UC Berkeley
UC Berkeley Previously Published Works

Title
Combining Induction, Deduction, and Structure for Verification and Synthesis

Permalink
https://escholarship.org/uc/item/3299i8xh

Journal
Proceedings of the IEEE, 103(11)

ISSN
0018-9219

Author
Seshia, Sanjit A

Publication Date
2015

DOI
10.1109/jproc.2015.2471838

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/32g9j8xb
https://escholarship.org
http://www.cdlib.org/

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

Combining Induction, Deduction, and Structure for
Verification and Synthesis

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

Abstract—Even with impressive advances in formal methods,
certain major challenges remain. Chief amongst these are
environment modeling, incompleteness in specifications, and the
hardness of underlying decision problems.

In this paper, we characterize two trends that show great
promise in meeting these challenges. The first trend is to
perform verification by reduction to synthesis. The second is
to solve the resulting synthesis problem by integrating tradi-
tional, deductive methods with inductive inference (learning
from examples) using hypotheses about system structure. We
present a formalization of such an integration, show how it can
tackle hard problems in verification and synthesis, and outline
directions for future work.

I. INTRODUCTION

Formal methods is a field of computer science and en-
gineering concerned with the rigorous mathematical spec-
ification, design, and verification of systems [1], [2]. The
field has made enormous strides over the last few decades.
Verification techniques such as model checking [3], [4], [5]
and theorem proving (see, e.g. [6], [7], [8]) are used routinely
in the computer-aided design of integrated circuits and have
been widely applied to find bugs in software and embedded,
cyber-physical systems. However, certain problems in formal
methods remain very challenging, stymied by computational
hardness or requiring a very high level of tedious, manual
effort in the verification process. In this paper, we outline
these challenges for formal methods, discuss recent promis-
ing trends, and generalize these trends into a systematic
methodology for tackling the challenges.

Let us begin by examining the traditional view of verifica-
tion, as a decision problem with three inputs (see Figure 1):

1. A model of the system to be verified, S;
2. A model of the environment, F, and
3. The property to be verified, .

The verifier generates as output a YES/NO answer, indicating
whether or not S satisfies the property ® in environment E.
Typically, a NO output is accompanied by a counterexample,
also called an error trace, which is an execution of the
system that indicates how @ is violated. Other debugging
information may also be provided. For a YES answer, some
formal verification tools also include a proof or certificate
of correctness, which can be checked by an independent
tool. The first point to note is that this view of verification
is high-level and a bit idealized; in particular, it somewhat
de-emphasizes the challenge in generating the inputs to the
verification procedure. In practice, one does not always start
with models S and E — these might have to be generated
from implementations. To create the system model S, one

Property
(o]

<1

YES

System [proof]

§ M
Environment Compose
E

Verify [

NO
counterexample

Fig. 1. A view of formal verification.

might need to perform automatic abstraction from code that
has many low-level details. Similarly, the generation of an
environment model F is usually a manual process, involving
writing constraints over inputs, or a state machine description
of the parts of the system S communicates with. Bugs can
be missed due to incorrect environment modeling. In systems
involving third-party components, not all details of the envi-
ronment might even be available. Finally, the specification
® is rarely complete and sometimes inconsistent, as has
been noted in industrial practice (see, e.g., [9]). Indeed, the
question “when are we done verifying?” often boils down to
“have we written enough properties (and the right ones)?”

The second point we note is that Figure 1 omits some
inputs that are crucial in successfully completing verifi-
cation. For example, one might need to supply hints to
the verifier in the form of inductive invariants or pick an
abstract domain for generating suitable abstractions. One
might need to break up the overall design into components
and construct a compositional proof of correctness (or show
that there is a bug). These tasks requiring human input
have one aspect in common, which is that they involve a
synthesis sub-task of the overall verification task. This sub-
task involves the synthesis of verification artifacts such as
inductive invariants, abstractions, environment assumptions,
input constraints, auxiliary lemmas, ranking functions, and
interpolants, amongst others. Thus, verification can be viewed
as being performed via reduction to synthesis. One often
needs human insight into at least the form of these artifacts,
if not the artifacts themselves, to succeed in verification.

Finally, it has been a long-standing goal of the fields of
electrical engineering and computer science to automatically
synthesize systems from high-level specifications. In fact,
the genesis of model checking lies in part in the automatic
synthesis problem; the seminal paper on model checking by
Clarke and Emerson [3] begins with this sentence:

“We propose a method of constructing concurrent
programs in which the synchronization skeleton of
the program is automatically synthesized from a

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

high-level (branching time) Temporal Logic speci-
fication.”
In automatic formal synthesis, one starts with a specification
® of the system to be synthesized, along with a model of its
environment E.! The goal of synthesis is to generate a system
S from a class of systems Cg that satisfies ® when composed
with E. Figure 2 depicts the synthesis process. Modeled thus,

Property
) > Svnthesi System
nthesis |
Environment)I,Engine S
E SIE F o)

Fig. 2. A view of formal synthesis.

the essence of synthesis can be viewed as a game solving
problem, where S and FE represent the two players in a
game; S is computed as a winning strategy ensuring that the
composed system S||E satisfies ® for all input sequences
generated by the environment F. If such an S exists, we
say that the specification (® and F) is realizable. Starting
with the seminal work on automata-theoretic and deductive
synthesis from specifications (e.g. [10], [11]), there has been
steady progress on automatic synthesis. In particular, many
recent techniques (e.g. [12], [13]) build upon the progress in
formal verification in order to perform synthesis. However,
there is a long way to go before automated synthesis is
practical and widely applicable. One major challenge, shared
with verification, is the difficulty of obtaining complete,
formal specifications from the user. Even expert users find
it difficult to write complete, formal specifications that are
realizable. Often, when they do write complete specifications,
the effort to write these is arguably more than that required to
manually create the design in the first place. Additionally, the
challenge of modeling the environment, as discussed above
for verification, also remains for synthesis. Finally, synthesis
problems typically have greater computational complexity
than verification problems for the same class of specifi-
cations and models. For instance, equivalence checking of
combinational circuits is NP-complete and routinely solved
in industrial practice, whereas synthesizing a combinational
circuit from a finite set of components is Yo-complete and
only possible in very limited settings in practice. For some
domains, both verification and synthesis are undecidable, but
there are still compelling reasons to have efficient procedures
in practice; a good example is the domain of hybrid systems
— systems with both discrete and continuous state — whose
continuous dynamics is non-linear, which arise commonly in
cyber-physical systems and analog/mixed-signal circuits.
Let us summarize the observations made thus far. First,
the main challenges facing formal verification and synthesis
include system and environment modeling, creating good
specifications, and the hardness of underlying decision prob-
lems. Second, the key to efficient verification is often in the
synthesis of artifacts such as inductive invariants or abstrac-
tions — thus, verification is effectively solved by reduction
to synthesis. Some of these challenges — such as dealing
with computational hardness — can be partially addressed by

I E may sometimes be encoded into ®, but we prefer to keep it separate
to emphasize the challenge of environment modeling.

advances in computational engines such as Binary Decision
Diagrams (BDDs) [14], Boolean satisfiability (SAT) [15], and
satisfiability modulo theories (SMT) solvers [16]. However,
these alone are not sufficient to extend the reach of formal
methods for verification and synthesis. Formal methods is
fundamentally about proof, and for further advances, new
proof methodologies are also required.

The close relation between verification and synthesis is
something that has been noted by others, particularly Robert
Brayton and his group. In systems such as VIS (Verification
Interacting with Synthesis) [17] and ABC (a system for
sequential synthesis and verification) [18], Brayton and his
colleagues showed how techniques used in logic synthesis
and optimization can substantially improve the effectiveness
of formal verification techniques (and conversely, also how
verification can improve synthesis). In this paper, we seek to
make a different theoretical connection between verification
and synthesis, and characterize a family of proof methods
that hold much promise.

