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ABSTRACT OF THE THESIS

Modeling Reactive Case Detection for Malaria Elimination: A
Metapopulation Approach

by

John M. Davis

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2020

Professor Sonia Martínez, Chair

Regional elimination of malaria is made difficult, in part, by high volumes of

asymptomatic or otherwise non-treatment-seeking cases. Reactive case detection (RCD) -

a geographically targeted disease control strategy - identifies non-treatment-seeking cases

by screening individuals who live in close proximity to known cases. These known cases, or

‘index’ cases, are selected from a pool of individuals who seek treatment from a health facility.

Research has demonstrated that RCD is most appropriate in low-transmission settings

where cases are highly clustered [1, 2, 3]. The existing body of literature leaves room to

better characterize optimal RCD policy parameters under resource constraints. Particularly
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of need is analysis with explicit treatment of spatially heterogeneous transmission, which

may be important in the presence of clustered transmission pockets. In this study, we

introduce a spatially-explicit modeling framework, perform stability analysis, and present

and a novel RCD algorithm. Through simulation, we study the effects of key parameters on

RCD performance and provide insight to guide optimal policy making. Our results suggest

that RCD is always more effective than random test-and-treat of equal screening intensity

in low-to-moderate transmission environments. However, the resource-constrained trade-off

between screening radius and number of index cases is relatively unimportant except in

very low transmission environments. In such settings, it is optimal to follow as many index

cases with as small a search radius as possible such that full screening capacity is utilized.

While RCD may be a useful tool, malaria reduction and elimination is often best achieved

by reducing transmission rates, improving access to health coverage, and strengthening

health systems overall.
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Chapter 1

Introduction

Malaria is a parasitic disease transmitted to humans through mosquito bites. Though

preventable and curable, malaria is life-threatening if not properly treated. There were

an estimated 228 million cases and 405,000 malaria deaths worldwide in 2018, with Sub-

Saharan Africa accounting for over 90% of all cases [4]. Malaria causes approximately 20%

of child deaths in Africa, most of which occur among children under 5 years of age [5, 4].

Malaria is thought to have significant adverse affects on poverty and economic growth [6].

There have been many international efforts to control and eradicate malaria, in-

cluding the WHO’s Global Malaria Eradication Programme (1995), the Roll Back Malaria

Initiative (1998), and the Global Fund to Fight AIDS, Tuberculosis, and Malaria (2002).

Accounting for population growth, the estimated malaria mortality rate decreased 60%

between 2000-2015 [7]. Eleven countries in Europe, Central Asia, Northern Africa, the

Middle East, and the Americas have achieved malaria-free status since 2010 [8]. Still, there

is a long road ahead to eradication. On top of ongoing challenges, health service disruptions

amidst the 2020 COVID-19 pandemic threaten serious setbacks [9].

As outlined in the WHO’s 2016 Malaria Elimination Guide [10], control and elimi-

nation programs consist of surveillance, case management, and vector control. Surveillance
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activities identify the location and characteristics of cases, and are performed passively

(where patients seek treatment from health facilities) or actively (where health workers

perform screening in communities and households). Case management consists of diagnosis

of the malaria parasite, treatment (often through artemisinin-based combination therapies,

or ACTs), and patient follow-ups. Vector control methods include insecticide-treated nets

(ITNs), indoor residual spraying (IRS) with insecticide, and a range of supplementary

interventions. These components may play different roles at different stages in a malaria

elimination program.

Identification of non-treatment-seeking cases, such as asymptomatic cases that can

still transmit, is important in malaria elimination. Such cases require an active surveillance

approach such as reactive case detection (RCD). RCD identifies non-treatment-seeking cases

by screening individuals who live in close proximity to known cases [11]. These known cases,

or ‘index’ cases, are selected from a pool of individuals who seek treatment from a health

facility. Due to its geographical targetting, RCD is a potentially cost-effective approach

to uncovering non-treatment-seeking cases. Several studies including [12], [13], [14], and

[15] have observed clustering of infections at the household and neighborhood scale that

supports this theory. While non-treatment-seeking cases exist in low- and high-transmission

settings alike, RCD is regarded as especially suitable for low-transmission settings [11, 2].

As afflicted areas approach malaria elimination, incidence falls and transmission becomes

more geographically clustered. This heterogeneity requires that surveillance become more

targeted and reactive to new information. Similarly, one can imagine that a population

where malaria was recently re-introduced would display a high degree of heterogeneity.

We parameterize RCD strategies by the number of confirmed index cases ι in-

vestigated per unit time, the screening radius rmax in which household co-members and

neighbors are screened, and the screening capacity cmax which limits the total number of

reactive screenings. An optimal resource allocation problem arises when cmax is constrained:
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is it best to follow several index cases with a large search radius, or many index cases with

a smaller search radius? Due to spatial clustering, the former may uncover the most unde-

tected cases, while the latter could be more likely to clear entire transmission pockets. The

optimal strategy is not necessarily that which detects the most non treatment-seeking cases,

since in a spatially heterogeneous transmission environment, not all cases have the same

transmission potential. Additionally, the optimal strategy may depend on transmission

environment, health-seeking behavior, and other factors. On-the-ground studies such as [14]

have investigated optimal RCD policy, though these are site-specific and resource-intensive.

Several important modeling and simulation studies have been performed as well [1, 2, 3].

These studies suggest that RCD is appropriate only in a limited range of settings, including

historically high-transmission areas with acquired symptom-resistance where transmission

has recently diminished. However, this body of literature leaves room to further characterize

optimal RCD policy parameters.

The studies of [1, 2], do not explicitly model spatial patterns of transmission. Instead,

they use a calibrated function to predict hypothetical prevalence around an average index

case based on search radius and population prevalence. In simulation, this function

determines the number of individuals to treat through RCD indiscriminate of location.

There are two drawbacks to this approach. First, it does not fully capture the effects of

spatial structure on transmission dynamics. For example, clustered population structures

have been shown to lower epidemic thresholds and inhibit propagation in some settings [16].

Second, spatial structure may be an important determinant of an individual’s transmission

potential and should therefore be considered when allocating screening resources. These

effects are magnified in low-transmission settings where clustering is most pronounced. As

a direct consequence, these studies are likely biased towards policies with small screening

radii that capture the most non treatment-seeking cases.

