
UC Irvine
ICS Technical Reports

Title
Design for synthesis, transform for simulation : automatic transformation of threading
structures in high-level system models

Permalink
https://escholarship.org/uc/item/32m5n3p8

Authors
Savoiu, Nick
Shukla, Sandeep K.
Gupta, Rajesh K.

Publication Date
2001-12-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32m5n3p8
https://escholarship.org
http://www.cdlib.org/

Not\ce: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Nick
an deep

·esh

e

avo1u
. Shukla

Technical Report# 01-57
(December 18, 2001)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

Information and Computer
9

c1ence

University of California, Irvine

Nick Savoiu

savoiu@ics.uci.edu

UCI-ICS TR# 01-57

Sandeep K. Shukla

skshukla@ics. uci.ed u

18,2001

Center for Embedded Computer Systems
Dept. of Information and Computer Science

http://www.ics.uci.edu/-cecs/
University of California, Irvine

Irvine, CA

Rajesh K. Gupta

rgupta@ics.uci.edu

TABLE OF CONTENTS

UCI-ICS TR# 01-57 .. 1

1. INTRODUCTION ... 3

2. BACKGROUND .. 5

3. SYSTEMC CONCURRENCY MODELING ... 7

4. ALGORITHM FLOW. ... 8

4.1. SystemC Analysis ... 10

4.2. Process Analysis .. 11

4.3. APU Generator ... 12

4.4. Scheduler .. 14

5. CONCLUSION ...•..... 19

6. REFERENCES ... 20

TABLE OF FIGURES

Figure 1. SystemC Scheduler Flow ... 8

Figure 2. Algorithm Flow .. 9

Figure 3. Algorithm Pseudocode ... 10

Figure 4. Example of IF and FOR HTG Nodes .. 10

Figure 5. DMA SystemC Example ... 12

Figure 6. Controller APU Decomposition .. 14

Figure 7. Example of Process Slicing on a Control Signal.. .. 15

Figure 8. Handling of a Signal Hold/Drop ... 16

Figure 9. Determining Cycle Boundaries ... 17

Figure 10. DMA Example Final APU Flow ... 19

2

ABSTRACT
This paper presents a static transformation algorithm, for C++-based hardware models such as SystemC models.

This algorithmic transformation changes the threading structure of the models and generates efficient C++ code

with pre-emptive threading for efficient simulation on multi-processor systems. Efficient modeling for simulation

and modeling for synthesis seems to be competing goals in the context of C++ based modeling paradigms, because

for synthesis, the design should be partitioned according to the targeted hardware units and their interconnections,

and concurrency is aligned along unit boundaries. However, for simulation performance, such a model may contain

many concurrent modules, implemented by many user-level threads, which is an artifact of the C++-based

concurrency modeling mechanism. It has been shown in previous work, however, that multi-threading is not

necessarily a simulation performance hindrance. In fact, a proper choice of multithreading, especially in huge

simulation models with I/O bound computations, is necessary for simulation efficiency. However, since the existing

C++-based modeling frameworks employ user level thread packages, even this necessary threading cannot take

advantage of the multi-processors availability, because user-level threads are transparent to operating system

kernel. We solve this problem by accepting synthesis targeted SystemC models, and compiling them into multi-

threaded simulation models, with kernel-level threads, resulting in faster simulation on multi-processors, as well as

on single processors. Concurrency alignment in our resulting code is usually along the dataflow through the model.

In our past work we have shown that simulation is faster after such concurrency re-assignment and here we give

a foundation for implementing such an algorithm. This work has similarity with Quasi-Static Scheduling work in the

literature, however, the aim and context are different, and so is the basis for the algorithm design.

1. INTRODUCTION

The advent of System-on-Chip (SoC) solutions has posed a need for efficient system level models for early design

stage tradeoffs. Accuracy and speed of simulation are important criteria for employing a model for design

exploration. Moreover, as designers progress more towards using system level models, for architectural

exploration, they seek behavioral synthesis tools [16], which would allow them to synthesize hardware from the

3

same models. When considering simulation efficiency, it is common to rely on concurrency enhancements, and

concurrency management techniques (using multiprocessor hardware, and multithreading etc.). However, actual

simulation performance may vary significantly depending on the specific choices of concurrency support and

mechanisms in the framework, and how they relate to application level programming. Further more, explicit

modeling of concurrency is an important aspect of any hardware language framework. The recently introduced

C++ based high level modeling frameworks, such as SystemC [11] and others [14][15], model concurrency using

either function calls or thread packages. The thread library employed can be cooperative or preemptive [8].

