the �ux of aµ is the Skyrmion density

of ~N , and the �ux condensate (which is dual to the photon phase of aµ [137, 138, 139]
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based on the standard photon-super�uid duality) is the VBS order. Thus there is an

�intertwinement" between the Néel and VBS order: the defect of one order parameter is

decorated with the quantum number of the symmetry that de�nes the other order, thus

the condensation of the defect leads to the other order. This unusual quantum phase

transition is considered �decon�ned" because the �eld theory above is not formulated in

terms of the standard Landau order parameter, but in terms of �fractionalized" degrees

of freedom such as the spinon �eld zα.

(3) If we treat the Néel and the VBS orders on equal footing, we can introduce a �ve

component unit vector ~n ∼ (Nx, Ny, Nz, Vx, Vy), and the �intertwinement" between the

two order parameters is precisely captured by a topological Wess-Zumino-Witten (WZW)

term of the nonlinear sigma model de�ned in the target space S4 (four dimensional sphere)

where ~n lives [14, 77].

All the previous works on dQCP have focused on the example proposed in Ref. [13,

112], which is a theory specially designed for the square lattice. In this work we propose

a possible dQCP on the triangular lattice (and the Kagome lattice) for spin-1/2 systems

with a full SU(2) spin rotation symmetry. Soon we will see that due to the fundamentally

di�erent structure of the magnetic order and VBS order from the square lattice, the dQCP

on frustrated lattices demands a completely di�erent formalism, with a very di�erent

universality class, and an unexpected emergent symmetry.

Let us �rst summarize the standard phases for spin-1/2 systems with a full spin

rotation symmetry on the triangular lattice. On the triangular lattice, the standard

antiferromagnetic order is no longer a collinear Néel order, it is the
√

3×
√

3 noncollinear

spin order (or the so-called 120◦ order) with ground state manifold (GSM) SO(3), which

is fundamentally di�erent from the GSM S2 of the collinear magnetic order.

The VBS order most often discussed and observed in numerical simulations is the

so-called
√

12 ×
√

12 VBS pattern [16, 140, 141]. This VBS order is the most natural
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pattern that can be obtained from the condensate of the vison (or the m excitation) of a

Z2 spin liquid on the triangular lattice. The dynamics of visons on the triangular lattice

is equivalent to a fully frustrated Ising model on the dual honeycomb lattice [142], and

it has been shown that with nearest neighbor hopping on the dual honeycomb lattice,

there are four symmetry protected degenerate minima of the vison band structure in the

Brillouin zone, and that the GSM of the VBS order can be most naturally embedded

into manifold SO(3) (just like the VBS order on the square lattice can be embedded in

S1) [142]. Thus the
√

3×
√

3 noncollinear spin order and the
√

12×
√

12 VBS order have

a �self-dual" structure, i.e. the magnetic order and the VBS order are dual to each other.

Conversely on the square lattice, the self-duality between the Néel and VBS order only

happens in the easy-plane limit [143].

The self-duality structure on the triangular lattice was noticed in Ref. [81] and cap-

tured by a mutual Chern-Simons (CS) theory:

L = |(∂ − ia)z|2 + rz|z|2 + |(∂ − ib)v|2 + rv|v|2 +
i

π
a ∧ db+ · · · (4.1)

zα and vβ carry a spinor representation of SO(3)e and SO(3)m groups respectively, and

when they are both gapped (rz, rv > 0), they are the e and m excitations of a symmetric

Z2 spin liquid on the triangular lattice, with a mutual semion statistics enforced by

the mutual Chern-Simons (CS) term [81]. Physically zα is the Schwinger boson of the

standard construction of spin liquids on the triangular lattice [144, 145, 146], while vβ is

the low energy e�ective modes of the vison.

Eq. 4.1 already uni�es much of the physics for spin-1/2 systems on the triangular

lattice [81]. For example, when both zα and vβ are gapped, the system is in the Z2 spin

liquid mentioned above. The
√

3 ×
√

3 noncollinear spin order, and the VBS order can

be obtained from the self-dual Z2 spin liquid by condensing zα and vβ respectively, and
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both transitions have an emergent O(4) symmetry [147, 142].

The problem of �nding a dQCP on the triangular lattice between the noncollinear

magnetic order and the VBS order, is equivalent to �nding a direct un�ne-tuned transition

between two di�erent orders each with GSM SO(3), or in our notation an �SO(3)-to-SO(3)

transition".

4.3 topological term of e�ective �eld theory

As we discussed in the introduction, the physical picture of the dQCP is the �intert-

winement" between the two ordered phases, namely the defect of one order is decorated

with the quantum number of the other order, hence once we �melt" one ordered phase by

proliferating its defects, the system will automatically be driven into the other order. On

the square lattice, if we treat the Néel and the VBS orders on equal footing, we can in-

troduce a �ve component unit vector ~n ∼ (Nx, Ny, Nz, Vx, Vy), then the �intertwinement"

between the two order parameters is precisely captured by a topological Wess-Zumino-

Witten (WZW) term of the nonlinear sigma model de�ned in the target space S4 (four

dimensional sphere) where ~n lives [14, 77]:

Lwzw =

∫
d3x

∫ 1

0

du
2πi

Ω4

εabcden
a∂xn

b∂yn
c∂τn

d∂un
e, (4.2)

where Ω4 is the volume of S4. ~n(x, τ, u) is any smooth extension of ~n(x, τ) such that

~n(x, τ, 0) = (1, 0, 0, 0, 0) and ~n(x, τ, 1) = ~n(x, τ).

In Eq. 4.1, vβ is the vison of the spin liquid, and it carries a π−�ux of aµ due to

the mutual CS term in Eq. 4.1. The π−�ux of aµ is bound with the Z2 vortex of the

SO(3)e GSM of the
√

3 ×
√

3 spin order. Due to the homotopy group π1[SO(3)] = Z2,

any ordered phase with GSM SO(3) has Z2 vortex excitations, namely two vortices can
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Figure 4.1: The global phase diagram of spin-1/2 systems on the triangular lattice. The
intertwinement between the order parameters is captured by the WZW term Eq. 4.3.
Our RG analysis concludes that there is a direct un�ne-tuned SO(3)-to-SO(3) transition,
which is a direct un�ne-tuned transition between the noncollinear magnetic order and
the VBS order. The detailed structure of the shaded areas demands further studies

annihilate each other. Similarly zα is also the Z2 vortex of the SO(3)m GSM of the VBS

order, analogous to the vortex of the VBS order on the square lattice. This mutual

�decoration" of topological defects means that there is also an �intertwinement" between

the noncollinear
√

3×
√

3 magnetic order and the
√

12×
√

12 VBS orders on the triangular

lattice.

To capture the �intertwinement" of the two phases both with GSM SO(3), i.e. to

capture the mutual decoration of topological defects, we need to design a topological

term for these order parameters, just like the O(5) WZW term for the dQCP on the

square lattice [14]. The topological term we design is as follows:

Lwzw =

∫
d3x

∫ 1

0

du
2πi

256π2
εµνρλtr[P∂µP∂νP∂ρP∂λP ]. (4.3)
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Here P is a 4× 4 Hermitian matrix �eld:

P =
3∑

a,b=1

Na
eN

b
mσ

ab +
3∑

a=1

Ma
e σ

a0 +
3∑
b=1

M b
mσ

0b, (4.4)

where σab = σa ⊗ σb, and σ0 = 12×2. All vectors ~Ne, ~Nm, ~Me and ~Mm transform as

vectors under SO(3)e and SO(3)m depending on their subscripts. And we need to also

impose some extra constraints:

P2 = 14×4, ~Ne · ~Me = ~Nm · ~Mm = 0. (4.5)

Then ~Ne and ~Me together will form a SO(3) �tetrad", which is equivalent to the SO(3)

manifold. ~Nm and ~Mm form another SO(3) manifold. With the constraints in Eq. 4.5,

the matrix �eld P is embedded in the manifold

M =
U(4)

U(2)× U(2)
. (4.6)

The maximal symmetry of the WZW term Eq. 4.3 is PSU(4) = SU(4)/Z4 (which contains

both SO(3)e and SO(3)m as subgroups), as the WZW term is invariant under a SU(4)

transformation: P → U †PU with U ∈ SU(4), while the Z4 center of SU(4) does not

change any con�guration of P . The WZW term Eq. 4.3 is well-de�ned based on its

homotopy group π4[M] = Z, just like π4[S4] = Z. Obviously the SU(4) symmetry

contains both SO(3)e and SO(3)m as subgroups.

The topological WZW term in Eq. 4.3 is precisely the boundary theory of a 3d sym-

metry protected topological (SPT) state with a PSU(4) symmetry [148]. We will discuss

this further later.

Let us test that this topological term captures the correct intertwinement. i.e. it
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must capture the physics that the Z2 vortex of SO(3)e carries spinor of SO(3)m, and

vice versa. This e�ect is most conveniently visualized after breaking SO(3)m down to

SO(2)m, and the Z2 vortex of the SO(3)m manifold becomes the ordinary vortex of an

SO(2) order parameter. This symmetry breaking allows us to take ~Nm = (0, 0, 1), i.e.

N1
m = N2

m = 0, N3
m = 1. Because ~Nm · ~Mm = 0 (Eq. 4.5), ~Mm = (M1

m,M
2
m, 0). Then one

allowed con�guration of P is

P =
3∑

a=1

Na
e σ

a3 +
2∑
b=1

M b
mσ

0b = ~n · ~Γ, (4.7)

where ~n is a �ve component vector and |~n| = 1 due to the constraint P2 = 14×4. ~Γ are

�ve anticommuting Gamma matrices. Now the WZW term Eq. 4.3 reduces precisely to

the standard O(5) WZW at level-1 in (2 + 1)d, and it becomes manifest that the vortex

of (M1
m,M

2
m) (the descendant of the Z2 vortex of SO(3)m under the assumed symmetry

breaking) is decorated with a spinor of SO(3)e. To explicitly visualize the e�ect of

the �decorated vortex", one can follow the procedure of Ref. [77], and create a vortex

of (n4, n5). Then the physics in the vortex core becomes a zero-dimensional quantum

mechanics problem, whose exact solution reveals that there is a spin-1/2 carried by each

vortex.

4.4 Field theory and Renormalization group analysis

Eq. 4.3 is a topological term in the low energy e�ective �eld theory that describes the

physics of the ordered phases. But a complete �eld theory which reduces to the WZW

term in the infrared is still demanded. For example, the O(5) nonlinear sigma model

with a WZW term at level-1 can be derived as the low energy e�ective �eld theory of the

N = 2 QCD with SU(2) gauge �eld, which has an explicit SO(5) global symmetry [134].
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The WZW term in Eq. 4.3 can be derived in the same manner, by coupling the matrix

�eld P to the Dirac fermions of the Nf = 4 QED:

L =
4∑
j=1

ψ̄jγ · (∂ − ia)ψj +m
∑
i,j

ψ̄iψjPij. (4.8)

The WZW term of P is generated after integrating out the fermions using the same

method as Ref. [149], and the PSU(4) global symmetry becomes explicit in Nf = 4

QED 2.

Our goal is to demonstrate that the Nf = 4 QED corresponds to an un�ne-tuned

dQCP between the noncollinear magnetic order and the VBS order, or in our notation

a �SO(3)-to-SO(3)" transition (as the dQCP is sandwiched between two ordered phases

both with GSM SO(3)). The PSU(4) global symmetry of Nf = 4 QED must be explicitly

broken down to the physical symmetry. The most natural terms that beak this PSU(4)

global symmetry down to SO(3)e×SO(3)m are four-fermion interaction terms. It turns

out that there are only two such linearly independent four-fermion interaction terms that

beak the PSU(4) global symmetry down to SO(3)e×SO(3)m 3:

L1 =
(
ψ̄~σψ

)
·
(
ψ̄~σψ

)
, L2 =

(
ψ̄~τψ

)
·
(
ψ̄~τψ

)
, (4.9)

where ψ carries both indices from the Pauli matrices ~σ and ~τ , so that ψ is a vector

representation (1
2
, 1

2
) of SO(4)∼SO(3)e×SO(3)m.

One can think of some other four fermion terms, for example L′ =
∑

µ

(
ψ̄~σγµψ

)
·(

ψ̄~σγµψ
)
, but we can repeatedly use the Fiez identity, and reduce these terms to a linear

combination of L1 and L2, as well as SU(4) invariant terms: L′ = −2L2 − L1 + · · · (for
2the global symmetry of the Nf = 4 QED is PSU(4) instead of SU(4) because the Z4 center of the

SU(4) �avor symmetry group is also part of the U(1) gauge group.
3This is true under the assumption of an emergent Lorentz invariance, which often happens at quan-

tum critical points and algebraic spin liquids (such as the original dQCP on the square lattice).
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more details please refer to the appendix). The ellipses are SU(4) invariant terms, which

according to Ref. [150, 151, 152] are irrelevant at the Nf = 4 QED.

The renormalization group (RG) �ow of L1 and L2 can be most conveniently calcu-

lated by generalizing the two dimensional space of Pauli matrices ~τ to an N -dimensional

space, i.e. we generalize the QED3 to an Nf = 2N QED3 with SU(2)× SU(N) symmetry.

And we consider the following two independent four fermion terms:

gL = g
(
ψ̄~σψ

)
·
(
ψ̄~σψ

)
, g′L′ = g′

(
ψ̄~σγµψ

)
·
(
ψ̄~σγµψ

)
. (4.10)

One can check that all SU(2)× SU(N) four fermion interations in this QED3 can be

written in terms of the linear combinations of these two terms above up to SU(2N)

invariant terms which according to Ref. [150, 151, 152] are irrelevant under RG even for

small N . At the �rst order of 1/N expansion, the RG equation reads

β(g) =

(
−1 +

128

3(2N)π2

)
g +

64

(2N)π2
g′,

β(g′) = −g′ + 64

3(2N)π2
g. (4.11)

There are two RG �ow eigenvectors: (1,−1) with RG �ow eigenvalue −1−64/(3(2N)π2),

and (3, 1) with eigenvalue −1 + 64/((2N)π2). This means that when N = 2 there is one

irrelevant eigenvector with

L − L′ = 2(L1 + L2) + · · · , (4.12)

and a relevant eigenvector with

3L+ L′ = 2(L1 − L2) + · · · . (4.13)
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Again the ellipses are SU(4) invariant terms that are irrelevant. In fact, L1 +L2 preserves

the exchange symmetry (duality) between SO(3)e and SO(3)m, in other words L1 + L2

preserves the O(4) symmetry that contains an extra improper rotation in addition to

SO(4), while L1 − L2 breaks the O(4) symmetry down to SO(4). Thus L1 + L2 and

L1 − L2 both must be eigenvectors under RG. The RG �ow is sketched in Fig. 4.1.