The study of [3] uses a spatiotemporal transmission model, but does not investigate
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the optimal balance of policy parameters. The contributions of this study are 1) a spatially

explicit malaria modeling framework with stability analysis, 2) a novel algorithm for RCD

simulation, and 3) insight into the determinants of optimal RCD performance within our

modeling framework.
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Chapter 2

Modeling Framework

In this chapter, we formulate the underlying transmission model we use in RCD

simulations, and analyze its key properties. Our model is based on that of Ngwa and

Shu (2000) [17] and, later, Chitnis et al. (2006) [18]. It is SEI(RS)-type, describing

staged progression through a malaria infection with susceptible, exposed, infected, and

recovered compartments for humans and susceptible, exposed, and infected compartments

for mosquitoes. We assume that human ‘recovery’ imparts partial immunity such that

symptoms are suppressed, but individuals still harbor low levels of parasites and can

transmit. After some time, immunity is lost, and recovered individuals either leave the

population or become susceptible. The key difference in our model is that it is a ‘multi-

patch,’ or ‘metapopulation’ model: both human and mosquito populations are split into

geographically distributed subpopulations with internal and external dynamics. Internally,

subpopulations exhibit vital dynamics (birth/influx and death/outflux), and progression

through disease stages. Externally, subpopulations interact over a network of transmission

pathways, where mosquitoes can transmit to humans and vice versa. This modeling

framework enables us to capture spatially explicit transmission dynamics with minimal

added complexity and low computational cost compared to individual-based models.
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2.1 Model Definition

Throughout this paper, quantities with subscript and superscript h refer to human

groups, while subscript and superscript v refer to mosquito groups. We omit h and v

when we wish not to distinguish human groups from mosquito groups, or when the type of

group is clear from context. Our human/mosquito SEI(RS) metapopulation model with

nh human groups and nv vector groups is described by the following system of differential

equations:

Ṡhi = ΛhiNh
i −

nv∑
j=1

βI,hvij Shi I
v
j

Nv
j

+ρhiR
h
i −dhi Shi (2.1)

Ėhi =
nv∑
j=1

βI,hvij Shi I
v
j

Nv
j

− (εhi +dhi )Ehi

İhi = εhi E
h
i − (γhi +dhi )Ihi

Ṙhi = γhi I
h
i − (ρhi +dhi )Rhi

for i ∈ {1,2, ...,nh}, j ∈ {1,2, ...,nv} and

Ṡvi = ΛviNv
i −

nh∑
j=1

βI,vhij Svi I
h
j

Nh
j

−
nh∑
j=1

βR,vhij Svi R
h
j

Nh
j

−dviSvi (2.2)

Ėvi =
nh∑
j=1

βI,vhij Svi I
h
j

Nh
j

+
nh∑
j=1

βR,vhij Svi R
h
j

Nh
j

− (εvi +dvi )Evi

İvi = εviE
v
i − (dvi )Ivi

for i ∈ {1,2, ...,nv}, j ∈ {1,2, ...,nh}.

where Ni = Si +Ei + Ii (+Ri), Λi and di are the per capita birth/influx and

death/outflux rates, and εi, γi, and ρi are inverses of the incubation period, duration

of infection, and period of immunity, respectively.

6



Figure 2.1: Flow diagram of SEI(RS) model

Solid lines represent transitions between compartments, dashed straight lines represent pathways
of infection, and wavy lines represent flux into and out of subpopulations.

We define ‘transmission rate’ between groups i and j as the rate at which group j

produces new infections in group i per group i individual. Equivalently, it is the biting

frequency between groups i and j per group i individual multiplied by transmission efficacy.

βI,hvij and βI,vhij are the transmission rates from group j mosquitoes or humans to group i

humans or mosquitoes, respectively. βR,vhij denotes transmission by recovered humans. We

set Λi = di to enforce constant population sizes.

2.2 Model Analysis

As is standard in disease modeling literature, we analyze our model to derive

important properties including positively invariant regions, basic reproduction number,

and existence and stability of equilibria. These properties unmask the model’s dynamical

behavior. Understanding these properties is useful for interpreting results generally, and

also for constructing simulation environments. In particular, existence of a unique and
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globally stable endemic equilibrium enables us to initialize simulations with a warm-up

period that reaches a unique steady state. Various methods are widely used to demonstrate

these standard (though often non-trivial) results. For a primer, we direct readers to [19]

and [20].

2.2.1 Feasible Region

We must define a biologically feasible region in R3nh+2nv for the dynamics (2.3),

(2.4). This is the region where all disease compartments are non-negative, and growth

or decline of population groups is consistent with prescribed influx and outflux. Positive

invariance of such a region indicates our model is well posed. We begin this discussion with

the following lemma.

Lemma 1 (Constant group size). For any x(t0) ∈ R4nh+3nv , each Ni = Ni(t) remains

constant for all t≥ t0.

Proof. It follows from the assumption Λi = di and the dynamics (2.1), (2.2) that Ṡhi + Ėhi +

İhi + Ṙhi = 0 and Ṡvi + Ėvi + İvi = 0; therefore Shi +Ehi +Ihi +Rhi =Nh
i (t0) and Svi +Evi +Ivi =

Nv
i (t0) for all t≥ t0. �

It is often most convenient to study the dynamics of compartmental disease models

by expressing some variables as outputs, when such simplifications can be made. Due to

constant population size, we study the dynamics of (2.1), (2.2) as a reduced-order system

in the E, I, and R variables:
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Ėhi =
nv∑
j=1

βI,hvij Shi I
v
j

Nv
j

− (εhi +dhi )Ehi (2.3)

İhi = εhi E
h
i − (γhi +dhi )Ihi

Ṙhi = γhi I
h
i − (ρhi +dhi )Rhi

for i ∈ {1,2, ...,nh}, j ∈ {1,2, ...,nv} and

Ėvi =
nh∑
j=1

βI,vhij Svi I
h
j

Nh
j

+
nh∑
j=1

βR,vhij Svi R
h
j

Nh
j

− (εvi +dvi )Evi (2.4)

İvi = εviE
v
i − (dvi )Ivi

for i ∈ {1,2, ...,nv}, j ∈ {1,2, ...,nh}.

Si variables can be expressed Si =Ni−Ei− Ii (−Ri) without loss of information.

Hereon, we denote the combined human and mosquito state vectors x as

x= [Eh1 , ...,Ehnh
, Ev1 , ...,E

v
nv
, Ih1 , ..., I

h
nh
, Iv1 , ..., I

v
nv
, Rh1 , ...,R

h
nh

]T (2.5)

= [EhT EvT IhT IvT RhT ]T

= [ET IT RT ]T ∈ R3nh+2nv .

Similarly, we denote the population size vector asN = [Nh
1 , ...,N

h
nh
, Nv

1 , ...,N
v
nv

]T = [NhT NvT ]T ,

parameter vectors by ε= [εh1 , ..., εhnh
, εv1, ..., ε

v
nv

]T = [εhT εvT ]T , and so on.

Theorem 1 (Invariance of feasible region). The set Γ =
{
x ∈ R3nh+2nv

≥0
∣∣∣Ehi + Ihi +Rhi ≤

Nh
i andEvj +Ivj ≤Nv

j , i ∈ {1,2, ...,nh}, j ∈ {1,2, ...,nv}
}
is positively invariant with respect

to system (2.3), (2.4).

