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A Causal Model Theory of Judgment 
 

Abigail B. Sussman and Daniel Oppenheimer 

{asussman, doppenhe}@princeton.edu 
Department of Psychology 

Princeton University 

Princeton, NJ 08540 USA 
 

Abstract 

How do people combine cues to form judgments?  Recent 
debate has focused on whether and when individuals use 
heuristics versus linear models.  We propose instead that 
people may rely on an understanding of the causal 
relationships between cues to determine how much weight to 
place on each one.  Predictions of the causal model approach 
match those of linear models under certain circumstances and 
heuristic models under others, while making unique 
predictions in additional cases.  In two experiments, we show 
that, as the causal relationships among cues changes, 
participant judgments consistently conform to predictions of 
the causal model approach while matching either heuristic or 
linear judgments in only a limited subset of cases. 

Keywords: judgment, causal reasoning, heuristics, linear 
models 

Introduction 

When making judgments about the world, we typically 

have access to various pieces of information, or cues, that 

might facilitate those judgments.  Doctors might consider 

the weight of the patient and the severity of symptoms to 

determine how much medication to prescribe.  Jurors might 

consider the number of people injured by a product and the 

average age of the victim when determining damages.  One 

question that has been central in the study of judgment is 

how these cues are used and combined.  The manner in 

which people combine cues impacts judgments, attitudes, 

and choices, and has important ramifications for welfare.   

Within the field of judgment and decision making, two 

primary approaches have defined the debate over how 

people combine available information to form judgments:  

linear models and heuristic models.  Each approach has 

demonstrated a high correlation between individuals’ 

predictions and actual outcomes under certain 

circumstances, but both approaches also have systematic 

gaps in their ability to make predictions under various (and 

predictable) environmental situations.  Since linear models 

excel at explaining judgment in some environments, and 

heuristic accounts are more effective in others, many 

researchers have argued that people switch between the 

strategies depending on the judgment task.  Although 

strategy switching accounts have become dominant in the 

field, we propose that a model based upon causal reasoning 

may be able to subsume both linear and heuristic models to 

account for judgments across various environments, in a 

single, unified framework.  

 

 

Heuristic and Linear Models of Judgment 

One influential approach to judgment assumes that 

individuals are able to process complex information about 

correlations between events with a high degree of accuracy 

(e.g. Brunswik, 1943, 1952).  According to these 

Brunswikian accounts, people incorporate many (or all) of 

the available pieces of information into their judgments and 

predictions by combining and weighting each cue to form an 

algebraic, linear model (Anderson, 1981; Brehmer, 1994; 

Hammond, 1996). Variations on this approach allow for 

simplified methods of combining cues such as inconsistency 

in weighting correlations (Hoffman, 1960), or equal cue 

weighting (Dawes & Corrigan, 1974; Einhorn & Hogarth, 

1975).  In many situations, linear models approximate 

human judgments (e.g. Hammond, 1955; Hoffman, 1960), 

leading researchers to propose them as a basis for 

understanding human cognitive processing.  Indeed, in 

certain environments process tracing has shown information 

search patterns that are consistent with the predictions of 

linear models (e.g. Payne, Bettman, & Johnson, 1988).    

Despite the positive evidence for linear models, there are 

reasons to doubt their descriptive validity.  Questions 

remain about whether people have the cognitive capacity to 

perform the calculations necessary to compute linear models 

when making judgments.  Even in simplified forms they 

regularly outperform the average decision maker (Dawes, 

1979; Wainer, 1976).  In some cases, reasoners’ judgments 

have significantly deviated from linearity (e.g. Brehmer & 

Brehmer, 1988; Slovic, 1969; Wiggins & Hoffman, 1968).  

Thus, while linear models have provided insight into 

cognitive processes, there are a number of things that they 

struggle to explain.   

In contrast, heuristic models assume that people engage in 

mental shortcuts (Gigerenzer, Todd, & the ABC Research 

Group, 1999; Kahneman, Slovic, & Tversky, 1982; Simon, 

1957).  While there is variation in the nature of heuristics 

that have been proposed, many of the most prominent 

accounts posit that people focus on a single cue at a time 

rather than incorporating all available information—

typically the cue that is most relevant to the decision or most 

accessible to the decision maker (e.g. Gigerenzer & 

Goldstein, 1996; Shah & Oppenheimer, 2009; Tversky & 

Kahneman, 1974).  By using only a single piece of 

information at a time, they are able to greatly reduce the 

amount of cognitive effort required (Shah & Oppenheimer, 

2009).   

