
UC Irvine
ICS Technical Reports

Title
Finding succinct ordered minimal perfect hashing functions

Permalink
https://escholarship.org/uc/item/32m1t4x6

Authors
Seiden, Steven S.
Hirschberg, Daniel S.

Publication Date
1992-02-28

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32m1t4x6
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

_ _Finding Succinct
Ordered Minimal Perfect

Hashing Function§_

Steven S. Seiden* Daniel S. Hirschberg*

February 28, 1992

Technical Report 92-23

Abstract

An ordered minimal perfect hash table is one in which no collisions
occur among a predefined set of keys, no space is unused, and the data
are placed in the table in order. A new method for creating ordered
minimal perfect hashing functions is presented. The method presented
is based on a method developed by Fox, Heath, Daoud, and Chen,
but it creates hash functions with representation space requirements
closer to the theoretical lower bound. The method presented requires
approximately 10% less space to represent generated hash functions,
and is easier to implement than Fo:;ic et al's. However, a higher time
complexity makes it practical for small sets only (< 1000).

Keywords: Data Structures, Hashing

1 Introduction

A hash table is a data structure in which a number of keyed items are stored.
To access an item with a given key, a hashing function is used. The hashing

*Department of Information and Computer Science, University of California, Irvine,
CA 92717.

1

/i fc <'/(/1/I :;

function maps from the set of keys, to the set of locations of the table. If
more than one key maps to a given location, a collision occurs, and some
collision resolution policy must be followed. On the average, locating an
item in a hash table takes 0(1) time. Hash tables are used in a wide range
of applications. They are quite popular due to their low average access time.

If the set of keys is predetermined, then we may attempt to create a
hash table where no collisions occur, i.e., no two keys map to the same
location. Such a hash table is called a perfect hash table, and its associated
hashing function a perfect hashing function (PHF). Furthermore, we could
create a table with the minimal number of locations, exactly one location per
key. Such a table is called a minimal perfect hash table, and the associated
minimal perfect hashing function (MPHF) is a bijection, from the set of keys
onto the set of table locations. If all of the aforementioned conditions are
met, and the keys are placed in order, then the function is called an ordered
minimal perfect hash function (OMPHF).

OMPHFs are highly useful. Applications where a set of predefined keys
need to be recognized abound. For instance, most programming languages
have a fixed set of keywords. Compiler and interpreter performance could
be improved, if we could decrease keyword recognition time. Another appli­
cation which could benefit from OMPHFs is database retrieval. Slow access
time media, such as CD ROM, demand a high performance method for lo­
cating records.

OMPHFs allow the hash table to be stored in the minimal number of
locations, n locations are required for n keys. However, different methods re­
quire varying amounts of space to represent the hash function. The resources
(principally execution time) required to determine an OMPHF will also vary
with the method.

We describe a method, due to Fox et al, for determining OMPHFs which
is quite efficient in representation space and execution time requirements. We
then reformulate this method, so that we may improve on the space repre­
sentation requirements. The result is a method which is easier to implement
and requires less space for applicative use, but entails a greater initial time
requirement and approximately the same access time requirement.

2

2 Fox et al's Method

Fox, Heath, Daoud and Chen [4, 5] have proposed a system for finding or­
dered minimal perfect hashing functions. Empirical data indicates that their
method can find an OMPHF in O(n) expected time. As we shall see, their
algorithm is analogous to solving a linear algebraic system over a finite field.
This view of the problem provides us with an elegant alternative method of
solution.

Fox et al's algorithm (henceforth referred to as algorithm FHDC) gener­
ates hashing functions of the form:

(1)

where:

1. The value ki is a member of the predefined key set K = { k1 , k2 ••• kn},
and n is the number of keys.

2. The function h0 is a pseudo-random function from K to the integral
range [O: n - l].

3. Function h1 is a pseudo-random function from K to [O : r - 1], where
r is a user-defined parameter. Typically, the ratio (defined below)
determines r to be a little more than n/2.