However, most existing system level simulation and modeling frameworks have implemented their kernels using

application-level threading libraries (cooperative threads) [6]. These user-space threads are transparent to

operating system kernels and hence cannot take advantage of multiprocessor systems for performance

improvement.

The other dimension to the simulation performance problem is that hardware concurrency, most naturally, is

aligned along units or modules. Especially if the system level model is to be used for synthesis, it is important to

model the hardware units and their interconnections as planned for the real hardware, since behavioral synthesis

tools are not sophisticated enough to create optimized hardware from any functional model. In other words, system

designers, due to natural design intuition, as well as for synthesizability, and considering the language constructs

provided in the existing language frameworks, build concurrency into the model by providing threads for the

modules or units representing concurrent hardware modules/units in the planned design. Trade-offs between

function calls, and threading, and how to cluster modules together, to obtain an efficient simulation model are

discussed in our previous work [2]. In our experiments, we found that, due to threading packages used in the

simulation kernels, as well, as designers' choice of mapping functionalities into threads, a manual design trade-off

is not easy to achieve. We therefore sought automatic transformations of models that are created for synthesis

purpose, into efficient C++ code, with pre-emptive threading, so that they can be efficiently simulated on multi­

processor systems. In [1] we showed by manual transformations of SystemC models, that such code generation

4

indeed benefits the simulation performance, in some cases up to 100%. fu this paper we describe automatic code

generation for efficient simulation via model transformation based on conversion of threading structure.

There is an extensive body of literature [17][18][19][20] on software synthesis from concurrent system

description. However, most of these are aimed at synthesizing embedded software that has small code size, which

is completely or partially sequentialized and then scheduled. The idea there is to synthesize software for

embedded devices from high-level specification. Such synthesis usually would result in defining tasks, and their

schedule, or at least, quasi-schedule, such that data dependent choices in schedule is done in run-time, and rest of

the tasks are scheduled at code generation time.

However, our context is different in few ways. First, we are not aiming at software synthesis for embedded

systems, with real-time constraints, and hence we are not scheduling in the same sense. Although, re-architecting

the threading in the software, keeping the same functionality and semantics, is similar to software synthesis, but it

is closer to code transformation than synthesis. Second, our models are already in C++ code, and hence, we know

the sequential order of the code in each thread, and we do not reorder any of the sequential code in a single

thread. We just map the sequential activities in different threads onto a lesser number of threads, some times a

single thread, which is equivalent to complete sequentialization. Third, these previous approaches modeled the

specification as Petri-net of some kind, and sequentialized the tasks by unrolling the Petri-net the required number

of times, and then generate C-code corresponding to the unrolled net. We parse and generate a Hierarchical Task

Graph [4] models, from the given model, and use traversal techniques to generate an efficient threading structure

in the generated code.

2. BACKGROUND

As mentioned earlier, hardware systems are inherently concurrent. The system designers are used to describing

their systems as a collection of concurrent modules, especially when targeting synthesis from the model. This

allows for an easy intuitive, design, which facilitates synthesizability, but as shown in [2] using this paradigm to

5

directly drive simulation does not scale well to multiprocessor systems. Preemptive threads are required if we are

to use multiprocessor systems to improve simulation time but they can impose a prohibitive context switching

overhead and thus have to be judiciously used if they are to be efficient.

A multiprocessor simulator poses different issues than a single processor one. Consider a system described using

concurrent processes (e.g. SC [C]THREAD processes in SystemC) and assume that we associate a thread with

each process. Since all threads must synchronize with the clock edge (so that modified signals are updated),

threads have to wait for each other at the clock edge. This means that some threads will be idle while the slowest

thread in the system finishes its workload for that cycle. This can result in a significant amount of CPU cycles not

being utilized. Also, complex systems may have a large number of processes. Assigning a thread to each process

(especially if the number of available processors is much smaller than the number of threads) means that there will

be a significant amount of context switching. And considering that most designs are simulated for a large number

of cycles, this may result in a significant overhead due to context switches. So, intuitively, if we can first reduce

the number of threads and then try to keep those threads as active as possible, we should be able to obtain better

simulation performance in a multiprocessor environment.