While there is a great deal of evidence for the use of 

heuristics, there is also evidence to suggest that simple 
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heuristic models are incomplete descriptors of human 

cognition.  A number of studies have shown patterns of 

results inconsistent with the use of single cues (e.g. 

Oppenheimer, 2005). Furthermore, the previously discussed 

evidence supporting linear models of judgment are 

challenging to account for if one assumes a single cue 

receives all or most of the weight.  In other words, like 

linear models, heuristics can explain judgment in some 

cases, but leave gaps in accounting for others.   

Since linear models excel at explaining judgment in some 

environments, and heuristic accounts are more effective in 

other environments, many researchers have argued for a 

strategy switching account.  This suggests that people have 

a number of cognitive strategies in their repertoire and 

switch between them depending on the task environment.  

In other words, people rely on each type of model under 

certain circumstances (Gigerenzer, Todd, & the ABC 

Research Group, 1999; Hogarth & Karelaia, 2005, 2007; 

Newell & Shanks, 2003; Payne, Bettman, Johnson, 1988, 

1993).  However, while strategy switching accounts have 

become dominant in the field, an alternative approach would 

be a single strategy that mimics linear combinations under 

some conditions, and mimics heuristics under others—while 

predicting unique patterns in still others.   

 

Using Causal Models to  

Reconcile Alternate Approaches 

Causal models are applicable across a wide array 

judgments and, together with research on causal learning, 

can specify which cues are relevant for forming an accurate 

judgment and when (for reviews see Glymour, 2001; 

Gopnik & Shultz, 2007; Sloman, 2005).  People are known 

to engage in spontaneous causal reasoning (Weiner, 1985).  

Moreover, researchers have shown that causal models play a 

role in how people make decisions (Hagmayer & Sloman, 

2009; Sloman & Hagmayer, 2006).  Specifically, Hagmayer 

and Sloman argue that people generate causal models of a 

situation and use these to determine which actions they 

should take (the action that causes the intended effect rather 

than one that is merely correlated with it).  Further, causal 

narratives have been shown to influence jury decision 

making (Pennington & Hastie, 1993), and causal 

assumptions have been shown to affect risk assessment 

(Morgan, Fischhoff, Bostrom, & Atman, 2002).   

While there is ample evidence that people use causal 

information, there has been little work to investigate 

whether causal models might be able to explain when 

people’s judgments emulate heuristics vs. linear models.  

However, it is possible that apparent switches in strategy 

arise because of differences in the causal relationships of 

cues.  This could account for the findings supporting both 

linear models and heuristics without resorting to the notion 

of strategy switching (and also make valid novel 

predictions).  The studies described provide evidence that 

individuals determine cue weights based on the underlying 

causal relationships among cues being considered, and that 

causal models can account for patterns of data that have 

previously been attributed to strategy switching.   

Causal Model Predictions 

The present approach posits that when exposed to a set of 

cues, people spontaneously attempt to understand the causal 

relationships between those cues and the criterion of interest 

(c.f. Oppenheimer, 2004).  Importantly, different causal 

relationships will lead different cues to become more or less 

important.  Consider the following causal structures, where 

an arrow from A � B represents that A causes B (i.e. 

increasing the value of A will directly lead to an increase in 

the value of B), and where C represents the target of 

judgment.   

1. A � B � C 

2. C � B � A 

3. A  B � C 

In these three cases, the predictions of a causal model 

emulate those of attribute substitution or a fast-and-frugal 

single cue stopping rule.  While A may be correlated with C, 

it is not directly causally related.  For the causal 

relationships presented in 1-3, B “screens off” A, so that 

once a person knows the value of B, there is no additional 

predictive information conveyed about C through A (Pearl, 

2000; Sloman, 2005).  In causal structure 1, if A causes B 

and B causes C, then A and C are independent, conditional 

on the value of B; P(C|A, B) = P(C|B).  The same rationale 

can be used in the reverse direction in causal structure 2.  A 

similar logic also applies in feature set 3, where knowledge 

of B should make knowledge of A irrelevant.  As such, a 

causal model theory predicts that for causal structures such 

as those presented in 1–3, people who have access to B will 

use it to the exclusion of A when making judgments about 

C, just like non-compensatory heuristics.    