A fundamental characteristic of this family of proof meth-
ods is that they integrate induction and deduction. Induction
is the process of inferring a general law or principle from
observation of particular instances.”> Machine learning algo-
rithms are typically inductive, generalizing from (labeled)
examples to obtain a learned concept or classifier [19],
[20]. Deduction, on the other hand, involves the use of
general rules and axioms to infer conclusions about particular
problem instances. Traditional automated formal methods,
such as model checking or theorem proving, are deductive.
This is no surprise, as formal verification and synthesis
problems (see Figures 1 and 2) are, by their very nature,
deductive processes: given a particular specification ®, en-
vironment F, and system S, a verifier typically uses a
rule-based decision procedure for that class of ®, F, and
S to deduce if S||E = ®. On the other hand, inductive
reasoning may seem out of place here, since an inductive
argument only ensures that the truth of its premises make it
likely or probable that its conclusion is also true. However,
observe that humans often employ a combination of inductive
and deductive reasoning while performing verification or
synthesis. For example, while proving a theorem, one often
starts by working out examples and trying to find a pattern
in the properties satisfied by those examples. The latter
step is a process of inductive generalization. These patterns
might take the form of lemmas or background facts that
then guide a deductive process of proving the statement of
the theorem from known facts and previously established
theorems (rules). Similarly, while creating a new design,
one often starts by enumerating sample behaviors that the
design must satisfy and hypothesizing components that might
be useful in the design process; one then systematically
combines these components, using design rules, to obtain
a candidate artifact. The process usually iterates between
inductive and deductive reasoning until the final artifact is
obtained.

In this paper, we present a methodology, SID, that for-
malizes such a combination of inductive and deductive

2The term “induction” is often used in the verification community to refer
to mathematical induction, which is actually a deductive proof rule. Here
we are employing “induction” in its more classic usage arising from the
field of Philosophy.

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

reasoning.> This methodology is inspired by recent suc-
cesses in automatic abstraction and invariant generation
such as counterexample-guided abstraction refinement (CE-
GAR) [23], as well as the advances in machine learning
over the past several years. A key element in this combi-
nation is the use of structure hypotheses. These are mathe-
matical hypotheses used to define the class of artifacts to
be synthesized within the overall verification or synthesis
problem. They are usually described in structural or syntactic
terms. Structure hypotheses define a common language and
associated constraints for inductive and deductive engines.
Under these constraints, SID actively combines inductive
and deductive reasoning: for instance, deductive techniques
generate examples for learning, and inductive reasoning is
used to guide the deductive engines.

To summarize, the core intellectual contributions of this
paper are as follows: (i) the idea of performing verification
by reduction to synthesis; (ii) SID, a formal methodology
to combine inductive inference with deductive reasoning for
solving synthesis problems; (iii) a theoretical framework
showing how one can combine inductive and deductive
reasoning to obtain the kinds of soundness and complete-
ness guarantees needed in formal methods, and (iv) several
examples of the methodology.

The rest of this paper is organized as follows. We describe
the methodology in detail, with comparison to related work,
in Section II. The methodology was first presented in earlier
articles [24], [21], and some of the first novel synthesis
efforts described in a Ph.D. thesis [22]. Since then, several
new applications have been demonstrated, and a deeper
understanding of the methodology has emerged, which is
described in this article. We describe two new instances
of this methodology in Section III. Future applications and
further directions are explored in Section IV.

II. SID: FORMALIZATION AND RELATED WORK

We present a formalization of the SID methodology, and
a discussion of related work. Section II-A defines basic
notation for verification and synthesis problems. We discuss
how verification can be reduced to synthesis in Section II-B.
Given such reductions, one can simply focus on solving
synthesis problems. The SID methodology for synthesis is
formalized in Section II-C with a discussion of soundness
and completeness in Section II-D. Related work is discussed
in Section II-E. This section assumes some familiarity with
basic terminology in formal verification and machine learning
— see the relevant books by Clarke et al. [5], Manna and
Pnueli [25], and Mitchell [19] for an introduction.

A. Verification and Synthesis Problems

As discussed in Section I, an instance of a verification
problem is defined by a triple (S, F, ®), where S denotes
the system, F is the environment, and & is the property to
be verified. Here we assume that S, F, and ® are described

3SID stands for “Structure, Induction, and Deduction.” In previous arti-
cles [21], [22], this methodology was termed “sciduction” which stood for
the phrase “structure-constrained induction and deduction” and was chosen
to draw an analogy with the scientific method of formulating hypotheses,
validating them, drawing inferences, and iterating thus until a suitably
validated hypothesis remains.

formally, in mathematical notation. For example, S and F
can be finite-state systems, represented as Kripke structures,
and ¢ a linear temporal logic formula. The environment
model E is sometimes included as part of the specification
®. Similarly, an instance of a synthesis problem is defined
by the pair (Cg, E,®), where the symbols S and E have
the same meaning, and Cg defines a class of systems. As
noted earlier, it is possible in practice for the descriptions of
S, E, or ® to be missing or incomplete; in such cases, the
problem must be redefined as a synthesis problem in which
the missing components must be synthesized so as to meet
suitably modified objectives — e.g., if ® is incomplete, one
may synthesize the strongest requirement that is realizable
along with a system that satisfies it.

A family of verification or synthesis problems is a triple
(Cs,Cg,Cg) where Cg is a formal description of a class of
systems, Cg is a formal description of a class of environ-
ment models, and Cg is a formal description of a class of
specifications.

B. Verification by Reduction to Synthesis

In this section, we formalize the notion of performing ver-
ification by reduction to synthesis. We begin by illustrating
this notion with two examples.

Consider a common verification problem: proving that a
certain property is an invariant of a system — i.e., that it
holds in all states of that system. Let us first set up some
notation. Additional background material may be found in a
recent book chapter [26].

Let M = (I,0) be a transition system where I is a logical
formula encoding the set of initial states, and § is a formula
representing the transition relation. For simplicity, assume
that M is finite-state, so that and ¢ are Boolean formulas.
Suppose we want to verify that M satisfies a temporal logic
property ® = G ¢ where ¢ is a logical formula involving no
temporal operators. We now consider two methods to perform
such verification.

1) Invariant Inference: Consider first an approach to prove

this property by (mathematical) induction. In this case, we
seek to prove the validity of the following two logical
statements:
I(s) = ¢(s) (D
¢(s) N (s,s") = ¢(s) 2
where, in the usual way, ¢(s) denotes that the logical formula
¢ is expressed over variables encoding a state s.

In practice, when one attempts verification by induction as
above for a system that is correct, one fails to prove the valid-
ity of the second statement, Formula 2. This failure is rarely
due to any limitation in the underlying validity checkers for
Formula 2. Instead, it is usually because the hypothesized
invariant ¢ is “not strong enough.” More precisely, ¢ needs
to be conjoined (strengthened) with another formula, known
as the auxiliary inductive invariant.

Put another way, the problem of verifying whether system
satisfies an invariant property reduces to the problem of
synthesizing an auxiliary invariant ¢ such that the following
two formulas are valid:

Base Case:

Induction Step:

I(s) = ¢(s)
- ’

AY(s) 3)
(s) Np(s) N (s, s) A

(s'))

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

If no such v exists, then it means that the property ¢ is
not an invariant of M, since otherwise, at a minimum, a
1 characterizing all reachable states of M should satisfy
Formulas 3 and 4 above.

2) Abstraction-based Model Checking: Another common
approach to solving the invariant verification problem is
based on sound and complete abstraction. Given the original
system M, one seeks to compute an abstract transition system
a(M) = (14, 9,) such that (M) satisfies @ if and only if M
satisfies ®. This approach is computationally advantageous
when the process of computing (M) and then verifying
whether it satisfies ® is significantly more efficient than the
process of directly verifying M in the first place. We do not
seek to describe in detail what abstractions are used, or how
they are computed. The only point we emphasize here is that
the process of computing the abstraction is a synthesis task.