4. Function h2 is a pseudo-random function from K to [r : 2r - 1].

5. Function g is a mapping from [O :. 2r - 1] to the [O : n - 1].

The goal of algorithm FHDC is to determine the mapping g. Fox et al have
shown that the theoretical lower bound on the number of bits to represent
an OMPHF is nlog2 n [4]. In the case of algorithm FHDC, the cardinality
of the domain of g governs the amount of space required to represent the
OMPHF. The number of values in the domain of g is s = 2r, and each value
in the range of g is in [O : n - 1]. The number of possible mappings is n 8

•

Therefore, representing·g requires at least log2 (n8
) = s log2 n bits. Sos must

be at least n. Fox et al refer to the value s/n as the ratio of an OMPHF.
Using functions of the form (1), and ratios of approximately 2.4, Fox et al
are able to find OMPHFs with reasonable probability.

3

The use of pseudo-random functions (originated by Sager [9]) gives al­
gorithm FHDC a distinct advantage over other OMPHF methods [1, 2]. If
algorithm FHDC fails, different pseudo-random functions can be tried un­
til hashing succeeds. Several types of pseudo-random functions have been
suggested [6, 4, 5, 7]. Fox et al claim that the probability of failure is low
and, therefore, that the probability of not finding an OMPHF after the first
few attempts is negligible. (They assume that the pseudo-random values
generated are independent of the keys.)

Fox et al also present a more space efficient method, which uses functions
of the form:

(2)

where:

a(ki) - g(ho(ki) + g(h1(ki)) + g(h2(ki))) mod 2r

/3(ki) ho(ki) + g(h1(ki)) + g(h2(ki)) mod n

b is a Boolean function on the domain [O : 2r - 1], and g is a mapping as
previously described. The functions band g are determined by the algorithm.
Using functions of form (2), the lowest ratio which Fox et al achieve is 1.13.
Our method allows ratios much closer to one.

3 A Reformulation

Gori and Soda [8] were able to reformulate the minimal perfect hashing tech­
nique of Cichelli [3] in terms of linear algebra. They showed how Cichelli's
algorithm is analogous to solving a set of simultaneous linear equations over
the field R (the real numbers). Similarly, an OMPHF of the form (1) can
be found by solving of a set of simultaneous equations, if n is prime. These
simultaneous equations are not over R, but over the finite field Zn (the field
of integers modulo n). The fact that n is prime is fundamental, because Zn
is a field if and only if n is prime. We define the following:

ai - ho(ki)
b.. { 1 if (h1(ki) = j) v (h2(ki) = j)

i,J 0 otherwise

4

Suppose n is prime and 2r 2'.: n. Consider the following set of equations:

0 gob1,1 + 91b1,2 + · · · + 92r-1b1,2r-l +al

1 gob2,1 + 91b2,2 + · · · + 92r-1b2,2r-l + a2

2 gob3,1 + 91b3,2 + · · · + 92r-1b3,2r-1 + a3

n - 1 - gobn,1 + 91 bn,2 + ... + 92r-1 bn,2r-1 + an

This system can be rewritten as:

where fI is a column vector defined by hi = i-l-ai, Bis an x 2r matrix with
entries bi,j as previously defined, and G is the vector to be solved for. The
variables g0 , g1 ••• g2r-1 correspond exactly to the values g(O), g(l) ... g(2r-
1) determined by algorithm FHDC. This system is solvable over Zn, if B has
rank n. That is, if the rows of B generate Z~ (the n dimensional vector space
over Zn)· If this is the case, the keys may be hashed in any a priori order.
Row reduction, for example, is one of the methods for finding a solution. We
can solve this system in worst case time of O(n3

).

The average time complexity of the method we propose is greater than
that of algorithm FHDC. However, our method may be easier to implement.
For small sets of keys (n < 1000), implementation cost may be more impor­
tant than running time. It is likely that mathematical software libraries exist
which allow for the rapid implementation of our method.