    Contrast those causal structures with the following: 

4. A � C  B 

5. A  C � B 

6. A � C � B  

A causal model for these relationships emulates the 

predictions of a linear model.  Both A and B are directly and 

independently causally related to C.  As such, both A and B 

would be useful predictors of C in some combination.  Just 

as linear models would typically weight cues based on the 

magnitude of the correlation between cues, causal models 

would weight cues based on the strength and the structure of 

the perceived causal relationship (Griffiths & Tenenbaum, 

2005). Stronger causal relationships lead to higher 

correlations.  As such, a causal model theory predicts that 

for causal structures such as those presented in 4-6, people 

will use a weighted combination of A and B, just like linear 

models.   

Importantly, while a causal model theory can, in a single 

unifying framework, subsume both heuristic and linear 

modeling approaches to judgment, it can also make unique 

predictions for certain causal structures.  Consider:   
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7. C � B  A 

In feature set 7, reliance on the causal model would lead to a 

unique pattern of cue use.  As in 1-3, , there is no direct 

causal relationship between A and C.  However unlike in 1-

3, the utility of the cue B in judging C is conditional on the 

value of A.  That is, in scenario 7, a high value of B could 

be explained by either a high value of C or A (or both).  

Thus, while A does not directly impact judgments of C, it 

changes the amount of weight placed on cue B.  In the 

causal reasoning literature, this is known as explaining away 

or discounting (for a review, see Khemlani & Oppenheimer, 

2010).  And in fact, this pattern of results has been found in 

several studies of judgment (e.g. Oppenheimer, 2004; 2005; 

Oppenheimer & Monin, 2009). 

Importantly, this pattern of results could not arise from 

either heuristic models or linear models.  Heuristic models 

would predict that reasoners would rely on a single cue (B) 

for their judgment because it is the most highly correlated 

with C.  Linear models would factor in both A and B, but 

since A is uncorrelated with C, the weight would likely be 

near zero and the predictions would align with those of 

heuristic models.  In other words, causal model theory can 

account for the successful predictions of both heuristic 

models and linear models, as well as other findings in the 

literature that previous models have been unable to explain. 

The ensuing experiments compare the accuracy of 

predictions of causal models to those made by using 

representative linear or heuristic models.   

Experiment 1 

The primary predictions of the causal model approach are 

that qualitatively different cue weighting patterns will arise 

depending on the causal relationships between the cues.  In 

particular, cue weighting will mimic the predictions of 

heuristic approaches for certain causal structures (e.g. the 

Causal Chain: A � B � C), will mimic the predictions of 

linear models for other causal structures (e.g. the Common 

Cause: A � C  B), and will show patterns that differ from 

both heuristic and linear models for still other causal 

structures (e.g. the Common Effect: C � B  A). This 

prediction was directly tested here.   

Method 

Participants. 32 participants were recruited through an 

online platform hosted through Amazon.com, in exchange 

for monetary compensation. The population was 66% 

female, with a mean age of 35. 

Design and Procedure. Participants were randomly 

assigned to one of three conditions (Chain, Common Cause, 

or Common Effect as specified above) in a between-subjects 

design.  Participants were then introduced to a novel (blank 

predicate) domain involving a set of mechanical parts and 

how they relate to each other; the causal relationship 

between the parts varied by condition.  For example, in the 

Chain condition, participants saw: 

When pressure in the Blanden Pipe increases, it causes 

water flow through the Morton Spout to increase.  And, 

when water flow through the Morton Spout increases, it 

causes the Nurbert Clamp to tighten. 

In the Common Cause condition, the relationship described 

was: 

When the Nurbert Clamp tightens, it causes water flow 

through the Morton Spout to increase.  And, when the 

Nurbert Clamp tightens, it also causes the pressure on the 

Blanden Pipe to increase.    