Proof. Within each subpopulation i, the feasible subregion Γi can be visualized as the

9



Figure 2.2: The feasible region Γi.

three-dimensional solid shown in figure (2.2). The boundaries of Γ are the set of boundaries

of each Γi, shown in figure (2.3) for human groups. Subregions for mosquito groups are

triangles on a plane (not shown). Γi has outward normal vectors v1 = (1,1,1), v2 = (−1,0,0),

v3 = (0,−1,0), and v4 = (0,0,−1), corresponding to Face 1, Face 2, Face 3, and Face 4,

respectively. Denote the dynamics of (2.3), (2.4) as f(x). We can examine the behavior

of trajectories near boundaries ∂Γi of Γi by taking the inner product of outward-pointing

vector with f(x) on the boundary:

〈v1,f〉|Face 1 =−dhi (Ehi + Ihi +Rhi )−ρhiRhi < 0 since Si = 0 on Face 1.

〈v2,f〉|Face 2 =∑nv
j=1

βI,hv
ij Sh

i I
v
j

Nh
j

≤ 0

〈v3,f〉|Face 3 =−εhi Ehi ≤ 0

〈v4,f〉|Face 4 =−γhi Ihi ≤ 0

Similar analysis holds for subregions corresponding to mosquito groups. Therefore, the

vector field f(x) points tangent or inward with respect to Γ on its boundaries. Solutions

starting in Γ can not penetrate ∂Γ, implying Γ is invariant with respect to system (2.3),

(2.4).

�
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Figure 2.3: Boundary faces of Γi.

From left to right: Face 1, Face 2, Face 3, and Face 4.

2.2.2 Basic Reproduction Number

Perhaps the most important property of many infectious disease models is the basic

reproduction number R0. It is the expected number of secondary infections produced by an

infected individual in an otherwise susceptible population. Many disease models (including

ours) exhibit a ‘sharp threshold property’ that the disease will eventually die out if R0 ≤ 1,

while the disease persists when R0 > 1. There are various approaches to derive or estimate

R0. For background on the following methods, we refer the reader to [21] and [22].

The dynamics of (2.3), (2.3) may be written as

ẋ= (F −V )x (2.6)

where

F =


0 diag(S)BIdiag(N)−1 diag(S)BRdiag(Nh)−1

0 0 0

0 0 0

 ∈ R(3nh+2nv)×(3nh+2nv), (2.7)

V =


diag(ε+d) 0 0

−diag(ε) diag(γ+ +d) 0

0 [−diag(γ) 0] diag(ρ+dh)

 ∈ R(3nh+2nv)×(3nh+2nv), (2.8)
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BI =

 0
[
βI,hvij

]
[
βI,vhij

]
0

 ∈ R(nh+nv)×(nh+nv), (2.9)

and

BR =

 0[
βR,vhij

]
 ∈ R(nh+nv)×nh (2.10)

where subscript + denotes a vector appended with zeros to make the appropriate length. Fx

captures infection between groups, while V x captures transitions between compartments.

It is clear that the system (2.3), (2.4) has a unique disease-free equilibrium P0 with

S = S0 = N and x = x0 = 0. Define the next generation matrix (NGM) as FV −1|P0 =

FV −1|S=N . Conceptually, the (i, j) element of FV −1|P0 is the average number of secondary

infections in compartment i produced by an individual originating in compartment j, while

the system remains close to the disease-free state P0 [22]. Before presenting the basic

reproduction number, let us explore spectral properties of FV −1|P0 .

Partitioning F and V into 2×2 block form, we have

F =

0 F[1,2]

0 0

 , V =

V[1,1] 0

V[2,1] V[2,2]

 (2.11)

with F[1,2] ∈R(nh+nv)×(2nh+nv)≥ 0, V[1,1] ∈R(nh+nv)×(nh+nv)≥ 0, V[2,1] ∈R(2nh+nv)×(nh+nv),

and V[2,2] ∈ R(2nh+nv)×(2nh+nv). We use the matrix inversion formula

X 0

Y Z


−1

=

 X−1 0

−Z−1Y X−1 Z−1

 (2.12)

12



where X and Z are square to show that

V −1 =

 (V[1,1])−1 0

−(V[2,2])−1(V[2,1])(V[1,1])−1 (V[2,2])−1

 (2.13)

FV −1 =

−F[1,2](V[2,2])−1(V[2,1])(V[1,1])−1 F[1,2](V[2,2])−1

0 0

 .

FV −1|P0 is non-negative and block upper triangular with a single diagonal block given by

D =−F[1,2]|P0(V[2,2])−1(V[2,1])(V[1,1])−1 (2.14)

= diag(N)BIdiag(N)−1diag(γ+ +d)−1diag(ε)diag(ε+d)−1

+ diag(N)BRdiag(Nh)−1diag(ρ+dh)[diag(γ) 0]diag(γ+ +d)−1diag(ε)diag(ε+d)−1

which is non-negative and irreducible since BI is irreducible. We claim that the basic

reproduction number is R0 = ρ(FV −1|P0) = ρ(D) > 0, which by the Perron-Frobenius

theorem is guaranteed to exist and is an eigenvalue of FV −1|P0 .

2.2.3 Disease-Free Equilibrium

It is not hard to imagine that, when R0 < 1, the average infected individual will

produce fewer than one secondary infection and the disease will die out. We will demonstrate

that this result is valid and holds even when R0 = 1. Stability of P0 would give us hope

that, with sufficient treatment and/or transmission reduction, a disease-free steady-state is

achievable. The following result is critical to our discussion of stability:

Lemma 2. Let x be the state vector defined in equation (2.5), and BI the transmission

matrix defined in equation (2.9). If BI is irreducible, then the largest invariant set M ⊂ ∂Γ

is the singleton {P0}.
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Proof. The boundary ∂Γ is the union of regions of Γ such that for some group i, there is a

compartment Yi ∈ {Ei, Ii,Ri} such that Yi = 0 or Yi = Ni. Since Yi = Ni =⇒ Zi = 0 for

some other compartment Zi, ∂Γ is defined simply by regions where some Yi = 0. Therefore,

we shall show that for any k ∈ {1,2, ...3nh+ 2nv}, the set {x|xk(t) = 0, t≥ t0} is invariant

with respect to system (2.3), (2.4) if and only if x(t) = 0 for all t ≥ t0. The sufficiency

condition is obvious. To show necessity, we argue the following:

(a) If Shi = 0 for any i ∈ {1,2, ...,nh}, then Ṡhi > 0. Likewise, if Svi = 0 for any i ∈

{1,2, ...,nv}, then Ṡvi > 0. By continuity, each Ṡhi and Ṡvi is positive in a neighborhood

of 0. Therefore, no solution of system (2.1), (2.2) (equivalently, system (2.3), (2.4))

has Shi (t) = 0 or Svi (t) = 0 for t 6= t0.

(b) {x|Rhi = 0} is invariant if and only if Ihi (t≥ t0) = 0, and {x|Ihi = 0} is invariant if and

only if Ehi (t≥ t0) = 0. Likewise, {x|Ivi = 0} is invariant if and only if Evi (t≥ t0) = 0.