In other words, instead of directly verifying whether M
satisfies @, we seek to synthesize an abstraction function «
such that a(M) satisfies @ if and only if M satisfies @, and
then we verify whether (M) satisfies ®.

3) Reduction to Synthesis: Given the two examples above,
let us now step back and formalize the general notion of
performing verification by reduction to synthesis.

If the original verification problem is described by the
tuple (S, E, ®), the approach in the two examples above is
to reduce it to a synthesis problem (Cr, D, §2) such that there
exists a solution to (Cp, D,) if and only if there exists a
solution to (.S, E/, ®). To make things concrete, we instantiate
the symbols above in the two examples.

Invariant inference. In this case, ® is of the form G ¢.
The class Cr is the set of all Boolean formulae over the
(propositional) state variables of M. The environment model
D imposes no constraints; one can think of it as the logical
formula true. Q2 comprises Formulas 3 and 4 above.

Abstraction-based verification. In this case, again, ® =
G ¢. Cr is the set of all abstraction functions « corresponding
to a particular abstract domain [27]; for example, all possible
localization abstractions [28]. The environment model D,
once again, is true. Q is the statement “«(M) satisfies @ if
and only if M satisfies ®”.

Note that this is a reduction in the standard complexity-
theoretic sense: the verification problem has a solution if and
only if the synthesis problem has one. The synthesis problem
is not any easier to solve, in the theoretical sense, than the
original verification problem. However, the synthesis version
may be easier to solve in practice, and may also be easier
in the theoretical sense if a structure hypothesis imposes
additional constraints. SID, which we describe in the next
section, is a formalization of a family of particularly effective
synthesis techniques.

We make one final remark about the reduction of verifica-
tion to synthesis. Many such reductions involve the synthesis
of specifications of various kinds: inductive invariants, pre-
conditions, post-conditions, environment assumptions, inter-
polants, etc. Typically the size of these specifications is
significantly smaller than that of the system being verified,
but their presence can speed up verification by orders of
magnitude. This yields some intuition into why a reduction
to synthesis can be effective for verification.

C. Elements of the SID Methodology

SID is a family of algorithms for solving synthesis prob-
lems of the form (Cs,Cg,Cs) defined in Sec. II-A. An
instance of SID can be described using a triple (H,Z, D),
where the three elements are as follows:

1. A structure hypothesis, H, encodes our hypothesis about
the form of the artifact to be synthesized, whether it
be an abstract system model, an environment model, an
inductive invariant, a program, or a control algorithm (or
any portion thereof);

2. An inductive inference engine or Learner, Z, is an algo-
rithm for learning from examples an artifact h defined by
H, and

3. A deductive engine or Teacher, D, is a lightweight deci-
sion procedure that applies deductive reasoning to answer
queries made by Z.

Fig. 3 depicts the the above three elements in the most
common mode of interaction between Z and D. Although
the interface between Z and D is usually captured by their
definitions, it can be useful to separate out the description
of the interface as a fourth element Q which comprises all
types of queries that Z can make to D along with the types of
responses received. The rest of this section further elaborates

Structure
Hypothesis
l’ \\

Queries

Inductive Deductive
Engine Engine
(LEARNER) ‘Responses (TEACHER)

Fig. 3. Three Main Elements of the SID Approach

on each of these elements.

1) Structure Hypothesis: The structure hy-
pothesis, H, encodes our hypothesis about the
structural or syntactic form of the artifact to be synthesized.

Formally, H is a (possibly infinite) set of artifacts. H
represents a hypothesis that the system to be synthesized falls
in a subclass Cy of Cg; i.e., Cyy C Cg. Note that H needs not
be the same as Cy, since the artifact being synthesized might
just be a portion of the full system description, such as the
guard on transitions of a state machine, or the assignments
to certain variables in a program. Each artifact h € H, in
turn, is a unique set of primitive elements that defines its
semantics. The form of the primitive element depends on the
artifact to be synthesized.

More concretely, here are two examples of a structure
hypothesis H:

1. Suppose that Cg is the set of all finite automata over a set
of input variables V' and output variables U satisfying a
specification ®. Consider the structure hypothesis H that
restricts the finite automata to be synchronous composi-
tions of automata from a finite library L. The artifact to be
synthesized is the entire finite automaton, and so, in this
case, H = Cy4 C Cs. Each element h € H is one such
composition of automata from L. A primitive element is
an input-output trace in the language of the automaton h.

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

2. Suppose that Cg is the set of all hybrid automata [29],
where the guards on transitions between modes can be
any region in R™ but where the modes of the automaton
are fixed. A structure hypothesis H can restrict the guards
to be hyperboxes in R™ — i.e., conjunctions of upper and
lower bounds on continuous state variables. Each h € H
is one such hyperbox, and a primitive element is a point
in h. Notice that H defines a subclass of hybrid automata
Cy C Cs where the guards are n-dimensional hyperboxes.
Note also that H # Cy in this case.

A structure hypothesis H can be syntactically described in
several ways. For instance, in the second example above,
‘H can define a guard either as a hyperbox in R™ or using
mathematical logic as a conjunction of atomic formulas, each
of which is an interval constraint over a real-valued variable.

2) Inductive Inference: The inductive inference procedure,
Z, is an algorithm for learning from examples an artifact
h € H. Here we use the term “examples” in its broadest
sense, to include any relevant partial information about the
specification for the synthesis problem that is provided in
response to a query made by 7.

While any inductive learning procedure can be used, in the
context of verification and synthesis the learning algorithms
7 tend to have one or more of the following characteristics:

e 7T performs active learning, selecting or generating the
examples that it learns from.

e Examples and/or labels for examples are generated by
one or more oracles. The oracles could be implemented
using deductive procedures or by evaluation/execution of a
model on a concrete input. In some cases, an oracle could
even be a human user.

e 7 can invoke general-purpose deductive procedures, such
as SAT or SMT solvers, to synthesize an artifact that
is consistent with a set of labeled examples. This is in
contrast with traditional machine learning algorithms that
tend to be specially designed for each concept class.

An example of 7 is learning finite automata based on mem-
bership and equivalence queries, as originally formulated
by Angluin [30], but using algorithmic techniques such as
sequential equivalence checking as the oracle answering the
queries. A contrast with mainstream machine learning is
that examples are actively generated during the process of
inductive inference, as opposed to being sampled from some
(known or unknown) distribution. Such generated examples
can be valuable beyond the synthesis process as test cases or
simulation test patterns that can reveal corner-case bugs, as
shown in Sec. III-B.

3) Deductive Reasoning: The deductive engine, D, is a
lightweight decision procedure that applies deductive rea-
soning to answer queries generated by 1.

Examples of D used in practice include SAT solvers, SMT
solvers, model checkers, testing procedures, and numerical
simulation procedures. The word “lightweight” refers to the
fact that the decision problem being solved by D must be eas-
ier, in theoretical or practical terms, than that corresponding
to the original synthesis or verification problem. Formally, at
least one of the following conditions must hold:

1. Easier in Theory: If the original (synthesis or verification)
problem is decidable, so must be the decision problem
solved by D, and further, the latter problem must have

lower computational complexity. Otherwise, if the original
(synthesis or verification) problem is undecidable, D must
solve a decidable problem.

An example of this approach is the component-based
synthesis of circuits (loop-free programs) by iteratively
invoking a SAT solver (NP) rather than solving the original
problem (25) [12], [31].

2. Easier in Practice: One of the following two conditions

must hold: (i) D solves a problem that is a strict special
case of the original, or (ii) if D is also a decision procedure
for the original problem, then it must be used on inputs
of smaller size.

An example of (i) is in the area of hybrid systems, where
verifying safety properties of a general class of hybrid
automata is replaced by verification of such properties for
a single mode (purely continuous system) [32], [21] —
note that both problems are undecidable in general. An
example of (ii) is the use of finite-state model checking
on abstractions of the original system that typically have
a much smaller state space than the original [23].