In [9] it was shown that a multi-threaded implementation of a communication protocol stack can be threaded in

two different ways: task-based or message-based. The first binds threads to one or more tasks in the system and

the tasks pass the necessary messages between them. The second binds a thread to one message and takes it

through the whole set of computation to be performed on a single message. If we think, for example, of SystemC

dataflow through signals as messages, we can view SystemC description of a system with concurrency aligned

along the modules (i.e. a task-based approach). Each SystemC process is assigned to a thread and signals are

used to communicate between them (e.g. each thread processes incoming signals and updates outgoing signals).

Rather than imposing a new modeling style by the designers, we seek to automatically convert a given task-based

system description into a message-based description such that simulating it can be scalable to multiprocessor

6

platforms. Scalability will be achieved if we can reduce the number of threads in the system and also expose any

parallelism implicitly available in the description such that multiprocessor systems can take advantage of it.

3. SYSTEMC CONCURRENCY MODELING

For hardware systems, a modeling framework should have constructs for modeling reactivity and concurrency. For

example, SystemC provides efficient constructs for modeling reactivity in form of watching and waiting [7]. For

modeling concurrency SystemC provides two types of processes: synchronous and asynchronous. A synchronous

process is a process that communicates with other processes only at specific instances of time determined by the

clock edge to which the process is sensitive. On the other hand, asynchronous processes are more general form of

the synchronous processes that can be used to model any kind of circuit.

In SystemC, asynchronous blocks are implemented using function calls. The synchronous and asynchronous

processes are implemented using Quick thread library in Unix[6] and fibers (i.e. light-weight self-scheduled

threads) in Windows NT[21]. Both provide a cooperative thread framework, where a thread yields control to

another thread at will. A thread cannot preempt another on the basis of priority or blocking. So at a time only one

thread can be in running or blocked state while all the other threads are in ready state waiting for the running

thread to yield the control.

To better understand why the current SystemC[12] implementation does not scale to multiprocessor simulation

consider the simulation kernel flow in Figure 1.

In the Initialization phase all processes (except SC_CTIIREAD processes) are executed in an unspecified order.

In the Evaluate phase as long as processes ready to run are available they are selected and resumed. This can

cause additional processes to become ready to run in this phase due to immediate event notifications. When no

such ready to run processes exist, the simulator enters the Update phase were signal values are updated to the

values computed in the evaluate phase. At this point, if there are pending delayed notifications, the simulator

determines which processes are ready to run due to the delayed notifications and returns to the Evaluate phase.

7

Otherwise, if there are no timed notifications either, simulation is finished. If there are timed notifications the

simulator advances the current simulation time to the earliest pending timed notification and reenters the Evaluate

phase.

While this approach works for single processor simulation the fact that process evaluation (i.e. execution) is

lol:™tll:i-t
Sl!OOlaiion

II.ind
SJm~~n

Figure 1. SystemC Scheduler Flow

relegated to the Evaluate phase has the following

repercussions. First, even if preemptive threads are

assigned to each process each process executed in the

Evaluate phase will require a context switch and

potentially a significant overhead. Furthermore the

amount of code run in a cycle is typically small. Also if

the number of processes ready to run in the Evaluate

phase is less than the number of processors available to

the scheduler poor utilization of the available processors

results.

This leads us to the strategy of concurrency

reassignment to help lower the number of threads and

also context switches. Since, we do not want the designers to be concerned with the amount of computation per

thread, and threading architecture of the simulation kernel, we suggest a methodology of concurrency remapping

or reassignment. In it the computation in a thread will be enough to justify the creation of threads and to overcome

the synchronization overheads. This is very similar to the design of network protocol stack implementation using

multi-threaded architecture as in [9]..

4. ALGORITHM FLOW

8

In Figure 2 we present the overall flow of the algorithm and some of the data structures created while running it.

The SystemC description is analyzed and several data structures are built for later consumption. The SystemC

processes present in the description are identified along with information about their type and interconnections.

These processes are then divided into indivisible pieces (i.e. from the SystemC scheduler's point of view) called

atomic process units (APUs). The APUs are connected using the inherent C++ sequencing and the sequencing

imposed by control signals present in the description. Scheduling and sequentializing this APU graph we define

execution paths through the system that can be then be mapped to threads. As a final step information collected

initially about the SystemC description is used now to generate a new, SystemC-like description that executes

using the new threads just created. Figure 3 contains pseudocode that outlines the steps we just presented.

