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From Cognitive Maps to Cognitive Graphs
Elizabeth R. Chrastil1,2*, William H. Warren1

1 Brown University, Cognitive, Linguistic, & Psychological Sciences, Providence, Rhode Island, United States of America, 2 Boston University, Department of Psychological

and Brain Sciences, Center for Memory and Brain, Boston, Massachusetts, United States of America

Abstract

We investigate the structure of spatial knowledge that spontaneously develops during free exploration of a novel
environment. We present evidence that this structure is similar to a labeled graph: a network of topological connections
between places, labeled with local metric information. In contrast to route knowledge, we find that the most frequent
routes and detours to target locations had not been traveled during learning. Contrary to purely topological knowledge,
participants typically traveled the shortest metric distance to a target, rather than topologically equivalent but longer paths.
The results are consistent with the proposal that people learn a labeled graph of their environment.
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Introduction

Imagine that you have arrived in a new city, and have spent a

few hours wandering around the downtown. Now back at your

hotel, you need some coffee. You remember seeing a coffee shop

midway through your wanderings, but following your original

route, with all its twists and turns, would be inefficient. You might

not know the exact direction and distance of the coffee shop, but if

you learned the network of streets, you could take a shorter path to

your caffeine destination, even though you had not traveled that

exact route before. Your knowledge of the network of streets,

including places where they intersect, can be characterized as a

graph of the downtown.

Several possible forms of spatial knowledge may underlie

human navigation [1]. Routes are series of place-action associa-

tions, detailing a sequence of turns at each recognizable place.

Survey knowledge (Figure 1c) is configural map-like knowledge of

environmental locations, including the metric distances and

directions between them. A cognitive map is commonly thought

of as globally consistent survey knowledge with a common

coordinate system, also known as a global metric embedding [2].

Such a Euclidean cognitive map might be built up by path

integration during spatial learning [3,4], and it would enable direct

shortcuts between known locations.

What we will call graph knowledge is situated between route and

survey knowledge. A purely topological graph of an environment

(Figure 1a) consists of a network of place nodes (identifiable places,

including junctions) linked by path edges (traversable paths

between nodes) [5]. Thus, graph knowledge would express the

known connectivity of the environment [6–11], enabling novel

detours. In contrast, route knowledge does not accommodate

multiple paths intersecting at a junction or multiple connections

between the same locations, making detours difficult. On the other

hand, survey knowledge contains metric information about

distances and directions between environmental locations, allow-

ing novel shortcuts [3].

A number of studies have cast doubt on a globally consistent

Euclidean cognitive map [6,12–16]. For example, distance

estimates between locations frequently violate Euclidean axioms

[15,17–21], and the addition of turns [6,22], intersections [23], or

barriers [14] can increase the subjective distance of a route. A

labeled graph (Figure 1b) can incorporate local metric information

about distances between known places (edge weights) and/or

angles between known paths (node labels), without being globally

consistent. This local metric information might be coarser than

survey knowledge, and may incorporate biases such as regularizing

angles to 90u. Such augmented graph knowledge would be

advantageous for finding efficient routes and detours, and would

permit approximate shortcuts via local integration of information,

without the complications of creating a global metric embedding

necessary for survey knowledge.

The three basic forms of spatial knowledge described here—

survey, graph, and route—form a hierarchy, in which the each

level of the hierarchy encompasses the levels below it. Thus, if a

navigator has complete survey knowledge, they also have access to

graph and route information. Likewise, graph knowledge implies

route information. Although all three levels of spatial knowledge

may coexist, we propose that human navigation relies primarily on

knowledge that can be characterized by a labeled graph.

Recently, we tested survey knowledge acquired during free

exploration of a virtual hedge maze environment [24]. We probed

survey knowledge using a novel shortcut task in which participants

were asked to walk from the start object to the target object on a

straight-line path. Accurate shortcuts depended on survey

knowledge of the metric distances and directions between learned

locations. But half of the participants were near chance (90u) and

mean absolute shortcut errors were large, around 70u. A few

participants may have learned approximate survey knowledge
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(12% had absolute errors around 20u), but there is little indication

that this is the primary form of spatial knowledge acquired.