4 A New Method

The reformulation we described in the previous section can be improved in
several ways. The effect of ho is to create random entries for if. This function
plays no role in whether B has rank n, therefore, ho would be better utilized
if it contributed to the rank of B. This is facilitated by replacing h0 (ki)
with g(h0 (ki)), thereby increasing the average number of non-zero entri~s in
each row of B. The average can also be increased by using a greater number,
m, of pseudo-random functions. Secondly, empirical data indicates that it
makes little difference that h1 and h2 map to disjoint ranges. We let all

5

i kj ho(ki) h1 (ki) h2(ki) h3(ki) h(ki) = "Eig(hj(ki)) mod p
1 'january' 2 4 4 10 0 = 3 + 2 + 2 + 6 mod 13
2 'february' 3 4 5 9 1 = 4 + 2 + 4 + 4 mod 13
3 'march' 0 2 2 7 2 = 1 + 3 + 3 + 8 mod 13
4 'april' 2 3 6 9 3 = 3 + 4 + 5 + 4 mod 13
5 'may' 1 1 2 6 4 = 11 + 11 + 3 + 5 mod 13
6 'june' 3 3 4 7 5 = 4 + 4 + 2 + 8 mod 13
7 'july' 2 5 7 9 6 = 3 + 4 + 8 + 4 mod 13
8 'august' 2 9 11 11 7 = 3 + 4 + 0 + 0 mod 13
9 'september' 1 2 7 8 8 = 11 + 3 + 8 + 12 mod 13
10 'october' 0 0 0 10 9 = 1 + 1 + 1 + 6 mod 13
11 'november' 0 1 6 10 10 = 1+11+5 + 6 mod 13
12 'december' 7 9 10 10 11 = 8 + 4 + 6 + 6 mod 13

Figure 1: Values of h0 ••• h3 and h, for the set of months (See Figure 4 for
values of g).

pseudo-random functions map to [O : s - l]. Thirdly, if n is not prime, we
pick a prime p > n and use p as the modulo. In summary, the functions we
propose have the form:

h(k;) = ('E. g(h;(k;))) modp (3)

where each hj is a pseudo-random function mapping from K to [O : s - 1], g
is a mapping from [O : s - 1] to [O : p - 1], and p is the least prime p 2::: n.
We redefine B. The value of an entry, bi,j, is the number of the values h0 (ki),
h1 (ki) ... hm-l (ki) which are equal to j. We define fI by hi = i - 1 (So that
the values [n: p-1] are excluded from the image of h). The resulting linear
system is solved as before. A small example is presented in Figures 1-4. An
OMPHF is created for the months of the year, using four pseudo-random
functions (m = 4). Since n = 12 is not prime, we let p = 13. The values
of h0 ••• h3 are displayed in Figure 1. The matrix B augmented by fI is
displayed in Figure 2, the row reduced matrix in Figure 3. The values of g
appear in Figure 4. In this case, we are able to find an OMPHF with a ratio
of 1.

We implemented our method in C, and used Monte Carlo methods to

6

0 0 1 0 2 0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 1 0 0 1
1 0 2 0 0 0 0 1 0 0 0 0 2
0 0 1 1 0 0 1 0 0 1 0 0 3
0 2 1 0 0 0 1 0 0 0 0 0 4
0 0 0 2 1 0 0 1 0 0 0 0 5
0 0 1 0 0 1 0 1 0 1 0 0 6
0 0 1 0 0 0 0 0 0 1 0 2 7
0 1 1 0 0 0 0 1 1 0 0 0 8
3 0 0 0 0 0 0 0 0 0 1 0 9
1 1 0 0 0 0 1 0 0 0 1 0 10
0 0 0 0 0 0 0 1 0 1 2 0 11

Figure 2: The matrix (BIH) for the set of month names (over Z13).

1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 11
0 0 1 0 0 0 0 0 0 0 0 0 3
0 0 0 1 0 0 0 0 0 0 0 0 4
0 0 0 0 1 0 0 0 0 0 0 0 2
0 0 0 0 0 1 0 0 0 0 0 0 4
0 0 0 0 0 0 1 0 0 0 0 0 5
0 0 0 0 0 0 0 1 0 0 0 0 8
0 0 0 0 0 0 0 0 1 0 0 0 12
0 0 0 0 0 0 0 0 0 1 0 0 4
0 0 0 0 0 0 0 0 0 0 1 0 6
0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 3: Row reduced matrix for the months.

i 0 1 2 3 4 5 6 7 8 9 10 11

g(i) 1 11 3 4 2 4 5 8 12 4 6 0

Figure 4: Values of g.