(c) Assume that {x|Ehi = 0} is invariant. Then Ėhi =∑nv
j=1

βI,hv
ij Sh

i I
v
j

Nv
j

= 0 for t≥ t0. From

(a), we know that Shi 6= 0, except possibly at t = t0. Since BI is irreducible, there

exists k such that βI,hvik > 0. Therefore, Ivk (t≥ t0) = 0. From (b), this is possible only

when Evk(t≥ t0) = 0. Again, since, BI is irreducible, there exists l such that βI,vhkl > 0

and βR,vhkl > 0 (by assumption, βI,vh and βR,vh have the same pattern of zero and

non-zero elements). By similar arguments, Ihl (t≥ t0) =Rhl (t≥ t0) = 0.

(d) Since BI is irreducible, by repeating the process (c), we can may select indices such

that we eventually reach all Ih and Iv compartments. Together with (b), this proves

necessity for (2).

�

Armed with the preceding result, will now examine stability properties of the
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disease-free equilibrium using Lyapunov functions. Following the approach of [20], define

h(x) = (F |P0−V )x− (F −V )x, (2.15)

and note that h(x)≥ 0 for all x ∈ Γ since F |P0 ≥ F . The system (2.3), (2.4) can then be

expressed as

ẋ= (F |P0−V )x−h(x). (2.16)

Theorem 2 (Stability of disease-free equilibrium). If BI is irreducible, the unique disease-

free equilibrium P0 = (ET0 IT0 RT0 )T = 0 is globally asymptotically stable in Γ when R0 ≤ 1

and unstable when R0 > 1.

Proof. Let ωT be the left eigenvector of V −1F |P0 associated with the eigenvalue ρ(V −1F |P0) =

ρ(F |P0V
−1) =R0. From (2.7) and (2.13), we have

V −1F |P0 =

0 (V[11])−1F[12]|P0

0 −(V[22])−1(V[21])(V[11])−1F[12]|P0

 (2.17)

where the bottom right block is irreducible (see (2.14)) and yields the eigenvalue R0. The

eigenvector ωT =
[
ωT1 ωT2

]
is given by

ωTV −1F |P0 =
[
0 ωT1 (V[11])−1F[12]|P0−ω

T
2 (V[22])−1(V[21])(V[11])−1F[12]|P0

]
(2.18)

=R0
[
ωT1 ωT2

]
=⇒ ωT1 = 0, ωT2 > 0.
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Define the candidate Lyapunov function Q= ωTV −1x. Then

Q̇= ωTV −1ẋ (2.19)

= ωTV −1(F |P0−V
−1)x−ωTV −1h(x)

= (R0−1)ωTx−ωTV −1h(x).

Recall that V −1 ≥ 0. Then

Q̇≤ (R0−1)ωTx≤ 0 (2.20)

when R0 ≤ 1. Also, for R0 < 1, if Q̇ = 0 then ωTx = 0, which implies xi = 0 for some

i ∈ {1,2, ...,3nh+2nv}. It follows from lemma (2) that invariance of {xi = 0} implies x= 0.

When R0 = 1, we must determine the largest invariant set {x ∈ Γ|ωTV −1h(x) = 0}. Since

ωTV −1 ≥ 0 and ωTV −1 6= 0, it follows that h(x)i = 0 for some i ∈ {1,2, ...,3nh+2nv}. This,

in turn, implies xi = 0. We apply lemma (2) again to deduce x = 0, and conclude that

the largest invariant set {x ∈ Γ|Q̇ = 0 given R0 ≤ 1} is the singleton {P0}. By Lasalle’s

Invariance Principle, P0 is globally asymptotically stable in Γ when R0 ≤ 1.

We will use the same Lyapunov function to show P0 is unstable when R0 > 0. It is

clear that x= 0 implies Q̇= 0, regardless of R0. To examine the sign of Q̇ near the origin

when R0 > 1, consider the Jacobian of Q̇(x) at P0:

JP0 = ∂Q̇

∂x

∣∣∣∣∣
P0

= (R0−1)ωT −ωTV −1∂h(x)
∂x

∣∣∣∣∣
P0

(2.21)

= (R0−1)ωT −ωTV −1

F |P0−
∂F

∂x
x

∣∣∣∣∣
P0

−F |P0


= (R0−1)ωT ≥ 0.

Since the first nh+nv elements of ω are 0 and the rest are positive, Q̇ increases locally
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in all Ii and Ri directions, but remains zero along Ei axes. By lemma (2), the Ei axes

contain no invariant set other than the singleton {P0}. Therefore, any solution other than

the disease-free equilibrium originating on an Ei axis moves away from the axis into a

region where Q̇ is positive. It follows that any solution originating in a sufficiently small

neighborhood of P0 moves away from P0. We conclude that P0 is unstable. �

2.2.4 Endemic Equilibrium

Existence and stability of endemic equilibria (constant solutions with non-zero levels

of disease) are the focus of a large body of research. For our purposes, endemic equilibria

inform us of how to initialize our simulations, and what behavior to expect if control

efforts are lifted. Instability of P0 is a first step towards establishing the existence of an

endemic equilibrium. Next, we will show that the system (2.3), (2.4) exhibits uniform

persistence. Adopting the language and approach of Freedman et al [23], let F denote the

continuous flow of system (2.3), (2.4). Concretely, F = (X, R, π), where π : X×R→X is

the continuous map π(x(t0), t) = x(t0)+
∫ t
t0 f(τ)dτ , f is the system of differential equations

(2.3), (2.4), and X = R3nh+2nv . Note that Γ is a closed, compact, positively invariant set

over which F is defined. Define the following notation:

Definition 1. ∂M and M̊ are the boundary and interior of set M ⊂X, respectively.

Definition 2. S[M,δ] = {x|x ∈X, d(x,M)≤ δ}, where δ > 0.

Definition 3. Λ+(x) is the positive limit set of x ∈X with respect to flow F .

Definition 4. W+(M) = {x ∈X|Λ+(x)⊂M}.

Proposition 1 (Point dissipativity). F is point dissipative on S[∂Γ,α]∩ Γ̊ when R0 > 1.

That is, there exists a compact set N ∈ R3nh+2nv such that for any x ∈ S[∂Γ,α]∩ Γ̊, there

exists T > 0 such that π(x,t) ∈ N̊ for any t≥ T (see [23], Definition 2.5).
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For evidence of proposition (1), we direct readers to [24, 25]. In particular, we claim

a stronger condition that Γ̊ is positively invariant with respect to system (2.3), (2.4) when

R0 > 1.

Theorem 3 (Uniform persistence). The flow F is uniformly persistent with respect to Γ:

that is, there exists α > 0 such that for all x0 ∈ Γ̊, inf d(x(t),∂Γ)> α in the limit as t→∞.

Proof. It follows from lemma (2) and proposition (1) that the maximal invariant set of ∂Γ

with respect to F is {P0}, and {P0} is isolated in the language of [23]. {P0} is a cover of

itself that satisfies hypothesis (H) of [23]. Instability of P0 implies W+({P0}) = {P0}, in

which case W+({P0})∩S[∂Γ,α]∩ Γ̊ = ∅. By theorem 4.3 of [23], the flow F is uniformly

persistent with respect to Γ̊, ∂Γ. In fact, uniform persistence is equivalent to instability of

P0. �

Next, we use results from Bhatia and Szegö [26] to show there exists an equilibrium

point of F in Γ̊. Consider the dynamics F restricted to Γ̊, and a compact set M =

Γ\S[∂Γ,α] ⊂ Γ̊. By the uniform persistence result, M attracts Γ̊; that is, for all x ∈ Γ̊,

Λ+(x) 6= 0 and Λ+(x)⊆M . By Theorem 2.8.6 in [26], there exists a positive equilibrium in

M .