And, in the Common Effect condition, the relationship 

described was instead: 

When the Nurbert Clamp tightens, it causes water flow 

through the Morton Spout to increase.  And when 

pressure in the Blanden Pipe increases, it also causes 

water flow through the Morton Spout to increase.    

In each trial, participants were given values for two of the 

parts (amount of pressure in the Blanden Pipe and level of 

water flow through the Morton Spout) and their task was to 

estimate the value for the third part (tightness of the Nurbert 

Clamp).   They responded by marking their judgment on a 

10 point scale that ranged from “very loose” to “very tight”.  

Participants completed 10 trials during which the cue values 

of the Blanden Pipe and Morton Spout were systematically 

varied.  However, these values were held consistent across 

conditions – the only thing that varied between conditions 

was the causal relationship between the cues.   

Results and Discussion 

For one of the 10 trials, the values of both cues were the 

same; this question was included as a manipulation check.  

Regardless of how they chose to combine the cues, anyone 

who read this question carefully and understood the task 

should have responded to the missing value with the same 

value that had been provided for the other two devices. Prior 

to analyzing the data, responses from 7 participants were 

discarded for failing the manipulation check. Results are 

similar if data from these participants is included. 

Data from each of the remaining participants were 

examined to determine how participants were integrating 

known information into their final judgment.  β weights 

were calculated for each participant using a linear regression 

to determine the weight given to the values of cue A 

(Blanden Pipe) and cue B (Morton Spout) in participant 

estimations of cue C (Nurbert Clamp).  This method of 

estimation of participants’ weighting policy is common in 

both the Brunswikian tradition of linear modeling (Cooksey, 

1996) and in heuristic approaches to attribute substitution.   

While heuristic models would predict that participants 

should weight one cue substantially more heavily than the 

other, and linear models would predict that weights should 

be split more evenly between the cues, they both predict that 

weights should look equivalent across conditions.  Because 

the judgment environment was held constant across 

conditions (e.g. no cognitive load or time pressure, identical 
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cue values, etc.) there is no a priori reason to expect strategy 

switching.  The causal model, however, predicts qualitative 

differences in the weights placed on cues depending on the 

causal structure that the participants were presented with. 

In Table 1 below, weights predicted by the causal model 

hypothesis are shown beside actual weights generated by 

participant data.  Each of the hypothesized beta weights 

were generated by using a regression approach where we 

entered the expected responses for each of the 10 trials 

shown to participants, based on the anticipated weight given 

to each cue.   Specifically, predicted weights for the Chain 

condition (βA = 0; βB = 1) were determined as a result of 

screening off; B receives the full weight of the judgment 

while A remains unused. Predicted weights for the Common 

Cause condition (βA = .63; βB = .55) are a result of the both 

A and B having an independent causal impact on the value 

of C (the predictions are not βA = .5; βB = .5 because we 

created these weights using the cue values actually shown to 

participants, which were somewhat arbitrarily chosen and 

therefore not perfectly balanced around the midpoint of the 

scale).  In the case of the Common Effect condition, 

predictions may vary depending on the amount of causal 

discounting that takes place, as described in the theoretical 

background above.  However, the most straightforward 

prediction (βA = -0.64; βB = 1.07), is based on the 

assumption that A takes on the average value of B and C, 

and is included in Table 1.   

Table 1: Actual and predicted cue weights in estimating missing 

cue values in Experiment 1.  

 
Causal Model 

Prediction 
Participant Responses 

Condition βA βB βA βB 

Chain 0.00 1.00 0.02 0.73 

Common Cause 0.63 0.55 0.50 0.45 

Common Effect -0.64 1.07 0.03 0.84 

 

While heuristic and linear models would predict similar 

weights across conditions, the pattern of data suggests that 

this is not what is occurring.  Instead, the pattern matches 

the qualitative predictions of a causal model.   

Although it appears at first glance that predictions are off 

in the case of the Common Effect condition, this may be due 

to individual differences in discounting. The averaged 

values shown in the table above hide individual level 

judgments:  no individual placed the majority of her 

judgment on cue B alone.  Instead, approximately half of 

responses for the Common Effect condition suggested 

negative beta weights for cue A while the other half of 

responses implied positive beta weights for cue A.  These 

averaged to zero, making it appear as if no weight was given 

to cue A when looking across the whole sample.  While a 

bimodal distribution could be explained by individual 

differences in discounting, this is admittedly a post-hoc 

explanation.  Research supports the possibility that there are 

individual differences in discounting; differences in working 

memory capacity impact susceptibility to a cognitive load 

manipulation (Cokely, Kelley, Gilchrist, 2006) and 

cognitive load influences discounting (Oppenheimer & 

Monin, 2009).  Importantly, the overall data pattern seems 

to support the key prediction of qualitative differences in 

weighting by condition. 