4) Q: Interface between T and D: The definition of
an instance (H,Z,D) is completed by fixing the interface
between Z and D. This interface is given in terms of a finite
set Q comprising each type of query T can make to D, along
with the type of response from D. Thus D can be viewed
as an oracle that guides Z. Example queries include witness
queries (asking for positive or negative examples/primitive
elements), membership queries (asking for the label for a
specified example), equivalence/verification queries (asking
if a candidate artifact is correct), etc. Such interaction is
also termed as query-based learning [30] or oracle-guided
inductive synthesis [33].

In some cases, it may be also be the case that queries are
made by D to Z: e.g., consider a theorem prover that queries
an inductive learner to conjecture lemmas consistent with
provided examples. This mode of interaction is less-studied,
but compatible with the framework given here. We note that
this can be an interesting topic for future work.

Let @@ denote the (possibly infinite) set of all query-
response pairs encoding communication between Z and D.
We can view () as a subset of Q7 X (Jp, where Q7 are
the queries from Z to D and ()p are responses from D to
Z. Then, we can formally define Z as a mapping from Q*
to H x Qz; i.e., Z maps a stream of query-reponse pairs
to a conjectured artifact h € H along with the next query.
Similarly, D maps Q* to Qp. A more detailed presentation
of this interface may be found in [33].

Each query ¢ € @)z can be formulated as a decision
problem to be solved by D. Here are some common examples
of queries for D and the corresponding decision problems:

e Witness query: “Does there exist a positive/negative ex-
ample for specification ®?”

e Membership query: “Is L the label of this example?”

e Verification query: “Does the candidate artifact h satisfy
specification ®?”

For brevity, we omit a detailed exposition of the types of

queries from this paper, making only two remarks: (i) the

query types are similar to those studied in the machine

learning literature on query-based learning [30], but not

limited to them, and (ii) a more detailed theoretical study of

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

the interface and associated problems can be found in [33].
5) Discussion: We now make a few remarks on the above
formalism.
Inductive Bias from Structure Hypotheses. In the above
description of the structure hypothesis, only “loosely”
restricts the class of systems to be synthesized, allowing the
possibility that Cyy = Cs. We argue that a tighter restriction is
often desirable. One important role of the structure hypothesis
is to reduce the search space for synthesis, by restricting
the class of artifacts Cg. For example, a structure hypothesis
could be a way of codifying the form of human insight to
be provided to the synthesis process. Additionally, restricting
Cy also aids in inductive inference. Fundamentally, the ef-
fectiveness of inductive inference (i.e., of Z) is limited by the
examples presented to it as input; therefore, it is important not
only to select examples carefully, but also for the inference
to generalize well beyond the presented examples. For this
purpose, the structure hypothesis should place a strict restric-
tion on the search space, by which we mean that Cy; C Cg.
The justification for this stricter restriction comes from the
importance of inductive bias in machine learning. Inductive
bias is the set of assumptions required to deductively infer a
concept from the inputs to the learning algorithm [19]. If one
places no restriction on the type of systems to be synthesized,
the inductive inference engine Z is unbiased; however, an
unbiased learner will learn an artifact that is consistent only
with the provided examples, with no generalization to unseen
examples. As Mitchell [19] writes: “a learner that makes no a
priori assumptions regarding the identity of the target concept
has no rational basis for classifying any unseen instances.”
Given all these reasons, it is highly desirable for the structure
hypothesis H to be such that Cy; C Cg. We present in Sec. II1
applications of SID that have this feature.
Randomization. We also note that it is possible to use
randomization in implementing Z and D. For example, a
deductive decision procedure that uses randomization can
generate a YES/NO answer with high probability.
Multiple Engines. Although we have defined SID as com-
bining a single inductive engine with a single deductive
engine, this is only for simplicity of the definition and poses
no fundamental restriction. One can always view multiple
inductive (deductive) engines as a being contained in a single
inductive (deductive) procedure where this outer procedure
passes its input to the appropriate “sub-engine” based on the
type of input query.

D. Soundness and Completeness Guarantees

It is highly desirable for verification or synthesis proce-
dures to provide soundness and completeness guarantees. In
this section, we discuss the form these guarantees take for a
procedure based on SID.

A verifier is said to be sound if, given an arbitrary problem
instance (S, E, ®), the verifier outputs “YES” only if S| F =
®. The verifier is said to be complete if it outputs “NO” when
S| E = ®.

The definitions for synthesis are similar. A synthesis
technique is sound if, given an arbitrary problem instance
(Cs, E, ®), if it outputs S, then S € Cg and S||E = ®. A
synthesis technique is complete if, when there exists S € Cg
such that S||FE = @, it outputs at least one such S.

Formally, for a verification/synthesis procedure P, we
denote the statement “P is sound” by sound(P).

Note that we can have probabilistic analogs of soundness
and completeness. Informally, a verifier is probabilistically
sound if it is sound with “high probability.” For brevity, we
will limit ourselves to non-probabilistic scenarios here.

1) Validity of the Structure Hypothesis: In SID, the ex-
istence of soundness and completeness guarantees depends
on the validity of the structure hypothesis. For a synthesis
problem, we say that the structure hypothesis H is valid
if the subset of Cg satisfying the specification ® contains
at least one element in Cy. If ® is available as a formal
specification, this condition is precisely defined. However, as
noted earlier, one of the challenges with synthesis can be the
absence of good formal specifications. In such cases, we use
® to denote a “golden” specification that one would have
in the ideal scenario. For a verification problem, validity of
the structure hypothesis is defined in terms of the synthesis
problem it is reduced to (as in Sec. II-B).

Thus, for both verification and synthesis, the existence of
an artifact satisfying the specification can be expressed as the
following logical formula:

Jecels.c=T

where, for synthesis, W is the original specification ®, and,
for verification, W denotes the cumulative specification for
the synthesis problem it is reduced to.

Similarly, the existence of an artifact satisfying ¥ that also
satisfies the structure hypothesis H is written as:

deelCy.c=¥

Given the above logical formulas, we define the statement
“the structure hypothesis is valid” as the validity of the
logical statement valid(H) given below:

valid(H) £ (3c€Cs.cE V)= (Fc€Cy.c V)
)
In other words, if there exists an artifact to be synthesized
(that satisfies the corresponding specification V), then there
exists one satisfying the structure hypothesis.

Note that valid(#) is trivially valid if C3 = Cg, or if
the consequent 3¢ € Cy . ¢ = ¥ is valid. An example of the
former case is counterexample-guided abstraction refinement
(CEGAR), an effective technique in verification that can
be seen as a form of SID that synthesizes abstractions
(Sec. II-E1 has a more detailed discussion of the link between
CEGAR and SID.) However, in some cases, valid(#) can
be proved valid even without these cases simply by exploiting
properties of ¥ and Cyy; see [21] for an example.

2) Conditional Soundness: A verification/synthesis proce-
dure following the SID paradigm must satisfy a conditional
soundness guarantee: procedure P must be sound if the
structure hypothesis is valid.

Without such a requirement, P is a heuristic, best-effort
verification or synthesis procedure. (It could be extremely
useful, nonetheless.) With this requirement, we have a mech-
anism to formalize the assumptions under which we obtain
soundness — namely, the structure hypothesis.

More formally, the soundness requirement for P can be
expressed as the following logical expression:

valid(#H) = sound(P) (6)

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

Note that one must prove sound(P) under the assumption
valid(H), just like one proves unconditional soundness. The
point is that making a structure hypothesis can allow one to
devise procedures and prove soundness where previously this
was difficult or impossible.

Where completeness is also desirable, one can formulate a
similar notion of conditional completeness. We will mainly
focus on soundness in this paper.

E. Context and Previous Work

Within computer science and engineering, the field of
artificial intelligence (AI) has studied inductive and deduc-
tive reasoning and their connections (see, e.g., [34]). As
mentioned earlier, Mitchell [19] describes how inductive
inference can be formulated as a deduction problem where
inductive bias is provided as an additional input to the deduc-
tive engine. Inductive logic programming [35], an approach
to machine learning, blends induction and deduction by
performing inference in first-order theories using examples
and background knowledge. Combinations of inductive and
deductive reasoning have also been explored for synthesizing
programs (plans) in Al; for example, the SSGP approach [36]
generates plans by sampling examples, generalizing from
those samples, and then proving correctness of the gener-
alization.