To make a complete story, we should also discuss other perturbations on the Nf = 4

QED. The fermion bilinear terms are forbidden either by the �avor symmetry, or discrete

space-time symmetries, while higher order fermion interactions (such as eight fermion

interactions) are very likely to be irrelevant. The monopoles of aµ were ignored in this

RG calculation. According to Ref. [153], monopoles of QED carry nontrivial quantum

numbers. A multiple-monopole could be a singlet under the global symmetry, and hence

allowed in the action, but it will have a higher scaling dimension than the single monopole.

It is known that with large−Nf all the monopoles are irrelevant, but the scaling dimension

of the multiple-monopole for the current case with Nf = 4 needs further study.

Since u(L1 − L2) is relevant, then when the coe�cient u > 0, a simple mean �eld

theory implies that this term leads to a nonzero expectation value for 〈ψ̄~σψ〉. It appears

that this order parameter is a three component vector, and so the GSM should be S2.

However, using the �Senthil-Fisher" mechanism of Ref. [14], the actual GSM is enlarged to

SO(3) due to the gauge �uctuation of aµ (for a review of the �Senthil-Fisher" mechanism,

please refer to the appendix). When u < 0, the condensed order parameter is 〈ψ̄~τψ〉,

and the �Senthil-Fisher" mechanism again enlarges the GSM to SO(3). Based on our

calculation, because u(L1 − L2) is the only relevant perturbation allowed by symmetry,

u drives a direct un�ne-tuned continuous SO(3)-to-SO(3) transition, which is consistent

with a transition between the
√

3×
√

3 noncollinear magnetic order and the
√

12×
√

12

VBS order. And our theory predicts that at the critical point, there is an emergent

PSU(4) symmetry.
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Now let us investigate the perturbation L1 + L2. First of all, let us think of a

seemingly di�erent term: L3 =
∑

a,b

(
ψ̄σaτ bψ

) (
ψ̄σaτ bψ

)
. This term also preserves the

O(4) symmetry, and after some algebra we can show that L3 = −(L1+L2)+· · · . Another

very useful way to rewrite L3 is that:

L3 = −
(
ψ̄tJεψ̄

) (
ψtJεψ

)
+ · · · = −∆̂†∆̂ + · · · (4.14)

where ∆̂ = ψtJεψ, J = σ2⊗τ 2. ε is the antisymmetric tensor acting on the Dirac indices.

Thus although the O(4) invariant deformation in our system (at low energy it corre-

sponds to L1 + L2) is perturbatively irrelevant at the Nf = 4 QED �xed point, when it

is strong and nonperturbative, the standard Hubbard-Stratonovich transformation and

mean �eld theory suggests that, depending on its sign, it may lead to either a condensate

of ∆̂, or condensate of
(
ψ̄σaτ bψ

)
over certain critical strength of L3. The condensate

of
(
ψ̄σaτ bψ

)
has GSM [S2 × S2]/Z2, and is identical to the submanifold of P when

~Me = ~Mm = 0 in Eq. 4.4. The Z2 in the quotient is due to the fact that P is una�ected

when both ~Ne and ~Nm change sign simultaneously.

Now we show that the condensate of ∆̂ is precisely the self-dual Z2 topological order

described by Eq. 4.1. First of all, in the superconductor phase with ∆̂ condensate, there

will obviously be a Bogoliubov fermion. This Bogoliubov fermion carries the (1/2, 1/2)

representation under SO(3)e×SO(3)m. The decon�ned π−�ux of the gauge �eld aµ is

bound to a 2π−vortex of the complex order parameter ∆̂, which then traps 4 Majorana

zero modes. The 4 Majorana zero modes transform as a vector under the SO(4) action

that acts on the �avor indices. The 4 Majorana zero modes de�ne 4 di�erent states that

can be separated into two groups of states depending on their fermion parities. In fact,

the two groups should be identi�ed as the (1/2, 0) doublet and the (0, 1/2) doublet of

SO(3)e×SO(3)m. Therefore, the π−�ux with two di�erent types of doublets should be
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viewed as two di�erent topological excitations. Let us denote the (1/2, 0) doublet as e

and the (0, 1/2) doublet as m. Both e and m have bosonic topological spins. And they

di�er by a Bogoliubov fermion. Therefore, their mutual statistics is semionic (which rises

from the braiding between the fermion and the π−�ux). At this point, we can identify the

topological order of the ∆̂ condensate as the Z2 topological order described by Eq. 4.1.

4.5 Interpretation of the dQCP as the boundary of a

3d system

Decorating quantum numbers to topological defects is also a key physical picture

of constructing symmetry protected topological (SPT) states. The analogy between

the dQCP on the square lattice and a 3d bulk SPT state with an SO(5) symmetry

was discussed in Ref. [134]. Many 3d SPT states can be constructed by decorating the

defects in the system with a lower dimensional SPT state, and then proliferating the

defects [53, 48].

The physics around the dQCP discussed in this work is equivalent to the boundary

state of a 3d bosonic SPT state with SO(3)e×SO(3)m symmetry, once we view both

SO(3) groups as onsite symmetries. We have already mentioned that the topological

WZW term Eq. 4.3 is identical to the boundary theory of a 3d SPT state with PSU(4)

symmetry [148], which comes from a Θ−term in the 3d bulk. And by breaking the

symmetry down to either SO(3)e×SO(2)m or SO(2)e×SO(3)m, the bulk SPT state is

reduced to a SO(3)×SO(2) SPT state, which can be interpreted as the decorated vortex

line construction [48], namely one can decorate the SO(2) vortex line with the Haldane

phase with the SO(3) symmetry, and then proliferate the vortex lines. In our case, the

bulk SPT state with SO(3)e×SO(3)m symmetry can be interpreted as a similar decorated
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vortex line construction, i.e. we can decorate the Z2 vortex line of one of the SO(3)

manifolds with the Haldane phase of the other SO(3) symmetry, then proliferating the

vortex lines. The Z2 classi�cation of the Haldane phase is perfectly compatible with

the Z2 nature of the vortex line of a SO(3) manifold. Using the method in Ref. [134],

one can also derive that the (3 + 1)d bulk SPT state must have a topological response

action S = iπ
∫
w2[Ae]∪w2[Am] in the presence of background SO(3)e gauge �eld Ae and

SO(3)m gauge �eldAm (w2 represents the second Stiefel�Whitney class). This topological

response theory also matches exactly with the decorated vortex line construction.

We have shown that the physics around the critical point has the same e�ective �eld

theory as the boundary of a 3d SPT state [148]. The anomaly (once we view all the

symmetries as onsite symmetries) of the large-N generalizations of our theory will be

analyzed in the future, and a Lieb-Shultz-Mattis theorem for SU(N) and SO(N) spin

systems on the triangular and Kagome lattice can potentially be developed in the same

way as Ref. [154, 155].

4.6 Summary

In summary, we proposed a theory for a potentially direct un�ne-tuned continuous

quantum phase transition between the noncollinear magnetic order and VBS order on

the triangular lattice, and at the critical point the system has an emergent PSU(4) global

symmetry. Our proposed dQCP is fundamentally di�erent from the original example on

the square lattice due to the very di�erent structure of both the magnetic and VBS orders

compared with the unfrustrated square lattice. Our conclusion is based on a controlled

RG calculation, and an e�ective nonlinear sigma model with a topological WZW term.

Similar structure of noncollinear magnetic order and VBS orders can be found on the

Kagome lattice. For example, it was shown in Ref. [156] that the vison band structure

95



Exotic Critical Points on SPT Boundaries Chapter 4

could have symmetry protected four degenerate minima just like the triangular lattice

(although the emergence of O(4) symmetry in the infrared is less likely). Indeed, algebraic

spin liquids with Nf = 4 QED as their low energy description have been discussed

extensively on both the triangular and the Kagome lattice [157, 158, 146, 159]. Ref. [146]

also made the observation that the noncollinear magnetic order, the VBS order, and the

Z2 spin liquid are all nearby a Nf = 4 QED (the so-called π−�ux state from microscopic

construction). The Z2 spin liquid was shown to be equivalent to the one constructed

from Schwinger boson [145], which can evolve into the
√

3 ×
√

3 magnetic order, and

the
√

12 ×
√

12 VBS order through an O(4)∗ transition. But we should stress that in

this work we only focus on the �eld theory for the �SO(3)-to-SO(3)" dQCP, without fully

determining the relation between the �eld theory and the microscopic degrees of freedom.

It is a challenge to �nd an antiferromagnetic spin model on a frustrated lattice without

sign problem. But we note that in Ref. [141] spin nematic phases with GSM SN/Z2

(analogous to the spin-1/2
√

3×
√

3 state with GSM SO(3)= S3/Z2) and the
√

12×
√

12

VBS order are found in a series of sign-problem free models on the triangular lattice.

Thus it is possible to design a modi�ed version of the models discussed in Ref. [141] to

bring together the spin nematic order and VBS order, and then access the dQCP that

we are proposing.

The ordered phases and the �Senthil-Fisher" mechanism

Here we reproduce the discussion in Ref. [14], and demonstrate how the GSM of the

order of ψ̄~σψ (and similarly ψ̄~τψ) is enlarged from S2 to SO(3). First we couple the

Nf = 4 QED to a three component dynamical unit vector �eld N (x, τ):

L = ψ̄γµ(∂µ − iaµ)ψ +mψ̄σψ ·N . (4.15)
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The �avor indices are hidden in the equation above for simplicity. Now following the

standard 1/m expansion of Ref. [149], we obtain the following action after integrating

out the fermion ψj:

Leff =
1

g
(∂µN )2 + i2πHopf[N ] + i2aµJ

T
µ +

1

e2
f 2
µν , (4.16)

where 1/g ∼ m. JT0 = 1
4π
εabcN

a∂xN
b∂yN

c is the Skyrmion density of N , thus JTµ is the

Skyrmion current. The second term of Eq. 4.16 is the Hopf term of N which comes from

the fact that π3[S2] = Z.

Now if we introduce the CP1 �eld zα = (z1, z2)t = (n1 + in2, n3 + in4)t for N as

N = z†σz, the Hopf term becomes precisely the Θ−term for the O(4) unit vector n with

Θ = 2π:

i2πHopf[N ] =
i2π

2π2
εabcdn

a∂xn
b∂yn

c∂τn
d. (4.17)

In the CP1 formalism, the Skyrmion current JTµ = 1
2π
εµνρ∂ναρ, where αµ is the gauge

�eld that the CP1 �eld zα couples to. The coupling between aµ and αµ

2iaµJ
T
µ =

i2

2π
εµνρaµ∂ναµ (4.18)

takes precisely the form of the mutual CS theory of a Z2 topological order, and it implies

that the gauge charge zα is an anyon of a Z2 topological order, and the condensate of zα

(equivalently the order of N ) has a GSM = SO(3) = S3/Z2, where S3 is the manifold of

the unit vector ~n.
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Deriving the WZW term

Let us consider a theory of QED3 with Nf = 4 �avors of Dirac fermions coupled to a

matrix order parameter �eld P :

L =
∑
i,j

ψ̄i(γµ(∂µ − iaµ)δij +mPij)ψj. (4.19)

P takes values in the target manifold P ∈ M = U(4)
U(2)×U(2)

. We can parametrize the

matrix �eld P = U †ΩU , where U ∈ SU(4) and Ω = σz⊗12×2. P satis�es P2 = 14×4 and

trP = 0.

The e�ective action after integrating over the fermion �elds formally reads

Seff [aµ,P ] = − ln

∫
Dψ̄Dψ exp

[
−
∫
d3xL(ψ, aµ,P)

]

= − ln det[D(aµ,P)] = −Tr ln[D(aµ,P)]. (4.20)

The expansion of Seff has the following structure

Seff [aµ,P ] = Seff [aµ = 0,P ] +O(a) (4.21)

and we will look at the �rst term in the expansion. In general, all terms that respect the

symmetry of the original action will appear in the expansion of the fermion determinant.

Here we want to derive the topological term of P . One way to obtain the e�ective action

is the perturbative method developed in Ref. [149]. Let us vary the action over the matrix

�eld P

δSeff = −Tr(mδP(D†D)−1D†) (4.22)
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and then expand (D†D)−1 in gradients of P .

(D†D)−1 = (−∂2 +m2 −mγµ∂µP)−1

= (−∂2 +m2)−1

× (
∞∑
n=0

((−∂2 +m2)−1mγµ∂µP)n)

Since the coe�cient of the WZW term is dimensionless, we will look at the following

term in the expansion

δW (P) = −Tr[m2δP(−∂2 +m2)−1

((−∂2 +m2)−1mγµ∂µP)3P ]

= −K
∫
d3x Tr[δP(γµ∂µP)3P ]

where K =
∫

d3p
(2π)3

m5

(p2+m2)4
= 1

64π
is a dimensionless number, and �Tr" is the trace over

the Dirac and �avor indices. After tracing over the Dirac indices,

Tr(γµγνγρ) = 2iεµνρ (4.23)

we obtain the following term for the variation

δW (P) = − 2πi

64π2
εµνρ

∫
d3x tr[δP∂µP∂νP∂ρPP ], (4.24)

where �tr" is the trace for the �avor indices only.
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We can restore the topological term of the nonlinear σ-model by the standard method

of introducing an auxiliary coordinate u. The �eld P̃(x, u) interpolates between P̃(x, u =

0) = Ω and P̃(x, u = 1) = P(x). The topological term reads

W (P̃) = − 2πi

256π2
εµνρδ

∫ 1

0

du

∫
d3xtr[P̃∂µP̃∂νP̃∂ρP̃∂δP̃ ] (4.25)

(the extra factor of 1/4 comes from the anti-symmetrization of the u coordinate with

other indices).