Although our algorithm is tailored for the way SystemC is

used to describe systems, it could easily be adapted for

other C++-based high-level modeling frameworks.

In following subsections we will discuss the algorithm

steps in more detail with the use of a SystemC example.

In our previous work we have shown results for a

simplified RISC processor and an MP3 decoder.

However these examples are too complex to serve as a

f'r-tll;('Jj.-;

Ana~

good example in the context of this paper. Therefore we Figure 2 · Algorithm Flow

present a simple Direct Memory Access (DMA) system to help exemplify the various transformations in our

algorithm. The SystemC implementation of the DMA example has 4 modules implemented as SC_CTHREAD

processes. Figure 5(a) shows the high-level interaction between the modules. The controller provides the DMA

module with the transfer parameters and awaits acknowledgement that the transfer is complete. The DMA

module receives these parameters and then proceeds to transfer data from one memory module to the other by

performing alternative read and write operations on the two memory modules. If we chose to implement this

9

example by simply creating a thread for each process and then assigning it to a processor, the controller process

thread will be mostly idle resulting in poor utilization of that processor.

f<':>t: •t>.~('.l\ f..lYElt:'t•ifC r::lMB
J;6i:; ell Etwc:ti•:>n!S .in •;;la5':!:
ci:e-~t~ ll't't::i gt:c'a.pb for ll'.111-::Jn~::; fun<;;tioJ1s

l.ii>ant.iE!:i' pr:o,J"l888B .::i.n:1 •i•:termin>.: typeg
dc~te:·:rmi.ne ihp11t/•:i11tgn1t: port:s .'l!Zl ::l.dent:ify por.t oper.at:i.::as

e;~tr<5ct netlist .Ln.fonnab•:>IJ
i:10nn<?ct- H'J'>'.;B t)u:-oQ'JJt sir.mals

:t<:p<:!.~H: until nc• ch.;;ng~~

t'Ot l!il•:!.l. f.fN
d·> c,0r1~1tat'.!t pr:~•p&r;;.!J.tiort Ul!':irl.(1 tio<st J:i&uc:r. lnf<..:.rroat.i<>:ti
i::emc.111e · dea::l .::;.;:y;:le

Pt•::'f)~;Jtl.tf.! i'.1JJ~&3S 8l{fl1i!l8 .!Jhf1 CUEiGtfoti G.9.llS

f,)t 'iO!i:<Gt\. }J !QC'<l8B

l d<:nti fy :stomi·'.: p.t•:::•.?':!'!Hi: um. bs

t:eg~~e:rat•:! Sy~t~m·:: •:J'bJf!-i~t ~oui:ce CiZ<li.!

seq.1.:i"'ntifills:e: B·db8d:a1""' and \l'Hte.tete C++ .c:.;::,:ie !'.<>i: Lt
~.;,rm r<:lt: ra tl:it:i;i.ad. m"'n.ilg.;am;mt: cmdi;:;

Figure 3. Algorithm Pseudocode

Figure 4. Example of IF and FOR HTG Nodes

While the information in the high-level view is enough for

the human understanding of the interaction between these

modules further system analysis is needed if we want to

automatically extract the system execution path for

concurrency reassignment.

4.1. SystemC Analysis

To be able to restructure the SystemC code describing a

system we must first understand the structure and

interaction that occurs within each such system. As the

first step in our algorithm we parse the SystemC

description and build several data structures. These data

structures serve a dual prnpose. First, they enable the

system analysis required to do the source-level

transformations required for concurrency reassignment

and if that is not feasible to suggest possible code changes

that will allow the automation of these transformations.

Second, once the analysis and transformations are

complete, they should allow for code to be generated that resembles the input code as closely as possible. This

gives us design closure and thus allows a designer to easily identify his code in the output code and be able to

make changes to the source code that would have a meaningful impact on the output code.

10

To that end we chose as an intermediate representation a class hierarchy underlying Hierarchical Task Graphs

(HTGs) [6] representing class functionality. The class hierarchy is needed because some of our transformations

(e.g. signal connectivity, constant propagation) require whole-program analysis while the underlying HTGs

guarantee that sufficient source information is retained for the code generation step. For example, the source

statements making up an if-then-else conditional construct or a for loop are aggregated into compound HTG

nodes as shown in Figure 4. The structural nature of the HTG nodes means that we retain information about both

the then and else branches and also make a clear distinction of the parts that make up a loop. The latter is

beneficial for isolating loop body statements (e.g. functionality in an SC_[C]THREAD process is often

encapsulated in an infinite loop) while the former is useful in slicing operations.