Global stability analysis of endemic equilibria is typically much more involved

than the disease-free case. Common methods include the use of Lyapunov functions of

form L(y) = c(y−y∗−y∗ln y
y∗ ) originating from Lotka-Volterra predator-prey models, or

Poincaré-Bendixon theorems when systems are reducible to a phase plane. We demonstrate

the Lyapunov approach on a simpler SEIR metapopulation model in Appendix (C). We

show through simulation that the endemic equilibrium of system (2.3), (2.4) is unique and

globally stable in Γ\{P0} (see Appendix (B)).
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Chapter 3

Simulation Study

The preceding analysis reveals key properties of the transmission model that underlies

our study of reactive case detection. Next, we parameterize the model and present an

algorithm to simulate RCD.

3.1 Model Parameters

Since malaria transmission is highly clustered at the household level [14, 12], it

is natural to choose households as human subpopulation groups. To simulate a realistic

population structure and to produce relatable results, we use randomized geolocated

household data from Southern Province, Zambia used previously in [3, 2] to construct

a household map (Appendix (A)). Our goal is not to model this region’s transmission

dynamics with precision; rather, it is to provide a realistic foundation for an exploratory

parametric study. Assumptions about mosquito flight distance and population density will

guide the construction of a square lattice of mosquito populations (Appendix (A)).

A transmission rate βij is the frequency of mosquito bites per group i individual

(whether group i is a human or mosquito group) multiplied by the likelihood of transmission

during a susceptible-infected contact. Rather than calibrating parameters βij to data, they
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will be determined by applying a homogeneous scaling factor that confers to the entire

system a prescribed basic reproduction number R0, while respecting conditions that relate

the magnitudes of each βij .

Biting frequency between groups is complicated to model and depends on a number

of factors including mosquitoes’ propensity to bite, humans’ propensity to be bitten,

distance between human and mosquito groups, and the size of both groups. For simplicity,

propensity to bite or be bitten will be ignored. In a manner similar to [18] with the addition

of spatial dependence, frequency of bites will be modeled as

ωij = bR0g(|dij |)
NiNj
Ni+Nj

(
individuals bit

time

)
(3.1)

where bR0 (time−1) is a scaling frequency determined by R0 and g(|dij |) = λe−λ|dij | is a

unitless scaling function that decreases with |dij |, the distance between groups i and j.

Note that |dij | = |dji|, and thus ωij = ωji. In the case that Ni or Nj approach zero, ωij

vanishes. As Ni or Nj approach +∞, ωij reaches proportionality to Nj or Ni, respectively.

Probability of transmission depends on concentration of parasites in the blood and

other factors. We denote the average probability of transmission given that an infected

mosquito has bitten a susceptible human or a susceptible mosquito has bitten an infected

human by phv and pvh, respectively. Note that upon applying scaling frequency bR0 , only

the ratio phv : pvh matters. We assume no residual immunity after recovered humans become

re-susceptible. Thus, probability of transmission does not depend on disease history as it

does in [3].

All together, the effective biting frequency between groups i and j per group i
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individual is

βij = p∗
ωij
Ni

(3.2)

= p∗bR0g(|dij |)
NiNj

(Ni+Nj)Ni

= p∗bR0g(|dij |)
Nj

(Ni+Nj)
(time−1)

and the infection rate is βij

Nj
SiIj = p∗bR0g(|dij |)

(Ni+Nj) SiIj , where p∗ = phv if group i is a human

group and p∗ = pvh if group i is a vector group.

Before introducing the RCD simulation algorithm, let us introduce model parameters

describing health-seeking behavior and success of treatment. In a manner similar to

Galactionova et al. [27], we estimate the probability of successful cure of a malaria case as

the effective coverage function

E = ETSR×ETR (3.3)

where effective treatment seeking rate ETSR is the proportion of symptomatic or asymp-

tomatic cases that seek appropriate treatment in a typical week, and effective treatment

rate ETR is the product

(proportion of treatment-seeking cases that receive appropriate anti-malarial medication)

× (proportion of treated cases that adhere to medication regimin)

× (efficacy of antimalarial drugs)

where we assume a treatment duration of one week is required to move to the recovered

class. This definition of E allows us to specify the proportion of cases ETSR that seek

treatment and are therefore eligible index cases in an RCD program.
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Table 3.1: Model parameters.

Symbol Parameter Value Ref
Disease & Population Parameters

R0 Basic reproduction number 2, 3, 6, 12
Nh
i Size of human group i 2-58 [3]

Nv
i Size of vector group i 7,875 Appendix

(A)
Λhi Birthrate into human population i (3.3e−5) (days−1) [28]
Λvi Birthrate into mosquito population i (.13) (days−1) [28]
εhi Inverse of human group i incubation period .1 (days−1) [28]
εvi Inverse of mosquito group i incubation period .087 (days−1) [28]
γhi Inverse of human group i natural recovery time .0035 (days−1) [28]
ρhi Inverse of human group i immunity duration .0016 (days−1) [28]
phv Vector to human transmission efficacy .022 [28]
pvh Infected human to vector transmission efficacy .36 [28]
p̃vh Recovered human to vector transmission efficacy .036 [28]
bR0 Biting rate scaling factor Derived from R0

Health System and RCD Parameters
ETSR Effective treatment-seeking rate .05, .35, .65 [27] (max)
ETR Effective treatment rate .5 [27, 29]
cmax Screening capacity: maximum number of individ-

uals that can be screened through RCD per week,
excluding index cases

100, 300, 500

rmax Screening radius: radius of disk around index house-
holds inside which RCD is carried out

50, 150, 250 (m) [3] (me-
dian)

cact Effective screening capacity: number of individuals
to be screened per week given rmax and availability
of index cases

Derived
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3.2 RCD Algorithm

In simulation, we implement RCD as a treatment algorithm overlaid on a forward

Euler discretization of equations (2.1), (2.2). Each iteration consists of a treatment step,

wherein a portion of the infected human class transitions to the recovered class, and

an update step, wherein the disease and population dynamics are propagated forward.

Treatment rate E = ETSR×ETR is applied to the entire population separately from

RCD. Mean-field approximations are made to reduce computational load; we assume

each household is constantly screened through the RCD program, with screening and

treatment rates proportional to the probability that an index cases resides within an

rmax neighborhood. Additionally, each RCD simulation has a corresponding control trial,

wherein uniform treatment is applied to the entire population, with an equivalent overall

screening intensity.