The aim of the present study is to experimentally distinguish

route, graph, and labeled graph knowledge, using the same hedge

maze environment. Although this experiment does not test survey

knowledge, the results of our previous study, together with other

evidence that spatial knowledge is not metrically Euclidean, imply

that the underlying structure of spatial knowledge is likely to lie at

a lower level in the hierarchy. Thus, our focus here is to distinguish

graph knowledge from route knowledge, and a labeled graph from

a purely topological graph. To achieve these aims, we recorded the

routes participants travelled as they learned the maze, and then

analyzed the direct paths or novel detours they took between

learned locations. In the exploration phase, participants freely

walked in the virtual environment to learn the locations of eight

objects (Figure 2). In the test phase, their spatial knowledge was

probed by starting participants at one of the objects, and asking

them to walk through the hallways of the maze to a target object,

taking the shortest route possible. Test trials included forced

detours on nearly half the trials.

By comparing the paths traveled during the exploration and test

phases, we are able to test the hypothesis that spatial knowledge is

comprised of previously learned routes. Pure route knowledge

predicts that the paths taken during test would have been

previously traveled during exploration; significant use of novel

paths would implicate more complex spatial knowledge, such as

graph knowledge. We next distinguish labeled graph from

topological graph knowledge by analyzing the path lengths during

test. Labeled graph knowledge predicts that participants would

select metrically shorter routes over topologically equivalent routes

that have the same number of nodes but are metrically longer. In

contrast, pure (unlabeled) graph knowledge predicts no preference

in path selection between topological isomers. Our results indicate

that the underlying structure of human spatial knowledge is

consistent with a labeled graph.

Methods

Participants
34 volunteers (17 female) participated in the experiment and

were paid for their time. One participant withdrew due to

symptoms of simulator sickness, and one was excluded because

they failed to find all of the objects during exploration. Sample size

was determined by a power analysis to provide statistical power of

0.8, for an effect size of 0.5 and a= 0.05. All participants read and

signed forms indicating their informed consent to participate in the

experiment; this protocol was approved by the Brown University

IRB (Protocol #0002990025).

Equipment
The experiment was conducted in the VENLab, a 12 m614 m

ambulatory virtual reality facility (Figure 2b). Participants freely

walked around the laboratory while wearing a head-mounted

display (HMD) to view the virtual environment. Images were

presented to participants in a Rockwell-Collins SR80A HMD

(Cedar Rapids, IA) (63o H653o V field of view, 128061024 pixels,

60 Hz frame rate). Head position and orientation were recorded

using an InterSense IS900 (Billerica, MA) tracking system (50 ms

latency, 60 Hz sampling rate, 1.5 mm RMS and 0.1u RMS

accuracy). Participants responded by walking to target locations

and pressing a button on a radio mouse. Images were generated on

a Dell XPS graphics PC (Round Rock, TX) using Vizard software

(WorldViz, Santa Barbara, CA) to render the images. Naturalistic

evening sounds were presented over headphones to mask any

auditory location or orientation cues.

Environment
The 11 m612 m virtual maze environment (Figure 2a,c)

contained eight objects located in the terminal segment of branch

hallways, so they were not visible from the main corridors. They

were models of common objects, such as a sink or bookcase, scaled

to be easily visible at eye level. In addition, four landmarks –

familiar paintings by Monet, Dali, Magritte, van Gogh –appeared

in constant locations on the walls of the maze in several main

corridors, to aid orientation. The ground in each corridor was a

gravel texture with a brown earthen and green grassy border.

Figure 1. Illustration of three levels of spatial knowledge. a)
Graph knowledge: purely topological graph of a network of place
nodes (identifiable places, including junctions) linked by path edges
(traversable paths between nodes), expressing the known connectivity
of the environment. b) Labeled graph: incorporates local metric
information about distances between known places (edge weights)
and/or angles between known paths (node labels). Note that the
topological structure of the connections between nodes is the same for
a) and b). In the labeled graph, metric information may be coarse,
contain biases, and is not globally consistent. c) Survey knowledge:
configural map-like knowledge of environmental locations. Metric
information is quite accurate and consistent throughout the region,
embedded in a common coordinate system.
doi:10.1371/journal.pone.0112544.g001
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Procedure
Participants were informed that they would be traveling through

hallways in a virtual hedge maze, and that the task was to find all

of the objects and learn their locations. The virtual eye height

corresponded to actual eye height of participants as measured by

the head tracker.

Practice. Participants were given several minutes in a

practice maze with a different layout from the test maze and

which contained objects not used during the experiment, sufficient

to correct the depth underestimation common in head-mounted

displays [25].

Learning Phase. In the learning phase, participants were

informed they would explore the environment for 10 minutes,

during which time they should try to find all of the objects and

learn their locations. They were guided to one of six start locations,

and the experimental maze appeared. Participants explored the

virtual environment by walking freely, providing them with

normal visual, motor/proprioceptive, and vestibular information

as well as the ability to make decisions during exploration.

