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Abstract Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased 
metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity 
of metabolism are necessary and sufficient for this phenotype. We developed a computational 
model of glycolysis and an integrated analysis using metabolic control analysis (MCA), 
metabolomics data, and statistical simulations. We identified and confirmed a novel mode of 
regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating 
lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose 
(1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, 
negative flux control was found and confirmed for several steps thought to be rate-limiting in 
glycolysis. Together, these findings enumerate the biochemical determinants of the WE and 
suggest strategies for identifying the contexts in which agents that target glycolysis might be 
most effective.
DOI: 10.7554/eLife.03342.001

Introduction
Proliferating cells increase their glucose consumption and secrete lactate as opposed to completely 
oxidizing the glucose in the mitochondria (Warburg et al., 1927) and is known as aerobic glycolysis or 
the Warburg Effect. Currently, this altered metabolism is exploited for diagnostics and is subjected to 
multiple drug development efforts (Koppenol et al., 2011; Vander Heiden, 2011; Hamanaka and 
Chandel, 2012). Numerous studies have identified genes such as KRAS, PIK3CA, and cMYC and 
microenvironments such as hypoxia and hypoglycemia that promote aerobic glycolysis but a complete 
understanding of the necessary and sufficient biochemical alterations associated with this phenotype 
is unknown. Furthermore successful translation for biomedical applications is limited by understanding 
the contexts in which therapies that target glycolysis might be effective.

Computational modeling has a successful history in the study of metabolism (Rapoport et al., 1976; 
Fell, 1992; Schilling et al., 1999; Cascante et al., 2002). Genome-scale stoichiometric models of 
metabolism have been developed to study the effects of drug targets in human metabolism and have 
had success in predicting the WE (Molenaar et al., 2009; Vazquez et al., 2010; Folger et al., 2011; 
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Shlomi et al., 2011). However, a comprehensive quantitative understanding of the WE requires know-
ledge of enzyme activities and metabolic control.

Therefore, we collected and integrated multiple forms of data into a modeling framework involving 
flux balances of glycolysis, detailed chemical kinetics based on reaction mechanisms and parameters 
measured, physico-chemical constraints from thermodynamics and mass conservation, metabolic 
control analysis, and Monte Carlo sampling of parameter space. We next use mass spectrometry and 
isotope tracing to probe concentrations and fluxes through the pathway and their responses to several 
perturbations. Together, we elaborate the determinants of aerobic glycolysis and identify and confirm 
novel points of regulation in glycolysis that have remained unidentified for over 50 years since the 
discovery of the pathway.

Results
Biochemical kinetic model of aerobic glycolysis
We investigated the kinetics of the glycolytic pathway from glucose uptake to oxidation of pyruvate 
in the mitochondria or export of lactate out of the cytosol. We modeled each step of the pathway 
according to enzymatic mechanism and known modes of allosteric control resulting in a set of differ-
ential equations (Figure 1A, ‘Materials and methods’, Supplementary file 1). While it is not possible 
to model every possible interaction explicitly, the aim is to capture enough of the pathway so that a 
large range of experimentally realized measurements can be obtained and relationships between vari-
ables can be observed.

Since glycolysis is the most extensively studied biochemical pathway, there is a wealth of information 
on the kinetic parameters and enzyme expression that govern the equations. Nevertheless, it is also 

eLife digest Cells generate energy from a sugar called glucose via a process called glycolysis. 
This process involves many enzymes that catalyze 10 different chemical reactions, and it essentially 
converts glucose step-by-step into a simpler chemical called pyruvate.

Pyruvate is then normally transported into structures within the cell called mitochondria, where 
it is further broken down using oxygen to release more energy. However, in cells that are rapidly 
dividing, pyruvate is converted into another chemical called lactate—which releases energy more 
quickly, but releases less energy overall. Cancer cells often convert most of their glucose into lactate, 
rather than breaking down pyruvate in their mitochondria: an observation known as the ‘Warburg 
effect’. And while many factors affect how a cell releases energy from pyruvate, it remains unclear 
what regulates which of these biochemical processes is most common in a living cell.

In this study, Shestov et al. have developed a computational model for the process of glycolysis 
and used this to investigate the causes of the Warburg Effect. The model was based on the known 
characteristics of the enzymes and chemical reactions involved at each step. It predicted that the 
activity of the enzyme called GAPDH, which carries out the sixth step in glycolysis, in many cases 
affects how much lactate is produced. This suggests that this enzyme represents a bottleneck in the 
pathway.

Next, Shestov et al. performed experiments where they used drugs to block different stages of the 
glycolysis pathway, and confirmed that the GAPDH enzyme is important for regulating this pathway in 
living cancer cells too. In these treated cells, the levels of a chemical called fructose-1,6-biphosphate 
(which is made in a step in the pathway between glucose and pyruvate) were either very high or very 
low. Shestov et al. proposed that the flow of chemicals through the glycolysis pathway is controlled by 
the GAPDH enzyme when the chemicals used by the enzymes upstream of GAPDH in the pathway 
(which includes fructose-1,6-biphosphate) are plentiful. However, if these chemicals are limited, other 
enzymes that are involved in earlier steps of the pathway regulate the process instead.

The findings of Shestov et al. reveal that the regulation of glycolysis is more complex than 
previously thought, and is also very different when cells are undergoing the Warburg Effect. In the 
future, these findings might help to identify the types of cancer that could be effectively treated using 
drugs that target the glycolysis process, which are currently being tested in pre-clinical studies.
DOI: 10.7554/eLife.03342.002
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not possible to capture cellular physiology in any biochemical model with single values of kinetic 
parameters (Daniels et al., 2008). This difficulty arises from the tremendous amount of heterogeneity 
within cells at multiple levels. The origins of this heterogeneity vary from genetic variation observed 
across cancer types, tumor types, differences in signaling mechanisms that affect post-translational 
modifications in each cell, and the differences in microenvironmental pressures (e.g., the oxygen avail-
ability) that each cell within a given tumor experiences, as well as the inherent cell to cell variation 
common to all cells (Marusyk et al., 2012). Therefore, we developed an integrated algorithm to evaluate 

