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Abstract 

An ordered minimal perfect hash table is one in which no collisions 
occur among a predefined set of keys, no space is unused, and the data 
are placed in the table in order. A new method for creating ordered 
minimal perfect hashing functions is presented. The method presented 
is based on a method developed by Fox, Heath, Daoud, and Chen, 
but it creates hash functions with representation space requirements 
closer to the theoretical lower bound. The method presented requires 
approximately 10% less space to represent generated hash functions, 
and is easier to implement than Fo:;ic et al's. However, a higher time 
complexity makes it practical for small sets only ( < 1000). 

Keywords: Data Structures, Hashing 

1 Introduction 

A hash table is a data structure in which a number of keyed items are stored. 
To access an item with a given key, a hashing function is used. The hashing 
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function maps from the set of keys, to the set of locations of the table. If 
more than one key maps to a given location, a collision occurs, and some 
collision resolution policy must be followed. On the average, locating an 
item in a hash table takes 0(1) time. Hash tables are used in a wide range 
of applications. They are quite popular due to their low average access time. 

If the set of keys is predetermined, then we may attempt to create a 
hash table where no collisions occur, i.e., no two keys map to the same 
location. Such a hash table is called a perfect hash table, and its associated 
hashing function a perfect hashing function (PHF). Furthermore, we could 
create a table with the minimal number of locations, exactly one location per 
key. Such a table is called a minimal perfect hash table, and the associated 
minimal perfect hashing function (MPHF) is a bijection, from the set of keys 
onto the set of table locations. If all of the aforementioned conditions are 
met, and the keys are placed in order, then the function is called an ordered 
minimal perfect hash function (OMPHF). 

OMPHFs are highly useful. Applications where a set of predefined keys 
need to be recognized abound. For instance, most programming languages 
have a fixed set of keywords. Compiler and interpreter performance could 
be improved, if we could decrease keyword recognition time. Another appli­
cation which could benefit from OMPHFs is database retrieval. Slow access 
time media, such as CD ROM, demand a high performance method for lo­
cating records. 

OMPHFs allow the hash table to be stored in the minimal number of 
locations, n locations are required for n keys. However, different methods re­
quire varying amounts of space to represent the hash function. The resources 
(principally execution time) required to determine an OMPHF will also vary 
with the method. 

We describe a method, due to Fox et al, for determining OMPHFs which 
is quite efficient in representation space and execution time requirements. We 
then reformulate this method, so that we may improve on the space repre­
sentation requirements. The result is a method which is easier to implement 
and requires less space for applicative use, but entails a greater initial time 
requirement and approximately the same access time requirement. 
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2 Fox et al's Method 

Fox, Heath, Daoud and Chen [4, 5] have proposed a system for finding or­
dered minimal perfect hashing functions. Empirical data indicates that their 
method can find an OMPHF in O(n) expected time. As we shall see, their 
algorithm is analogous to solving a linear algebraic system over a finite field. 
This view of the problem provides us with an elegant alternative method of 
solution. 

Fox et al's algorithm (henceforth referred to as algorithm FHDC) gener­
ates hashing functions of the form: 

(1) 

where: 

1. The value ki is a member of the predefined key set K = { k1 , k2 ••• kn}, 
and n is the number of keys. 

2. The function h0 is a pseudo-random function from K to the integral 
range [O: n - l]. 

3. Function h1 is a pseudo-random function from K to [O : r - 1], where 
r is a user-defined parameter. Typically, the ratio (defined below) 
determines r to be a little more than n/2. 

4. Function h2 is a pseudo-random function from K to [r : 2r - 1]. 

5. Function g is a mapping from [O :. 2r - 1] to the [O : n - 1]. 

The goal of algorithm FHDC is to determine the mapping g. Fox et al have 
shown that the theoretical lower bound on the number of bits to represent 
an OMPHF is nlog2 n [4]. In the case of algorithm FHDC, the cardinality 
of the domain of g governs the amount of space required to represent the 
OMPHF. The number of values in the domain of g is s = 2r, and each value 
in the range of g is in [O : n - 1]. The number of possible mappings is n 8

• 

Therefore, representing·g requires at least log2 (n8
) = s log2 n bits. Sos must 

be at least n. Fox et al refer to the value s/n as the ratio of an OMPHF. 
Using functions of the form (1), and ratios of approximately 2.4, Fox et al 
are able to find OMPHFs with reasonable probability. 
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The use of pseudo-random functions (originated by Sager [9]) gives al­
gorithm FHDC a distinct advantage over other OMPHF methods [1, 2]. If 
algorithm FHDC fails, different pseudo-random functions can be tried un­
til hashing succeeds. Several types of pseudo-random functions have been 
suggested [6, 4, 5, 7]. Fox et al claim that the probability of failure is low 
and, therefore, that the probability of not finding an OMPHF after the first 
few attempts is negligible. (They assume that the pseudo-random values 
generated are independent of the keys.) 