Test Phase. Graph knowledge was tested using a shortest

route task, in which the participant walked through the corridors

of the maze from a starting object to the remembered location of a

target object by the shortest route possible. Prerecorded instruc-

tions were presented to the participants over the headphones, and

then repeated by the experimenter. Each trial began by wheeling

the participant in a desert environment to the entrance of the

branch hallway (where the branch hallway met the main hallway)

containing the start object for that trial, approximately 1 meter

from the object; the participant clicked the mouse, whereupon the

maze and start object appeared. There were thus 8 start locations

during the test phase. This procedure allowed participants to

orient themselves while preventing more spatial learning during

the test phase. The participant was instructed to walk to the start

object, at which point the target object was named over the

headphones, and they were given 30 seconds to reach the target

location. Once the target was named, all objects, including the

start and target objects, were replaced with red blocks during the

remainder of the trial to avoid providing feedback and to ensure

that participants did not simply search until they found the target;

the four landmark paintings remained visible during the task. The

trial ended when the participant clicked the mouse to indicate that

they thought they had reached the target location, or 30 seconds

Figure 2. Virtual hedge maze. a) Overhead view of the maze, which participants never saw. Eight target objects (blue circles) and 4 landmark
paintings (red rectangles) were placed in the maze. This figure shows an example of one of the object pairs: a direct trial from the sink (top) to the
bookcase (bottom), illustrating the shortest path (solid black line), a topologically equivalent but longer path (dashed orange line), and a path that is
both topologically and metrically longer (dotted purple line). Nodes in the paths are indicated by black circles. Thick black arrows indicate that all
alternative paths started from the same location next to the sink, and ended by going into the branch hallway of the bookcase. b) View of the
VENLab. c) View of landmark inside the maze. d) View of the barrier on a detour trial.
doi:10.1371/journal.pone.0112544.g002
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elapsed. The maze then disappeared, and the experimenter

wheeled the participant to the starting location of the next trial,

taking a circuitous route to prevent participants from learning

more about object locations between trials. Position and orienta-

tion were recorded throughout the trial, with the location of the

final mouse click serving as the endpoint for the trial.

Participants completed two practice trials on object pairs not

used during the test phase, followed by 40 test trials. Crucially,

40% of the test trials were ‘‘detour’’ trials, in which one of the

shortest paths was blocked with a barrier, and participants were

instructed to find a novel route to the desired object (Figure 2d).

Because the barrier often required additional time and distance to

travel around it, participants were given 15 additional seconds on

detour trials, although they were not informed of the additional

time. There were 8 pairs of starting and target objects, with 5 trials

each; 3 of them were direct trials and 2 were detour trials. All trials

were presented in a random order with the exception that an

object pair did not repeat back-to-back.

Follow-up tests. Finally, individual differences in spatial

ability could affect the navigational strategies used in this task [26].

Participants performed several standard tests of spatial ability.

First, they completed (a) the Santa Barbara Sense of Direction

Scale (SBSOD), in which lower scores indicate better sense of

direction [27]. They also filled out (b) a questionnaire including

report of current and past video game use, which has been shown

to be a factor in virtual navigation [28]. They completed (c) the

Road Map Test (RMT) [29,30], in which participants report the

direction of each turn (left or right) in a route drawn on a city map,

modified to have a 20-second time limit. Finally, participants were

given (d) the Perspective-Taking Test (PTSOT) [31], in which they

view a 2D array of objects on a page, and indicate their directions

from different imagined viewpoints. The Road Map Test and

Perspective-Taking Tests gauge a navigator’s ability to process

location and direction information from different perspectives,

which could be important for acquiring graph knowledge during

exploration or for orienting within the maze during the test phase.

Analysis
Analysis was performed using MatLab (MathWorks), and SPSS

(IBM) software. The proportion of correct target locations was the

primary dependent measure, where a trial was considered correct

if the participant ended the trial anywhere in the branch hallway

of the target object. In addition to the overall proportion correct,

direct and detour trials were examined separately, using a within-

subjects design where appropriate. The chance level for propor-

tion correct was defined as ending a trial at the location of any of

the 8 target objects, or 1/8 = 0.125.