Figure 1. A quantitative model and statistical simulation method captures the diversity of metabolic states observed in tumor and proliferating cells.  
(A) Schematic of the glycolysis model with chemical reactions and allosteric points of regulation described. Abbreviations: GLC—glucose, G6P—glucose-
6-phosphate, F6P—fructose-6-phosphate, FBP—fructose-1,6,-bisphosphate, F26BP—fructose-2,6,-bisphosphate, GAP—glcyceraldehyde-3-phosphate, 
DHAP—dihydroxyacetone phosphate, BPG—1,3 bisphosphoglycerate, 3PG—3-phosphoglycerate, 2PG—2-phosphoglycerate, PEP—phosphoenolpyruvate, 
PYR—pyruvate, SER—Serine, GLY—glycine, Lac—lactate, MAL—malate, ASP—aspartate, Pi—inorganic phosphate, CI—creatine, PCI—phosphophocreatine, 
GTR—glucose transporter, HK—hexokinase, PGI—phosphoglucoisomerase, PFK—phosphofructokinase, ALD—aldolase, TPI—triosephosphoisomerase, 
GAPDH—glyceraldehyde-phosphate dehydrogenase, PGK—phosphoglycerate kinase, PGM—phosphoglycerate mutase, ENO—enolase, PK—pyruvate 
kinase, LDH—lactate dehydrogenase, MCT—monocarboxylate transporter, PDH—pyruvate dehydrogenase, CK—creatine kinase. (B) Overview of the 
algorithm and simulation method. (C) Measured values of the NADH/NAD+ ratio across a population of MCF10A breast epithelial cells. Three values of 
glucose concentration are considered (0.5 mM blue, 5.5 mM green, and 25 mM red). (D) Calculated fluxes (mM/hr) for glycolysis rate (Glycolysis) are 
defined as the rate of glucose to pyruvate (per molecule of pyruvate), pyruvate to lactate flux (LDH), rate of oxygen consumption (OxPhos), rate of NADH 
turnover (NADH), and ATP turnover (ATPase). (E) Calculated probability density function (PDF) of NAD+ concentrations. (F) Calculated probability density 
function (PDF) of NADH/NAD+ ratio. (G) Calculated probability density function (PDF) of ATP concentrations. (H) Calculated probability density function 
(PDF) of ATP/ADP ratio. (I) Box plots showing the distribution of concentrations computed from the simulation for each intermediate in glycolysis.
DOI: 10.7554/eLife.03342.003
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the statistics of the kinetics of glycolysis that accounts for the possible variation within metabolism 
(Figure 1B, ‘Materials and methods’).

First the model is constrained using mass conservation constraints that conserve the balance of 
glucose, redox state, and energy status. Next, thermodynamic constraints are used to constrain fluxes 
according to the free energy of the reactions determined by Haldane relationships. These physical 
constraints are combined with the kinetic mechanisms that define each step of glycolysis and the 
chemical reactions involving the redox-associated metabolites NAD+, and NADH and energy-associated 
metabolites ATP, ADP, and AMP. Next, the model is constrained to expression data so that protein 
concentrations are subsumed in the Vmax values and chosen from typical concentrations in cancer 
cells, measured kinetic parameters, and measured concentrations of nutrients such as glucose, oxygen, 
and total intracellular adeno-nucleotide concentration.

At this stage, the model is subjected to a thorough statistical analysis. A Monte Carlo simulation 
is conducted for which the parameters within the model are randomized and resulting differential 
equations are solved. The distributions for each parameter are chosen to capture observed ranges  
of variation. After each simulation, numerical stability and thermodynamics are assessed and all 
simulations that are unstable or appear thermodynamically infeasible (i.e., a positive net flux through 
glycolysis is required) are rejected. In each simulation, concentrations, fluxes, metabolic control coeffi-
cients, and thermodynamic quantities are computed and recorded. This statistical analysis explores 

Figure 2. Evaluation of the statistics of the Warburg Effect and relationships to other variables in metabolism.  
(A) Probability density function (PDF) of the Warburg Effect (WE) defined as the ratio of flux through LDH to that of 
flux into the mitochondria. (B) Pearson correlations of intermediate metabolite levels in glycolysis with the extent  
of the Warburg Effect (WE). (C) Pearson correlations of the expression levels of glycolytic enzymes with the extent 
of the Warburg Effect (WE). (D) Pearson correlations of coupled metabolic parameters with the extent of the 
Warburg Effect (WE).
DOI: 10.7554/eLife.03342.004
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the space of glycolysis in the context of the Warburg Effect. By assessing the statistics, inferences can 
be made on the determinants of the Warburg Effects and its context dependence to pharmacological 
intervention and nutrient environment. For experimental confirmation of the model, we first utilized a 
recently developed a NADH/NAD+ fluorescent reporter (Hung et al., 2011) and measured the ratio 
of NADH/NAD+ across a population of cells where some experience hypoxia and others glucose 
deprivation (Figure 1C). This variation in nutrient availability across individual cells occurs in epithelial 
cell cultures due to differences in diffusion and available cell surface area (Sheta et al., 2001). The 
distribution is plotted for three media concentrations ranging from extreme hypoglycemia to the 
hyperglycemic conditions typically used in cell culture (0.5 mM, 5.5 mM, and 25 mM).

Next we noted that the distribution of resulting fluxes (Figure 1D) was first found consistent with 
known measurements. An analysis of the simulation revealed a distribution of NAD+ levels and NADH/
NAD+ redox potential consistent with those observed experimentally (Figure 1E,F). ATP levels peaked 
around 3 mM with little variation (Figure 1G) and the ATP/ADP energy state is observed to be bimodal 
(Figure 1H). Concentrations along the glycolytic pathway varied with means similar to those measured 
in normal tissues with fructose-1,6-bisphosphate (FBP) being most variable (Figure 1I). Together, these 
findings indicate that these simulations capture the range of measured cellular concentrations and 
provide confidence for further assessment of the behavior within the model.

Evaluation of the Warburg Effect and its relationship to metabolic 
variables
Having developed a model of glycolysis and its regulation, we assessed the relationship of aerobic 
glycolysis to other characteristics of glycolysis. The distribution of values (Figure 2A) of the Warburg 
Effect (the ratio of flux to lactate over that entering the mitochondria) ranged from less than one (pri-
marily oxidative metabolism) to over 95% of glucose being converted to lactate. The dynamic range 
over which the Warburg Effect was observed in our model allowed us to investigate to other vari-
ables in metabolism. We correlated the calculated value of the Warburg Effect with metabolite con-
centrations of intermediates in glycolysis. From an analysis of these correlations, a pattern within 
glycolysis emerges. The levels of intermediates in the beginning steps in glycolysis positively corre-
late with the Warburg Effect, the levels leading up to the oxidation of glyceraldehyde-3-phopshate 
(GAP) by GAPDH negatively correlate with the Warburg Effect, and those following GAPDH positively 
correlate with the Warburg Effect (Figure 2B) suggesting together that a bottleneck exists in the 
pathway that determines the extent of fermentation. An analysis of the correlation of enzyme expres-
sion with the Warburg Effect revealed that the enzyme expression for any single step within glycol-
ysis did not completely correlate with the Warburg Effect. However, across glycolysis, GAPDH, the 
enzyme that carries out oxidative phosphorylation of glyceraldehyde-3-phosphate to yield NADH and 
1,3-diphosphoglycerate most strongly correlated with aerobic glycolysis (Figure 2C). Notably many of 
the correlations although significant, appear not very strong indicating that the expression of indi-
vidual enzymes is not sufficient for induction of aerobic glycolysis. The model also captures many of 
the activities that are known to correlate with aerobic glycolysis. These include glucose transport, 
pyruvate kinase, and lactate dehydrogenase activities. Interestingly, the expression of enzymes such as 
hexokinase and phosphofructokinase were either uncorrelated or negatively correlated with the extent 
of aerobic glycolysis likely indicating their role in creating bottlenecks at other points along the path-
way. Together, these findings identify enzyme expression patterns that determine the extent of the 
Warburg Effect.