Our focus is on the use of combined inductive and de-
ductive reasoning in formal verification and synthesis. While
several techniques for verification and synthesis combine sub-
sets of induction, deduction, and structure hypotheses, there
are important distinctions between many of these and the
SID approach. Below, we highlight a representative sample
of related work; this sample is intended to be illustrative, not
exhaustive.

1) Instances of SID: We first survey prior work in ver-

ification and synthesis that has provided inspiration for
formulating the notion of SID. Specifically, SID can be seen
as a “lens” through which one can view the common ideas
amongst these techniques so as to extend and apply them to
new problem domains.
Counterexample-Guided Abstraction-Refinement (CE-
GAR). Counterexample-guided abstraction refinement (CE-
GAR) [23] is an algorithmic approach to perform abstraction-
based model checking. CEGAR has been successfully applied
to hardware [23], software [37], and hybrid systems [38].
As depicted in Fig. 4, CEGAR solves the synthesis sub-task
described in Sec. II-B2 of generating abstract models that are
sound (they contain all behaviors of the original system) and
precise (a counterexample generated for the abstract model
is also a counterexample for the original system). One can
view CEGAR as an instance of SID as follows:

e The abstract domain, which defines the form of the ab-
straction function, is the structure hypothesis. For example,
in verifying digital circuits, one might use localization
abstraction [28], in which abstract states are cubes over
the state variables.

e The inductive engine Z is an algorithm to learn a new
abstraction function from a spurious counterexample. Con-
sider the case of localization abstraction. One approach
in CEGAR is to walk the lattice of abstraction functions,
from most abstract (hide all variables) to least abstract (the

Initial

Abstract
Abstraction | €
Function

Abstract Model
Generate é)
Abstraction
New Abstraction Function

Refine

Abstraction
Function

System —
+Property

Invoke Valid
Model —>:Done

Checker

Counter-
example
Check
Spurious YES Counterexample: NO) Done
Counterexample Spurious?

VERIFICATION

Fail <===

SYNTHESIS

Fig. 4. Counterexample-guided abstraction refinement (CEGAR) as induc-
tive synthesis.

original system). This problem can be viewed as a form
of learning based on version spaces [19], although the
traditional CEGAR refinement algorithms are somewhat
different from the learning algorithms proposed in the
version spaces framework. Gupta, Clarke, et al. [39] have
previously observed the link to inductive learning and have
proposed versions of CEGAR based on alternative learning
algorithms (such as induction on decision trees).

e The deductive engine D, for finite-state model checking,
comprises the model checker and a SAT solver. The model
checker is invoked on the abstract model to check the
property of interest, while the SAT solver is used to
check if a counterexample is spurious. One can view D
as answering verification queries posed by Z.

In CEGAR, usually the original system is in Cy, and since
it is a sound and precise (though trivial) abstract model, the
consequent d¢ € Cy .c = ¥ is valid. Thus, the structure
hypothesis is valid, and the notion of soundness reduces to
the traditional (unconditional) notion.

Other Instances. Several other common paradigms in verifi-
cation and synthesis can also be seen as instances of SID:

e Data-Driven Invariant Generation: In recent years, an
effective approach to generating inductive invariants is
to assume that they have a particular structural form
(e.g., conjunctions of affine constraints or equivalences),
learn candidates that are consistent with simulation or
test data, and then use a deductive engine (e.g., SAT
solver, SMT solver, or model checker) to establish that
the remaining candidates are indeed inductive invariants.
Examples include inference of equivalences and implica-
tions in the ABC system [18], [40] and invariant inference
for programs [41].

o Counterexample-Guided Inductive Sythesis (CEGIS): This
is a novel approach to program synthesis [12] that starts
by encoding programmer insight in the form of a partial
program, or “sketch” (which forms the structure hypoth-
esis), and then performs counterexample-guided learning
similar to CEGAR to obtain an instantiation of the sketch
that satisfies a specification.

o Learning for Compositional Verification: These techniques
perform compositional verification by reduction to syn-
thesis of environment models. The inductive learning
algorithms used in these approaches are mostly based on

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

Angluin’s L* algorithm [30] and its variants; see [42] for
a recent collection of papers on this topic. The structure
hypothesis constrains the environment to be of a certain
form (e.g. finite-state, with specific inputs and outputs).
The deductive engine is typically a model checker.

e Lazy SMT Solving: SMT solvers can be seen as synthesiz-
ing a Boolean formula that is equisatisfiable to the original
SMT formula. Lazy SMT solvers [16] perform inductive
synthesis similar to CEGAR, by iteratively synthesizing
lemmas over literals in the original SMT formula that
rule out conjunctions of literals inconsistent with the
underlying logical theories.

2) Techniques that are not SID: To contrast with the
methods described above, we provide a few examples of

verification and synthesis methods that are not instances of
SID:

o Cone-of-Influence Reduction: This is a deductive approach
to computing a sound and complete abstract model [5],
where one computes the closure of all variables that may
determine the value of the property to be verified. For
many problems, the abstract model computed via cone-of-
influence is too detailed to provide any efficiency benefits.

o Automata-Theoretic Synthesis from Linear Temporal Logic
(LTL): This is a classic approach for synthesizing a
finite-state transducer (FST) from an LTL specification,
pioneered by Pnueli and Rosner [11]. The approach is a
purely deductive one, with a final step that involves solving
an emptiness problem for tree automata.

o Deductive Invariant Generation: Several techniques for
generating inductive invariants, such as a method of Tiwari
et al. [43] are deductive, using fixpoint computations and
rule-based quantifier elimination.

e Eager SMT Solving: The eager approach to SMT solv-
ing [16], [44] is a deductive approach to synthesizing an
equisatisfiable Boolean formula from the original SMT
formula, based on applying rewrite rules, small-model the-
orems, and other satisfiability-preserving encoding strate-
gies.

3) Recent Theoretical Results: Since the publication of
the conference version of this article, the author has been
involved in two complementary efforts that are closely
related. The first is a class of synthesis problems called
syntax-guided synthesis (SyGuS) [45], where the structure
hypothesis is encoded into the problem definition in the
form of grammars rather than be part of the solver. This
approach circumvents the challenge of ensuring validity of
the structure hypotheses by making it part of the problem
definition. The second is a theoretical framework for oracle-
guided inductive synthesis with an analysis of how variations
in the counterexample-guided inductive synthesis paradigm
can impact the convergence to a correct artifact [46], [33].

III. SID FOR SPECIFICATION SYNTHESIS

In this section, we present, in more depth, two recent
applications of the SID approach. Both instances involve
the synthesis of specifications in the context of an over-
all verification or synthesis problem. The first application
concerns the generation of temporal logic specifications,
particularly environment assumptions, for use in reactive

controller synthesis [47], [48]. The second addresses the
problem of verifying temporal logic properties of industrial
closed-loop cyber-physical systems [49], where the properties
are not readily available and hence the problem is reduced to
one of synthesizing requirements. We also summarize other
applications of SID in recent years.

A. Synthesis of Environment Assumptions

The synthesis of controllers from linear temporal logic
(LTL) has gained increasing practical application in the fields
of control systems and robotics (e.g., see [50], [S1], [52],
[53]). Recent algorithmic advances in synthesis from LTL
(e.g., GR(1) synthesis [54]) have made it practical to generate
controllers from large specifications in real-world settings.
However, as discussed in Sec. I, a significant challenge to
the wider adoption of this methodology is the need to write
complete temporal logic requirements.