Paths were analyzed using a set of invisible portals placed at all

decision points in the maze, which recorded when a participant

crossed between different hallway sections. This setup allowed for

direct comparison between a series of portals traveled on a test

trial and a specified series of portals (e.g. the shortest path or a

detour), or a sequence of portals during the learning phase. Most

analysis was performed only on correct trials. We first analyzed

paths for reliance on route knowledge during the test phase. Pure

route knowledge predicts that the path used during test would

match one of the routes taken during exploration, with no novel

paths. If the sequence on a test trial matched any sequence from

the learning phase, in either the forward or backward direction, it

was counted as a match, and thus indicated that participants relied

on familiar routes during the test phase.

We next examined whether participants took the shortest path

to the target. The labeled graph hypothesis predicts that the

shortest path will be taken more frequently than other alternatives.

The (unlabeled) topological graph hypothesis predicts that the

path with the fewest number of nodes will be selected, without

consideration of path length. For direct trials, if two paths were

equally long (e.g. traveling either direction around a rectangular

loop), they were both counted as the shortest path. For detour

trials, a path counted as the shortest only if the participant started

on the normally shortest path to the target before encountering the

barrier, and then took the shortest detour from that point.

Alternative paths with the same number of nodes in the graph

(topologically equivalent but longer distance) were analyzed in a

similar manner. Bends in a hallway that were not choice points

(e.g. the elbow turn in upper right corner of maze, Figure 1a) were

not counted as nodes, since there was only a direction change. If

there were multiple topologically equivalent alternative paths, they

were treated as one alternative path, providing a more stringent

test. The proportion of trials in which the shortest path was taken

was compared to the proportion of trials in which any alternative

path was taken, using paired t-tests. Participants who did not have

any correct trials on the object pairs in question were not included

in the t-tests.

Finally, to investigate the factors that made some object pairs

more difficult than others, we computed Pearson correlations

between the proportion correct on each pair and (a) the path

length between the start and target object, (b) the number of edges

in the graph between the objects, (c) the Euclidean distance

between the objects, (d) the number of turns between the objects

(including turns that were not choice points), (e) the number of

times participants took the same route between objects during

exploration, and (f) the number of times participants visited the

target object during exploration.

In addition to the navigation and exploration measures, we

examined the relationship between performance and spatial

ability. We computed Pearson correlations between the four

spatial abilities tests and the following three outcome measures: (1)

the proportion of correct trials (direct and detour), (2) the

proportion of trials in which the participant took a novel route

(direct and detour), (3) the proportion of trials in which the shortest

path was taken to the target (direct and detour).

Results

Overall, participants successfully reached the target within the

time limit on 53.3% (SD = 31.2) of ‘‘direct’’ trials and 59.8%

(SD = 28.6) of ‘‘detour’’ trials, both far above the chance level of

12.5% (direct: t31 = 7.401, p,0.001, Cohen’s d = 1.308; detour:

t31 = 9.339, p,0.001, Cohen’s d = 1.651). While the error rate

may appear high, we note that many of the errors were due to 4

participants who performed at chance; the other participants were

successful on 59.7% of direct trials and 66.3% of detour trials. To

test whether participants acquired graph knowledge of the maze,

rather than simply route knowledge, we compared the paths taken

during the test phase with the routes traveled during exploration.

Pure route knowledge would only enable participants to use

familiar routes to reach the target object, which they had

previously traversed during exploration, and thus predicts that

no novel routes would be taken on test trials. On successful trials,

62.6% of the direct routes were novel, and fully 90.1% of detour

trials were novel (see Figure 3). One-sample t-tests confirmed that

the proportion of novel routes was greater than 0 for both direct

(t31 = 15.710, p,0.001, Cohen’s d = 2.777) and detour trials

(t31 = 44.786, p,0.001, Cohen’s d = 7.917) (Figure 4). These

findings suggest that when participants learned the spatial layout

of the maze, they did not simply acquire knowledge of specific

routes between locations in the maze, but instead learned a graph

Cognitive Graphs
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of connections between places, which could be recombined in

order to generate novel paths and detours.

For incorrect trials, a novel route was taken on 73.0% of direct

trials, which did not differ significantly from correct direct trials

(t30 = 21.553, p = 0.131) (Figure 4). In contrast, for incorrect

detour trials, the proportion of novel routes, 71.7%, was

significantly lower than on correct detour trials (t25 = 3.407,

p = 0.002). This result suggests that when faced with a detour,

participants who reverted to familiar routes were less successful

than those who generated a novel path to the target location.

We observed that particular ‘‘foils’’ were often selected instead

of the correct target, providing insight into unsuccessful naviga-

tion. The most common navigational confusion occurred between

the gear/snowman group and the rabbit/well group, which had

similar branch hallway shapes and relationships within the graph.