7

n m, s/n m = 3, s/n = 1.10
2, 2.40 3, 1.10 4, 1.03 5, 1.01 n p Solved

53 .83 .67 .84 .93 50 53 .60
101 .73 .80 .84 .82 100 101 .84
151 .72 .74 .82 .86 150 151 .73
199 .78 .94 .78 .81 200 227 .94

a) 251 .77 .81 .87 .85 b) 250 251 .85
307 .77 .68 .79 .77 300 307 .82
349 .79 .75 .81 .74 350 353 .70
401 .80 .78 .78 .85 400 401 .87
449 .78 .85 .80 .76 450 457 .86
503 .75 .84 .79 .77 500 503 .88

.77 .79 .81 .82 .81

Figure 5: a) Rates of solvability for various m and n, with n prime, and
b) for various non-prime n with p the least prime greater than n.

test it. Instead of generating random keys, and then pseudo-random values
from them, we simulated keys by directly generating random values of h0 (ki),
h1(ki). .. hm-i(ki)· Generating random values from random values seems to
be unnecessary. We find that, indeed, larger values of m result in a higher
incidence of solvability. By increasing m, it is possible to find OMPHFs with
ratios approaching 1. Form= 2, our results confirm those of Fox et al-with
a ratio of 2.40, about 77% of the cases are solved. For m = 3, a much lower
ratio may be used. We note that, with a ratio of 1.10, an OMPHF is found
about 79% of the time. Further, for m = 4, a ratio of 1.03 suffices to find
an OMPHF in 81 % of the cases and, for m = 5, a ratio of 1.01 is sufficient
in 82% of the cases. Our data indicates that the ratio required to achieve a
given success rate is invariant. We find that performance does not degrade
when p > n. The results of our Monte Carlo study appear in Figure 5. For
each n and m, 100 cases were tried.

We were also able to create OMPHFs for several real key sets, including a
set of 557 words drawn from the Unix online dictionary. For these OMPHFs,
we use pseudo-random functions as described in [7].

8

5 Conclusions

The method we present has a higher time complexity than algorithm FHDC.
However, it has several advantages:

1. It is conceptually elegant.

2. For small sets, implementation costs may be more significant than time
complexity. Our method may be implemented using pre-existing math­
ematical library routines.

3. By using higher values of m, OMPHFs may be found with ratios ap­
proaching 1, the theoretical lower bound. Our method uses approx­
imately 10% less space to store generated functions than algorithm
FHDC, with m = 4.

References

[1] CHANG, C. C. On the design of letter oriented minimal perfect hashing
functions. Journal of the Chinese Institute of Engineers 8, 3 (1985), 285-
297.

[2] CHANG, C. C., AND LEE, R. T. C. A letter oriented minimal perfect
hashing scheme. The Computer Journal 29, 3 (1986), 277-281.

[3] CICHELLI, R. J. Minimal perfect hash functions made simple. Commu­
nications of the ACM 23, 1 (Jan 1980), 17-19.

[4] Fox, E. A., CHEN, Q., DAOUD, A. M., AND HEATH, L. S. Order
preserving minimal perfect hash functions and information retrieval. In
Proceeding of the 13th Annual ACM Conference on Research and Devel­
opment of Information Retrieval (1989), pp. 279-311.

[5] Fox, E. A., CHEN, Q., DAOUD, A. M., AND HEATH, L. S. Order pre­
serving minimal perfect hash functions and information retrieval. A CM
Transactions on Information Systems 9, 3 (Jul 1991), 281-308.

[6] Fox, E. A., CHEN, Q., HEATH, L. S., AND DATTA, S. A more
cost effective algorithm for finding minimal perfect hashing functions. In

9

Computing Trends in the 90's: 17th ACM Computer Science Conference
(1989), pp. 114-122.

[7] Fox, E. A., HEATH, L. S., DAOUD, A. M., AND CHEN, Q. Practical
minimal perfect hash functions for large databases. Communications of
the ACM 35, 1 (Jan 1992), 105-121.

[8] GORI, M., AND SODA, G. An algebraic approach to Cichelli's perfect
hashing. BIT 29, 1 (1989), 2-13.

[9] SAGER, T. J. A polynomial time generator for minimal perfect hash
functions. Communications of the ACM 28, 5 (May 1985), 523-532.

10