To determine if the differences between conditions were 

statistically reliable, a one-way ANOVA was run.  Results 

revealed a main effect of condition on the difference 

between weights participants placed on A and B in their 

judgments (F(2, 22) = 9.27, p = .001, η
2
 = .46).  Consistent 

with the causal model hypothesis, post-hoc tests indicated 

that the mean difference in weights for the Chain condition 

(M = .87) was marginally greater than for the Common 

Cause condition (M =.05, p = .070) and significantly greater 

than for the Common Effect condition (M = -.96, p < .001).  

The difference in weights for the Common Cause condition 

was also marginally greater than for the Common Effect 

condition (p = .056).  Not only was the difference in weights 

lowest in the case of the Common Effect condition, but the 

sign was actually reversed, indicating a distinct pattern of 

evaluation. 

 

Experiments 2a-d 

In addition to the study described above, we have 

conducted four variations that extend results to all seven 

proposed causal models, as well as a control condition 

where no model is specified.  Because these variations are 

similar to one another, for the purposes of brevity and space 

constraints, we will describe them briefly below and 

combine results in subsequent analysis.   

Methods 

Participants. All participants (numbers specified below) 

were recruited online, through an online platform hosted by 

Amazon.com, and completed the experiment for monetary 

compensation.  The population was 61% female, with a 

mean age of 35. 

Experiment 2a:  110 participants were randomly assigned to 

one of eight conditions in a between subjects design.  The 

conditions corresponded to each of the seven causal models 

specified above as well as an additional condition where no 

model was specified (used as a control).  Apart from the 

additional conditions, the central procedure was the same as 

described in the Experiment 1 above.  However, after the 10 

trials were complete, participants were presented with a new 

page with the names of each of the three parts and asked to 

draw arrows connecting them.  This procedure was included 

to determine whether the participants understood the 

underlying causal model intended by each experimental 

condition, and to allow for additional analysis based on 

participants’ causal models, regardless of their condition. 

Experiment 2b:  One concern stemming from Experiment 2a 

was that participants may not understand the basic causal 

relationships being described.  This could be a result of lack 

of attention rather than a true underlying cognitive process.  

To address this, the remaining experiments used a Star Trek 
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theme to engage participants. Specifically, 95 participants 

were told that their crew was on a mission to rescue human 

hostages from the Romulans on a faraway planet.  Their 

ship had been facing a string of mechanical problems and 

the participants needed to incorporate known information 

about mechanical parts to identifying key issues to fix the 

ship and make it there in time!  Pages with encouragement 

from Star Trek characters were interspersed throughout the 

experiment to keep participants engaged in the task.  Apart 

from the theme, study 2b was identical to 2a. 

Experiment 2c: This study varied by changing from named 

mechanical parts to colored gears spinning to ensure that 

(84) participants were not overlaying any prior knowledge 

of the relationships between mechanical parts into the causal 

descriptions presented to them.  Additionally, it changed the 

method of testing participants’ causal models to multiple 

choice questions asking what each gear directly causes to 

avoid any difficulty with the causal drawing task.  

Otherwise, this study was identical to 2b. 

Experiment 2d:  This study incorporated the changes in 

Experiment 2c, and also allowed (81) participants to 

intervene on the system to visualize the relationship 

between gears (including stochastic elements), thus aiding 

their learning of the causal relationships.  After reading 

through the introduction participants were show a diagram 

with a separate vertical bar representing the speed of each of 

the three gears.  They were able to change and set the speed 

of one gear at a time and watch as the speed of the other 

gears changed.  The remainder of the experiment was 

identical to Experiment 2c. Responses to the (multiple 

choice) questions regarding causal relationships at the end 

of the experiment revealed that this learning phase did help 

participants grasp the intended models. 