On trials starting at the snowman with the rabbit as the target,

participants selected the gear on a large percentage of trials, likely

based on the shape of the branch hallway, without ever entering

the main hallways. Most of the foils either had similar branch

hallway shapes or were near each other, such as the sink and the

earth. Including the most common foil in addition to the correct

target accounts for 69.6% of direct trials and 77.0% of detour

trials; these numbers increase to 74.7% and 84.5%, respectively,

when the two most common foils are included. Thus, participant

errors were fairly predictable, and suggest that visually similar

target branch hallways are sometimes misassigned to the wrong

nodes in the graph structure.

We next tested whether the graph knowledge acquired by

participants was consistent with a labeled graph, such that some

local metric information was also learned. We examined the

number of trials in which participants took the shortest available

path to the target object. On successful trials, participants took the

shortest path on 64.3% of the direct trials, and 73.3% of detour

trials. We compared these proportions against chance, defined by

the number of alternative paths that could result in successfully

reaching the target without doubling back, repeated segments, or

self-intersection. Participants took the shortest path more often

than expected by chance in both direct (t31 = 9.592, p,0.001,

Cohen’s d = 1.696) and detour (t31 = 12.563, p,0.001, Cohen’s

Figure 3. Novel routes taken during test. An example of a trial starting at the sink (S) and ending at the bookcase (B). a) All paths taken by a
representative participant during the 10-minute exploration. b) Those exploration paths that start either from the sink (green, purple) or from the
bookcase (orange, blue). c) A novel detour taken during test. The participant never traveled on that path or the reverse path during exploration.
doi:10.1371/journal.pone.0112544.g003
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d = 2.221) trials. This result clearly suggests that information about

path length was used to select the path to the target.

However, there are at least two possible measures of path

length, which are highly correlated: metric distance, the path

length measured in meters, and topological distance, the number of

nodes or edges on the path. To compare a topological graph with

a labeled graph, we examined cases in which there were

alternative paths between the start and target objects that

possessed the same number of nodes as the shortest metric path.

If participants took the shortest metric path more often than

alternative paths having the same topological length, then this

result would strongly imply some metric knowledge. Of the 8

object pairs, 2 had at least one alternative path with equivalent

topological length on direct trials, and 3 others had such

alternative paths on detour trials. On all five of these pairs,

participants took the shortest metric path more often than they

took all of the topologically equivalent paths combined (Table 1).

Overall, they took the shortest path on 63.0% of correct trials, and

the topologically equivalent path on 21.6% of correct trials for

these pairs. On 3 of the 5 pairs, the shortest path was taken

significantly more often than the equivalent alternatives (p,0.01

or better). A fourth pair was marginally significant, while the fifth

pair was not statistically different from its two alternatives.

Furthermore, for the marginal pair (pair number 4, direct) the

alternative paths had fewer total turns and nodes than the

metrically shortest path, yet participants took the shortest path

more often. In addition, the number of participants who took these

shortest paths at least once ranged from 37.5–50% of the total.

These findings imply that participants were sensitive to metric

distance information, corresponding to edge weights in a labeled

graph.

We also observed that some object pairs were more difficult

than others, with success on direct trials ranging from 41% to

71%. We examined the correlation between percent success on the

8 pairs and several measures of the relationship between the start

and target objects that might affect difficulty. Of these potential

factors, only the number of turns between the objects (including

turns that were not at choice points) correlated significantly (r6 = 2

0.847, p = 0.008); whereas the Euclidean distance between them,

the metric and topological path lengths, and route familiarity from

Figure 4. Percentage of trials in which a novel path was taken. Route knowledge predicts that none of the paths would be novel. Error bars
indicate standard error of the mean. *** indicates p,0.001, 1-sample t-test with 0.
doi:10.1371/journal.pone.0112544.g004

Table 1. Proportion of correct trials in which participants took the shortest path compared with alternatives with an equal number
of nodes in the graph.