Linear Dependence of four-fermion interactions in Nf =

2N QED3

In this section, we study all the SU(2)×SU(N) symmetric four-fermion interactions

in the Nf = 2N QED3 and their linear dependence up to SU(2N)-invariant terms .

First of all, we can write down all the SU(2)×SU(N) symmetric four-fermion terms:

(ψ̄ψ)(ψ̄ψ), (ψ̄γµψ)(ψ̄γµψ), (4.26)

(ψ̄~σψ)(ψ̄~σψ), (ψ̄γµ~σψ)(ψ̄γµ~σψ), (4.27)

(ψ̄T aψ)(ψ̄T aψ), (ψ̄γµT aψ)(ψ̄γµT aψ), (4.28)

(ψ̄~σT aψ)(ψ̄~σT aψ), (ψ̄γµ~σT aψ)(ψ̄γµ~σT aψ), (4.29)

where ~σ is the generator of the SU(2) symmetry and T a (with a = 1, 2, ..., N2− 1) is the

generator of the SU(N) symmetry. Here, we've also implicitly assumed the summation

over repeated indices in these expressions. The two terms on the second line are exactly

the terms introduced in Eq. 9 of the main text.

Since all the SU(2N) invariant four-fermion interaction are irrelevant under RG [150,
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151, 152], we are only concerned with the linear dependence of all the SU(2)×SU(N)

symmetric four-fermion interactions up to SU(2N) invariant ones. First, we notice that

the terms in Eq. 4.26 are SU(2N) invariant. Therefore, we can ignore them for this

analysis. Notice that we can rewrite the two terms in Eq. 4.28 as

(ψ̄T aψ)(ψ̄T aψ)

= −N
4

(ψ̄γµ~σψ)(ψ̄γµ~σψ)− N

4
(ψ̄~σψ)(ψ̄~σψ),

− N

4
(ψ̄γµψ)(ψ̄γµψ)− N + 4

4
(ψ̄ψ)(ψ̄ψ) (4.30)

(ψ̄T aγµψ)(ψ̄T aγµψ)

=
N

4
(ψ̄γµ~σψ)(ψ̄γµ~σψ)− 3N

4
(ψ̄~σψ)(ψ̄~σψ),

+
N − 4

4
(ψ̄γµψ)(ψ̄γµψ)− 3N

4
(ψ̄ψ)(ψ̄ψ). (4.31)

Therefore, up to SU(2N) invariant terms, the two terms in Eq. 4.28 can be written as

linear combination of the two terms in Eq. 4.27. In the rewriting given above, we've used

the Fierz identity
∑

a T
a
ijT

a
kl = Nδilδjk − δijδkl for the SU(N) group as well as the Fierz

identities ~σab ·~σcd = 2δadδbc−δabδcd for the Pauli matrices ~σ and γµαβγ
µ
ηρ = 2δαρδβη−δαβδηρ

for the Gamma matrices γµ. Similarly, we can rewrite the two terms in Eq. 4.29 as

(ψ̄~σT aψ)(ψ̄~σT aψ)

=
N

4
(ψ̄γµ~σψ)(ψ̄γµ~σψ) +

N − 4

4
(ψ̄~σψ)(ψ̄~σψ),

− 3N

4
(ψ̄γµψ)(ψ̄γµψ)− 3N

4
(ψ̄ψ)(ψ̄ψ) (4.32)

(ψ̄γµ~σT aψ)(ψ̄γµ~σT aψ)

= −N + 4

4
(ψ̄γµ~σψ)(ψ̄γµ~σψ) +

3N

4
(ψ̄~σψ)(ψ̄~σψ),

+
3N

4
(ψ̄γµψ)(ψ̄γµψ)− 9N

4
(ψ̄ψ)(ψ̄ψ) (4.33)
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Therefore, all the SU(2)×SU(N) symmetric four-fermion interactions can be written as

linear combinations of (ψ̄~σψ)(ψ̄~σψ) and (ψ̄γµ~σψ)(ψ̄γµ~σψ), namely the two terms in Eq.

4.27 (as well as Eq. 9 in the main text).
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Chapter 5

Stable Gapless Phases

5.1 Spin Liquids

Spin liquids are another important class of exotic quantum system. While a precise

de�nition is di�cult to formulate due to edge cases, heuristically a spin liquid phase has no

magnetic order, an odd number of electrons per unit cell, and is distinct from the classical

disordered phase[15]. Unsatisfactory as this de�nition may be, we can nevertheless group

many similar systems together as spin liquids. Resonating valence bond (RVB) phases

and dimer models are two prominent examples. There are also bosonic analogues of spin

liquids, which carry over most of the physics despite not being built from electrons.

Previous work has established the existence and stability of gapless abelian bose

liquid (ABL) phases as the low-energy e�ective theory for 3+1d lattice models[19, 160].

The low-energy physics is dominated by an emergent gauge structure reminiscent of

electromagnetism or gravity, and stability is guaranteed by a combination of self-duality

and gauge invariance. However, it is possible to generalize these models and �nd an

in�nite family of similar ABL phases, all of which are stable and gapless.

103



Stable Gapless Phases Chapter 5

5.2 Stable Gapless phases without Symmetry

It is now well-known that quantum disordered states of many-body systems can be

fundamentally di�erent from classical disordered states. Without assuming any sym-

metry, there is simply one type of trivial classical state, but there can be many sta-

ble quantum disordered states. Many of these nontrivial quantum disordered phases

have a gapped spectrum and topological degeneracy on a manifold with nontrivial topo-

logy [25, 26, 27], such as fractional quantum Hall states. In this paper we consider another

kind of stable quantum disordered phases without assuming any symmetry. These sta-

tes are characterized by their bulk gapless bosonic modes that cannot be interpreted

as Goldstone modes. Furthermore, physical quantities have power-law (or algebraic)

correlations instead of short-range correlations found in gapped systems.

Although such gapless states are not rare at all in condensed matter systems, they

usually occur at quantum critical points and are protected by certain symmetries. Ge-

nerically, we would expect there to be relevant perturbations that will open the gap in

these critical states. But the examples we will discuss in this paper all have very sta-

ble gapless bosonic modes, which are invulnerable to any weak perturbations. Thus,

to establish that an algebraic Bose liquid (ABL) phase is stable, we must show that

all potential gap-opening perturbations are irrelevant at the IR �xed point of the ABL

phase. Drawing intuition from the (2 + 1)d compact lattice U(1) gauge �eld, we must

demonstrate not only a direct mass term of these gapless modes are forbidden, but also

that the space-time topological defects in the dual picture must also be suppressed (or

irrelevant).

A few examples of this type of states are already known. In Ref [19, 161, 162] a

stable ABL phase with photon like excitations were proposed, and it has attracted great

interests [163, 164, 165]. So far compelling experimental evidences for such liquid states
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have been found [166, 167, 168, 169]. Later, a di�erent type of ABL phase with graviton

like excitation was studied in Ref. [170, 171, 160]. It turns out that the graviton-ABL

state has a close cousin with a di�erent dispersion relation [172, 173]. So far these are the

only three types of known stable ABL states with emergent gapless bosonic excitations

without assuming any symmetry. The Bose metal phase proposed in Ref. [174, 175] rely

on a special quasi one dimensional conservation, which is di�erent from the scenarios we

will focus on.

In this work, we expand these ideas even further, demonstrating that there are an

in�nite number of gapless phases that �t into this class of states. We provide several ex-

amples of these so-called �higher-rank" ABL theories. We also investigate the topological

properties of these models, showing that they are �topologically ordered" in the same

sense as the photon and graviton theories, even though they are gapless in the bulk. At

�nite system size L, the emergent gauge bosons will lead to an energy splitting between

di�erent sectors that scales as a power law of 1/L.

5.3 Review of Rank-1 and -2 Theories

5.3.1 The Rank-1 Case

We �rst review the essential facts about the well-known U(1) photon ABL phase

in 3 + 1d. In order to connect to the more general construction, we will address the

problem from a somewhat di�erent (but physically equivalent) viewpoint than the original

works [19, 161, 162]. The gauge structure (and its duality) is of paramount importance,

so we will omit some details in favor of a more easily generalizable procedure. For

simplicity, we will consider the cubic lattice, where spins are de�ned on the links, i.e.

the corner-sharing octahedra. The most important term of the Hamiltonian is simply an
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Ising antiferromagnetic interaction on each octahedron:

H =
J

2

∑
oct

(Szoct)
2, (5.1)

With a very large J , this term will give rise to a locally conserved z-component of spin,

which we will enforce as a constraint on the low energy Hilbert space:

∑
i∈oct

Szi = 0. (5.2)

There are certainly other terms on the lattice that involve S±, but their speci�c forms

are not important, as long as they are all dominated by the J term. Under the standard

change of variables Sz ∼ n − 1/2 and S± ∼ e±iθ, this model becomes a boson rotor

model on the links of a cubic lattice. Noting that the locally conserved integer Szoct

generates a U(1) gauge symmetry, after we change variables again to Err′ ∼ (−1)rnrr′

and Arr′ ∼ (−1)rθrr′ . Note that Arr′ is only de�ned modulo 2π.

The operators E and A are de�ned on the links of the lattice, and this endows them

with a vector structure. We can thus identify a vector of operators E(~x) and A(~x) at

each site of the cubic lattice, along with lattice derivatives ∂iEj(~x) = Ej(~x+ î)−Ej(~x).

They satisfy the normal commutation relations [Aj(~x), Ek(~y)] = iδjkδ
3(~x − ~y). When

phrased in terms of these new variables, the low energy e�ective Hamiltonian is bound

to take the following form:

H = U
∑
r

E(r)2 −K
∑
2

cos[curl(A)2] (5.3)

Once we project all the physics down to the low energy subspace of the Hilbert space

that obeys the constraint imposed by the J term, the low energy e�ective Hamiltonian

must have the gauge symmetry A→ A+∇f , which is generated by the local constraint

106



Stable Gapless Phases Chapter 5

which can now be written as

∂iEi = 0. (5.4)

Tentatively ignoring the fact that A is compactly de�ned, we can expand the low

energy e�ective Hamiltonian at the minimum of the cosine function (spin wave expan-

sion):

H = U
∑
r

E2
i +

K

2

∑
r

(εijk∂jAk)
2 (5.5)

Equation (5.5) is the e�ective low energy Hamiltonian for (3 + 1)d quantum electrody-

namics (QED) in its decon�ned phase. Solving the equation of motion of Eq. 5.5 from

the Heisenberg equation directly, we will obtain a gapless photon excitation with linear

dispersion relation ω ∼ c|~k|, where the speed of light c ∼
√
UK. However, we know that

in 2 + 1d, the compact QED su�ers from the instanton e�ect: proliferation of magnetic

monopoles in the space time opens up the photon gap, but that e�ect is only made clear

in terms of the dual variables. Thus, we will also consider the dual theory to ascertain if

there is a similar gap-opening e�ect.

We see that the solution of Ei to the local constraint Eq. 5.4 can be written as the curl

of another vector �eld hi, Ei = εijk∂jhk. This new �eld hi is de�ned on each plaquette

center and it is canonically conjugate to the magnetic �eld Bi. We can now rewrite the

Hamiltonian Eq. 5.5 as

H = U
∑
r

(εijk∂jhk)
2 +

K

2

∑
r

B2
i (5.6)

In contrast to the 2+1d case, this new Hamiltonian has the same form as the original

107



Stable Gapless Phases Chapter 5

Eq. (5.5), and formally hi has the same gauge symmetry as Ai:

hi → hi +∇if. (5.7)

We thus say that the system (at least in the photon phase) is self-dual. This is an

emergent feature in the infrared.

In the dual theory, we might expect relevant �vertex operators" α cos(2πNhi), whose

analogue in (2 + 1)d plays the role of the �ux creation. In (3 + 1)d, this vertex opera-

tor corresponds to hopping of the magnetic monopole of the compact U(1) gauge �eld.

Whether this vertex operator is important or not, can be determined by evaluating its

correlation function in the limit where α = 0. However, in (3 + 1)d, the correlation

function between two such terms in the limit α = 0 is

〈cos(2πNhi(~x)) cos(2πNhj(~y))〉0 ∼ δijδ
3(~x− ~y), (5.8)

because this is not a gauge invariant correlation function under gauge transformation

Eq. 5.7. Thus at the Gaussian �xed point, the vertex operators cos(2πNhi) are irrelevant

- at least perturbatively. When the vertex operator is strong enough, it will induce

magnetic monopole condensation and drive the system into the con�ned phase. Thus,

the gapless photon is perturbatively protected by the gauge symmetry of both the original

and the dual theory, i.e. the self-duality protects the stability of the photon phase.

Our review in this subsection is no more than restating the known fact that the (3+1)d

compact U(1) gauge �eld has a decon�ned phase, which corresponds to the phase where

neither the charge nor the magnetic monopole condenses. In this subsection, we identi�ed

the photon phase where the magnetic monopole is gapped as the phase where the vertex

operator is irrelevant. The language and logic used in this subsection can be conveniently
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generalized to other ABL phases.

5.3.2 The Rank-2 Case

In this section we will review the construction of another ABL phase with rank-2

tensor gapless bosonic excitations that are analogous to gravitons. We will omit the

exact details of the microscopic derivation; interested readers are referred to the original

papers Ref. [170, 160].

The 3 + 1d microscopics in this system give rise to a symmetric rank-2 tensor �eld, in

contrast to the rank-1 tensor �eld in the previous example. Once again, the system can

be simply phrased in terms of the boson number nij and its canonical conjugate phase

variables θij. We can again de�ne gauge �eld variables Eij ∼ nij (i 6= j), Eii ∼ 2nii, and

Aij ∼ θij, noting that Aij is compactly de�ned with modulo 2π.

The low-energy subspace has the local constraint

∂iEij = 0, (5.9)

which is imposed by a large local term similar to Eq. 5.1. This constraint generates the

gauge transformation

Aij → Aij +
1

2
(∂iλj + ∂jλi) (5.10)

This gauge transformation is the same as that of linearized gravity, if we were to treat

Aij as the �uctuation of a background metric ηij. Hence, we term the gauge boson a

�graviton". The original works [170, 160] use the language of general relativity to write

the Hamiltonian in terms of the curvature tensor for Aij. We will avoid that notation

here while noting that it has very nice connections to the Lifshitz gravity proposed
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independently in Ref. [176, 177, 178].