The conceptual and computational simplifications of our mean-field approach come

with drawbacks. Importantly, we fail to capture stochasticity that is magnified in low-

transmission settings: when few infections remain, RCD might clear entire reservoir pockets

or miss them entirely. Still, our simulations expose qualitative patterns that may be further

validated and quantified by stochastic simulations. Our algorithm is as follows:

1. Catalogue each household’s neighboring houses within rmax.

2. Compute ν̄, the average number of household members and rmax neighbors of an

individual.

3. Determine effective screening capacity cact if reporting rate is sufficiently low, so that

cact = min{cmax, ETSR×
∑
i I
h
i × ν̄}. For example, if case counts and reporting rates

are low, and we elect to screen a small search radius, we may not reach full screening

capacity.
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4. We assume screening is carried out on a per-household basis. The likelihood a

household i is screened through RCD is the likelihood pi that a household member

lives within rmax of an infected individual who reports:

pi = 1− (1−ETSR)I
h
i −(Ih

i /Ni)+Ih
i,rmax ,

where Ihi,rmax
is the number of infected rmax neighbors, excluding one’s own household.

We subtract Ihi /Ni in the exponent since probability of being detected (reactively)

through RCD does not depend on one’s own infection status. For control trials,

pi = pj for all i, j ∈ {1,2, ...,nh}.

5. On average, household i contributes piNi screenings to the total screening rate. To

enforce the effective screening capacity cmax, we compute a scaling factor α such that

cact = α
∑
i

piNi =⇒ α = cact∑
i piNi

.

6. Define φi = αpi, the adjusted likelihood household i is screened through RCD. Note

that for control trials, φi = cact/
∑
iNi.

7. Determine each household’s overall treatment rate ui:

ui = ETSR×ETR+φiETR−φiETSR×ETR2,

where we subtract the last term because a proportion φiETR of the ETSR×ETR

otherwise passively detected/treated cases are covered by RCD, on average (or vice

versa).

8. Transition uiIi infected individuals of each household from the infected to recovered

class, and propagate dynamics forward.
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3.3 Simulation Preliminaries

Simulations have been carried out across ranges of R0, effective treatment-seeking

rate ETSR, screening capacity cmax, and screening radius rmax (see Table (3.1)). Simu-

lations are initialized with a ‘warm-up period’ without RCD to allow the population to

reach endemic equilibrium. RCD is then implemented for a duration of five years. For

each scenario, a ‘control’ simulation measures the effect of treatment applied with the

same overall intensity but homogeneously across the population. This is analogous to a

random test-and-treat strategy. We define prevalence (a simulation output) as the number

of humans per 100,000 who spend time in the infected compartment in a given week. We

report prevalence as a four-week average.

We interpret the continuous variables Ehi , Evj , Ihi , etc. as the expected values of

discrete random variables, e.g. Ihi = ∑Ni
k=1k · ξi(k), where Ni is the size of household i,

and ξi(k) is the probability of k infections in household i. We define malaria elimination

as the condition that the expected total number of humans and mosquitoes in disease

compartments (E, I, and R compartments) is less than 1. Expectation is a linear operator,

so we write this condition as
3nh+2nv∑
l=1

xl < 1, (3.4)

where x is the state vector defined in equation (2.5). When this condition is met, we round

prevalence to zero.

3.4 Simulation Results

At steady state prior to RCD implementation, prevalence increases with R0 and

declines with ETSR (Figure (3.1)). As hypothesized and proven in past literature [1, 2, 3],

our simulation environment captures spatial clustering that varies with transmission
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Figure 3.1: Prevalence per 100,000 prior to RCD implementation.

Prevalence increases with R0 and decreases with ETSR.

environment (Figure (3.2)). In a low-transmission environment (R0 = 2, ETSR = .65),

highly infected households are spatially aggregated, and clustering ratio drops off with

radius. In a high-transmission environment (R0 = 12, ETSR = .05), most households have

similar infection densities, and clustering ratio is stagnant as radius is increased.

All RCD strategies perform much better than random test-and-treat in low-to-

moderate transmission settings (R0 ≤ 3), while they perform comparably or sometimes

worse than random test-and-treat in higher transmission settings (Figure (3.3)). The

main drivers of low final prevalence are R0, ETSR, and, to a lesser degree, cmax. In

moderate-to-high transmission settings (R0 ≤ 3), rmax plays a modest role. However, rmax

is a significant determinant of final prevalence when R0 = 2. In these simulations, RCD

performance improves with rmax throughout the 50m-250m range. To find optimal values,

we must expand the range of radii we consider.

Figure (A.1) shows final prevalence for a low-transmission environment when R0 = 2

and ETSR = .35, for screening radii 50m-1050m. When rmax = 50m, increasing cmax has

little effect. This suggests that cmax = 100 is likely sufficient to follow all index cases,

and that increasing cmax without also raising rmax does nothing. When rmax > 50m, we

begin to see incremental benefit to increasing cmax. This tell us that, at some point, the
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(a) (b)

Figure 3.2: Clustering of cases.

Clustering ratio as a function of radius and normalize household prevalence. We define clustering
ratio as the fraction infected in an r-radius of a household (excluding the household itself) to the
fraction of the entire population infected. We calculate clustering ratios for each household, ordered
by normalized household prevalence, at radii spanning 0m to 1000m for (a) a low-transmission
setting and (b) a high-transmission setting.

screening radius is sufficiently large that we can no longer follow all index cases without

also increasing cmax. Each cmax considered corresponds to a different optimal value of rmax.

Local rmax optimizers for cmax = 100, cmax = 300, and cmax = 500 are 50m, 350m, and

750m, respectively. This variation is explained by examining the time-series trajectories of

cact, the effective screening capacity. In cases when reporting rate and search radius are

sufficiently low, cact may fall short of full screening capacity. By examining Figure (3.5),

we find that the optimal rmax for each cmax is the radius that is as small as possible such

that full screening capacity is utilized throughout the entire RCD implementation. Any

decrease in rmax would result in screening less than full capacity. Any increase from the

optimal radius would imply that the same or fewer index cases may be investigated.
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Figure 3.3: Prevalence per 100,000 after RCD implementation.

Values reflect an implementation period of five years. Colorbars for each of the 12 subplots are
scaled independently.
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Figure 3.4: Prevalence per 100,000 after RCD for a low-transmission environment.

Figure 3.5: Effective screening capacity over time vs. screening radius

Trajectories of cact that fall below cmax during the 260-week (5-year) period correspond to
screening radii that are small enough that full screening capacity is not utilized.
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Chapter 4

Discussion

We take away four key findings from our simulation study, which both align with

and contrast previous RCD studies. First, RCD is more effective than ‘blanket’ strategies

like random test-and-treat in low-to-moderate transmission settings (R0 ≤ 3). For a given

R0, the relative benefit of RCD compared to blanket strategies appears most pronounced

when treatment-seeking is high. This is in general agreement with [1, 2]. However, [3] finds

that RCD is appropriate only for settings where transmission has been recently reduced. In

such settings, we would expect lower treatment-seeking rates due to lingering immunity to

clinical symptoms (a phenomenon we exclude for simplicity). In general, our results tell us

that RCD is most impactful when prevalence is low, which may be due to high treatment

seeking. To determine if this result is inconsistent with [3], we would need to compare

simulations with similar initial prevalence but different treatment seeking rates.