Fox et al also present a more space efficient method, which uses functions 
of the form: 

(2) 

where: 

a(ki) - g(ho(ki) + g(h1(ki)) + g(h2(ki))) mod 2r 

/3(ki) ho(ki) + g(h1(ki)) + g(h2(ki)) mod n 

b is a Boolean function on the domain [O : 2r - 1], and g is a mapping as 
previously described. The functions band g are determined by the algorithm. 
Using functions of form (2), the lowest ratio which Fox et al achieve is 1.13. 
Our method allows ratios much closer to one. 

3 A Reformulation 

Gori and Soda [8] were able to reformulate the minimal perfect hashing tech­
nique of Cichelli [3] in terms of linear algebra. They showed how Cichelli's 
algorithm is analogous to solving a set of simultaneous linear equations over 
the field R (the real numbers). Similarly, an OMPHF of the form (1) can 
be found by solving of a set of simultaneous equations, if n is prime. These 
simultaneous equations are not over R, but over the finite field Zn (the field 
of integers modulo n ). The fact that n is prime is fundamental, because Zn 
is a field if and only if n is prime. We define the following: 

ai - ho(ki) 
b.. { 1 if (h1(ki) = j) v (h2(ki) = j) 

i,J 0 otherwise 
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Suppose n is prime and 2r 2'.: n. Consider the following set of equations: 

0 gob1,1 + 91b1,2 + · · · + 92r-1b1,2r-l +al 

1 gob2,1 + 91b2,2 + · · · + 92r-1b2,2r-l + a2 

2 gob3,1 + 91b3,2 + · · · + 92r-1b3,2r-1 + a3 

n - 1 - gobn,1 + 91 bn,2 + ... + 92r-1 bn,2r-1 + an 

This system can be rewritten as: 

where fI is a column vector defined by hi = i-l-ai, Bis an x 2r matrix with 
entries bi,j as previously defined, and G is the vector to be solved for. The 
variables g0 , g1 ••• g2r-1 correspond exactly to the values g(O), g(l) ... g(2r-
1) determined by algorithm FHDC. This system is solvable over Zn, if B has 
rank n. That is, if the rows of B generate Z~ (the n dimensional vector space 
over Zn)· If this is the case, the keys may be hashed in any a priori order. 
Row reduction, for example, is one of the methods for finding a solution. We 
can solve this system in worst case time of O(n3

). 

The average time complexity of the method we propose is greater than 
that of algorithm FHDC. However, our method may be easier to implement. 
For small sets of keys (n < 1000), implementation cost may be more impor­
tant than running time. It is likely that mathematical software libraries exist 
which allow for the rapid implementation of our method. 

4 A New Method 

The reformulation we described in the previous section can be improved in 
several ways. The effect of ho is to create random entries for if. This function 
plays no role in whether B has rank n, therefore, ho would be better utilized 
if it contributed to the rank of B. This is facilitated by replacing h0 (ki) 
with g( h0 (ki)), thereby increasing the average number of non-zero entri~s in 
each row of B. The average can also be increased by using a greater number, 
m, of pseudo-random functions. Secondly, empirical data indicates that it 
makes little difference that h1 and h2 map to disjoint ranges. We let all 
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i kj ho(ki) h1 (ki) h2( ki) h3(ki) h(ki) = "Eig(hj(ki)) mod p 
1 'january' 2 4 4 10 0 = 3 + 2 + 2 + 6 mod 13 
2 'february' 3 4 5 9 1 = 4 + 2 + 4 + 4 mod 13 
3 'march' 0 2 2 7 2 = 1 + 3 + 3 + 8 mod 13 
4 'april' 2 3 6 9 3 = 3 + 4 + 5 + 4 mod 13 
5 'may' 1 1 2 6 4 = 11 + 11 + 3 + 5 mod 13 
6 'june' 3 3 4 7 5 = 4 + 4 + 2 + 8 mod 13 
7 'july' 2 5 7 9 6 = 3 + 4 + 8 + 4 mod 13 
8 'august' 2 9 11 11 7 = 3 + 4 + 0 + 0 mod 13 
9 'september' 1 2 7 8 8 = 11 + 3 + 8 + 12 mod 13 
10 'october' 0 0 0 10 9 = 1 + 1 + 1 + 6 mod 13 
11 'november' 0 1 6 10 10 = 1+11+5 + 6 mod 13 
12 'december' 7 9 10 10 11 = 8 + 4 + 6 + 6 mod 13 

Figure 1: Values of h0 ••• h3 and h, for the set of months (See Figure 4 for 
values of g ). 

pseudo-random functions map to [O : s - l]. Thirdly, if n is not prime, we 
pick a prime p > n and use p as the modulo. In summary, the functions we 
propose have the form: 

h(k;) = ('E. g(h;(k;))) modp (3) 

where each hj is a pseudo-random function mapping from K to [O : s - 1], g 
is a mapping from [O : s - 1] to [O : p - 1], and p is the least prime p 2::: n. 
We redefine B. The value of an entry, bi,j, is the number of the values h0 (ki), 
h1 ( ki) ... hm-l ( ki) which are equal to j. We define fI by hi = i - 1 (So that 
the values [n: p-1] are excluded from the image of h). The resulting linear 
system is solved as before. A small example is presented in Figures 1-4. An 
OMPHF is created for the months of the year, using four pseudo-random 
functions (m = 4). Since n = 12 is not prime, we let p = 13. The values 
of h0 ••• h3 are displayed in Figure 1. The matrix B augmented by fI is 
displayed in Figure 2, the row reduced matrix in Figure 3. The values of g 
appear in Figure 4. In this case, we are able to find an OMPHF with a ratio 
of 1. 