We want to establish the simplest Hamiltonian possible that is gauge-invariant. To

do this, we will again write down a gauge-invariant quantity Bij which should be thought

of as the �2-curl" of Aij:

Bij = εiabεjcd∂a∂cAbd (5.11)

The low energy e�ective Hamiltonian, or the Hamiltonian after the �spin-wave expan-

sion", then takes the simple form

H = U
∑
r

E2
ij +K

∑
r

B2
ij, (5.12)

where U and K may, in general, take di�erent values for the
∑

ij X
2
ij and

∑
iX

2
ii terms, if

an ordinary cubic lattice symmetry is assumed; however, lattice symmetry is not essential

to our work here.

The spin-wave expanded Hamiltonian above already gave us a gapless �graviton-like"

bosonic mode with a quadratic dispersion. In order to guarantee that this gapless mode

is not ruined by the compactness of the gauge �eld, we must once again consider the

dual theory. The dual variables solve the constraint equation (5.9), and we can write E

as the 2-curl of a new �eld h:

Eij = εiabεjcd∂a∂chbd. (5.13)

We see that h transforms under the same gauge transformation as tensor A and is ca-

nonically conjugate to the tensor �eld B [170, 160]. The vertex operators will take the

form cos(2πNhij), and just as before the gauge-dependence makes them irrelevant at the

infrared Gaussian �xed point because it violates the gauge symmetry of the Gaussian
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�xed point �eld theory. This will once again guarantee the gaplessness of the graviton

mode, and we see from the above Hamiltonian that ω ∼ k2.

5.3.3 Additional constraints

For n ≥ 2, the rank-n theories have additional structure because they can accom-

modate several types of local constraints. Interestingly, we can also enforce more than

one local constraint simultaneously. For example, we can take the above theory and

additionally require that

E =
∑
i

Eii = 0 (5.14)

This generates the gauge transformation

Aij → Aij + δijλ (5.15)

We now ask a modi�ed question - what is the simplest theory that is invariant under the

gauge transformations generated by constraints (5.9) and (5.14) simultaneously? We see

that our de�nition of Bij in Eq. (5.11) is not good enough. However, we can use the

quantity B =
∑

iBii to de�ne a new tensor:

Qij = εikl∂k

(
Bjl −

1

2
δjlB

)
, (5.16)

which is invariant under both gauge transformations. The new e�ective low energy

Hamiltonian is now [173]:

H = U
∑
r

E2
ij +K

∑
r

Q2
ij. (5.17)
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The new dual �elds are de�ned in the same way, where E and h have the same functional

relation as Q and A [173]. Thus this theory is again �self-dual" with identical gauge

symmetries on the two sides of the duality. This theory (Eq. 5.17) is again gapless,

though it has a di�erent dispersion: because there are now three spatial derivatives of A

in the Q tensor Eq. 5.16, the dispersion of the low energy excitation is ω ∼ k3.

5.4 General Procedure

To generalize these arguments to higher rank tensor �elds, we need to �rst establish

which types of gauge transformations will be allowed. To simplify our discussion, we

want the �eld theory to be rotationally symmetric, though it is possible that the lattice

regularization may possess irrelevant rotation-breaking terms. Additionally, the gauge

constraint should depend only on Eijk... and no other locally de�ned tensor �elds.

These two requirements restrict the constraints that we will consider to higher-

dimensional versions of the Gauss law and traceless conditions. These constraints are

�rotationally" symmetric in the correct way to respect lattice symmetries (again, we stress

that the states we construct should be insensitive to weak lattice symmetry breaking).

We enumerate the allowed gauge transformations in Table 1 for rank one through three.

To simplify notation, we denote the symmetrizing operation

T(ijk) =
1

3!
(Tijk + Tjik + sym) (5.18)

An important generic question is the number of gapless modes in the system. This is

determined by switching to a Lagrangian formulation and thinking of the λ tensor as a

Lagrange multiplier. Each degree of freedom of λ will reduce the number of gapless modes
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Rank of theory Local constraint Gauge transformation
n = 1 ∂iEi = 0 Ai → Ai + ∂iλ

n = 2
∂iEij = 0 Aij → Aij + ∂(iλj)
∂i∂jEij = 0 Aij → Aij + ∂i∂jλ
Eii = 0 Aij → Aij + δijλ

n = 3

∂iEijk = 0 Aijk → Aijk + ∂(iλjk)*
∂i∂jEijk = 0 Aijk → Aijk + ∂(i∂jλk)

∂i∂j∂kEijk = 0 Aijk → Aijk + ∂i∂j∂kλ
δijEijk = 0 Aijk → Aijk + δ(ijλk)*
δij∂kEijk = 0 Aijk → Aijk + δ(ij∂k)λ

Table 5.1: Allowed gauge transformations which are rotationally invariant and do not
depend on an auxiliary tensor �eld.
* These gauge transformations are not totally independent - λjk should be made traceless.

by one (though there is a subtlety to this counting, which is detailed in the appendix).

For example, for the familiar photon phase,

L1 = E2 −B2 + λ(∂iEi). (5.19)

Ei has three components initially, so the one free component of a scalar λ reduces the

number of gapless modes to the familiar two of the photon. For higher rank cases, though

it quickly becomes tedious to count the number of free components of an arbitrary rank

symmetric tensor, the idea is straightforward. Indeed, it is also possible to diagonalize

the Hamiltonian directly, and this reproduces the previous results.

The essential component of many ABL theories is the process by which gap-opening

perturbations are prohibited. Generically, any relevant term in the Lagrangian should

open a gap, and so to eliminate all such terms places strict requirements on the theory.

In the theories we consider in this paper, we use gauge-invariance and self-duality to

protect the photon gap from perturbations at a Gaussian IR �xed point, just like the

examples reviewed in the previous section.

The gauge structure in all of the theories we consider is emergent in the IR. Indeed,
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it is due to a constraint on the low-energy Hilbert space of the microscopic model. This

means that the gapless phase is not stable to arbitrarily strong perturbations, since

moving out of the constrained subspace generically destroys the gauge structure. As

an example, consider the gauge charge excitation in the rank-1 theory. The low-energy

subspace is that of the charge vacuum, but if we tune the charge gap to zero, the gauge

charges condense and gap out the gauge boson through the Higgs mechanism.

Additionally, the gauge structure will constrain the form of the Hamiltonian. As we

have seen above, we want to use A to construct two gauge-invariant tensors E and B

which play the usual roles in electromagnetism. Given that there is a direct relation

between the gauge transformations on A and the constraints on E, it is a straightforward

task to build the most relevant terms. In this case, �most relevant� means that B has

the fewest number of spatial derivatives of A, but it must be gauge invariant still.

Just to limit the variety of states, we require rotational invariance in this paper,

which also constrains the form of the Hamiltonian (as does gauge invariance). But we

want to stress that weakly breaking the rotational invariance will not destroy the states

we construct, namely it will not gap out the bosonic modes of the ABL phase. For

example, the low energy photon excitations of the ABL phase studied in [19, 161, 162]

have a rotational invariant dispersion at low energy, but we know that breaking the

rotational invariance will not destroy the photon excitations. The local gauge constraints

are similarly in�uenced by the requirement of rotational invariance, as was noted above.

We can then consider tensor representations of rotational group SO(3), and it turns out

that we will only be interested in the symmetric pieces.

For example, to construct the gauge invariant rank-3 magnetic �eld Qijk with both

a derivative constraint and a trace constraint on Eijk, the resulting theories will involve

Bijk which is a 3-curl of A and Bk = Biik. Because Qijk carries three vector indices, it

can be constructed with three vector representation of SO(3). The standard expansion
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of a tensor de�ned over three copies of the fundamental representation of SO(3) is

1⊗ 1⊗ 1 = 3⊕ 2⊕ 2⊕ 1⊕ 1⊕ 1⊕ 0

The spin-2 and spin-0 pieces here are antisymmetric in at least two indices. Requiring

overall symmetrization will reduce the expansion to a fully symmetric spin-3 part T(ijk)

and a symmetric spin-1 part T ′ijk = δ(ijTk). Thus, we can understand connection between

the allowed constraints and how they will involve traces of the curls of A by considering

which parts of the tensor representation are symmetric.

However, as was noted previously, gauge structure is not enough to guarantee the

gaplessness of the photon. In 2+1d this manifests as the so-called �instanton e�ect�, which

is to say that the magnetic �ux insertion operator is always relevant at the Gaussian �xed

point. Thus, the instantons proliferate and open a gap for the photons. Thus in general

in our (3 + 1)d ABLs, we need to argue that all of the vertex operators that generically

take the form cos (2πNhαβ...) for the dual gauge �eld h are irrelevant.

5.5 Examples

In this section we will discuss a few examples of new ABL phases. The �rst example

is similar to the graviton theories detailed in the previous section, except that it has a

di�erent local constraint. This is an interesting property of rank-n theories for n ≥ 2

which greatly enhances the variety of gapless gauge theories. There are roughly n di�erent

constraints involving only derivatives for a given rank-n theory in addition to the various

types of traceless conditions.

The original graviton model had as its local constraint Eq. 5.9. We can instead
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contract another derivative on Eij to get a di�erent theory:

∂i∂jEij = 0 (5.20)

Compared to the theory governed by Eq. 5.9, this theory has a scalar (as opposed to

vector) charge and has �ve total degrees of freedom (up from three). Even before deter-

mining the simplest possible Hamiltonian, we see that the gapless excitations are distinct

in character from the original gravitons:

Aij → Aij + ∂i∂jλ (5.21)

We can construct the Hamiltonian of this ABL state using the following symmetrized

gauge invariant tensor �eld B:

Bij =
1

2
(εiab∂aAbj + εjcd∂cAid) . (5.22)

The corresponding low energy Hamiltonian again takes the schematic form of E2 + B2,

as before, and this theory is again self-dual, but it now has a linear dispersion ω ∼ k.

We can also consider enforcing the constraint Eq. (5.14) in addition to Eq. (5.20).

However, in this case, Bij given by Eq. (5.22) is already invariant under both gauge

transformations. In fact, in conjunction with the graviton theory discussed previously, we

have now characterized all rank-2 symmetric gauge theories whose gauge transformations

satisfy our criteria above.

While the rank-1 and rank-2 systems have nice interpretations as �photons" and �gra-

vitons" due to the familiarity with known systems, there is no such nice identi�cation for

the rank-3 case. We cannot leverage any analogy to linearized gravity nor electromagne-

tism, and instead we will proceed using our general method.
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To illustrate this case, we consider two canonically conjugate symmetric rank-3 tensor

�elds Aijk and Eijk where A is de�ned modulo 2π. We then impose the local constraint

∂iEijk = 0 (5.23)

which generates the gauge transformation

Aijk → Aijk + ∂(iλjk) (5.24)

The corresponding lattice system is given in the appendix. As before, we seek a �magne-

tic� �eld that is gauge-invariant and of lowest number of derivatives of A. Additionally,

it should be symmetric. We see that

Bijk = εiabεjcdεkef∂a∂c∂eAbdf (5.25)

is the simplest tensor that �ts the requirements. From this tensor we can construct a

state with the following low energy e�ective Hamiltonian

H = U
∑
r

E2 +K
∑
r

B2, (5.26)

where the coe�cients of the
∑
X2
iii,
∑
X2
iij, and

∑
X2
ijk terms may in general be di�erent.

This system is self-dual in the same way as before, by de�ning the dual variable hijk as

Eijk = εiabεjcdεkef∂a∂c∂ehbdf (5.27)

and requiring that hijk transform in the same way as Aijk under a change of gauge. The

vertex operators of the dual variables cos (2πNhijk) are easily seen to be gauge dependent,
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and thus irrelevant in the same way as before. This is a new gapless Bose liquid with

ω ∼ k3 with four independent modes for each momentum ~k.

We can then ask what happens when another local constraint is imposed.

δijEijk = 0. (5.28)

This constraint gives rise to the gauge transformation

Aijk → Aijk + δ(ijλk), (5.29)

which provides a nice example of the �mode overcounting� discussed in the appendix. In

particular, the above constraint gives rise to new physics only when the 1-form �eld λk

is not exact, i.e. λk 6= ∂kΓ. If λk is a total derivative of some scalar function, then this

constraint Eq. 5.28 is not independent of the transformation Eq. 5.24 and the system as

described by Bijk given before in Eq. 5.25 is invariant under both.

If λk 6= ∂kΓ, then we have to construct a new �magnetic �eld" that is invariant under

both gauge transformations. To do so, we need to de�ne two quantities:

Dij = δij∂
2 − ∂i∂j (5.30)

Bk = Biik. (5.31)

Using these quantities, the new low energy e�ective Hamiltonian is schematically E2 +Q2

where we have de�ned

Qijk = ∂2Bijk −
3

4
D(ijBk). (5.32)

This theory has a rather soft dispersion ω ∼ k5, and only one single mode at each
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momentum ~k. And just like all the examples before, this theory is also self-dual.

Continuing this procedure to higher rank theories generates an entire in�nite family

of ABL phases. The procedure is exactly the same, though the precise enumeration of

possible gauge transformations (and, indeed, even the number of degrees of freedom)

becomes tedious quickly. However, by leveraging the gauge structure in addition to

the self-duality at the IR �xed point, we are able to in all cases derive the appropriate

low-energy e�ective Hamiltonian for a given local constraint.

5.6 Topological Order

The U(1) spin liquid in 3 + 1d, in addition to its stability, also possesses a curious

type of topological order, which was discussed in detail in Ref. [19]. When the system

is put on a three dimensional torus T 3 with size L3, it is possible to thread electric �ux

around each of the noncontractible loops. The �ux integrals each commute with the low-

energy Hamiltonian and each other, so they constitute constants of motion. When the

�ux spreads out over the whole thermodynamically large system, the energy cost goes

to zero as 1/L. An identical picture holds for the magnetic �ux, so topological order is

characterized by six integers. The system is stable due to the gap in both electric and

magnetic charges, which makes it exponentially unlikely for a �particle-hole� pair to be

created and propagate all the way around the torus to change the �ux.

There is a similar construction for the graviton ABL discussed in Ref. [170, 160].