We next investigated the relationship between the Warburg Effect and other physiological variables 
including the NADH/NAD+ redox status, the energy state defined as the ATP/ADP ratio, lactate, ox-
ygen levels, and phosphocreatine levels (Figure 2D). Oxygen concentration, ATP, and phosphocrea-
tine levels positively correlated with the Warburg Effect and NADH/NAD+ redox status and NADH 
levels in the cytosol negatively correlated with the Warburg Effect suggesting that positive and nega-
tive feedback inherent to the circuitry of glycolysis contributes to buffering the Warburg Effect. 
Together, these results identify multiple relationships between the extent of aerobic glycolysis and 
measurable variables in metabolism.

Flux control in glycolysis
After assessing how metabolic parameters and concentrations within glycolysis determine the flux 
to lactate, we next investigated how each node within glycolysis exerts its control on the Warburg 
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Effect. Metabolic control analysis (MCA) provides a mathematical framework for evaluating the extent 
that a change in metabolic activity affects a given flux. In MCA, a pure rate-limiting step occurs when 
the flux control coefficient (FCC) (Supplementary Information) is one at that step and zero at all 
other steps. In most cases, values of FCCs are distributed with gradual values across a pathway. 
We carried out a metabolic control analysis using MCA within our statistical algorithm to investi-
gate the influence of each node in glycolysis on lactate flux across the ensemble of statistical realiza-
tions of glycolysis (Figure 3A). We first computed the distribution of FCCs for lactate production 
for each step in the pathway (Figure 3B). It was found that for each step within glycolysis, the 
average control exerted was near zero. Steps early in glycolysis involving enzymes Hexokinase (HK), 
Phosphoglucoisomerase (PGI), and Phosphofructokinase (PFK) exhibit both positive and negative 
control, and GAPDH on average exhibits the most positive control on the flux through the pathway. 
In addition to steps within glycolysis, ATPase activity exerts the most influence over lactate produc-
tion with oxygen consumption having less of an affect. Together, these results both confirm the 
long-standing hypothesis that ATPase activity is the most prominent rate-determining step in gly-
colysis but also suggest that GAPDH can often exert a large control on the flux to lactate. In 

Figure 3. Metabolic control analysis and its relationship to metabolic variables. (A) Schematic of workflow for global sensitivity analysis. After the model 
is constructed and feasible solutions obtained, each realization of glycolysis is subjected to metabolic control analysis (MCA). The resulting analysis is 
then subject to a statistical evaluation. (B) (left) Box plots of flux control coefficient (FCC) for lactate production for each enzymatic step in glycolysis 
(FCC = dlnJlac/dln Ei) where Jlac is the rate of pyruvate conversion to lactate, and Ei is the ith enzyme in glycolysis for each step of glycolysis. (right) Box 
plots of flux control coefficient (FCC) for lactate production for Oxygen consumption (OxPhos) and ATP consumption (ATP). (C) Pearson correlations 
between lactate FCC values for each step in glycolysis. Heat map is colored ranging from the minimum value (green) to the maximum value (purple). 
(D) Pearson correlations between metabolite concentrations in glycolysis and lactate FCC values for each step in glycolysis. Heat map is colored ranging 
from the minimum value (green) to the maximum value (purple). (E) Pearson correlations between metabolic parameters and lactate FCC values for each 
step in glycolysis. Heat map is colored ranging from the minimum value (green) to the maximum value (purple). (F) Pearson correlations between ratios 
and lactate FCC values for each step in glycolysis.
DOI: 10.7554/eLife.03342.005
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addition, an analysis of the statistics indicates that depending on the context, any point along the 
pathway can exert large flux control on lactate production with some steps (e.g., pyruvate kinase) 
less likely to exert control over the Warburg Effect than others. Although the finding that pyruvate 
kinase typically does not exert substantial control over glycolysis may appear surprising, this finding 
is consistent with studies that have observed only modest changes in glycolytic flux due to changes in 
pyruvate kinase activity (Christofk et al., 2008; Israelsen et al., 2013).

To further investigate the contexts in which steps along glycolysis can be limiting, we correlated the 
FCCs with one another and carried out a hierarchical clustering that revealed modules of co-occurring 
flux control (Figure 3C). It was found that enzymes residing in proximal regions of upper glycolysis 
tend to have positively correlated flux control. However, for lower glycolysis the flux control is uncor-
related suggesting that when a step is limiting in lower glycolysis, it can be more readily disrupted. 
This behavior is in contrast with that of upper glycolysis where limiting steps co-occur. Furthermore, an 
analysis of ATPase and Oxygen consumption activities reveals their control to be related to the control 
of enzymes clustered at different points in glycolysis (Figure 3C) indicating that flux control exerted by 
these ancillary fluxes are tied to different regions of glycolysis. Since these simulations yield for each 
realization of glycolysis, a set of concentrations, fluxes and flux control coefficients, relationships 
between flux control coefficients and measurable concentrations can be obtained. An analysis of these 
relationships using hierarchical clustering (Figure 3D) revealed a bi-modal relationship in glycolysis 
where increases in metabolites in upper glycolysis led to steps in lower glycolysis exerting flux control 
and increases in lower glycolysis resulted in enzymes in upper glycolysis exerting flux control. Further 
analysis of FCCs and metabolic parameters (Figure 3E,F) revealed additional relationships. Together, 
these findings yield a comprehensive map of the flux control in glycolysis and its connections to 
metabolic variables.

Experimental flux control in glycolysis
Surprisingly, in several instances, negative flux control is observed for several enzymes that have 
been previously thought to be the rate-limiting steps. Negative flux control implies that inhibiting the 
enzyme would actually increase the rate of flux of glucose to lactate. Given the surprising findings on 
flux control in glycolysis, we sought to experimentally investigate these predictions. We therefore 
considered systematic perturbations to glycolysis in cancer cells.