We implemented our method in C, and used Monte Carlo methods to 
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0 0 1 0 2 0 0 0 0 0 1 0 0 
0 0 0 1 1 1 0 0 0 1 0 0 1 
1 0 2 0 0 0 0 1 0 0 0 0 2 
0 0 1 1 0 0 1 0 0 1 0 0 3 
0 2 1 0 0 0 1 0 0 0 0 0 4 
0 0 0 2 1 0 0 1 0 0 0 0 5 
0 0 1 0 0 1 0 1 0 1 0 0 6 
0 0 1 0 0 0 0 0 0 1 0 2 7 
0 1 1 0 0 0 0 1 1 0 0 0 8 
3 0 0 0 0 0 0 0 0 0 1 0 9 
1 1 0 0 0 0 1 0 0 0 1 0 10 
0 0 0 0 0 0 0 1 0 1 2 0 11 

Figure 2: The matrix (BIH) for the set of month names (over Z13). 

1 0 0 0 0 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 0 0 0 0 11 
0 0 1 0 0 0 0 0 0 0 0 0 3 
0 0 0 1 0 0 0 0 0 0 0 0 4 
0 0 0 0 1 0 0 0 0 0 0 0 2 
0 0 0 0 0 1 0 0 0 0 0 0 4 
0 0 0 0 0 0 1 0 0 0 0 0 5 
0 0 0 0 0 0 0 1 0 0 0 0 8 
0 0 0 0 0 0 0 0 1 0 0 0 12 
0 0 0 0 0 0 0 0 0 1 0 0 4 
0 0 0 0 0 0 0 0 0 0 1 0 6 
0 0 0 0 0 0 0 0 0 0 0 1 0 

Figure 3: Row reduced matrix for the months. 

i 0 1 2 3 4 5 6 7 8 9 10 11 

g(i) 1 11 3 4 2 4 5 8 12 4 6 0 

Figure 4: Values of g. 

7 



n m, s/n m = 3, s/n = 1.10 
2, 2.40 3, 1.10 4, 1.03 5, 1.01 n p Solved 

53 .83 .67 .84 .93 50 53 .60 
101 .73 .80 .84 .82 100 101 .84 
151 .72 .74 .82 .86 150 151 .73 
199 .78 .94 .78 .81 200 227 .94 

a) 251 .77 .81 .87 .85 b) 250 251 .85 
307 .77 .68 .79 .77 300 307 .82 
349 .79 .75 .81 .74 350 353 .70 
401 .80 .78 .78 .85 400 401 .87 
449 .78 .85 .80 .76 450 457 .86 
503 .75 .84 .79 .77 500 503 .88 

.77 .79 .81 .82 .81 

Figure 5: a) Rates of solvability for various m and n, with n prime, and 
b) for various non-prime n with p the least prime greater than n. 

test it. Instead of generating random keys, and then pseudo-random values 
from them, we simulated keys by directly generating random values of h0 (ki), 
h1(ki). .. hm-i(ki)· Generating random values from random values seems to 
be unnecessary. We find that, indeed, larger values of m result in a higher 
incidence of solvability. By increasing m, it is possible to find OMPHFs with 
ratios approaching 1. Form= 2, our results confirm those of Fox et al-with 
a ratio of 2.40, about 77% of the cases are solved. For m = 3, a much lower 
ratio may be used. We note that, with a ratio of 1.10, an OMPHF is found 
about 79% of the time. Further, for m = 4, a ratio of 1.03 suffices to find 
an OMPHF in 81 % of the cases and, for m = 5, a ratio of 1.01 is sufficient 
in 82% of the cases. Our data indicates that the ratio required to achieve a 
given success rate is invariant. We find that performance does not degrade 
when p > n. The results of our Monte Carlo study appear in Figure 5. For 
each n and m, 100 cases were tried. 

We were also able to create OMPHFs for several real key sets, including a 
set of 557 words drawn from the Unix online dictionary. For these OMPHFs, 
we use pseudo-random functions as described in [7]. 
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5 Conclusions 

The method we present has a higher time complexity than algorithm FHDC. 
However, it has several advantages: 

1. It is conceptually elegant. 

2. For small sets, implementation costs may be more significant than time 
complexity. Our method may be implemented using pre-existing math­
ematical library routines. 

3. By using higher values of m, OMPHFs may be found with ratios ap­
proaching 1, the theoretical lower bound. Our method uses approx­
imately 10% less space to store generated functions than algorithm 
FHDC, with m = 4. 
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