Second, we find that the trade-off between rmax and number of index cases is

relatively unimportant in moderate-to-high transmission settings (R0 ≥ 3). Therefore, we

are not overly concerned with its optimum except in low-transmission settings, where

optimal rmax varies quite a bit. This result differs from [2], which finds search radius to be

significant even in higher transmission environments.
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Third, in low-transmission environments, search radius should be chosen as small

as possible such that, given availability of index cases, full screening capacity is utilized

throughout the program. In other words, as many index cases should be followed as possible.

It is hardly ever beneficial to screen a wider radius at the expense of fewer index cases.

This is in agreement with [1], and possibly at odds with [2]. [2] argues that increasing

screening radius is always favorable, but only considers radii which capture up to 50 people.

This corresponds to a radius of 150m on average in our model, which is relatively small.

Lastly, R0, treatment-seeking rate, and screening capacity generally have greater

impact on RCD success than does the trade-off between screening radius and index cases.

This suggests that measures to reduce transmission, such as regular distribution of ITNs,

as well as improved access to health care should form the foundation of malaria elimination

programs. This finding is consistent with [1, 2, 3].

The results of this study can be used by ministries of health in malaria-endemic

countries to guide policy and resource allocation decisions, as well as by research scientists

as a basis for further analysis or on-the-ground studies. Possible extensions of this work

include a stochastic RCD algorithm wherein index cases are selected explicitly, dynamic

policies that adjust parameters in response to feedback, and similar investigation through

the lens of other modeling frameworks.
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Appendix A

Vector Population Map

It will be assumed that mosquitoes form populations with geographical centers. We

model the distribution of flight distances r from population centers as g(r) = λe−λr. λ is

chosen such that 97% of mosquito flights are less than 500m with a maximum of 3km [3].

We extrapolate that biting frequency between mosquito group i and human group j depends

on the center-to-center distance between populations according to g(r). The function g(r)

is maximized when r = 0m, and reduced by half when r = 100m. We generate the vector

population map by constructing a 300m×300m square lattice with a mosquito population

at each vertex, and removing those that are greater than 500m from any human population

for computational efficiency. We prescribe a population density of 87,500 mosquitoes
km2 [30], or

7,875 per grid. Mosquito and human populations interact if within 3km of each other.
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Figure A.1: Map of households and mosquito populations.

Blue and red dots represent households and mosquito population centers, respectively. 2D
Cartesian latitude and longitude are measured from the geographical centroid of households.
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Appendix B

Global Stability of Endemic

Equilibrium

Through simulation, we demonstrate that the condition of global stability (and

therefore uniqueness) of the endemic equilibrium of system (2.3), (2.4) is likely. There are nh

human groups and nv mosquito groups with 3 and 2 possible disease statuses, respectively.

We generate 50 random initial conditions in the region Γ =
{
x ∈ R3nh+2nv

≥0
∣∣∣Ehi + Ihi +Rhi ≤

Nh
i andEvj +Ivj ≤Nv

j , i ∈ {1,2, ...,nh}, j ∈ {1,2, ...,nv}
}
. For each R0 ∈ {2,3,6,12} and for

each initial condition, we run simulations without RCD for 400 weeks. The computational

resources at hand inhibit us from selecting more initial conditions or longer run times. After

400 weeks, we compute and plot the variance of each of the 3nh+2nv states/compartments

across their 50 values. The first nh compartments correspond to the exposed compartments

of human groups, the next nv to exposed compartments of mosquito groups, and so on.

Results are shown in figure (B.1). The mean group sizes of human and mosquito

groups are 12.4 and 7,875 individuals, respectively. The observed variances are compara-

tively small, and appear to be ever decreasing after 400 weeks. Still, longer run times and

more initial conditions would bolster our belief that the endemic equilibrium is unique and
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(a)

(b)

(c)
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(d)

Figure B.1: Variance of state variables for 50 initial conditions after 400 weeks.

ETSR = .35 for all simulations. The subfigures correspond to (a) R0 = 2, (b) R0 = 3, (c) R0 = 6,
and (d) R0 = 12.

globally stable. For evidence of global stability when nh = nv = 1, we refer the reader to

[17] or [18].
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Appendix C

Global Stability of the Endemic

Equilibrium of an SEIR

metapopulation model

Here, we demonstrate an analytical method to prove global stability of endemic

equilibria in metapopulation models. We choose an SEIR-type model because of its

similarity to the SEI(RS) system (2.3), (2.4). The following proof follows the method

of Shuai and Van den Driessche (2013). We express an SEIR model on n subpopulation

groups as

Ṡi = ΛiNi−
n∑
j=1

βijSiIj−diSi (C.1)

Ėi =
n∑
j=1

βijSiIj− (di+ εi)Ei (C.2)

İi = εiEi− (di+γi)Ii (C.3)

Ṙi = γiIi−diRi (C.4)
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where βij denotes transmission from group j to group i (for notational simplicity,

we do not divide by Nj as in equations (2.1), (2.2). Instead, this division is included in

parameter βij). Let G be the directed graph generated from adjacency matrix A= [βij ]; a

directed edge (j, i) points away from the infection source and its weight is βij . Assume G is

strongly connected, and let Λi = di so that the population size remains constant. Clearly,

the disease-free equilibrium P0 exists.

Theorem 4 (Global stability of endemic equilibrium). Let Γ =
{
x∈R4n

≥0
∣∣∣Si+Ei+Ii+Ri =

Ni, i ∈ {1,2, ...,n}
}
be a positively invariant set with respect to system (C.1)-(C.4). Assume

an endemic equilibrium P ∗= (S∗i ,E∗i , I∗i ,R∗i )∈R4n
≥0 exists for a given set of model parameters.

Then P ∗ is globally asymptotically stable in Γ\{P0}.