We first devised a combined flux profiling and metabolite profiling method using 13C isotope 
tracing from glucose (Figure 4A). Cells were incubated with U–13C glucose and media were extracted 
at different time points and subjected to high resolution LC-MS analysis (Liu et al., 2014). The line-
arity of the time course allows for an exact measurement of the flux from glucose to lactate. We next 
carried out direct measurements of glycolysis state and flux control by perturbing glycolysis acutely 
with pharmacological agents and subsequently measuring metabolite levels and the flux from glu-
cose to lactate. Genetic manipulations such as RNA interference were not possible since the meas-
urement of dose-dependent acute effects was necessary. In each case, the compounds considered 
have been reported to exhibit direct inhibition of the enzyme in question and to our knowledge do 
not directly inhibit other enzymes in glycolysis. Nevertheless, the general specificity of these com-
pounds is not established and off target effects that exist are likely reduced by considering acute 
treatments.

We considered inhibiting glycolysis at three separate points along the pathway that are predicted 
to have widely variable flux control of the pathway. In the beginning of glycolysis we used 3PO, a 
compound that targets PFK2 thus inhibiting the phosphofructokinase step (Schoors et al., 2014). 
Next, we considered iodoacetate (IA), a compound that targets GADPH (Campbell-Burk et al., 1987). 
Finally FX11, a compound that targets LDH was considered (Granchi et al., 2011).

In each case (Figure 4B–D) differential, complex, nonlinear responses of metabolite levels to inhib-
iting glycolysis were observed. The exception was treatment with IA (Figure 4C) which exhibited an 
expected accumulation of intermediates upstream of GAPDH and depletion of intermediates down-
stream of the target. We next measured directly the flux control coefficients for each compound. 
An analysis of the flux control (Figure 4E–G) revealed several interesting responses. Strikingly, as 
predicted by the model, a negative flux control was observed for targeting PFK implying that inhibiting 
this step in these circumstances increases glycolytic flux and Warburg Effect (Figure 4E). The largest 
flux control was observed with inhibition of GAPDH (Figure 4F). Inhibition of LDH as predicted also 
resulted in little flux control (Figure 4G). Together, these findings confirm the mechanisms of flux 
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control of glycolysis predicted by the model and demonstrate the novel regulation of glycolytic flux 
that can be differentially perturbed by pharmacological compounds.

FBP status and signatures of glycolysis state
We have thus far observed experimentally the dynamic behavior of flux control in glycolysis including 
both positive and negative flux control in the pathway and a high variability of flux control depending 
on the point of inhibition in the pathway. Having established the complex relationships between gly-
colytic flux and susceptibility to specific targeted inhibition of the pathway, we sought to investigate 
whether there was any predictive capacity and new mechanisms of biochemical regulation related to 
these findings.

We noticed that Fructose-(1,6)-bisphosphate (FBP) levels exhibited highly dynamic and counterin-
tuitive behavior with each drug perturbation. An analysis of metabolite levels across a series of 14 
conditions in triplicate involving pharmacological perturbations of PFK2, LDH, and GAPDH at different 
concentrations and two separate vehicle treatments (Figure 5A) revealed large magnitude, dynamic 
responses in FBP levels. We next investigated the extent that FBP levels could characterize the meta-
bolic state of glycolysis. The simulated PDF of FBP levels exhibited a bimodal distribution (Figure 5B) 
consisting of a state of low FBP where the concentration was in the high micromolar range. In addition, 
there existed a state of FBP where the concentration was several orders of magnitude high in the mil-
limolar range. When demarcating the experiments into two groups (high and low FBP) we correlated 
the levels with lactate flux experimentally (Figure 5C,E) and found the results to match those observed 
computationally (Figure 5D,F). In addition, correlations in these two states with the remainder of the 

Figure 4. Experimental flux control coefficients. (A) Schematic of experimental flux control analysis. Cells are pre-incubated with 13C glucose and treated 
with differing concentrations of inhibitors that target glycolysis at different points in the pathway. Media and intracellular metabolites are collected, 
subjected to (liquid chromatography high resolution mass spectrometry) LC-HRMS, and subjected to flux analysis. (B) Changes in metabolite levels 
observed from treatment with 3PO an inhibitor of PFK2. (C) Changes in metabolite levels observed from treatment with IA an inhibitor of GAPDH. 
(D) Changes in metabolite levels observed from treatment with FX11 and inhibitor of LDH. For B–D, the logarithm (log2) of the fold change of treated to 
vehicle across intermediates in glycolysis is shown for each concentration of compound denoted in the figure legend. Abbreviations are the same as 
described in Figure 1 except that HP denotes all hexose phosphates that were measured and not distinguished in the current mass spectrometry method. 
(E) Lactate flux from glucose as a function PFK2 inhibition. (F) Lactate flux from glucose as a function GAPDH inhibition. (G) Lactate flux from glucose as a 
function LDH inhibition. For E–G, the plot on the left shows the measured glucose to lactate flux as a function of the estimated fraction of enzyme 
inhibited (left) inhibitor concentration (right).
DOI: 10.7554/eLife.03342.006
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concentrations of glycolytic intermediates agreed well with experiments. Together these findings suggest 
in addition to the model being able to capture a diverse set of experimental metabolic conditions, 
the FBP status in cells was able to determine the state of glycolysis and its rate-limiting steps.

A unified model of aerobic glycolysis
Together, the combined computational model, metabolite profiling, and flux analysis points to a 
different picture of glycolysis (Figure 6). When the levels of FBP are low, metabolite levels of glycolytic 
intermediates tend to be more evenly distributed across the pathway. In this circumstance, flux through 
the pathway is controlled largely through the initial steps in glycolysis involving hexokinase and phos-
phofructokinase. Bottlenecks downstream of these canonical rate-limiting steps are not affecting flux 
through the pathway. Under these conditions, FBP is also not allosterically activating pyruvate kinase. 
In contrast, when the levels of FBP are high, there is a disconnect in the relative concentration of 
glycolytic intermediates that is marked by a separation between upper and lower glycolysis at the 
GAPDH step. In this case, there is an accumulation of intermediates in upper glycolysis, most notably 