However, one must be more careful in the selection of which �uxes of Eij are used. In

principle, there are twenty seven di�erent �uxes - three orientations of the �ux surface

and nine components of Eij. Upon calculation, one can show that �fteen of these are

zero, and of the remaining twelve only nine are independent. The same result holds for

the magnetic �uxes, meaning that the graviton ABL has topological order characterized
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by eighteen integers. It is similar to the U(1) case in that the ground states are split by

1/L and are exponentially unlikely to mix.

We claim that similar arguments hold for the whole in�nite family of theories con-

structed in the previous sections with only derivative constraints. The topological order

is characterized by 6k integers corresponding to the electric and magnetic �uxes, where

k the number of independent components of the charge tensor. Since the Hamiltonian

densities for these theories are generically E2 +B2, we expect that in all cases the ground

state degeneracy closes as 1/L in the thermodynamic limit.

To understand the origin of the 6k, we consider a generic local constraint written as

(∂iÊijk... − ρ̂jk...)|Phys〉 = 0 (5.33)

It is natural to interpret the violations of the local constraints as �charges.� The parti-

cular choice of contraint endows the charges with a tensor structure, and the underlying

symmetry of Eijk... is re�ected in that structure. Going back to the lattice model, these

charges can also be thought of as the open ends of strings. The constraint is then

interpreted as the condition that strings do not end on sites. Due to the all-important

electromagnetic duality protecting these phases, there is a corresponding magnetic charge

tensor with exactly the same structure as the electric charge.

Using these charge tensors, we can then create �particle-hole" pairs of a given type of

charge and wind them around a noncontractible loop of T 3. Three dimensions times two

species of charge gives the factor of six, and there are k independent charges depending

on the particular constraint. We see that k = 1 for the ordinary QED, while k = 3 for

the graviton ABL which has a vector charge.

To extend these ideas to constraints with more derivatives, we see that the constraint

∂i∂jEij = 0 can be rewritten as ∂iFi = 0 for a vector �eld Fi = ∂jEij. This constraint has
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a scalar charge, and it can be shown easily that the �uxes of Fi commute with each other

and the Hamiltonian. This extra step is needed to invoke the divergence theorem, since

we need to work with the divergence of a vector �eld. Importantly, the characterization

is still the same - since the underlying charge is a scalar, this theory is characterized by

six winding numbers.

Finally, we consider the second type of constraint detailed above, such as δijEij = 0.

In the rank-2 case, we imagine threading a �ux of Exx around the noncontractible loop in

the x-direction while simultaneously threading a �ux of Eyy in the y-direction. The two

�strings� involved in this threading process need not intersect, but in the ground state

the �uxes spread out over the whole system. Once this occurs, we see that the traceless

constraint �xes the �ux of Ezz through the z-direction so that the three integers sum

to zero. This new phase is characterized by 16 integers. Extending these constraints

to higher-rank theories is straightforward but tedious, and simply removes topological

degrees of freedom from the diagonal �uxes.

5.7 Summary and Discussion

In this work we have demonstrated that there is an in�nite family of strongly-

correlated gapless boson systems whose low-energy Hilbert space does not break any

symmetries with gapless excitations stable with respect to small arbitrary perturbations.

The gaplessness is protected by a combination of emergent gauge invariance (enforced by

a local constraint on the low-energy Hilbert space) and a generalized electromagnetic du-

ality. Within some limitations, the dispersion and representation of the emergent gauge

boson can be tuned. Additionally, these theories have an interesting type of topological

order characterized by 6k integers, depending on the exact underlying local constraint.

Although we have made heavy use of the gauge structure in constructing these ABL
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phases, we have not made a careful analysis of the associated gauge groups. Apart from

the simplest U(1) spin liquid, the higher-rank gauge �elds are not algebra-valued 1-forms,

and therefore do not �t into the standard Yang-Mills architecture.

Our rank-2 model with constraint ∂iEij = 0 can potentially be thought of as U(1)×

U(1)×U(1) gauge theory after an (unusual) symmetrization between the space index and

the �avor index; this provides a possible realization of our rank-2 theory starting with

three copies of the photon phase. We also note that this connection between linearized

gravity and the Yang-Mills gauge theory was already observed in the loop quantum

gravity literature [179, 180]. Further study of these models will hopefully elucidate these

connections.

Appendix A - Rank-3 Lattice Hamiltonian

For concreteness, we will present a lattice Hamiltonian for one of the rank-3 cases.

In line with the previous work by Xu, this Hamiltonian has two pieces: a generic boson

hopping term and a density-density repulsion term.

The unit cell for this lattice consists of a face-centered cubic lattice that also has a

site at the center (see Figure 1). The boson occupation at the corners of the fcc unit

cell are three-fold degenerate, labeled nxxx,~r, nyyy,~r, and nzzz,~r. The faces are two-fold

degenerate with labels nxxy,~r+x̂/2+ŷ/2, nxyy,~r+x̂/2+ŷ/2, and so on, and the center is labeled

nxyz,~r+x̂/2+ŷ/2+ẑ/2.

The hopping term of the Hamiltonian H = Ht + Hv is generic, and in principle

contains all 45 exchanges. The potential takes the form for average boson density n̄

Hv = Hxx +Hyy +Hzz +Hxy +Hyz +Hxz (5.34)
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Figure 5.1: The unit cell for the simplest rank-3 model. The red site is three-fold dege-
nerate (nxxx), the green sites are two-fold degenerate (nxxy) and the blue site is nonde-
generate (nxyz).

Hxx = V (nxxx,~r + nxxx,~r+x̂ + nxyx,,~r+x̂/2+ŷ/2+

nxyx,~r+x̂/2−ŷ/2 + nxzx,~r+x̂/2+ẑ/2+

+ nxzx,,~r+x̂/2−ẑ/2 − 6n̄)2 (5.35)

Hxy = V (nxyx,~r+x̂/2+ŷ/2 + nxyx,~r+3x̂/2+ŷ/2+

+ nxyy,~r+x̂/2+ŷ/2 + nxyy,~r+x̂/2+3ŷ/2+

+ nxyz,~r+x̂/2+ŷ/2+ẑ/2 + nxyz,~r+x̂/2+ŷ/2+3ẑ/2 − 6n̄)2 (5.36)

with similar expressions for the other four terms. We de�ne Eijk = (−1)~r(nijk−n̄) and

use the usual lattice derivative to see that the low-energy subspace of this Hamiltonian

has the local constraint ∂iEijk = 0.
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Appendix B - Mode Overcounting

There is a subtle point that needs to be addressed about the de�nitions of the above

gauge transformations for rank greater than or equal to three. In particular, the two

gauge transformations below are not totally independent:

Aijk → Aijk + ∂(iλjk) (5.37)

Aijk → Aijk + δ(ij∂k)λ (5.38)

The �rst contains the second as a special case. This is understood in terms of ten-

sor representations of SO(3) by noting that a symmetric rank-2 tensor (six degrees of

freedom) has a single scalar trace mode in addition to the �ve spin-2 modes. As such, a

more correct accounting would require tracelessness of λij, which is achieved via

λ̃ij = λij −
1

3
δijλkk (5.39)

This type of overcounting of trace modes persists into higher rank, and becomes

increasingly complicated as the number of trace modes increases.
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Gapless Topological Order

6.1 Pyrochlores to Black Holes

In the previous chapter, we investigated several models very similar to electromag-

netism and gravity. These models supported a curious type of topological order, where

they are degenerate on a torus but the ground states only close as 1/L with the �true�

ground state. Moreover, since there are gauge bosons in the system with arbitrarily

small energies (also 1/L), there has been long-standing debate as to whether or not these

models are topologically ordered.

A very similar type of degeneracy was identi�ed in the high-energy literature, in the

context of asymptotic symmetries of (real) electromagnetism and gravity at conformal

in�nity. These symmetries were shown to be intimately related to Weinberg's soft theo-

rems, and give rise to so-called �soft hair� on black holes. This is due to a particular set of

boundary conditions at conformal in�nity which mimic the periodic boundary conditions

in condensed matter systems. By considering the similarities (along with new work on

higher-form symmetries), we can use insights from black holes to explain questions in the

pyrochlores and vice-versa.
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6.2 Gapless Topological Order

The black hole information paradox, which calls into question the fate of information

falling into a black hole, has led to considerable work on the entanglement structure of

quantum gravity theories. Central to this paradox is the statement that black holes have

no hair, which is known to hold classically and was initially thought to hold quantum

mechanically as well [181]. However, recent work has shown that both the electromagnetic

�eld and the gravitational �eld contain �soft� hair [182]. This hair comes in the form

of soft (zero-energy) bosons which have long been known to exist in the zero-k limit of

these theories [183].

A key step in the identi�cation of soft bosons with information-carrying soft hair is

�nding the corresponding large-scale time-dependent symmetry, as classical electromag-

netic and gravitational theories obey the no-hair theorem in the steady state [184]. In

the case of gravitation the classical symmetry group is known to be that of Bondi, Met-

zner, and Sachs, and the corresponding electromagnetic symmetry is similar in structure

[185, 182].

In addition, the soft photon and graviton theorems have played an important role in

the relation between symmetries and quantum memories. This results in the so-called

�triangle� that relates the soft boson theorems to large gauge symmetries and memories,

with deep connections to the Ward identities for those gauge theories[186, 187, 188, 189,

190]

Of particular interest is the connection between these ideas and the notion topoligcal

order. Ordinarily, topological order manifests by the existence of global modes which

`wrap' around the system and which are only accessible by means of gapped excitations.

In this way such topological modes encode protected quantum information. Recently

it has come to light that gauge theories with similar structure to electromagnetism,
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gravitation, and higher-order equivalents generically exhibit a peculiar variant of this

phenomenon [19, 160, 191, 170, 192]. The peculiarity stems from the fact that these

gauge theories have a stable, decon�ned IR Gaussian �xed point, and thus have exactly

gapless gauge bosons in the spectrum. Nevertheless, their ground states are degenerate

on a torus and indistinguishable by local operators. As such they exhibit protected

topological charges which, in contrast to more typical systems, are protected by large-

scale gauge symmetries rather than by an energy gap.

In this work we show that these two observations are intimately related: the soft hair

which [182] discovered corresponds to topological zero-modes which live on the bounda-

ries of our low-energy phase of spacetime, be they at in�nity or at the horizon of a black

hole. Equivalently, states with di�erent numbers of soft bosons correspond to di�erent

topological sectors. As a result, the degeneracy of the gravitational vacuum is really a

re�ection of the underlying �gapless topological order� of gravitation and electromagne-

tism. Notably this result holds even though spacetime at a glance is simply connected,

and we show that this is a direct consequence of the metric signature and gapless nature

of soft modes.

This work also yields a possible resolution to the �rewall paradox of [193]. Outgoing

Hawking radiation can be entangled initially with its infalling counterpart, but upon

interaction with the soft sector at the horizon loses this entanglement. This interaction

is required by the correspondence between the soft sector and �ux integrals that can be

performed around the black hole. As a result it is equivalence, postulate (4) of [193],

which is violated. Interestingly this violation is purely quantum mechanical, as it relies

on scattering with the soft sector, which cannot be detected except via entanglement

measurements. In this way the classical equivalence principle is preserved.

This paper is organized as follows. In section II, we review the constructions of lattice

QED and lattice linearized gravity. In section III, we analyze the topological winding
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procedure and provide a much more concrete description of topological degeneracy in

gapless systems. In section IV, we demonstrate how matter falling into a black hole

can be seen as changing topological sectors. The remainder of the paper analyzes some

subtleties of these phenomena and speculates on the implications of the structure of

spacetime and the information paradox.

6.3 Gapless Topological Order and Decon�ned Gauge

Theories

The �rst system exhibiting what we call gapless topological order1 was the U(1)

spin liquid on the pyrochlore lattice[19]. The gapless excitation is a �photon� for an

emergent U(1) gauge symmetry, and the spinons carry electric charges. The ground

state degeneracy was shown to be manifold-dependent, and argued to be stable in the

presence of a spinon gap and in�nite system size. However, the ground state degeneracy

only closed with the ground state as 1/L, which have the same energy as the lowest-lying

photon states. Later works[160, 191, 170, 192] found similar topological degeneracy in

stable gapless phases � all of which are gauge theories.

As we will see below, these degenerate ground states should instead be identi�ed with

the �soft� gauge bosons. The operator that inserts soft bosons will be shown to be the

same that moves between degenerate ground states.

Importantly, not all stable gapless systems inherit this structure. Systems with spon-

taneously broken 0-form2 symmetries, such as super�uids, lack the gauge structure ne-

cessary for constructing the topological sectors. Systems with gapless matter, such as

Weyl semimetals, are also excluded even if there is a gauge structure. In this second

1Note that this is a distinct phenomenon from �quasi-topological order� [30].
2I.e. the symmetry acts on point-like objects
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case, the photon may still be stable but the topological sectors will not be protected by

the charge gap.

Furthermore systems without the appropriate gauge structure may exhibit power-law

splitting and local indistinguishability but have no low-lying modes which are sensitive

to the topology of the system. Thus, for instance, modes which are localized on a scale

L1/2 may be gapless in this sense and may be locally indistinguishable yet not be global

and hence not provide topological charge.

In section III we discuss the idea of spontaneously broken higher-form symmetries,

which connect the gauge structure to topological sectors and Wilson lines. This provides

a uni�ed way to understand topological order in gauge theories with both discrete and

continuous gauge groups, but may not be su�ciently general to characterize all topolo-

gically ordered phases.

To explicitly draw a connection between the decon�ned gauge theories and the gra-

vitational ground state, we �rst review the constructions of two relevant lattice systems

- electromagnetism and linearized gravity. In particular, we stress that these models can

be built from local bosonic degrees of freedom on a lattice, and that the corresponding

emergent gauge theories exist at exactly stable IR (continuum) �xed points.

By emergent gauge theory, we mean that the theory has a low-energy Hilbert space

with local constraints Q̂(x), all of which commute with the Hamiltonian and each other.

For example, this can happen for an easy-axis Heisenberg model on the cubic lattice

when typical energies are smaller than the exchange coupling[19]. Physical states in this

reduced Hilbert space, i.e. that with such low energies, are closed under these operators,

which is to say that

Q̂(x) |Phys〉 = 0. (6.1)

Closure under Q̂(x) generates corresponding local conservation laws. The model then
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Figure 6.1: A two-dimensional slice of the lattice version of our system is shown. Only a
5×5 sublattice is shown, but the system may arbitrarily large in each dimension. Likewise
the system shown may have open (as shown) or topologically non-trivial boundaries. Note
that the conjugate vector �elds E and A live on the links in the lattice, and for clarity
these are only shown in the open boundary case.

becomes a gauge theory when we identify the physical low-energy states that di�er only

by a gauge transformation. We can then write an e�ective low-energy �eld theory in

terms of the gauge �eld for these constraints at the IR �xed point.