Proof. Define the functions

DSi
= Si−S∗i lnSi (C.5)

DEi
= Ei−E∗i lnEi (C.6)

DIi
= Ii− I∗i lnIi (C.7)

Taking derivatives, we have

ḊSi
= Si−S∗i

Si
(Λi−

n∑
j=1

βijSiIj−diSi) (C.8)

ḊEi
= Ei−E∗i

Ei
(
n∑
j=1

βijSiIj− (di+ εi)Ei) (C.9)

ḊIi
= Ii− I∗i

Ii
(εiEi− (di+γi)Ii) (C.10)

Using the equilibrium condition
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Λi−
n∑
j=1

βijS
∗
i I
∗
j −diS∗i = 0 (C.11)

we have

ḊSi
= Si−S∗i

Si
(
n∑
j=1

βijS
∗
i I
∗
j −

n∑
j=1

βijSiIj−di(Si−S∗i )) (C.12)

=−di
(Si−S∗i )2

Si
+ Si−S∗i

Si
(
n∑
j=1

βijS
∗
i I
∗
j −

n∑
j=1

βijSiIj)

≤ Si−S∗i
Si

(
n∑
j=1

βijS
∗
i I
∗
j −

n∑
j=1

βijSiIj)

= Si−S∗i
Si

n∑
j=1

(βijS∗i I∗j −βijSiIj)

= Si−S∗i
Si

n∑
j=1

βijS
∗
i I
∗
j

(
1− SiIj

S∗i I
∗
j

)

=
n∑
j=1

βijS
∗
i I
∗
j

(
1− SiIj

S∗i I
∗
j

− S
∗
i

Si
+ Ij
I∗j

)

Similarly, using equilibrium conditions

n∑
j=1

βijS
∗
i I
∗
j − (di+ εi)E∗i = 0 (C.13)

εiE
∗
i − (di+γi)I∗i = 0 (C.14)

we have
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ḊEi
≤

n∑
j=1

βijS
∗
i I
∗
j

(
SiIj
S∗i I

∗
j

− SiE
∗
i Ij

S∗i EiI
∗
j

+ E∗i
Ei
−1

)
(C.15)

ḊIi
≤ εiE∗i

(
Ei
E∗i
− EiI

∗
i

E∗i Ii
+ I∗i
Ii
−1

)
(C.16)

Using the relationship 1−x+lnx≤ 0 for x > 0, the following identities can be easily

verified:

1−xy− 1
x

+y ≤ y− lny−xy+ lnxy (C.17)

x− x
y

+ 1
y
−1≤ x− lnx−y+ lny (C.18)

Using these identities, we reach the following set of inequalities:

ḊSi
≤

n∑
j=1

βijS
∗
i I
∗
j

(
Ij
I∗j
− ln Ij

I∗j
− SiIj
S∗i I

∗
j

+ ln SiIj
S∗i I

∗
j

)
(C.19)

ḊEi
≤

n∑
j=1

βijS
∗
i I
∗
j

(
SiIj
S∗i I

∗
j

− ln SiIj
S∗i I

∗
j

− Ei
E∗i

+ ln Ei
E∗i

)
(C.20)

ḊIi
≤ εiE∗i

(
Ei
E∗i
− ln Ei

E∗i
− Ii
I∗i

+ ln Ii
I∗i

)
(C.21)

Now, let D̃i =DSi
+DEi

+
∑n

j=1βijS
∗
i I

∗
j

εiE
∗
i

DIi
. Then

˙̃Di ≤
n∑
j=1

βijS
∗
i I
∗
j

(
Ij
I∗j
− ln Ij

I∗j
− Ii
I∗i

+ ln Ii
I∗i

)
(C.22)

=
n∑
j=1

β̃ijGij
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where β̃ij = βijS
∗
i I
∗
j and Gij is the function in parentheses. Note that along any

cycle C, ∑(s,r)∈E(C)Grs = 0, where E(C) is the edge set of C.

Next, Construct a weighted digraph G̃ from adjacency matrix Ã= [β̃ij ]. Let Tk be

the set of spanning out-branchings of G̃ rooted at node k, and let T ∈ Tk. We define the

following parameter:

Definition 5. Let

ck =
∑
T∈Tk

∏
(r,m)∈E(T )

β̃mr =
∑
T∈Tk

w(T ) (C.23)

where E(T ) denotes the edge set of T and w(T ) denotes the product of edge weights in T .

For G̃ strongly connected, ck > 0 for all k.

Let

V =
∑
i

ciD̃i > 0 (C.24)

be a candidate Lyapunov function for the system. Taking derivatives, we have

V̇ =
∑
i

ci
˙̃Di ≤

∑
i

ci
∑
j

β̃ijGij =
∑
i,j

ciβ̃ijGij (C.25)

A product of the form ciβ̃ij corresponds to the family Qi(j) of unicyclic spanning

subgraphs of G̃ formed by adding an edge (j, i) to each graph T ∈ Ti. In particular, ciβ̃ij is

the sum of weight-products of these unicyclic subgraphs. Let Q be a particular unicyclic

subgraph in family Qi(j). Then

ciβ̃ij =
∑
T∈Ti

w(T )β̃ij =
∑

Q∈Qi(j)
w(Q) (C.26)

and (C.25) may be written as V̇ ≤∑i,j
∑
Q∈Qi(j)w(Q)Gij , whose terms w(Q)Gij range

over all Q ∈Qi(j), all closing-edge origins j, and all roots i.

Notice that each unicyclic subgraph Q contains a single cycle CQ of length 1≤ l≤ n,
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and that each Q appears l times in the double summation (C.25); that is, each Q will arise

exactly l times by adding a closing edge to a spanning out-branching rooted at each of the

l nodes in CQ. Each of the l terms of form w(Q)Gij along the cycle CQ, however, is unique;

Gij uniquely identifies the closing edge of Q. The terms w(Q)Gij may be collected as the

set

ΦQ = {w(Q)Gmr} (C.27)

where (r,m) ∈ E(CQ). It is clear that set of terms generated by the summation (C.25)

contains ΦQ.

Repeating the construction of ΦQ over all possible Q∈Qi(j), all closing-edge origins

j, and all roots i generates all the terms in (C.25). Uniqueness of each w(Q)Gij precludes

double-counting. Therefore, Φ =
{

ΦQk

}
is equivalent to the set of expanded terms in (C.25).

Recalling the cyclic property of function Gij , observe that ∑φ∈ΦQ
φ = 0 for all ΦQ. We

conclude that V̇ ≤∑i,j ciβ̃ijGij =∑
i,j
∑
Q∈Qi(j)w(Q)Gij = 0.

We now characterize the set of trajectories {S,E,I,R|V̇ = 0}. V̇ = ∑
i ci

˙̃Di = 0

implies that

V̇ =
n∑
i=1

ci

[
−di

(Si−S∗i )2

Si
+

n∑
j=1

βijS
∗
i I
∗
j

(
1− SiIj

S∗i I
∗
j

− S
∗
i

Si
+ Ij
I∗j

)
(C.28)

−(di+ εi)
(Ei−E∗i )2

Ei
+

n∑
j=1

βijS
∗
i I
∗
j

(
SiIj
S∗i I

∗
j

− SiE
∗
i Ij

S∗i EiI
∗
j

+ E∗i
Ei
−1

)

−(di+γi)
(∑n

j=1βijS
∗
i I
∗
j

εiE∗i

)
(Ii− I∗i )2

Ii
+

n∑
j=1

βijS
∗
i I
∗
j

(
Ei
E∗i
− EiI

∗
i

E∗i Ii
+ I∗i
Ii
−1

)]

= 0

It follows from our discussion above that the three squared terms must equal zero.

Therefore Si = S∗i , Ei = E∗i , and Ii = I∗i , which imply Ri = R∗i . It follows from LaSalle’s

42



invariance principle that (S∗,E∗, I∗,R∗) is globally asympotitically stable in Γ\{P0}. Global

stability precludes the existence of another endemic equilibrium.

�
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