An important part of the SystemC description is the signal definition and connection. It defines the signals present

in a system and the processes that they interconnect. SystemC signals do not have a direction attached to them.

We will have to determine that later once we identify how processes use each signal.

For our example the class hierarchy is straightforward: one class for each component in the high-level system view

and each class contains a single clocked thread process. The signals present in the system are those identified in

Figure 5(a) and, as mentioned above, they are initially undirected.

4.2. Process Analysis

Once the class and signal information was generated we can analyze the source code to identify the processes

present in the SystemC description.

One important characteristic of a process is its type. To identify that we locate the calls in the HTGs that register

these functions with the SystemC simulation kernel (i.e. calls to SC_METHOD(), SC_THR.EAD(), and

SC_CTHREAD()). Type information (i.e. method, thread or clocked thread) is used to determine how a process is

divided into atomic units and also when cycle boundaries are being crossed.

11

Also at this time we determine how processes communicate with each other. The signal information collected

previously is further refined into the process graph in Figure 5(b). Signals are analyzed for direction of

communication (through the identification of port read and writes in the process HTGs) and the process source is

used to determine if a signal is merely a data signal or a control signal. A data signal is a signal that only provides

a way for processes to exchange data whereas a control signal is used to determine when a process that depends

on another process can resume its execution. Control signals can also optionally provide data to the

target process but SystemC 2.0 discourages that through the introduction of events. They allow inter-process

control but no data exchange. Events are :functionally

similar to our control signals.

In Figure 5(b) data signals are represented by normal lines

and control signals represented by bold lines. For example, I
the controller process uses the Start signal to notify the [U-4

fi!

DMA process that it should start a new transfer and also

Figure 5. DMA SystemC Example
waits on the Done signal for aclmowledgement that the

transfer is complete. What remains to be determined is in which order are these signals activated. Intuitively, if we

follow this flow of control signals, we get an execution path through the system.

But the process graph still has too coarse a granularity to allow us to effectively determine and restructure the

graph for better concurrency. Therefore we need to break up the processes into atomic process units.

4.3. APU Generator

An APU represents the part of a process that will execute within one invocation in the Execute phase of the

SystemC simulation kernel. It can be thought as the smallest piece of a process that the sc~eduler kernel is aware

of, hence the atomic quantifier.

12

To determine the APUs of a process we need to take into account all the synchronization points of a process. A

synchronization point is in general marked by the presence of a waitO statement in the process source code.

However the process type affects how it is divided into APUs. Since a method process is executed until it finishes

for each invocation, it cannot contain any calls to waitO and thus the entire process is a single APU. For thread

and clocked thread processes we have to locate all calls to waitO statements and divide the process according to

those. We do this by first slicing the process once for each incoming control signal. We then take the resulting

process code and divide it into APUs using the remaining synchronization points as the dividing elements. The

synchronization calls are removed from the code but the APU is associated with that enabling signal or signals. If

the process source contains loops, we generate APUs only from the loop body code.

Currently we assume that synchronization points are not present in the branches of if statements. If such points

are allowed inside if statements the problem of dividing processes into APUs can become intractable because of

the potential for deadlock. There are however some if statements that can be currently handled by our algorithm.

Consider the code in Figure 7(a). It shows the implementation of one of the memory units. The code checks if

control signal read is active. If so, the then branch is taken which contains the code needed to perform a read

operation. Otherwise the write signal is checked and if true the actions needed to perform a write are taken. This

seems like an example that would require restructuring since it contains synchronization points within the branches

of an if statement. However, to determine the statements that are needed for a particular APU we must first slice

[7] the code based on each enabling control signal that reaches the process (this might be a subset of the list of

signals a process is sensitive to). Let us assume, for example, that the enabling signal is read. After slicing the

memory unit's process will only consist of the section highlighted in Figure 7(b). As we can see, that code segment

has no if statements and it can therefore can be easily divided into APUs at the synchronization points. Similar

results are obtained if slicing is done on the write signal. Therefore our restriction regarding the placement of

synchronizing events applies to the process slices rather than the source process code.