The most challenging part of writing a temporal logic spec-
ification for synthesis is writing the constraints (assumptions)
on the environment’s behavior. In the context of robotics, if
the constraints are too strict, one risks generating a controller
that is incapable of operating in the real world. On the other
hand, if the constraints are too weak, the specification is
likely to be unrealizable, i.e., there is no system that can
meet the specification for such an unconstrained, adversarial
environment.

The environment assumption synthesis (EAS) problem can
be formalized as follows:

(EAS): Given a satisfiable but unrealizable LTL
formula ®, generate another LTL formula ¥ such
that W # false, ¥ = @ is realizable, and W is the
weakest such formula.

Here “weakest” means that there is no other LTL formula ¥’
such that ¥ = ¥’ and ¥’ = @ is realizable. For example, if
formulas G F p and G p are the only two assumptions that
make the specification realizable, G F p is weaker than G p
(and hence the weakest).

There is usually one other requirement in practice: ¥ must
be understandable by human designers. Ultimately, whether
a specification is complete and environment assumptions are
reasonable can only be determined by the designers. We
interpret this requirement to mean that syntactically simpler
LTL formulas are favored over large, complicated ones.

A purely deductive approach to this problem was given by
Chatterjee et al. [55] where the authors compute the weakest
environment assumption as a monolithic Biichi automaton.
While this approach does solve the problem, the generated
¥ is usually not easily understandable by even an expert in
formal methods.

In a recent paper [47], we proposed an alternate approach
based on SID. At the top level, the approach is based on
counter-strategy-guided learning, similar to CEGAR [23] and
CEGIS [12], but using a version space learning algorithm in
the synthesis phase. Fig. 5 illustrates the main ideas. We
begin with three inputs: (i) an LTL formula & in the GR(1)
fragment, (ii) a structure hypothesis H about the environment
assumptions to be synthesized (provided in the form of
templates for GR(1) properties), and (iii) (optionally) a set
of input-output traces indicating environment behavior that
must be allowed by any synthesized assumptions. Typically,

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

Original
VERSION SPACE LEARNING Pﬁ)‘:g)ty
(Assumption Synthesis)
ved Add Invoke |Realizable
Mod.el > | Environment | | Synthesis |——> Done
Check: M .
. Assumption @ Tool
satisfies —@? to Property

\ l Unrealizable
Counterstrategy | g——, Compute
M Counterstrategy
¢ | Candidate @

f \ VERIFICATION

(that assumption suffices)
Templates
for GR(1)

a5

o Generate
Fail <~ggiv| Weakest

Example
Behaviors

Fig. 5. Counterstrategy-guided synthesis of environment assumptions

the GR(1) formula ® comprises just the requirements on
the system, and no environment assumptions (so that the
environment is a completely unconstrained adversary).

Then we invoke the GR(1) synthesis algorithm of Piterman
et al. [54]. If ® is realizable, then the process terminates with
a synthesized finite-state transducer. If not, we compute the
(finite-state) winning strategy for the environment, denoted
M. The synthesis algorithm and the counterstrategy extrac-
tion together form a deductive procedure.

The structure hypothesis A defines a finite set of GR(1)
properties using syntactic templates, as described in more
detail by Li et al. [47], [48]. This set forms a lattice,
with logical implication defining the partial order between
formulas on the lattice. The weakest environment assumption,
true, is the bottom element, and the strongest assumption,
false, is the top element. The templates restrict the Boolean
structure of the GR(1) properties, and therefore Cy C Cg.

Given this lattice of assumptions, we use inductive learning
based on version spaces [19] to learn the weakest assumption
consistent with our observations so far, including generated
counterstrategies and the optional set of traces. The learning
algorithm works as follows. First, using the traces, we
can compute the “strongest frontier” of properties that are
consistent with the traces; if there is no such set, we simply
define the trivial frontier comprising all formulas such that
the only stronger property is false. We maintain the “weakest
frontier” of properties that are not implied by any previously
added assumptions; initially this frontier comprises the sin-
gle formula true. If the weakest frontier ever crosses the
strongest frontier, then the synthesis step fails: there is no
assumption satisfying the structure hypothesis H that makes
the specification realizable. If not, given the counterstrategy
M, we then select any property ¢ in the weakest frontier
and invoke a model checker to verify whether M = —¢. If
so, adding ¢ as an environment assumption will rule out
counterstrategy M. We further check that ¢ is consistent
with all previously added environment assumptions. If either
check fails, we update the frontier, pick another formula ¢
and iterate until we either fail or find an assumption ¢ that
works.

Given the learned environment assumption , we add it to
the set of environment assumptions generated so far. This set
is then minimized to remove any redundant assumptions that

are implied by the others. We then update the antecedent of
the formula ® accordingly, and iterate the loop. At any point,
the conjunction of the current set of generated environment
assumptions ¢ forms the environment assumption formula 0.
When ¥ = & is realizable, the loop terminates successfully.

The guarantees of this SID approach are formalized in the
theorem below.

Theorem 3.7: The above algorithm is sound and complete
for (EAS) when H is valid; i.e., when there exists a weakest
environment assumption that is a conjunction of GR(1)
formulas defined by the templates. [J
Recall that soundness means that if the algorithm generates
an environment assumption formula ¥, then ¥ is the weakest
environment assumption different from false such that ¥ =
® is realizable. Soundness holds when # is valid due to
the version space learning algorithm and the consistency and
minimization steps. Completeness means that when a weakest
environment assumption W exists that yields realizability, the
algorithm finds it. The finite search space imposed by H
ensures that completeness holds when H is valid.

We have successfully applied this algorithm to infer
environment assumptions almost identical to those written
by human designers [47]. The approach has also been
used to analyze an Federal Aviation Administration (FAA)
specification, wherein the original specification was found
unrealizable, and our algorithm was then used to suggest an
additional environment assumption [48].

B. Synthesis of Requirements for Cyber-Physical Models

Cyber-physical systems (CPS) are those that tightly inte-
grate computational processes with the physical world [62].
The model-based development (MBD) paradigm [63] is
increasingly being employed for industrial cyber-physical
systems, particularly in the avionics and automotive sectors.
A model of a CPS typically comprises two logical parts:
(i) the plant, which is usually the physical system being
controlled such as the camshaft in an internal combustion
automobile engine whose rotational dynamics must be mod-
eled along with a thermodynamics model of the engine; and
(ii) the controller that employs some specific control law
to regulate the behavior of the physical system. The overall
closed-loop model is then obtained as the composition of the
controller with the plant. Such a model is usually expressed in
industry-standard languages such as Simulink/Stateflow [64]
or LabVIEW [65]. Given the closed-loop model, the ver-
ification problem is to determine whether the model sat-
isfies a set of requirements, ideally expressed in a formal
notation. Unfortunately, in current industrial practice, these
requirements are high-level and often vague, and expressed
in informal (natural) language. Examples of requirements
in the automotive industry include “better fuel-efficiency”,
“signal should eventually settle”, and “must exhibit resistance
to turbulence”. Verification is mainly done via simulation,
where an engineer manually inspects simulation results to
determine if any requirement was violated.