6.3.1 Electromagnetism

First, we review the simplest case of gapless topological order � ordinary QED in

3 + 1d Following [19], this quantum theory has a compact U(1) gauge group with two

canonically conjugate vector �elds Ei ∈ Z andAi ∈ [0, 2π) (along with the corresponding

operators Êi and Âi) that live on the links of a cubic lattice as shown in Figure 6.1. This

model can be derived starting from the Heisenberg model and introducing easy-axis

anisotropy. Because charged excitations are gapped, the low-energy Hilbert space has a

local conservation law

∂iÊi |Phys〉 = 0, (6.2)
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which just follows from Gauss's law. By considering the commutator [Âi(x), Êj(z)] =

iδijδ(x− z) and a local phase rotation exp
∫
ddxλ(x)∂iÊi(x), we see that Â is shifted by

Âi → Âi + ∂iλ, (6.3)

where the derivative operator acts as a �nite di�erence on the lattice. After taking

the spin wave limit[19], we see that the most relevant terms in the low-energy e�ective

Hamiltonian (acting on this reduced Hilbert space) are

Ĥ =
U

2

∑
i

Ê2
i +K

∑
i

B̂2
i (6.4)

where we have de�ned B̂i = εijk∂jÂk as the usual curvature, and U and K depend on

the microscopic couplings.

In the following sections, it will be useful to think of the local constraint (and its

accompanying gauge transformation) as the essential component of the �eld theory. It is

argued by [19] that the IR �xed point de�ned by this gauge theory is completely stable,

and that all other terms are irrelevant in the renormalization group sense. Thus the

actual lattice realization of this theory is not enormously important, provided that this

local constraint is enforced in the IR.

Gauge-charged matter in the theory show up as defects of this conservation law. This

follows from the Gauss constraint

(
∂iÊi − ρ̂

)
|Phys〉 = 0 (6.5)

which enlarges the original gauge constraint to include charged matter. We note that

the tensor form of ρ̂ is determined by the constraint. Furthermore, the energy gap of the

charged matter (i.e., the mass of the spinons) has to be large compared to other scales
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to enforce the constraint.

A simple, but insu�ciently general, argument to demonstrate a topological degene-

racy starts by putting the system on the three dimensional torus T 3. Then, we create a

charge-anticharge pair and propagate them around a non-contractible loop of the torus.

This threads a single electric �ux, which can spread out over the whole system uniformly

and thus has total energy that goes to zero as 1/L (for system size ∼ L). Without loss of

generality we can assume the winding direction (and thus �ux) is perpendicular to a sur-

face Σ with normal vector in the i direction. Then, the topological sector is determined

by �ux integrals

Φ̂i =

∫
Σ

dSiÊi =

(∫
Σ

?F

)
i

, (6.6)

where the index i is not summed over. These integrals compute the electric �ux through

a surface Σ perpendicular to the components of Ei. Since the charges of Ei are labeled

by integers, the �uxes are also integers. The �ux integrals commute with each other and

the Hamiltonian [
Φ̂i, Ĥ

]
= 0 (6.7)

Thus, the ground states are labeled by three integers, corresponding to the eigenvalues

of these electric �ux integrals. Because Â is compact, we should also include monopoles

in the spectrum on the lattice [19], which have a corresponding interpretation in the

continuum [189]. However, this only expands the number of topological sectors by adding

three integers corresponding to the magnetic �ux winding, and is not essential to our

results.

This argument holds when the system lives on T 3, but runs into several problems

when the system is put on, say, a solid torus (one periodic dimension and two open

dimensions). This di�culty is addressed in Section III.
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6.3.2 Linearized Gravity

To discuss gravity as a gauge theory requires leaving Yang-Mills behind. First, the

gravitational gauge group is non-compact due to the four translations, and we must be

careful about gauging the local rotations of the frame �elds. Second, the gauge �eld is

no longer an algebra-valued 1-form �eld, but instead a symmetric 2-tensor. This means

that the gauge-charged matter carries a Lorentz index instead of a color index:

(
∂µT̂µν − ρ̂ν

)
|Phys〉 = 0. (6.8)

Since the stress-energy tensor T̂µν is the generator of translations, we identify the

gauge charge as the momentum carried by an excitation. This identi�cation is valid

in the linear regime where gravitons do not couple to one another and hence cannot

themselves carry gauge charge.

We want to draw an explicit connection to a lattice model, so �rst we will do a partial

gauge �xing and then a linear approximation. The �rst step is to foliate spacetime in a

timelike direction using the ADM formalism[194]. This is a partial gauge �xing of the

full gauge group (in particular, we use the synchronous gauge), and the new dynamical

variables are the symmetric 2-tensor spatial metric Aij ∈ [0, 2π) on each slice and its

conjugate Eij ∈ Z (the stress tensor), along with the corresponding operators Âij and

Êij. We can then linearize this theory, considering only small �uctuations around the

background metric.

The lattice bosonic rotor model we consider [171] reproduces these variables with

Êxx, Êyy, and Êzz (along with their conjugate Â) living on each vertex of a cubic lattice,

while Êxy and similar living on the faces. Then we set up the Hamiltonian to enforce the
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following constraints in the low-energy:

∂iÊij |Phys〉 = 0 (6.9a)(
δij∂

2 − ∂i∂j
)
Âij |Phys〉 = 0 (6.9b)

Âij → Âij + ∂(iλj) (6.10a)

Êij → Êij +
(
δij∂

2 − ∂i∂j
)
φ (6.10b)

where Latin indices run over space while Greek run over spacetime, and S(ij) denotes

symmetrization.

The local constraint Eq. 6.9a is actually three constraints, one for each of the three

components labeled by j. These are the zero-momentum constraints on the ground state.

Starting instead from the local SU(2) invariance of the frame �elds and linearizing, one

might conclude that it is a U(1)×U(1)×U(1) gauge theory [179]. This is correct, but the

three U(1)'s are not independent - they rotate into each other under a spatial rotation.

This follows from the fact that the charge ρj is a vector, though care must be taken when

making this identi�cation3. This holds even if the background is not �at because the

gauge constraint is by de�nition local.

We see that the curvature tensor is just

R̂ij = εiabεjcd∂a∂cÂbd (6.11)

and so we are able to write the low-energy e�ective Lagrangian (after enforcing the

3Formally this amounts to promoting the crystal symmetries to the rotation group in three dimensions.
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constraints) as

L = EijȦij −
J

2

(
E2
ij −

1

2
E2
ii

)
− g

2
AijRij. (6.12)

This is the Lagrangian for a spin-2 linearly-dispersing excitation, which we will call a

graviton. It can be shown to arise from a purely local bosonic lattice Hamiltonian [171],

and the couplings J and g depend on the microscopics. Much like the lattice model and

corresponding �eld theory for electromagnetism, this model for linearized ADM gravity

exists at an exactly stable IR �xed point, provided that the low-energy subspace enforces

the gauge constraints. We note in passing that this model appears to have a Chern�

Simons-like term ÂijR̂ij which is only gauge-invariant up to boundary terms, but it will

not modify the 3 + 1d topological properties of the model.

Gapless topological order is present in linearized ADM gravity, and the argument

follows precisely as in QED. If the system exists on T 3, one can thread a charge ρ̂j

around a non-contractible loop and annihilate it with an anticharge. This leaves a �ux

of Êij around the loop, which has energy density scaling as 1/L. As before, the �ux is

perpendicular to the surface Σ and in the direction of i. The new �ux integrals are

Φ̂ij =

∫
Σ

dSiÊij, (6.13)

where once more there is no summation over i. These commute with each other and with

the Hamiltonian, so we see that they characterize the gapless topological order of the

ground state. Moreover, there are three such �uxes for each surface - in the de�nition

above, the surface is de�ned by the vector index i while the index j is free. Thus, there

are nine integers that characterize the ground state in the �electric� sector.

There is also a contribution from the �magnetic� sector due to the compactness of the

gauge �eld Â; however, it is unimportant to the analysis as the electric sector already
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guarantees a degeneracy. Moreover, the physicality of such linearized metric monopoles

is di�cult to justify in the full continuum theory.

6.3.3 Entanglement Entropy

A �nal point worth noting pertains to the entanglement structure of these theories.

In gapped systems, there is a universal constant term in the entanglement entropy across

an arbitrary cut through the system. This term characterizes the topological order [106],

and is constant because it re�ects the charge-winding freedom and is hence independent

of system size.

In gapless systems by contrast there is instead a universal coe�cient of a (subleading)

logarithmic term [195, 196, 197, 195] due to both the (gapless) topological order and the

photon. This topological piece can be derived using the Bisognano-Wichmann theorem

and charge conservation on the entanglement cut. Intuitively the logarithmic scaling

in system size arises because the spectrum near the ground state sector consists of a

power-law of states, and so below any given cuto� the number of accessible states is a

power-law. The entropy is just the logarithm of that and hence is logarithmic in system

size.

In the electromagnetic case the entanglement entropy, including the non-universal

area-law part, is

SU(1) = αLd−1 +
(
γ
U(1)
top + γ

U(1)
photon

)
logL (6.14)

where γU(1)
top = (d − 1)/2 for space dimension d. Likewise in the gravitational case the

arguments in [195] permit us to calculate the universal coe�cient of the logL term coming

from topological order. Since the charge is a d-dimensional vector and each component
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is independently conserved, one �nds that

γLGtop =
d(d− 1)

2
(6.15)

which gives γLGtop = 3 in 3 + 1d.

The similarity in entanglement entropy between the electromagnetic and gravitational

cases is striking, as is their di�erence from the case of gapped topological order. This

makes it clear that the phenomenon of gapless topological order is universal in the systems

where it appears and simultaneously quite distinct from the more common notion of

gapped topological order.

6.4 Topological Degeneracy, Winding Operations, and

Soft Bosons

Now that we have stable lattice gauge theories with exactly gapless bosons, we want

to consider the continuum limit. We argue that the fundamental objects in these theories

� local constraints, gauge transformations, and global �ux integrals � carry over into the

full continuum theory of electromagnetism and linearized gravity. It is important to note

that these connections are all made in the IR, where we expect the gauge constraints to

hold - this is not an attempt to build a full quantum theory of gravity.

The IR stability of these gauge theories follows from the local constraint on the low-

energy Hilbert space. For both of these systems (and the in�nite family described in

[191]), this constraint is the conservation of some tensor-valued gauge charge.

In the previous section we followed the standard arguments to construct the dege-

nerate ground states of QED and linearized gravity on the torus by starting with the

lattice models and explicitly calculating the �ux integrals. Importantly, the states with
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nonzero �ux are only degenerate in the limit of in�nite system size, as the energies only

go to zero as 1/L.

However, the argument in that section depends on the topology in an awkward way,

by relying on the periodicity of the perpendicular directions to the �ux. For concreteness,

we calculate the commutator of Φ̂z with the (continuum) QED Hamiltonian along the

surface z = 0, which gives

[
Φ̂z, Ĥ

]
= 2i

∫
dxdy εzij∂iB̂j = 2i

∫
dxdy

(
∇× B̂

)
z
. (6.16)

Provided that B̂ satis�es the periodic boundary conditions

B̂

(
L

2
, y, 0

)
= B̂

(
−L
2
, y, 0

)
(6.17)

and similarly for y, then the integral vanishes for even �nite L. The generalization to

linearized gravity is straightforward.

Due to the reliance on the periodic boundary conditions in the perpendicular directi-

ons, this method is unsuited to showing the existence of the topological degeneracy in

the more general case with just one periodic direction. We are still able to construct the

appropriate degenerate ground states however by using a winding construction adapted

from the Minkowski spacetime arguments in [187, 182, 188] and similar arguments about

lattice SU(3) in [198].
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6.4.1 Winding

We begin with open boundary conditions and consider a point charge e located at r0.

This produces an electric �eld

E =
e

4π

r − r0

|r − r0|3
. (6.18)

If we partition the space with a planar surface Σ as shown in Figure 6.2, the integral over

this surface is easy to evaluate and yields

∫
Σ

E · dΣ = ±e
2

∫ ∞
0

rh

(h2 + r2)3/2
dr = ±e

2
, (6.19)

where h is the distance from the charge to the surface, r is the distance along the surface,

and the sign of the integral depends on the sense of orientation of the surface. If we now

place a second charge −e at r1 on the opposite side of the surface we �nd

∫
Σ

E · dΣ = ±e. (6.20)

Note that this result is independent of where we place the second charge, and so this

integral only tells us about the total partition of charges across Σ. As such we are free

to move both charges as far away from the surface as we wish, leaving a �eld which is

asymptotically constant, as shown in Figure 6.3.

Now suppose that we wish to impose periodic boundary conditions. This may be

done by �unfolding� the space and inserting periodically spaced copies of all charges, as

shown in Figure 6.4. Of course this must be regularised when the system is �nite, but

in the limit as the system becomes in�nite this procedure is correct. If we place N such
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e

Σ

Figure 6.2: A cylindrical system is shown with one possible cut surface Σ. The charges
of interest are integrals over this surface of the normal component of the electric �eld.

Σ

Figure 6.3: A cylindrical system is shown with one possible cut surface Σ. The charges
of interest are integrals over this surface of the normal component of the electric �eld. In
this case the hard charges ±e (not shown) have been placed at distant mirrored positions
on either side of the surface such that the �eld here is uniform and normal to the surface.
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e

e

Σ

e

e

Figure 6.4: A periodic unfolding of the system shown in Figure 6.2. The system is tiled
a total of N times but only the four closest to the surface Σ are shown.
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pairs of charges, one from each pair on each side of the surface, the �ux integral reads

∫
Σ

E · dΣ = ±Ne. (6.21)

By contrast suppose we begin by placing a pair of charges at their periodic locations,

but both on one side of the surface. The integral will now vanish. No matter how many

times we do this, the integral still vanishes. In the limit as the space becomes in�nite this

unfolding procedure remains perfectly well-de�ned, but the value of this global integral

may be made to be any even integer simply by appropriate choice of the order in which

it occurs. Thus while local observable like the electric �eld converge by this process, the

integral is sensitive to the order in which we place charges and hence the physical manner

in which the periodic limit is reached.