13

Since the multiple slicings of a single process can result in duplicate APUs we only retain unique APUs. We can

finally create the APU graph for a process while taking into account the control flow imposed by the original C++

code. Consider the example in Figure 6(a) showing pseudo-SystemC code for the controller unit and the resulting

APU graph in Figure 6(b). It was created after the code was divided into 3 APUs and they were connected by

inherent sequencing provided in the C++ code. As a final pruning of the APU graphs any APUs that are not

connected to the graph are removed.

The last step in our augmentation of the process graph is to do something similar to data dependence analysis in a

regular software compiler. However, instead of statements we have APUs and instead of variables we have

control signals. This analysis allows us to determine the inter-APU dependences based on such signals. We use

the signal information we collected in the first step and add control signal dependence arcs to the APU graphs.

It seems that the use of global and module-global variables would imply that we should also account for inter-APU

dependences introduced by these variables. However, the SystemC functional description[2] indicates that the

simulation kernel neither enforces nor guarantees an order of execution for ready-to-run processes. Thus, if

processes depend on global or module-global variables for synchronization, the results can be undetermined and as

such we can ignore such dependences.

4.4. Scheduler

At this point in the algorithm we have the fully APU

graphs. The next step is to schedule the APUs in the

graphs according to these dependences. But before we

can do that we need to do several preliminary steps.

The first one concerns synchronous thread processes (i.e.

SC_THREAD and SC_CTHREAD processes). These

Bt.nt~ fohi.;;;:
d•:.n~-t Y:Ui!

whi.k ltruB':.
w.:i.it doao
ct.11>3(":t1(lt'L.Q r f I

s:rc:.Il.ddi::~ •••

• :b;tAddt""'. , ,

wa,;i,t;.

star:t-f;:i.1!:'•~

(a)

st:art:=false

StartXfer
di r'2•Tt ion= •••
f.tftJ,il,:}dI-. , •

(]\?-tPi:K!:i:=, • ,

WaitXfer

tb)

Figure 6. Controller APU Decomposition

14

are generally modeled as an infmite loop encompassing the actual functionality of the process. We can use the

structural nature of our HTG information captured in the first step to identify the loop bodies of such processes

thus isolating the process functionality. Only APUs contained in this loop body will be used during scheduling.

Once this is done we apply an As-Soon-As-Possible (ASAP) scheduling algorithm to the APU graph. The result

w.:ii t I<::.;;id l 111?l:t te
ii 1:12-9.d

get,o,
wait LP.TENCY:...1

dcrne-true
w.ait
d0ne;::::r..::i1s:e

e.li:;te j_f Wl'.'ite:

getP.D
(ki.be;::::t r11.e
weiit
aone;::::talS'e
W·~i t LA.TENCY -1

(~)

'""1al r rc.adl ··'T 1. t:1;:

:~ead

getA
wrl t LJl.TE:HCY-1
putD
dor1e•ti:ue
wait
done=fll.ls·a

(b)

of this will be an APU graph scheduled according to the

dependences among APUs. Note that if the system

description contains several independent subsystems then

the actual result of scheduling will be several independent

APU graphs. The graphs now represent parallelized

versions of the schedules. However since we want to

finally generate a thread of execution (i.e. sequential) we

Figure 7. Example of Process Slicing on a have to sequentialize the tree.

Control Signal
In general sequentializing is a straightforward process that

traverses the graph using a breadth-first search. However there are some things that have to be taken into

consideration to make sure the resulting code is correct and corresponds to the SystemC simulation semantics.

The diagram in Figure 8(b) represents a fragment of the APU flow diagram in Figure 10 and it is the result of the

code in Figure 8(a). To make Figure 10 more readable certain APUs (i.e. those deemed not critical in showing the

final path of execution through the system) were not included. However one such APU is an example of a

common occurrence when modeling hardware: at a certain point in the execution of a process a signal is held (high

or low) to indicate the occurrence of a specific event (e.g. such as the availability of data on the memory data bus)

and then it is dropped to indicate the end of the event. Such is the case with the Done signal for the memory

modules. Once the data is available on the data bus a Done signal is raised and held for one cycle as in Figure

8(b). To understand how scheduling would handle this we have to consider the dependencies that are present.

15

DropDone has a flow dependence (i.e. resulting from the original C++ code) on MemDone while GetDJ has a

control signal dependence on MemDone. Therefore both will be scheduled after MemDone and possibly in the

same scheduling step. However, considering the SystemC scheduling semantics (i.e. all processes in a delta cycle

execute and then update the signals they have changed) correct behavior is obtained only if the sequentializing step

favors control signal dependences over flow dependences that are present at the same level in the graph. In this

case a sequence of MemDone, GetDJ, DropDone leads to correct simulation results.