Figure 5. FBP levels predict distinct mechanisms in glycolysis. (A) Variation of metabolite levels across glycolysis 
over 14 conditions in triplicate resulting in 42 independent experiments involving cells growing in basal conditions 
and those with differing extents of inhibition of glycolysis from results in Figure 4. (B) Simulated distribution of FBP 
levels in glycolysis. (C) Correlation of lactate flux with measured glycolytic intermediates for low FBP levels. The left 
panel shows data for FBP and right panel reports the values of the Spearman correlation coefficients for each 
metabolite. (D) Simulated correlation of lactate flux with metabolite levels of glycolytic intermediates in conditions 
of low FBP levels. (E) Correlation of lactate flux with measured glycolytic intermediates for high FBP levels. The left 
panel shows data for FBP and right panel reports the values of the Spearman correlation coefficients for each 
metabolite. (F) Simulated correlation of lactate flux with metabolite levels of glycolytic intermediates in conditions 
of low FBP levels.
DOI: 10.7554/eLife.03342.007
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FBP and a depletion of intermediates downstream 
of GAPDH. Under these circumstances, GAPDH 
exerts control as the most rate-determining step 
in the pathway since increased activity through 
GAPDH will serve then to create a balance along 
the pathway by pulling the metabolites from upper 
glycolysis into lower glycolysis. Under these condi-
tions, the beginning steps of glycolysis can exert 
negative control on the pathway since inhibiting 
them will result in even greater increases in the 
intermediates in upper glycolysis. This state has 
analogies with a recently observed state of glycol-
ysis observed in yeast where an accumulation of 
FBP leads to cellular toxicity (van Heerden et al., 
2014). Notably in this case, in order to balance the 
fluxes in higher and lower glycolysis, an imbalance 
in the concentrations of metabolites in upper and 
lower glycolysis results.

Discussion
Together, our analysis yields a comprehensive, 
quantitative framework for understanding glycolysis 
and its regulation in the context of the Warburg 
Effect. Historically, glycolysis is thought to have 
a rate-limiting step at several points in the path-
way (Chance and Hess, 1956; Wu, 1965). These 
points correspond to positions in the pathway 
where large free energy differences arise in-
cluding the ATP-coupled enzymes Hexokinase, 
Phosphofructokinase, and Pyruvate Kinase (Rose 
and Warms, 1966; Rapoport et al., 1976; Hue and 
Rider, 1987). Surprisingly, we identified a strong 
context-dependence with both positive and nega-

tive control in glycolysis at each of these steps. In the case of inhibiting flux through PFK, the observed 
negative control in certain conditions implies that inhibiting this point in the pathway can lead to 
increased rates of fermentation. This finding provides a possible explanation for why its efficacy may 
be more prevalent in stromal cells (Schoors et al., 2014).

Unexpectedly, GAPDH was found to be a recurrent rate-controlling step in aerobic glycolysis. 
This finding, first documented to our knowledge in parasitic bacteria feeding on high glucose (Bakker 
et al., 1999), is in contrast to the longstanding notion that GAPDH is not a rate-determining enzyme 
in glycolysis with the activity of enzymes such as hexokinase, phosphofructokinase, and pyruvate 
kinase thought to be more controlling. In the case of GAPDH, the bottleneck occurs due to its unique 
placement in the pathway where it can be regulated by ATP, NAD+, and the levels of glucose-
derived intermediates in the pathway that affects the thermodynamics of glycolysis. There are multi-
ple mechanisms that lead to this finding. ATP consumption has previously been reported to control the 
rate of glycolysis and this effect likely occurs to some extent through GAPDH (Racker, 1976; Locasale 
and Cantley, 2011; Lunt and Vander Heiden, 2011). NAD+ regeneration that is mediated by the 
malate–aspartate shuttle and lactate dehydrogenase also affects flux through glycolysis (DeBerardinis 
et al., 2008; Locasale and Cantley, 2011). In addition, the activity of the pathway upstream and 
downstream of GAPDH changes the balance of the levels of intermediates in glycolysis and results in 
driving the thermodynamics of the reactions out of equilibrium also can result in greater flux control 
(Noor et al., 2014). Each of these mechanisms separately or together acts to allow for GAPDH to 
exert flux control over the glycolytic pathway.

Enzymes along glycolysis that are believed to control flux have many documented regulatory mecha-
nisms. For example pyruvate kinase and phosphofructokinase have numerous small molecule effectors and 
post-translational modifications that affect their activities (Mor et al., 2011; Chaneton and Gottlieb, 2012; 

Figure 6. A unified model of aerobic glycolysis. A unified 
picture of flux control in aerobic glycolysis. (left) Under 
conditions where there is an accumulation of interme-
diates in upper glycolysis and depletion of intermedi-
ates in lower glycolysis a bottleneck exists at the step 
involving GAPDH. This bottleneck is due to the status 
of energy and redox metabolism and the thermody-
namics of the pathway that together mediate the flux 
through GAPDH. As a result, inhibiting flux through 
glycolysis is most sensitive to a perturbation in GAPDH 
activity. (right) Under conditions where the metabolites 
in glycolysis are distributed more evenly with levels 
together being either high or low, no such bottleneck 
exists. Instead flux through glycolysis leading to lactate 
production is most determined by the canonical 
pacemaking steps in glycolysis involving PFK and HK. 
The relative levels of glycolytic intermediates are 
denoted by the size of the text.
DOI: 10.7554/eLife.03342.008
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Keller et al., 2012; Yi, et al., 2012). It is notable that GAPDH also is subject to multiple forms of reg-
ulation including post-translational modifications such as nitrosylation and reactive oxygen species 
(ROS) that interacts with the catalytic cysteine in GAPDH to inhibit its activity (Gaupels et al., 2011; 
Tristan et al., 2011; Moellering and Cravatt, 2013). In the context of ROS, it is tempting to speculate 
that alterations in ROS could lead to selective modulation of glycolytic flux as has been suggested to 
occur with pyruvate kinase (Anastasiou et al., 2011). While ROS-mediated inhibition is unlikely in 
conditions of exponential growth, it may be more apparent in physiological conditions of hypoxia and 
glucose deprivation with higher concentrations of ROS. Another critical aspect of the flux control 
that GAPDH exerts over the glycolytic pathway is high expression of GAPDH in cells undergoing 
aerobic glycolysis. Indeed, reports of quantitative protein abundance in mammalian cells have identified 
enzymes in the pathway glycolysis as the most highly expressed collective of proteins in cells 
(Moghaddas Gholami et al., 2013). Interestingly, it was found that within glycolysis, GAPDH is 
often the mostly highly concentrated protein in glycolysis suggesting that the role of this high expres-
sion in these cases is to support the increased amount of glycolytic flux in these cells. Nevertheless, 
although mechanisms that regulate phosphofructokinase and pyruvate kinase for example have been 
shown to mediate cell growth and proliferation, whether regulatory mechanisms of GAPDH have 
functional roles in cell growth and proliferation related to aerobic glycolysis is not known.