Results and Discussion 

195 participants reported causal models (collected at the 

end of the experiment) that did not match the model 

intended by the condition they were randomly assigned to.  

Two analyses were done, one including these participants 

and one excluding them.  The results, as well as underlying 

demographic characteristics, were qualitatively the same. 

Due to page constraints, only the latter analysis (subjects 

who passed the manipulation check) will be reported here. 

Table 2: Actual and predicted cue weights in estimating missing 

cue values in Experiment 2a-d.  

Condition (Predicted 

Model Match) 

Causal Model 

Prediction 

Participant 

Responses 

βA βB βA βB 

1-3 (Heuristic Model) 0.00 1.00 0.12 0.69 

4-6 (Linear Model) 0.63 0.55 0.56 0.54 

7 (Causal Model Only) -0.64 1.07 -0.33 0.82 

8 (No Model) ― ― 0.24 0.23 

To conserve space and to simplify analysis for reporting, 

we will pool data across experimental variations as well as 

group conditions based on the predictions made about their 

weights.  Thus, conditions 1-3, which all share predictions 

of the heuristic model, and conditions 4-6, which all share 

predictions of the linear model, will be grouped together.  In 

the analysis that follows, all predictions are generated based 

on the reasoning described in the data analysis for 

Experiment 1.  As shown in Table 2, differences across 

groups were consistent with the causal model hypothesis.  

Specifically, a one-way ANOVA revealed that the main 

effect of condition on the difference between weights 

participants placed on A and B in their judgments was 

significant (F(3, 162) = 20.38, p < .001, η
2
 = .28).  

Consistent with the causal model hypothesis, post-hoc tests 

indicated that the mean difference in weights for the 

combined conditions 1-3 (M = .57) was significantly greater 

than for that of conditions 4-6 (M =-.02, p = < .001) and 

condition 8 (M = .01, p =.002).  At the same time, the 

differences between weights given to cues A and B in 

conditions 1-3 were significantly lower than in condition 7 

(M = 1.15, p < .001), as predicted. 

General Discussion 

In this paper, we have proposed a causal model theory of 

judgment; namely, that people rely on their understanding of 

the causal relationships among events to determine how to 

weight various cues when forming judgments.  Across two 

studies with several variations, we have shown that 

predictions of the causal model approach consistently meet 

or exceed the accuracy of predictions of human judgment 

made by either linear or heuristic models.  Furthermore, the 

causal model theory can specify when predictions of linear 

versus heuristic models will be more accurate, and make 

unique predictions in other situations.   

These results suggest that, while linear and heuristic 

models may be able to make predictions about cue weights 

that match those of human judgments under certain 

circumstances, these models may not be accurate 

descriptions of the underlying cognitive process.  Although 

a strategy-switching approach may map onto actual 

judgments more closely than either heuristic or linear 

models do independently, this possibility adds unnecessary 

complexity.  Furthermore, without the ability to make a 

priori specifications about which strategies would be used 

under which circumstances, a strategy-switching approach 

becomes unfalsifiable.  In contrast, the causal model theory 

makes clear predictions that parsimoniously explain 

observed changes in the weights placed on various cues.   

Absent specific prompts used in this paper to differentiate 

causal relationships, situational factors may also change 

perceived causal models, even when the underlying 

relationship among events remains unchanged.  This would 

allow for judgments based on causal relationships to follow 

patterns previously found by strategy switching in other 

contexts.  For example, putting people under time pressure 

or cognitive load may lead them to develop simplified 

causal models (e.g. Oppenheimer & Monin, 2009).  This 

underlying change would lead to judgments that mimic 

those described by a shift from a linear model to a heuristic 
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strategy.  While we acknowledge that causal models may be 

used to inform strategy switching rather than supplant it, it 

will be worthwhile to investigate both the strong (causal 

models supplant strategy switching) and weak (causal 

models inform strategy use) versions of the hypothesis. 

The experiments reported here support the hypothesis that 

the presumed combination of heuristics and linear models is 

actually describing specific instantiations of reliance on 

causal models in judgment.  While this paper has begun to 

build a case for the causal model hypothesis, future studies 

should aim to provide converging evidence as well as to 

improve understanding of when and how a particular causal 

model would be used. 
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