After sequentializing we have obtained the actual flow through the system's APUs that allows a sequential

execution of the simulation. Figure 10 shows the flow of execution after scheduling and sequentializing our DMA

example. The graph nodes represent the APUs that processes have been divided into (some APUs have been

omitted for brevity and clarity). The solid arcs between APUs reflect sequencing imposed by the input description

(i.e. flow dependences). The dotted lines reflect

sequencing imposed by the control signal analysis

performed by our algorithm (i.e. control signal

dependences) and are labeled with the signal that

generates them. Finally the numerically labeled lines

represent the final sequence of APUs that make up the

path of execution through the system. Also notice that the

!nit APUs in each process could actually be executed in

:tJt,:jr.£)
cloli!..,.12riL~

PlU!. f!l'!Wl1
~~~~~ ~~~~~-

GEt'D1 

wait don!!' 
dafirl;:;.". 

lbf 

Figure 8. Handling of a Signal Hold/Drop 

any order since the SystemC simulation kernel does not impose any order on processes that are simultaneously 

ready-to-run. A randomization step could be introduced to parallel the randomization option available in SystemC 

2.0. 

If the system has a global clock and cycle information is necessary we can compute cycle boundaries as follows. 

We have two classes of APUs based on the process type they originated from. If the process type was method or 

thread such an APUs is on a clock if one of the control signals that it depends is clock. However is the APU 

16 



originated from a clocked thread process it will always be on a cycle boundary since clocked threads are only 

sensitive to the clock signal. Figure 9 shows how such boundaries would be determined in a scheduled APU 

graph. 

Code Generator 

The final step generates output code that is similar to the input SystemC description. However some preprocessing 

of the scheduled APU graph is required. Recall that in SystemC thread and clocked thread process functionality is 

enclosed in an infinite loop (e.g. for example the dotted line from MemDone to WaitStart in Figure 10 shows us 

the back arc of the infinite loop in the implementation of memory module 1 ). This loop is needed so that the 

memory module is ready to service another request after finishing the previous one. However since we have 

restructured the system flow to explicitly call the WaitStart APU when its controlling signal is activated the infinite 

loop construct is no longer need. Similarly we can remove the infinite loop construct from the other memory 

module and the DMA module. However we cannot always do that. For example, for the Controller module we 

have to leave the loop in place since it lacks any incoming control signal (the process gets its signal values from a 

test bench, for example a file, rather than incoming signals). 

We regenerate the SystemC class descriptions needed to build the simulator objects (from the information we 

retained in the first step). We also circumvent the 

SystemC simulator kernel: once the simulator has setup 

the objects and passes control to the sc_mainO function 

we only relinquish control once the simulation is 

completed. That means that the code generator is 

responsible for generating the code that defines the main 

execution routine. It also has to generate code for 

Figure 9. Determining Cycle Boundaries 
managing thread execution and synchronization in the 

17 



newly redesigned system. 

As the code generator has to generate code for the newly defined execution path the question arises of how much 

of it can be "packaged" into a thread that can then be multiply-spawned. In our DMA example the whole path 

cannot be used because we were unable to remove the infinite loop encompassing the controller functionality (due 

to signals having their values obtained from a test bench). Therefore one or more smaller sections of the execution 

path could be candidates for threads. As in traditional software compilation we give special attention to any loops 

present in the description. Since applications spend most of their execution time in loops so improvements to loop 

runtimes translate in overall runtime improvements. The DMA has such a loop (i.e. the loop that iterates until all 

the data has been transferred). We can try to "pipeline" the execution path that lies inside the loop (bold line 

segments 7 through 16 in Figure 10). Since multiple instances of the same thread will be executing simultaneously 

we need to preserve the proper order of execution. We can do this by reanalyzing the subprocess dependences 

from a loop-carried point of view (because the thread code is in effect the body55 of a loop) and determine if any 