Two states of glycolysis were observed with different extents of flux control, tendencies for 
aerobic glycolysis, and concentration patterns along glycolysis. Notably, the FBP levels have impli-
cations on the activity of pyruvate kinase that is also allosterically activated by FBP. At low FBP concen-
tration, pyruvate kinase is not activated by FBP but this occurs only in the high FBP state. This finding 
could have implications in understanding the contexts in which pharmacologically activating pyruvate 
kinase may have efficacy. Furthermore, it remains to be seen if any signature of these metabolite states 
could manifest in the alterations of peripheral metabolism involving pathways whose fluxes emanate 
from glycolysis. If this were the case, then a tempting possibility would be that these states of 
glycolysis could be predicted from measurements of peripheral metabolites that could be excreted 
into circulation allowing for the possibility of developing serum biomarkers for the status of glycolysis 
in tumors beyond what can be resolved with positron emission tomography using radioactive glucose.

Finally, the surge of interest in metabolism and its contribution to pathogenesis has created an 
expectation that therapeutics that target glucose metabolism will be clinically successful. Targeting 
glycolysis in metabolism has raised interest but is limited by the development of biomarkers that could 
determine the contexts in which targeting glucose metabolism in malignancy would be efficacious 
(Vander Heiden, 2011; Galluzzi et al., 2013; Vander Heiden, 2013). From our model analysis, 
the consequences of inhibiting glycolysis appear enormously complex that limit biomarker develop-
ment due to the nonlinear mechanisms that determine the response of the pathway to a drug pertur-
bation. Nevertheless, with the development of these predictive models that can capture diverse behaviors 
of glycolysis, it is worth considering whether they may have predictive capacity in pre-clinical and 
clinical settings.

Materials and methods
Kinetic model of glycolysis
The model includes a compartment involving enzymes in glycolysis and additional compartments 
involving with reactions that are coupled to glycolysis. The following compartments are considered in 
addition to the enzymes in glycolysis are considered:
 
1. Glucose uptake through the glucose transporter,
2. Lactate dehydrogenase (LDH) activity and lactate transport through the monocarboxylate 

transporter (MCT),
3. Oxygen consumption, transport and activity of oxidative phosphorylation (OxPhos),
4. ATP-buffering mechanisms involving adenylate Kinase, creatine Kinase, and ATPase activity,
5. NADH/NAD+-mediated mitochondrial shuttles including the Malate–Aspartate Shuttle and the 

Glycerol-3-Phosphate Shuttle.
 
More generally glycogen metabolism, pentose phosphate pathway and alanine biosynthesis could also 
be included but are omitted since the conclusions drawn in this study do not depend on their activities. 
A schematic representation of the kinetic model and resulting network is shown in Figure 2A.

http://dx.doi.org/10.7554/eLife.03342
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We first introduce notation and other conventions. Each symbol indicates the respective con-
centration. A subscript ‘0’ refers to the steady-state value. Reaction rates are expressed in millimoles 

per hour per unit intracellular volume. Together with initial state vectors C0 ∈ RN  ,  Vo ∈ RM  , of metabolites 
and fluxes respectively.

The dynamics of the system are therefore formulated as initial value problem for ordinary differential 
equations (ODEs). Starting parameter values based on published data are defined in Supplementary 
file 1. Reaction rates are defined through a consideration of the respective enzyme mechanisms with 
additional feed forward and feed back regulation giving rise to allosteric activation and inhibition.

Therefore, the model is designed to describe: (a) steady-state and dynamic behavior of energy 

metabolism, including the Warburg effect ( =
Lac

Ox

J
W

J
), energy state (ATP/ADP ratio), redox state (NADH/

NAD+ ratio) together with glucose, lactate, and oxygen supply through exchange fluxes from the 
intercellular and extracellular compartment, (b) steady states and time courses of all variables of the 
metabolic network, and (c) effects of metabolic parameter perturbations on the overall system output. 
Cellular energy homeostasis through ATP is supported by several mechanisms with different relaxation 
times and regulation mechanisms: (a) directly by glycolysis that converts glucose into intracellular pyr-
uvate, (b) mitochondrial respiration through consumption of pyruvate and oxygen via the TCA cycle, 
and (c) the buffering effect of creatine kinase that facilitates the reversible reaction of phosphocreatine 
(PCr) with ADP to produce creatine (Cr) and ATP, and (d) adenylate kinase activity that catalyzes intercon-
version of adenine nucleotides: 2ADP ⇔ ATP + AMP, and (e) the additional NADH pool produced in 
cytosol and transported to mitochondria by different shuttle mechanisms. For oxygen consumption, we 
assumed that mitochondrial respiration (O2 consumption) depends on cellular pyruvate and oxygen 
concentrations and that respiratory chain activity is activated by ADP concentration.

The state of the system is represented by the state vector of time-dependent metabolite concen-
trations Cn, (n = 1, …, N) and includes 27 state variables whose names, balance equations, and steady-
state values are presented in Supplementary file 1. The model also includes three mass conservations 
laws, that reduce the number of state variables. The temporal profile of the system is governed by the set 
of ODE based on the model network that distinguishes media and cellular domains. For the metabolite i 
in the intracellular compartment, the general form is:

= +
tr pj pj uk uki
i i i i i

j k

dC
J V V

dt
ν ν−∑ ∑ , (1)

where the intracellular concentration of species i is Ci;  Jtri  is the net transport flux for boundary species 
i between the media and cell; pj

iV , uk

i
V  are normalized reaction fluxes that produce (j) or utilize (k) cellular 

species i, νpji , and νuki  are corresponding stoichiometric coefficients. For extracellular boundary metab-
olites in the media, the dynamic mass balance has the following general form:

= 
tr

ie i

dCe
r J

dt
⋅ , (2)

where the concentration of extracellular (e) species is Ce and rie is the ratio of cell volume to media 
volume. To ensure that steady states are obtained during perturbations of parameters without loss of 
generality, we assume that the media boundary metabolites have constant concentrations. The trans-
port of boundary species is taken to be either facilitated (glucose, lactate, serine, glycine) or passive 
(oxygen). For passive diffusion of oxygen the equation for the net transport flux is:

( )
2 2 2 2

=
tr

O O O e O i
J k C C− , (3)

where kO2 is the effective rate constant for passive O2 diffusion, and CeO2 and CiO2 are medium and 
intracellular oxygen concentrations. For facilitated transport, the equation for the net transport flux is:

= 

1+ +

max ei i

tr tr tr

mi mitr

i

ei i

tr tr

mi mi

C C
J

K K
J

C C

K K

     
−

, (4)

where Cei is the extracellular concentration for species i, Jmaxtr  is the maximal transport rate, and Ktrmi is 
the Michaelis–Menten constant for transport. NADH transport from the cytosol to the mitochondria is 

http://dx.doi.org/10.7554/eLife.03342


Biochemistry | Human biology and medicine

Shestov et al. eLife 2014;3:e03342. DOI: 10.7554/eLife.03342 13 of 18

Research article

mediated by the malate–aspartate and glycerol phosphate shuttles. We modeled the NAD+-mediated 
mitochondrial shuttle flux from NADH to NAD+ by assuming that the total shuttle flux is balanced 
with the NADH-generation reactions involving LDH and PHGDH.