There is a thus a need for techniques and tools to help engi-
neers in industry to write formal requirements while leverag-
ing existing available information about designs. Specifically,
the author and colleagues considered the problem of design-
ing a tool that takes as input a closed-loop model in Simulink

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

Application H

T

D

Synthesis of
bit-vector programs [31]

Loop-free programs
from component library

Learning from
distinguishing inputs

SMT solving for
input/program generation

Timing analysis of
embedded software [56], [57]

w + 7 platform
model & constraints

Game-theoretic
online learning

SMT + ILP solving
for basis path generation

Guards as
hyperboxes

Switching logic
synthesis for safety [32]

Hyperbox learning
from labeled points

Numerical simulation
as reachability oracle

Boolean formulas
over restricted variable sets

Term-level verification [58]
via abstraction [59]

Decision tree
learning from simulations

SMT-based
model checking

Switching logic Guards as Learning halfspaces Numerical optimization to
synthesis for optimality [60] halfspaces from labeled points find optimal switching points
Synthesis of environment Restricted GR(1) Version-space learning & Automata-theoretic GR(1) synthesis
assumptions in LTL [47], [48] templates Counterstrategy-guided learning & Finite-state model checking

Requirement synthesis for
closed-loop control models [49]

Signal temporal logic
(STL) templates

Counterexample-guided
parameter learning

STL falsification based
on numerical simulation

Model predictive control for
temporal logic objectives [61]

Linearity for control
and disturbances

Counterexample-guided
learning of control

Mixed integer
linear optimization

TABLE I
Summary of Selected Applications of SID. For each application, we briefly describe the structure hypothesis #, the inductive inference technique(s) Z,
and the deductive procedure(s) D.

along with a suite of simulation traces describing permitted
behavior, and outputs a requirement in a formal notation
such as temporal logic [49]. With the increasing acceptance
of temporal logics in practical domains such as automotive
systems, it is reasonable to expect that libraries of commonly-
used requirements will become available to control designers.
Moreover, given the hybrid discrete-continuous nature of the
models, one would need a flavor of temporal logic such as
Metric Temporal Logic (MTL) [66], [67] or Signal Temporal
Logic (STL) [68], [69]. In particular, STL has been found to
be particularly well-suited to expressing common control-
theoretic properties of signals involving overshoot, under-
shoot, settling-time, rise-time, dwell-time, etc. For example,
the STL formula F [o10j(x > 3) expresses the property
that the value of signal x exceeds 3 some time in the
interval [0, 10]. Another useful feature of STL is that it has
quantitative satisfaction semantics, i.e., given a trace, an
STL formula is not just true or false, but has a numerical
satisfaction value that is non-negative if and only if the
Boolean satisfaction value is true.

Given the above, we now formally define the CPS require-

ment synthesis (CRS) problem as follows:

(CRS): Given a closed-loop control model M (e.g.,

in Simulink), and a suite of simulation traces 7,

generate a signal temporal logic (STL) formula &

such that ® is the strongest STL formula satisfied

by M and consistent with 7.
As in the previous section, the generated STL formula &
must be understandable and deemed to be reasonable by
human designers. Additionally, there are no known purely
deductive approaches to this problem due to the complexity
of closed-loop Simulink models — non-linearity, switching,
lookup tables, etc. — which do not fit in any known class of
hybrid systems for which verification is decidable.

We have applied the SID paradigm to the (CRS) problem,
with an approach that is a variation on the counterexample-
guided inductive synthesis (CEGIS) [12] approach. Fig. 6
sketches the overall approach. We begin with the closed
loop model M and a set of simulation traces 7. We first
make a structure hypothesis to constrain the space of pos-
sible requirements. The structure hypothesis 7 is that the

requirements are instances of a finite collection of templates
expressed in parametric signal temporal logic (PSTL). A
PSTL formula is obtained from an STL formula by replacing
one or more numerical constants with parameters (variables).
The templates are typically crafted based on input from the
control engineers about the kinds of patterns they typically
look for in simulation traces (e.g., settling time of a signal,
maximum overshoot above a nominal upper bound, etc.).
Clearly, the structure hypothesis severely restricts the STL
properties we synthesize, so that Cy C Cs.

Simulink & Controller ~ {—f Plant
Model M oce
[y
. 5 Counter-
—> S_ﬁ'f;gﬁllgg example
B Traces Counter-
example
Found
FINDPARAM Comifidhtic FALSIFYALGO

Requirement

No Counterexample

G [0171](}(1 < w1 A

G [0,1.1](}{1 < 3.2A
F (0,75 (x2 > 72))

F [o,5(x2 > 0.1))

Template Requirement Inferred Requirement

Fig. 6. Counterexample-guided synthesis of requirements for cyber-physical
models

Next, using the templates and the set of traces 7, a
parameter synthesis algorithm FINDPARAM is invoked to
compute the strongest instantiation of the templates that are
consistent with 7. For example, if in every trace in T the
value of a particular signal = is always at most 42, then
one can instantiate a template of the form G (z < 7) with
parameter 7 as G (z < 42). In general, finding such a
strongest instantiation of a PSTL formula over a set of traces
is computationally expensive, requiring exponential time in
the worst to search over the parameter space. Fortunately,
in all practical PSTL templates that we have encountered
in the automotive domain, the PSTL formula has a special

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

monotonicity property: the quantitative satisfaction value of
the PSTL formula varies monotonically with the parameter
valuation. Moreover, this monotonicity can be determined
automatically by an encoding to a satisfiability modulo
theories (SMT) solver. See [49] for further details.

Given such a strongest instantiation, i.e., a collection of
STL properties, we then invoke FALSIFYALGO, an algorithm
which tries to find a violation of one of these properties on the
given model M. Ideally, we would like FALSIFYALGO to be
a sound and complete verification tool that, given a Simulink
models M and an STL property ®, can decide whether or
not M satisfies ®. However, this problem is undecidable if
the class of models M is not severely restricted. Thus, in
general, one cannot prove that M satisfies ¢, one can only
try to find violations of ®, a process termed as falsification.
In recent years, there has been substantial progress on state-
of-the-art falsification algorithms for MTL and STL, based
on numerical minimization of the quantitative satisfaction
function, implemented in tools such as S-TALIRO [70] and
BREACH [71]. If FALSIFYALGO finds a violation of the
instantiated properties, then the resulting trace is added back
into 7 and the loop repeated. Otherwise, the CEGIS loop
terminates with the instantiated STL properties generated as
output to the control engineer.

The guarantees of this SID approach are formalized in the
theorem below.

Theorem 3.2: The above algorithm for the (CRS) prob-

lem is sound and complete when # is valid and when
FALSIFYALGO is a sound verifier for the model M. [
For this problem, soundness means that if the algorithm gen-
erates an STL formula ®, then ® is the strongest requirement
satisfied by M and consistent with 7. Completeness means
that when such a strongest requirement exists, the algorithm
will find it. The soundness of the verifier FALSIFYALGO is
key to giving this guarantee, since without it one cannot claim
that M satisfies ®, and one might also miss counterexamples
from which to synthesize the strongest ®.

In spite of the strong condition under which soundness and
completeness is guaranteed, which may not hold in practice,
the approach has proved extremely effective on industrial
models [49]. In particular, the approach has been used on
industrial automotive models supplied by Toyota engineers,
including a large model of an airpath controller for a diesel
engine. In these experiments, not only was the approach
useful in synthesizing requirements, it also found a corner-
case bug in the afore-mentioned model that was confirmed by
a designer [49]. This work highlights another, more practical,
connection between verification and synthesis: synthesizing
the strongest requirement satisfied by the system can be an
effective method for finding tricky corner-case bugs in the
system, since the generated counterexamples and the final
synthesized requirement provides information about parts of
the model where bugs may lie.

C. Summary of Other Instances

The SID methodology has been applied by the author and
colleagues to several other problems in specification, verifi-
cation, and synthesis, as summarized in Table I. In addition,
other researchers have very recently applied this approach for
problems as diverse as Lyapunov analysis for control [72],
and data-driven invariant inference for programs [41].

IV. CONCLUSION AND FUTURE DIRECTIONS

This paper posits that SID, a tight integration of induction
and deduction with a structure hypothesis, is a promising
approach to addressing challenging problems in formal meth-
ods and its applications. The crux of formal methods lies in
algorithmic techniques for proof, and our proposal is inspired
by the approaches human mathematicians typically employ,
by combining inductive reasoning with systematic deductive
processes. We show how some of the recent successes in
formal methods, such as counterexample-guided abstraction
refinement, can be seen as instances of SID. In particular, the
structure hypothesis provides a way for a human to provide
creative input into the verification process without getting
mired in tedious details.

Given a new problem in verification or synthesis, how can
we apply the ideas in this paper to tackle it? Here is a general
prescription for applying SID:

1. Identify the hard synthesis sub-task(s) within the overall
synthesis or verification problem. For example, in verifi-
cation, one may need to synthesize inductive invariants or
abstractions. For synthesis, one may need to synthesize
parts of the specification or the implementation that are
tricky or tedious to manually generate.