Object pair (direct/
detour) (# of alternatives)

Proportion Taking
Shortest Path

Proportion Taking Any
Topologically Equal Alternative

N (# of participants who took
the shortest route at least once) p-value

1 (direct) (2) 0.458 0.451 24 (13) 0.970

2 (detour) (1) 0.875 0.000 16 (14) ,0.001

3 (detour) (1) 0.767 0.067 15 (12) ,0.001

4 (direct) (1) 0.627 0.310 21 (16) 0.074

7 (detour) (1) 0.790 0.132 19 (16) ,0.001

Some participants did not have any correct trials for the certain object pairs and were excluded from analysis; N indicates the number of participants who successfully
reached the target in each condition and were included in each analysis.
doi:10.1371/journal.pone.0112544.t001

Cognitive Graphs

PLOS ONE | www.plosone.org 6 November 2014 | Volume 9 | Issue 11 | e112544



exploration did not. This result demonstrates that route-finding

difficulty increases with the number of turn angles that must be

recovered during route selection, and suggests that turns should be

included as labeled nodes in the graph, even when they are not

choice points. Such local metric knowledge would enable

approximate shortcuts without a global Euclidean map. This

finding is consistent with studies demonstrating that spatial errors

are frequently made when navigators must imagine a change in

direction [32].

Finally, we examined the relationship between spatial abilities

and test performance. The SBSOD self-report scale was margin-

ally correlated with performance on direct trials (r30 = 20.349,

p = 0.050), but not for detour trials (r30 = 20.274, p = 0.129). No

other significant relationships were observed (all p.0.1). Although

there were individual differences in performance, they do not

appear related to these spatial abilities measures.

Discussion

In this study, we investigated the primary structure of spatial

knowledge that spontaneously develops during free exploration of

a novel environment. The results are consistent with the proposal

that people learn a labeled graph of their environment: a network

of topological connections between places, labeled with local

metric information. In contrast to route knowledge, we found that

the most frequent routes and detours to target locations in the test

phase had not been traveled during learning. The preferred paths

were typically the shortest metric distance to a target, rather than

topologically equivalent but longer paths, contrary to purely

topological knowledge. Incorrect trials were associated with

increased reliance on route knowledge and selection of foil objects,

whereas better performance was strongly correlated with a smaller

number of turns to the target.

The findings of this experiment suggest that a labeled graph is

the most appropriate level in the hierarchy to characterize the

primary form of spatial knowledge used during active navigation,

at least in a newly-learned environment. Route knowledge may be

described as a subgraph in this larger structure, whereas the full

graph enables new routes and detours. For comparison with

survey knowledge, we previously used this same maze to test

survey learning in a separate group of participants [24]. This test

required participants to take direct straight-line shortcuts between

learned locations. In contrast to the large errors and 50% of

participants near chance in that study, only 10% of participants in

the present study performed near the chance level, half were

successful in route-finding on about 60% or more trials, and about

40% were able to take the shortest routes. Despite differences in

administering and scoring the two tasks, this pattern of results

implies that the majority of participants acquired graph knowl-

edge, but not survey knowledge, when freely exploring the same

environment. Furthermore, humans and rodents tend to explore

edges and landmarks in novel environments, rather than open

space [33,34]. This strategy is efficient for building a graph, but

not for complete survey knowledge. Although we cannot rule out

the possibility that some participants acquired survey knowledge in

the present study, our results are most consistent with the

hypothesis that primary spatial knowledge is aptly characterized

as a labeled graph.

The relationship between allocentric (world-centered) and

egocentric (viewer-centered) navigation must also be considered

with regard to these levels of spatial knowledge. Route knowledge

has typically been considered to be egocentric, and survey

knowledge to be allocentric. Graph knowledge may be interme-

diate between these two perspectives, and might be used flexibly

from either an egocentric or allocentric viewpoint [10]. It is

possible that the most successful navigators were those who were

able to translate between perspectives [26,35].

Finally, we offer some caveats regarding the limitations of these

findings. Although the task demands were similar to those

encountered in everyday navigation tasks, the environment had

a maze-like structure and participants were given a limited time to

learn it. With additional experience or a more open environment,

navigators might learn specific routes or acquire more accurate

survey knowledge. Nevertheless, the present results show that

participants do not first simply acquire route knowledge of a novel

environment, for they were able to take novel paths early in the

test phase. Neural evidence indicates that brain areas supporting

habitual route learning are active at a later stage of learning [e.g.

36,37], consistent with the idea that navigators rely on different

forms of spatial knowledge at different stages of learning and for

different purposes [38]. In addition, our analyses were primarily

conducted on correct trials, thus many of our conclusions are

limited to instances in which participants had learned enough

about the environment to correctly reach the goal location.

Nevertheless, the present findings offer the first empirical

evidence for a labeled graph as an appropriate description of the

primary spatial knowledge used to guide active navigation. Such a

‘‘cognitive graph’’ is sufficient to account for apparently Euclidean

behavior like shortcuts and detours without requiring globally

consistent metric maps.
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