Vmas = Vox + 2Vphgdh (5)

When possible, in order to minimize the number of parameters, we utilized a ‘one-step binding 
enzyme mechanism’ with a rate law of the form (Segel, 1975):

( )

i
   −        +   

j

j
i

pjsi jmax maxi
f r

pjsi ji

CC
V V

Kmf KmrV
CC

Kmf Kmr

= , ,

1+

νν

νν
χ α ι

∏∏

∏∏
 (6)

where ( ),χ α ι  is a control function that accounts for the effects of activation α , or inhibition ι . A 
general form for the control function is (Liebermeister and Klipp, 2006):

( )

[ ]
[ ]( )

[ ]( )

  

 

,
+

, ,

, 
+

A

I

I

A
in case of activation

A K

K
in case of inhibition

I K

α
χ α ι

ι
=



 (7)

where [A] and [I] are the concentrations of the activator or inhibitor, KA and KI are the corresponding 
activation and inhibition constants. With this convention, there are 4 (or 5 including the control function) 
independent parameters for each metabolic flux with a one-step binding mechanism. For fluxes with no 
allosteric regulation, ( ), = 1χ α ι .

For all metabolic fluxes involving NAD+/NADH oxidoreductase activity, we utilized a more complex 
rate law than that of a one step binding reaction (Cornish-Bowden, 2012). We chose to consider a 
more complicated rate-law since our initial observations indicated that a one-step binding mechanism 
produced numerical instabilities in the solutions. We therefore considered a general rate law corre-
sponding to a random bi–bi mechanism (for LDH and PHGDH) and a random ter-bi reaction for GAPDH. 
For example, in its general form the rate law for LDH is:

+

++

**

= .
**

1+ + + + + +

max max i
rldhfldh

ldh

i i
ldh ldh ldh ldh
mpyr mnadh mlac mnad

LAC NADPYR NADH
V V

Kmldhf KmldhrV
LAC LAC NADPYR NADH PYR NADH NAD

K K Kmldhf K K Kmldhr

−

 (8)

However, it has also been suggested that the enzymatic reaction for oxidoreductase activity proceeds 
in an ordered fashion resulting in a rate law of the form:

+

++

**

=
**

1+ + + +

max max i

rldhfldh

ldh

i

ldh ldh

mnadh mnad

LAC NADPYR NADH
V V

Kmldhf Kmldhr
V

LAC NADNADH PYR NADH NAD

K Kmldhf K Kmldhr

−

 (9)

When considering this mechanism, it was found that statistical evaluation of the model was robust 
to changes in the choice of rate law.

The rate equations for each metabolic reaction and metabolic parameters values are in 
Supplementary file 1. Taking into account additional thermodynamic constraints by invoking the 
Haldane equation that relates the forward and reverse fluxes and their Vmax values allowed for a 
further reduction in the number of independent parameters to three parameters per reaction flux. 
The Haldane equation has the form:

max

= ,
max f

r

eq

V Kmr
V

KmfK
 (10)
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where Keq is the reaction apparent equilibrium constant: Keq = exp(−ΔG°/RT), where ΔG° is standard 
reaction Gibbs free energy. ΔG° values for glycolytic reactions are listed in Supplementary file 1.

We first used two independent sets of experimental data from a compendium of steady-state 
metabolite concentrations of liver cells and steady-state fluxes of DB1 melanoma cells evaluated using 
a cultured bioreactor (Konig et al., 2012; Shestov et al., 2013). The model was further validated by 
a comparison of measurements of redox status, assessment of ATP, ADP, and AMP concentrations. 
Together, those data were able to generate a thermodynamically feasible and experimentally observable 
model of glycolysis that was then used as the starting point for exhaustive Monte Carlo simulations 
and coupled metabolic control analysis.

Monte Carlo simulations for global sensitivity analysis
The specific aim of this work is to enumerate the variables within and coupled to glycolysis that deter-
mine the extent of aerobic glycolysis. We therefore developed a novel algorithm to assess these fea-
tures. The algorithm involves a global sensitivity analysis based on a Monte Carlo method. The Monte 
Carlo analysis allows for sampling of parameter space over a broad range of simultaneous variations 
of parameters (enzyme expression levels) followed by statistical assessment of the resulting solution. 
The idea of this method is to inject uncertainty of the parameters in the model by randomly selecting 
parameter values from uniform probability distributions. This was achieved by a Monte Carlo method 
using a randomly drawn set of parameters. The range of parameters chosen with uniform sampling 
was within two orders of magnitudes of each Vmax (which is proportional to enzyme activity level 
and was in the range of 10 times less and 10 times greater than the initial Vmax value). Such a sampling 
was chosen to be large enough to cover all feasible solutions of aerobic glycolysis. The sampling was 
carried out using a Latin Hypercube sampling method (Oguz et al., 2013). For each chosen set of 
random parameter vectors the model was simulated between 2000 and 5000 times and its output was 
calculated. Briefly, we divided the range of the i-th normalized parameter into n (n = 2000–5000) subin-
tervals of equal size. Then, we randomly sample n values (e.g., pi, i = 1, …, n), one from each subinterval, 
for the i-th parameter. We next randomly permuted the n values for each parameter to get the param-
eter vector. We then evaluated the following: the Warburg Effect value, energy and redox states, 
metabolite steady-state concentrations and fluxes and flux control coefficients (FCCs). The flux control 
coefficient that an enzyme Ei exerts on the lactate flux JLac is defined as (Heinrich and Rapoport, 1974; 
Fell, 1992; Shestov et al., 2013):

ln
= .

ln

Lac

i

i

J
FCC

E

∂
∂

 (11)

To compute the FCC values numerically, we considered a perturbation 0.01 times of the enzyme 
value and then evaluated the change in flux. The model was implemented in Matlab as a system of 27 
ordinary differential equations (ODEs) with an ODE solver designed for stiff ODE systems.