The dependence of �ux integrals on the manner in which we unfold the space corre-

sponds precisely to the topological degeneracy in the theory. This is because altering the

order of placement corresponds in the periodic case to creating a dipole and winding it

around the periodic dimension before destroying it. To show this, we consider Poisson's

equation for our pair of point charges:

∇2φ = e (δ(r − r0)− δ(r − r1)) . (6.22)

In momentum space this is

−k2φ̃ = e
(
eik·r0 − eik·r1

)
. (6.23)
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As a result

φ̃ = − e

k2

(
eik·r0 − eik·r1

)
, (6.24)

so

Ẽ = ie
k

k2

(
eik·r0 − eik·r1

)
(6.25)

The �ux integral in momentum space is then

∫
Σ

E · dΣ = −
∫

Σ

∫
d3k

(2π)3
(−ik · n̂) e−ik·rφ̃d2x, (6.26)

where n̂ is the unit vector normal to Σ. For simplicity we may take the two dimensions

parallel to Σ to be in�nite, in which case

∫
Σ

E · dΣ = − ie
2π

∫
dkn
kn

(
eikn(r0,n−rn) − eikn(r1,n−rn)

)
, (6.27)

where the subscript n denotes the component normal to Σ. Now if the remaining direction

is periodic with �nite size then the integral is actually a sum:

∫
Σ

E · dΣ = −e
∞∑
l=1

i

2πl

(
e2πil(r0,n−rn)/L − e2πil(r1,n−rn)/L

)
− i e

L
lim
k→0

eik(r0,n−rn) − eik(r1,n−rn)

k
(6.28)

= −e
∞∑
l=1

i

2πl

(
e2πil(r0,n−rn)/L − e2πil(r1,n−rn)/L

)
+ e

(
r0,n − r1,n

L

)
. (6.29)

The special case-handling for the l = 0 mode is necessary because this mode is degenerate
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Figure 6.5: Winding charges around a cylinder leaves a static uniform electric �eld poin-
ting along the winding direction. For clarity the third spatial dimension is not shown.

in equation (6.25). While any value will satisfy this component when l = 0 (and hence

k = 0), we choose the value which is consistent with the limit as k → 0, such that

it remains well-de�ned and consistent with the integral formulation in the the limit as

L→∞. Now if we pick r0,n = −r1,n = h and rn = 0, which we can do just by choice of

Σ, then ∫
Σ

E · dΣ = e

[
2
h

L
+
∞∑
l=1

1

πl
sin

(
2πl

h

L

)]
. (6.30)

This may be evaluated as

∫
Σ

E · dΣ = e

[
2
h

L
+
i

π
log

1− e2iπh/L

1− e−2iπh/L

]
= e

[
1 + 2bh

L
c
]
. (6.31)

As h increases the charges wind around the torus, and as this happens the �ux integral

increments. The o�set of 1 just comes from our choice of coordinates. Note that the

same argument holds when the remaining dimensions are �nite.

The �ux increment we see is associated with a mode with k = 0, which is the soft

photon sector. In the high-energy context soft photons really are the vanishing-energy

analogues of photons, but in the condensed matter language this is a bit of a misnomer,
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as it is not a photon mode but rather a large gauge transformation of the electric �eld.

To see that the mode really is soft note that the �eld associated with it is a static one

which, when integrated over a surface of size L2 yields a constant value. That means

the �eld scales as L−2 and so the �eld energy density scales as L−4. Integrating over the

volume gives energy scaling as L−1. As L→∞ this vanishes and so the modes associated

with this winding procedure are actually soft.

This winding argument clearly holds for each periodic direction, and so on T 3 we �nd

three independent integer-valued topological charges. In a more complicated topology

the number may vary. For instance, consider a sphere with a hollowed-out center, and

identify points on the outer edge with points at the same angular coordinates on the

inner edge. In this case the number of periodic directions scales as L2, normalized by the

UV lattice spacing. These directions may be distinguished by the �ux integral

Qε =

∫
Σ

ε(r)E · dΣ. (6.32)

By appropriate choice of ε this charge may be made sensitive to di�erent winding directi-

ons n̂. This just alters the modes which are selected in integrating over the surface. In

this way we can decode the precise direction of each winding which has occurred.

This curious physics is strongly dimension-dependent. To understand this note that

in general a theory with d spatial dimensions obeying a local �ux constraint has �eld

quanta with amplitude

ψ ∼ 1

Ld−1
. (6.33)

This is just because the �ux integral over a hypersurface of area Ld−1 must be independent
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of L. The energy density is then

dE

dV
∼ ψ2 ∼ 1

L2d−2
. (6.34)

As a result the energy of the mode is

E ∼ Ld
dE

dV
∼ 1

Ld−2
. (6.35)

In our universe, where d = 3, this yields soft modes with energy scaling as 1/L. More

generally d = 2 is the critical dimension where the modes take on a constant energy

independent of L. Below this the modes are in�nitely gapped in the thermodynamic

limit and so are irrelevant.

6.4.2 Soft Bosons and Topological Sectors

We now explicitly connect the soft theorems to topological ground state degeneracy.

This has already been done in Minkowski spacetime [187, 182, 188] by proving that the

Ward identities for the operators that detect topological sectors are equivalent to the soft

photon and graviton theorems, though the degeneracy was not noted as topological in

these works. As a result we only need to show that these arguments continue to hold in

the condensed matter language.

First we note that the equivalence described in [187] follows from calculating the

LiÃ©nard-â��Wiechert �elds for a massive particle-antiparticle pair and examining the

�eld behavior near null in�nity. Due to the periodic boundary conditions placed on the

gauge �elds at null in�nity, this process can be viewed as the analogue of the winding

procedures described above. However, instead of leaving the massive particles at I±∓ , in

the condensed matter system these particles are annihilated.
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Since the particles have annihilated, they no longer contribute to the electric �ux

integrals that distinguish the topological degeneracy. In the language of [187], there is no

�hard� charge, and the only remaining piece is the �soft� charge left over from the winding

procedure. However, this �soft� charge encodes the history of the winding process for a

given periodic direction, and is identi�ed with the threaded electric �ux. This is the

analogue of β being detectable in [182].

To make the connection between this winding process and the soft theorems explicit

we must quantize the electric �eld, construct the soft photon operator corresponding to

this winding procedure, demonstrate that its �ux through Σ matches that above, and

show that it commutes with the Hamiltonian. We begin by writing

Â =

∫
d3k

(2π)3
âi,keie

iωt−ik·r + h.c., (6.36)

where i is summed over, ei form a basis of unit vectors and ω = k with the appropriate

choice of units. This allows us to write

Ê = ∂tÂ =

∫
d3k

(2π)3
iωâi,keie

iωt−ik·r + h.c. (6.37)

and

B̂ = ∇× Â =

∫
d3k

(2π)3
âi,kk × eieiωt−ik·r + h.c.. (6.38)

We now wish to construct the soft photon operator Wn̂ which produces the �eld

associated with winding a pair of charges around a periodic dimension of the system. As

this is a static �eld it is described by a coherent state. This means that the operator
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which creates it is a displacement operator, so

Ŵ †
n̂(h) = exp

(
e

∫
d3k

(2π)3

eik·n̂h − e−ik·n̂h

k2
â†
k̂,k

+ h.c.

)
. (6.39)

This indeed produces the �eld in equation (6.25), as

〈0|Ŵn̂(h)ÊŴ †
n̂(h)|0〉 = e

∫
d3k

(2π)3
iω
k

k

eik·n̂h − e−ik·n̂h

k2
(6.40)

= ie

∫
d3k

(2π)3
k
eik·n̂h − e−ik·n̂h

k2
, (6.41)

where |0〉 is the vacuum state annihilated by |ai,k〉. It follows that the �ux Ŵn̂ carries

across Σ is the same as the classical �ux in equation (6.26) when h = L, so this operator

does in fact correspond to the winding process.

Finally to see that Ŵn̂(L) is indeed a soft operator note that the Hamiltonian is given

by

Ĥ =

∫
d3r|Ê|2 + |B̂|2. (6.42)

The magnetic component vanishes because A ‖ k and B ∝ k ×A. The electric compo-

nent may be resolved in Fourier space as

∫
d3r|Ê|2 =

∫
d3k

(2π)3
k2
∑
m̂

â†m̂,kâm̂,k, (6.43)

where m̂ range over an orthonormal basis. Now note that

âeαâ
†−α∗â = e−αâ

†+α∗â(â+ α) (6.44)
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so

[
â†â, e−αâ

†+α∗â
]

= e−αâ
†+α∗â

(
|α|2 + αâ† + α∗â

)
. (6.45)

As a result

[
Ĥ, Ŵn̂(L)

]
= Ŵn̂

∫
d3k

(2π)3
k2e2

∣∣∣∣eik·n̂L − e−ik·n̂Lk2

∣∣∣∣2
+ ek2

(
eik·n̂L − e−ik·n̂L

k2

(
a†
k̂,k
− ak̂,k

))
(6.46)

= Ŵn̂

∫
d3k

(2π)3
4e2 sin2(knL)

k2

+ 2ie sin(knL)
(
â†
k̂,k
− âk̂,k

)
. (6.47)

If the system is periodic along n̂ then the integral in that dimension must be replaced by

a sum so

[
Ĥ, Ŵn̂(L)

]
=

1

L
Ŵn̂

∞∑
l=0

∫
d2k⊥
(2π)3

4e2 sin2(2πl)

k2

+ 2ie sin(2πl)
(
â†
k̂,k
− âk̂,k

)
. (6.48)

In this form it is clear that all modes with l 6= 0 vanish. The second term vanishes when

l = 0 but the �rst does not. In particular if k⊥ = 0 as well then the �rst term does not

vanish. As a result the only contribution comes from the term with k = 0. This term

must be written as a limit in order to ensure continuity in the vicinity of h = L, and

this limit must be approached along the n̂ direction, as the �eld is in this direction when
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h = L. Thus we �nd

[
Ĥ, Ŵn̂(L)

]
=

4e2

L3
Ŵn̂ lim

k→0

sin2(knL)

k2
n

(6.49)

=
4e2

L
Ŵn̂ lim

u→0

sin2(un)

u2
n

(6.50)

=
4e2

L
Ŵn̂. (6.51)

As promised this vanishes as L−1 and so the operator is indeed soft.

Thus we have shown that the operation which winds a particle-antiparticle pair

around a large loop has support preferentially as k → 0, and scales in such a way that it

commutes with the Hamiltonian up to terms of order L−1. As such we identify it as the

soft photon operator in our system.

6.4.3 Local Indistinguishability and Generalizations

Now that we have shown the ground state degeneracy on a torus, we turn to another

important characteristic of topological order - local degeneracy. Roughly speaking, this

means that any local measurement should be unable to determine which topological

sector the system occupies. We can see this heuristically by noting physical processes

with typical length scale ∆X cannot resolve momenta more precisely than ∆P ∼ ∆X−1.

Since the topological degeneracy comes from the 1/L modes, local measurements with

∆X � L cannot determine the topological sector.

Though a more complete �eld-theoretic treatment is left to future work, we can get

some intuition about this result by considering the careful treatment of IR divergences

�rst discussed in [183]. By considering scattering processes that both involve virtual

infrared bosons and the emission/absorption of infrared bosons, the IR divergence goes

away. The new transition rate is given in terms of a positive function C that depends on
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the details of the gauge theory, a positive function b, the UV cuto� Λ, the total energy

of emitted soft modes E, and the original transition rate Γ0
αβ:

Γαβ = (E/Λ)Cb(C)Γ0
αβ (6.52)

When considering the modes that change topological sectors, we see that the energy

goes to zero as 1/L and thus the transition rate for local scattering processes to change

topological sectors vanishes. In this light, the IR divergence in QED and linearized gravity

is similar to IR divergences in spontaneously broken (0-form) symmetries. This is in

agreement with the arguments of [199], though it does not mean as has been claimed [200]

that such modes are unmeasurable or trivially decoupled, simply that modes at some

asymptotic distance L require space and time proportional to L to measure.

This identi�cation solves the longstanding question of the connection between 1/L

photon modes and topological sectors. That is, 1/L photon modes carry the charges

which identify di�erent topological sectors. This is a signi�cant point, but in retrospect

is not entirely surprising, as the 1/L modes by de�nition are sensitive to global physics.

The arguments above do not rely on any details of QED other than charge conser-

vation and the existence of gapless modes, which combined allows us to determine the

scaling of the �elds. The general nature of this construction then leads to the somewhat

remarkable conjecture that any stable, decon�ned, continuous gauge theory with a soft

theorem should have some notion of topological degeneracy. The di�erent topological sec-

tors can be reached by winding gauge-charged matter around the large loops of the torus,

which can be interpreted as threading (locally invisible) soft bosons. Importantly, one

only expects stability provided that the matter is massive, so that there is an exponential

cost to �unwind� the topological sectors.

Such behavior does not extend to gapless theories without a gauge structure (such as
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super�uids), since there are no electric �elds or charges, nor large gauge transformations.

From the viewpoint of [187], there are no hard charges and thus the Ward identity is

not equivalent to a �ux integral. It should be noted that while there is a notion of

ground-state degeneracy in systems with spontaneously broken continuous symmetries,

this degeneracy is not dependent on the topology of the manifold on which the system

resides.

6.4.4 Higher Form Symmetries

The process of creating a charge-anticharge pair and moving them around a closed

path C is a well-known object in gauge theories: Wilson loops. Con�nement of the gauge

theory can be determined by the area or perimeter law scaling of these objects, captured

in the Wilson loop operator

W = e
∫
C A (6.53)

This is manifestly invariant under the ordinary gauge transformation, since the inte-

gral of df vanishes. However, we could consider a more general gauge transformation:

A→ A+ λ (6.54)

If we require that dλ = 0 but λ 6= df for any f , then the �eld strength F = dA is left

invariant but the Wilson loops change by a factor of exp
∫
C
λ.