such loop-carried dependences exist on control signals. If they do, we need to enforce them by inserting a thread 

synchronization event between any APUs involved in dependences to ensure that the threads execute those APUs 

in the proper order. In our example there are no such control signal dependences so the threads can run fully 

parallel. This will result in almost linear improvement in the loop execution time but in general that will not be the 

case since some synchronization will be necessary. 

6. CONCLUSION 

In this paper we detail our algorithm for automatic transformation of C++ based system level models, which are 

designed for synthesis, with hardware structure in designers mind. This transformation results in a semantically 

equivalent C++ code, which shows better simulation performance than the original SystemC code. The generated 

C++ code is threaded with preemptive threads so that they can simulate even faster on multi-processor systems. 

Our algorithm, is based on constructing Hierarchical Task Graphs from SystemC code and traversing the resulting 

18 



graphs. Unlike the software synthesis based on scheduling or quasi-scheduling, we can generate a multi-threaded 

program since we want to exploit multiprocessor simulators. The generated program is validated against the 

original code by extensive testing. However, future work include an analytical proof of their semantic equivalence, 

applying theories of serializability of concurrent transactions. 

Figure 10. DMA Example Final APU Flow 

6. REFERENCES 

[1] N. Saviou, S. Shukla, R. Gupta,, "Automated Concurrency Re-Assignment in High Level System Models for 

Efficient System Level Simulation", UCI-ICS Tech. Report No. 01-51, September 2001, Accepted for 

presentation at the Design Automation and Test Conference (DATE 2002), March 2002. 

[2] P. Garg, S. Shukla, R. Gupta,, "Efficient Usage of Concurrency Models in an Object Oriented Co-Design 

Framework", In the Proceedings of the Design Automation and Test in Europe (DATE'Ol), Designers Forum, 

Munich, Germany, March 2001, IEEE Computer Society Press. 

[3] CONCUR PROJECT-UCI-ICS, http://www.ics.uci.edu/--skshukla/concur/concur.html. 

19 



[4] D. Jackson and E. J. Rollins. A New Model of Program Dependencies for Reverse Engineering. fu 

Proceedings of the SIGSOFT conference on Foundations of Software Engineering, New Orleans, December 

1994. 

[5] D. Jackson and E. J. Rollins. Chopping: A generalization of slicing. Technical Report CMU-CS-94-169, School 

of Computer Science, Carnegie Mellon University, 1994. 

[6] D. Keppel. Tools and techniques for building fast portable thread packages. Technical Report 

UWCSE93-05-06, Computer Science and Engineering, Univ. of Washington, May 1993. 

[7] S. Liao, S. Tjiang, and R. Gupta. An Efficient hnplementation of Reactivity for Modeling Hardware in Scenic 

Design Environment. In Proceedings of the 34th Design Automation Conference, pages 70--75, Anaheim, CA, 

June 1997. 

[8] C. J. Northrup. Programming with UNIX Threads. John Wiley, 1996. 

[9] D. C. Schmidt and T. Suda. The performance of alternative threading architectures for parallel communication 

subsystems. Journal of Parallel and Distributed Computing, submitted 1996. 

[10] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Quasi-static scheduling of embedded 

software using equal conflict nets. fu Proceedings of 20th futernational Conference on Application and Theory 

of Petri Nets. ICATPN '99, June 1999. 

[11] Synopsys Inc., http://www.systemc.org. SystemC 2.0 Functional Specification 

[12] Synopsys Inc., http://www.systemc.org. SystemC 2.0 User's Guide 

[13] T. Wagner and D. Towsley. Getting started with Posix threads. Technical report, Computer Science 

Department, Univ. of Massachusetts, Amherst, July 1995. 

[14] CynApps Inc. http://www.cynapps.com. 

[15] OCAPI Website. http://www.imec.be/ocapi. 

20 



[16] G. Economakos, P. Oikonomakos, and I. Panagopoulos. Behavioral Synthesis with SystemC. 

http://www.systemC.org 

[17] Bill Lin. Software Synthesis of Process Based Concurrent Programs, In Proceedings of Design Automation 

Conference, 1998. 

[18] S. A. Edwards. Compiling Esterel into Sequential Code, In Proceedings of Design Automation Conference, 

2000. 

[19] J. Cortadella, A. Kondratyev, L. Lavagno, M. Massot, S. Moral, C. Passerone, Y. Watanabe, and A. 

Sangiovanni-Vincentelli. Task Generation and Compile-time Scheduling for Mixed Data-Control Embedded 

Software, In Proceedings of Design Automation Conference, 2000. 

[20] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Quasi-Static Scheduling of Embedded 

Software Using Equal Conflict Nets. In Proceedings Application and Theory of Petri Nets 1999. 

[21] Microsoft Developer Network. http://msdn.microsoft.com/ 

21 