Cell culture and metabolite extraction
HCT116 cells were cultured with a growth medium, which contains RPMI 1640, 10% Fetal Bovine 
Serum (FBS), 100 U/ml penicillin, and 100 μg/ml streptomycin. The cells were obtained as a gift 
from Lewis Cantley's laboratory. The cells were cultured in 37°C with 5% CO2. For treatments, the 
cells were seeded in 6-well plate at a density of 2 × 105 to 5 × 105 cells per well. After overnight 
incubation, full growth media were removed, and cells were washed with 2 ml PBS before the 
addition of RPMI media (without glucose), supplemented with 10% dialyzed and heat inactivated 
FBS, 100 U/ml penicillin, 100 μg/ml streptomycin and 5 mM 13C-U-glucose (Cambridge Isotope 
Laboratory, Tewksbury, MA) (fresh growth media). For drug treatments and flux measurements, full 
growth media were replaced with fresh growth media, containing either 0.1% DMSO, or the con-
centration of the indicated drug. Media were then collected at 30, 60, 90, and 120 min after incu-
bation. From 20 µl media, 80 µl of ice cold H2O was added, together with 400 µl ice cold methanol 
(Fisher, Optima LC/MS grade). After vigorous vortexing, the solution was then centrifuged at 
20,000×g at 4°C for 10 min and then the supernatant was dried under vacuum. At 120 min, the 
media were removed as completely as possible, and then 6-well plates were immediately placed 
on dry ice, followed by the addition of 1 ml extraction solvent, 80% MeOH/H2O (Fisher, Optima 
LC/MS Grade), which was pre-cooled in −80°C freezer for at least 1 hr. The dishes were then transferred 
to the −80°C freezer. The plates were left for 15 min and then cells were scraped into the solvent 
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on dry ice and then transferred to two 1.7-ml eppendorf tubes, and centrifuged with the speed of 
20,000×g at 4°C for 10 min. Metabolite extracts are prepared from three separate wells to make 
three replicate samples. The supernatant is then transferred to new eppendorf tubes, and dried 
under vacuum. For analysis, each extract was then re-constituted into water (15 μl for cell extract 
and 50 μl for medium extract) and then diluted with an equal volume of 50% Methanol/Acetonitrile. 
Finally, 5 μl was injected into the column for analysis.

Flux analysis
Absolute concentrations of 13C lactate were first measured by mixing a standard of unlabeled lactate 
with a defined concentration into the medium. For each calculated flux, an estimation of the flux from 
glucose to lactate was obtained from the slope of the time course of 13C lactate production using the 
time points of media collection described above. Slopes were computed using Graphpad Prism with 
time courses determined to be linear from the goodness of fit (R2 > 0.98 with few exceptions). For 
corresponding plots for different agents, fraction of inhibition was computed from Ki values that were 
taken based on previous reports (Foxall et al., 1984; Le et al., 2010; Telang et al., 2012).

Mass spectrometry
The Q Exactive Mass Spectrometer (QE-MS) is equipped with a heated electrospray ionization 
probe (HESI), and the relevant parameters are as listed: heater temperature, 120°C; sheath gas, 
30; auxiliary gas, 10; sweep gas, 3; spray voltage, 3.6 kV for positive mode, and 2.5 kV for negative 
mode. Capillary temperature was set at 320°C, and S-lens was 55. A full scan range from 60 to 900 (m/z) 
was used. The resolution was set at 70,000. The maximum injection time was 200 ms with typical 
injection times around 50 ms. These settings resulted in a duty cycle of around 550 ms to carry  
out scans in both positive and negative mode. Automated gain control (AGC) was targeted at 
3,000,000 ions.

Liquid chromatography
Liquid chromatography (Ultimate 3000 UHPLC) is coupled to the QE-MS for metabolite separation 
and detection. An Xbridge amide column (100 × 2.1 mm i.d., 3.5 μm; Waters) is employed for com-
pound separation. The mobile phase A is 20 mM ammonium acetate and 15 mM ammonium hydroxide 
in water with 3% acetonitrile, pH 9.0, as described above, and mobile phase B is acetonitrile. A linear 
gradient was used as follows: 0 min, 85% B; 1.5 min, 85% B; 5.5 min, 35% B; 10 min, 35% B; 10.5 min, 
35% B; 14.5 min, 35% B; 15 min, 85% B; and 20 min, 85% B. The flow rate was 0.15 ml/min from 0 to 
10 min and 15 to 20 min, and 0.3 ml/min from 10.5 to 14.5 min. All solvents are LC-MS Optima grade 
and purchased from Fisher Scientific.

NADH/NAD+ imaging
Human mammary epithelial MCF-10A cells (CRL-10317; ATCC) stably expressing Peredox-NLS were 
generated and cultured as previously described (Debnath et al., 2003; Hung et al., 2011). 2–4 days 
prior to imaging, ∼500 cells were plated onto the center of each well of a 96-well plate. On the day of 
the experiment, cells were placed in custom DMEM/F12 (Gibco) containing no glucose and supple-
mented to the levels mentioned. Fluorescence images were acquired using a Nikon inverted Eclipse 
Ti microscope, equipped with a Nikon 20×/0.75 Plan Apo objective, three different regions of interest 
chosen, images sequentially acquired every 8 min with 50–100 ms exposure and 2 × 2 binning. Using 
a custom MATLAB algorithm previously developed, we subtracted background, set a threshold for cell 
segmentation, and analyzed the data as previously described (Hung et al., 2011). The concentration 
of glucose is maintained by considering a culture system in which cells are seeded at low density and 
media are present in vast excess. An estimate of glucose maintenance in the media in the low glucose 
condition can be considered using values the glucose uptake rate of the cells (∼100 fmol/cell/hr), 
the cell number (∼2000), the volume of media used (400 μl), and concentration of glucose in the 
media (750 μM, 500 μM from supplementation + 250 μM from the Horse Serum). Thus in 24 hr, we 
estimate that about 5 nmols of glucose are consumed. The media contain roughly 200 nmols of glucose 
which is in excess of the amount consumed by the cells.

Data analysis
Raw data collected from the QE-MS is processed using Sieve 2.0 (Thermo Scientific). Peak alignment 
and detection are performed according to the protocol described by Thermo Scientific. For a targeted 
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metabolite analysis, the method ‘peak alignment and frame extraction’ is applied. An input file of 
theoretical m/z and detected retention time known metabolites is used for targeted metabolite 
analysis with data collected in both positive and negative mode. m/z width is set at 10 ppm. The 
output file including detected m/z and relative intensity in different samples is obtained after data 
processing. For resulting simulation data, hierarchical clustering was carried out using spearman ranked 
correlations and the Gene-e software package (Broad Institute). Box-plots (25%/75% percentile, mean 
and median) was calculated and made with the Graphpad Prism software package.
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