This symmetry, known as a 1-form symmetry, is one of the in�nite family of ge-

neralized global symmetries with very interesting properties[22]. As opposed to 0-form

symmetries, whose charges are point-like objects such as particles, the 1-form symmetries

act line-like objects. The elements of the 1-form symmetries act on surfaces, which for
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U(1) are

U(α,M2) = exp

(
i
α

2g2

∫
M2

?F

)
(6.55)

These operators form a 2-group due to the ways the manifolds can be stacked. Ho-

wever, for �xed M2 (say, the xy-plane) this symmetry is just a U(1) symmetry, and its

irreduciple representations are labeled by integers. This symmetry can spontaneously

break, giving rise to a Goldstone boson, namely the photon. Charged matter explicitly

breaks this symmetry, but for energies much smaller than the charge gap the symmetry

is restored. Whether or not the a symmetry spontaneously breaks determines whether

or not the gauge theory is decon�ned[22].

Our previous discussion can thus be rephrased in this language as identifying �topolo-

gical� surfaces that live in the homology of the manifold, speci�cally closed surfaces that

do not bound a volume, and noting that, in the thermodynamic limit, acting with the

generators of the 1-form symmetry moves between ground states. This uni�es gapped

and gapless topological order in gauge theories, in that they both have spontaneously

broken 1-form symmetries. In fact, the ground state degeneracy in SU(3) noted in[198]

is topological in the same way.

A more complete analysis of higher-form symmetries and their relation to topological

phases is left to future work.

6.5 Topological Order in Open Systems

In the previous two sections we argued that the IR �xed point for both electromag-

netism and linearized gravity should have a well-de�ned continuum gauge theory arising

from the local constraints of charge and momentum conservation. These Gauss-law type
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constraints give rise to a ground-state degeneracy on a torus, which we have termed

gapless topological order due to the presence of the gauge bosons.

More speci�cally, the generators of topological degeneracy in gravitation and electro-

magnetism are the charge operators of [182], written schematically as

Q̂±ε,EM ∼
∫
I±∓
ε ? F (6.56)

for electromagnetism, with a similar integral over I or the equivalent boundary surface

holding for gravitation.

These operators generate the ground-state degeneracy of the vacuum, such that

〈0|Q̂|0〉 = 0 (6.57)

and [
Ĥ, Q̂

]
= 0. (6.58)

Eq. (6.58) follows because Q̂ represents a soft mode corresponding to an asymptotic

symmetry. Eq. (6.57) simply represents the fact that the �eld con�guration associated

with a system containing a soft boson is distinct from that of a system not containing

it. In a �nite universe the commutator is of order L−1, matching the condensed matter

case.

This topological degeneracy is a surprising result of the metric signature which holds

even in open spacetimes. To see this, note that a key result enabling equations (6.57) and

(6.58) is the antipodal mapping, which associates antipodal points on the boundaries of

the past and future [182]. This mapping emerges because the ground state involves only

massless modes, which propagate through the spacetime bulk at c. More speci�cally, the

antipodal mapping is possible because in the absence of charges massless �elds are fully
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i−

i+

I−

I+I+

I−

Figure 6.6: Massless particles (wiggling lines) travel between past and future null in�nity
while massive ones (regular lines) travel between i− and i+. This di�erence means that
massive (gapped) charges accumulate at i± while soft charges appear at I±± .
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determined by their values on any one Cauchy surface, as the wave equation

�φ = 0 (6.59)

may be used to propagate them from that surface to the rest of spacetime. This establis-

hes a correspondence between the values these �elds take on at I− and I+. As a result

we may write as a slight rephrasing of [182]

φ− (u) = eiα(u)φ+ (u) (6.60)

where u is the relevant null coordinate, φ± are evaluated at antipodal points on the

corresponding null surfaces, and α is a function dependent on the gauge condition taken

at these surfaces.

Upon threading a �ux quantum through from one null surface to the other an overall

factor of eiα is accumulated. This factor may be set to unity by appropriate choice

of gauge to yield periodic boundary conditions [187]. Even without doing this it is

clear that Eq. (6.60) connects antipodal points on the space, and so in the asymptotic

compacti�cation gives it topological structure. This is shown in Fig. 6.6. This sidesteps

the problem of the topology of the universe, since we need not specify the genus of

spacetime.

In the presence of a more complicated topology or additional horizons (i.e. black

holes) the identi�cation is between modes on di�erent horizons which overlap when pro-

pagated both forwards and backwards in time. For a simple example, consider a soft

graviton with large angular quantum numbers, such that it is highly directed. This gra-

viton propagates from a region on I− until it encounters a black hole. The graviton

becomes bound to the event horizon by scattering into one of the surface soft modes.
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i−

i+

I−

HorizonI+

I−

Singularity

Figure 6.7: Massless soft graviton (wiggling line) propagates from I− and impinges on
the black hole (top-right), resulting in entanglement between the two horizons.

This process is shown in Fig. 6.7. An analogous equation to Eq. (6.60) relates the mode

which arrives in this fashion at I− to the mode which arrives on the black hole's horizon.

More generally, if the mode did not fully scatter onto the black hole's horizon there would

be a relation between the three boundaries, namely the black hole, I−, and I+, with at

most a phase accumulation between each of them.

Massive charged excitations by de�nition propagate from i− to i+ and break this struc-

ture by introducing scattering processes, but this propagation is exponentially suppressed

as e−mL and hence does not break the ground state degeneracy in the thermodynamic

limit. This is the analogue of the circumferential create-wind-destroy propagation pro-

cess on a torus. A key di�erence is that topological winding in a 3 + 1d spacetime is

complicated by its in�nite nature, which makes it the case that winding soft �ux through

the universe requires an in�nite amount of time, or at least the time required to reach

an acceptable approximation of asymptotic in�nity.

For a concrete example consider inserting a single +e electric charge at i− with velocity

β. The electromagnetic tensor at I±∓ is [182]

F±,rt =
e(1− β2)

4πr2(1∓ β · r̂)2
, (6.61)
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where the subscript rt denotes the component which goes as dr ∧ dt. The soft charge at

I±∓ is then

Q±ε =
1

e2

∫
I±∓
ε ? F±,rt (6.62)

=
1

e
lim
r→∞

r2

∫
S2

ε(1− β2)

4π(1− β · r̂)r2
(6.63)

=
1

e

∫
S2

ε(1− β2)

4π(1− β · r̂)
. (6.64)

Now suppose that we thread a negative charge −e with velocity β′ 6= β. The net charge

is evidently

Q±ε =
1

e

∫
S2

ε

4π

[
(1− β2)

1− β · r̂
− (1− β′2)

1− β′ · r̂

]
. (6.65)

This is nonzero though the net charge which has been threaded through i± is zero. Of

course if β 6= β′ then the charges are always located far apart spatially at i±, but in the

compacti�ed coordinates in which we identify i− with i+ this is �ne. A similar argument

holds for black hole event horizons and for supertranslations, but unfortunately the �elds

are much more di�cult to write out explicitly. The key di�erence is that the charges

must begin at i−, enter the black hole, be emitted via Hawking radiation, and then head

towards i+. Other than that the argument is precisely the same, and the integral may

be taken over the horizon of the black hole along with the necessary spatial cut to reach

I±∓ .

It is usually useful to think of topological winding as an operation which may be

iterated. This is not the case for the universe due to the in�nite time required to wind.

It is worth asking then in what sense this order is topological. The answer is twofold.

First, while we cannot iterate a winding process on a single universe, we can simulate the

process given several spacetimes. To see this suppose we start with a universe with no

soft charge. We can then wind a dipole from i− to i+ as described above and note the soft
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charge which appears. We can set up a second empty spacetime with this soft charge

from the beginning. If we then wind a dipole through that spacetime the soft charge

doubles, and so it is clear that the amount of soft charge is a quantity which changes

with dipole winding, which is locally unobservable, and which permits us to inde�nitely

move from sector to sector via this process. These are the hallmarks of topological order.

The second argument is somewhat more direct: it is entirely valid to wind multiple

dipoles simultaneously, as they can be separated spatially yet lead to the same soft charge

so long as their asymptotic velocities are the same. As a result it is sensible to talk about

iterated winding, just with the iteration occurring in space rather than time.

What both of these arguments fail to address is what happens to the hard charge at

in�nity. This likewise has two answers which di�er just as a matter of interpretation.

First, suppose we bring a dipole out of the vacuum at some point near i− and then wind

it to some point near i+ before annihilating it. Far from the origin we may draw a surface

and integrate over it to measure the resulting soft charge. This is the case so long as

the creation and annihilation occur outside of the surface, and so the winding e�ectively

encompasses a loop in spacetime between the creation and annihilation points. The limit

may then be taken as this surface goes o� to in�nity, keeping these two points outside as

it goes.

The alternative interpretation of this process is that we may `glue' two spacetimes

together as a result of the periodic boundary conditions at in�nity. In this process,

I+ and i+ in one spacetime are identi�ed with the antipodal I− and i− in the other

spacetime, and vice-versa. As a result a charge wound from i− to i+ in one spacetime

simply carries on to the next one, before wrapping back to the �rst spacetime once more.

In this way we avoid formal accumulation of charge at in�nity.

Regardless of interpretation, it is clear that there is topological order in these systems,

both as a result of the odd boundary conditions associated with an open spacetime and
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as the continuum limit of the corresponding lattice systems. This order manifests via

global operators that distinguish a charge which is not locally measurable, and which

have a direct connection to the hard (local) charge wound through the system.

6.6 Limits

As the topological order discussed here is quite broad in nature it is worth discus-

sing the limits in which it is applicable. In particular it relies primarily on two key

assumptions; linearity and low-energy (IR).

Linearity in this context does not mean that the metric is a small perturbation against

Minkowski space. Rather, it means that the quantum mechanical perturbations we con-

sider correspond to small metric perturbations against whatever background metric we

choose. This is equivalent to saying that all perturbing gravitational waves have small

amplitude, or equivalently that gravitons are not so prevalent as to interact strongly with

one another. In fact we do not even require that this be true universally, as we only need

it to hold in the regions around which we perform �ux integrals. The gravitational �eld

may be perturbed in an arbitrarily nonlinear manner outside of these regions, and these

nonlinear e�ects will appear simply as �uxes of the relevant conserved charges through

the bounding surface.

Along similar lines, working in the low-energy (IR) limit means that we are consi-

dering gravitons with energies of order 1/L, where L is a characteristic scale for the

universe. This is true even in the presence of a black hole, where the scale of the universe

and not that of the black hole remains the relevant parameter. This is because in an

in�nite universe, black holes support precise zero modes re�ecting the BMS symmetry

of relativity. The fact that we con�ne our discussion to these modes does not make our

conclusions any weaker, however, as our claim is precisely that these modes give rise to

160



Gapless Topological Order Chapter 6

topological order. The existence of higher-energy modes is irrelevant to this point.

6.7 Black Holes and Information

As mentioned previously, there are modes which exist on the event horizon of a black

hole which are analogous to the modes on the horizons at in�nity. These modes actually

obey the same dispersion relation up to local horizon distortions, just with the expansion

coordinate converted from ξ = 1/r to ξ = r − rs, rs being the horizon radius [182].

Now consider the formation of a Hawking pair at the horizon. For simplicity, we

consider QED, so the state is a charge singlet of charge-1 particles. The state is then one

of the Bell states, given by

|φ〉 =
1√
2

(|+−〉+ | −+〉) . (6.66)

One particle falls into the interior while the other escapes to I+. By the preceding

arguments there are �ux integrals which can detect the fact that a particle has escaped.

These integrals measure the soft charge on the horizon, and so the state of the outgoing

particle must be entangled with the soft sector. If these integrals can detect the degree

of freedom we have considered, the state must really be

|φ〉 =
1√
2

(|+−+〉+ | −+−〉) (6.67)

up to a minus sign and overall phase factor, where the additional qubit describes the

state of the �ux integral that labels the soft sector. In this way it is possible to entangle

the outgoing particle with the soft sector. Now Eq. (6.67) is the GHZ state for three

particles, and so we know that if we trace out the soft sector there will be no remaining

entanglement between the infalling and outgoing Hawking particles. This ought to occur
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Figure 6.8: Separating charges in di�erent directions generates a GHZ state between the
charge positions and the gauge �eld.

for all portions of the state of the particle which may be read from soft �ux integrals,

and so if these indeed encode all of the information which falls in then there is no �rewall

paradox.

This resolution amounts to quantum mechanical violation of equivalence via the mo-

nogamy of entanglement, and is essentially a physical realization of the nonlocal gravi-

tational modes proposed by [201]. Notably this exchange of entanglement is a purely

quantum mechanical e�ect. The soft theorems guarantee that interactions with the soft

sector are not classically measurable, so this resolution of the paradox represents a way

to preserve the classical equivalence principle while minimally violating it quantum me-

chanically.

It is important to emphasize that this argument does not resolve the broader infor-

mation paradox. To see this note that the Bell state is not recoverable from |φ〉 after

tracing out the particle which fell in. This is another way of saying that the information

is not transferred from the particle to the horizon nor is it cloned, it is just entangled

with the horizon.

Conclusion

We have argued that a peculiar type of gapless topological order exists in the lattice

models of electromagnetism and linearized gravity, and that these models both �ow
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to exactly stable IR �xed points with well-behaved continuum descriptions. Thus, we

can use this topological order to characterize the IR behavior and ground state of the

continuum theories, provided that the gauge constraints hold (i.e. the metric deviations

are small).

While there is no natural way to impose periodic boundary conditions on the universe,

we have used the Lorentzian signature of the metric to identify non-contractible loops of

the gauge �elds in spacetime, allowing for the construction of non-local operators which

commute with the Hamiltonian and whose eigenvalues distinguish the various ground

states. Finally, we have connected all of these objects to well-known results in the

literature.

We have seen that gapless topological order, as described in this paper, shares many

properties with ordinary topological order. Primarily, they both have a family of locally

indistinguishable ground states, and are degenerate on a torus. However, we have made

very general arguments for both the local indistinguishability and degeneracy, and thus

expect the arguments to hold for other decon�ned continuous gauge theories with soft

boson theorems. A precise characterization and proof is left to future work.

Finally, we have discussed applications of this work to black holes, with the key insight

that the �rewall paradox may be resolved by reducing the equivalence principle to be

purely classical, with violation at the level of entanglement. This is suggestive of a phase

transition in the vacuum across the event horizon, but we leave a more detailed analysis

of this phenomenon to a later work.
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