2. Formalize suitable structure hypotheses for each sub-task.
We envision that, for a new problem, the structure hypoth-
esis will be manually provided by the user. This step would
require the user to have expertise both in formal methods
and in the application domain. However, with experience,
one might be able to build a “set of templates” into
the verification or synthesis tool that encode reasonable
structure hypotheses for non-expert users.

3. Formalize the reduction of the overall problem to synthe-
sis. From a complexity-theoretic viewpoint, each synthesis
sub-task can be viewed as a problem solvable by an
oracle procedure. This oracle synthesis procedure must
be designed to be sound/complete when the structure
hypothesis is valid.

Note that the SID paradigm may be recursively applied
to the synthesis problem being solved by the oracle
procedure.

4. Prove the validity of the structure hypotheses or derive
reasonable assumptions that entail its validity.

Since the publication of the conference version of this pa-
per [21], the author and colleagues have successfully applied
this paradigm to a variety of problems, including synthe-
sizing requirements for cyber-physical models [49], model
predictive control in a receding horizon framework [61],
and synthesizing strategies for probabilistic models with
applications to risk-limiting renewable energy pricing [73].
In closing, we consider several directions for future work.
First, recall that the soundness and completeness guar-
antees of SID only hold when the structure hypothesis is
valid. If unconditional guarantees are needed for a particular
application, one needs to prove the validity of a candidate
hypothesis H. It would be useful to develop a general,
systematic approach for checking the validity of .
Second, it is important for the structure hypothesis to be
flexible and programmable, since it may need to be changed
if the original synthesis problem is unrealizable, or if the
specification changes. Consequently, it is also important for

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

the inductive learning algorithms to be flexible to accommo-
date such changes in the structure hypotheses. Such flexibility
is not typical of traditional machine learning algorithms.

Third, we note that SID offers ways to integrate inductive
reasoning into deductive engines, and vice-versa. It is intru-
iging to consider if SAT and SMT solvers can benefit from
this approach — for example, using inductive reasoning to
guide the solver for specific families of SAT/SMT formulas,
or to learn how to instantiate quantifiers in a theorem prover.
Similarly, can one effectively use deductive engines as oracles
in learning at scale? Are there new concept learning problems
that can be effectively solved using this approach?

Finally, the landscape of applications is yet to be fully
explored. An interesting direction is to take problems that
have classically been addressed by purely deductive methods
and apply the SID approach to them. As an example, consider
again the problem of synthesis from LTL specifications.
One challenge for this problem is to deal with the doubly-
exponential computational complexity. It would be interesting
to see if the synthesis algorithms themselves can be made
more scalable using SID, e.g., by combining machine learn-
ing algorithms with traditional deductive methods. An initial
step towards this objective has been taken by the author
and colleagues for strategy synthesis of Markov Decision
Processes (MDPs) for LTL objectives [74], but much more
remains to be done.

Acknowledgments

This article is a result of ideas synthesized and verified (!)
over many years in collaboration with several students and
colleagues. The contributions of Susmit Jha, in particular,
are gratefully acknowledged. This work has been supported
in part by several sponsors including the National Science
Foundation (CNS-0644436, CNS-0627734, CNS-1035672,
and CCF-1139138), Semiconductor Research Corporation
(SRC) contracts 1355.001 and 2045.001, an Alfred P. Sloan
Research Fellowship, the Hellman Family Faculty Fund, the
Toyota Motor Corporation under the CHESS center, and
the Gigascale Systems Research Center (GSRC), MultiScale
Systems Center (MuSyC), and TerraSwarm Research Center,
three centers funded by Semiconductor Research Corporation
programs sponsored by MARCO and DARPA.

REFERENCES

[1] J. M. Wing, “A specifier’s introduction to formal methods,” IEEE
Computer, vol. 23, no. 9, pp. 8-24, September 1990.

[2] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Computing Surveys (CSUR), vol. 28, no. 4,
pp. 626-643, 1996.

[3] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” in Logic of
Programs, 1981, pp. 52-71.

[4] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent
systems in CESAR,” in Symposium on Programming, ser. LNCS, no.
137, 1982, pp. 337-351.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 2000.

[6] S.Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in [Ith International Conference on Automated Deduction
(CADE), ser. Lecture Notes in Artificial Intelligence, D. Kapur, Ed.,
vol. 607. Springer-Verlag, Jun. 1992, pp. 748-752.

[71 M. J. C. Gordon and T. F. Melham, Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge University
Press, 1993.

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

M. Kaufmann, P. Manolios, and J. S. Moore, Computer-Aided Rea-
soning: An Approach. Kluwer Academic Publishers, 2000.

I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection
of vacuity in ACTL formulas,” Formal Methods in System Design,
vol. 18, no. 2, pp. 141-162, 2001.

Z. Manna and R. Waldinger, “A deductive approach to program
synthesis,” ACM TOPLAS, vol. 2, no. 1, pp. 90-121, 1980.

A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
ACM Symposium on Principles of Programming Languages (POPL),
1989, pp. 179-190.

A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in ASPLOS, 2006.

S. Srivastava, S. Gulwani, and J. S. Foster, “From program ver-
ification to program synthesis,” in Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2010, pp. 313-326.

R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677-691,
August 1986.

S. Malik and L. Zhang, “Boolean satisfiability: From theoretical
hardness to practical success,” Communications of the ACM (CACM),
vol. 52, no. 8, pp. 76-82, 2009.

C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, A. Biere, H. van
Maaren, and T. Walsh, Eds. IOS Press, 2009, vol. 4, ch. 8.

R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo
et al., “VIS: A system for verification and synthesis,” in Computer
Aided Verification (CAV). Springer, 1996, pp. 428-432.

R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
Strength Verification Tool,” in Computer Aided Verification (CAV),
2010.

T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

D. Angluin and C. H. Smith, “Inductive inference: Theory and meth-
ods,” ACM Computing Surveys, vol. 15, pp. 237-269, Sep. 1983.

S. A. Seshia, “Sciduction: Combining induction, deduction, and struc-
ture for verification and synthesis,” in Proceedings of the Design
Automation Conference (DAC), June 2012, pp. 356-365.

S. K. Jha, “Towards automated system synthesis using sciduction,”
Ph.D. dissertation, EECS Department, University of California, Berke-
ley, Nov 2011.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in /2th International
Conference on Computer Aided Verification (CAV), ser. Lecture Notes
in Computer Science, vol. 1855. Springer, 2000, pp. 154-169.

S. A. Seshia, “Sciduction: Combining induction, deduction, and struc-
ture for verification and synthesis,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2011-68, May 2011.

Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Con-
current Systems:Specification. ~ Springer-Verlag, 1992.

S. A. Seshia, N. Sharygina, and S. Tripakis, “Modeling for verifica-
tion,” in Handbook of Model Checking, E. M. Clarke, T. Henzinger,
and H. Veith, Eds. Springer, 2014, ch. 3.

P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. ACM, 1977,
pp- 238-252.

R. Kurshan, “Automata-theoretic verification of coordinating pro-
cesses,” in I Ith International Conference on Analysis and Optimization
of Systems — Discrete Event Systems, ser. LNCS. Springer, 1994, vol.
199, pp. 16-28.

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
no. 1, pp. 3-34, February 1995.

D. Angluin, “Queries and concept learning,” Machine Learning, vol. 2,
pp. 319-342, 1988.

S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proceedings of the 32nd
International Conference on Software Engineering (ICSE), 2010, pp.
215-224.

——, “Synthesizing switching logic for safety and dwell-time require-
ments,” in Proceedings of the International Conference on Cyber-
Physical Systems (ICCPS), April 2010, pp. 22-31.

S. Jha and S. A. Seshia, “A Theory of Formal Synthesis via Inductive
Learning,” ArXiv e-prints, May 2015.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 2010.

PROCEEDINGS OF THE IEEE, VOL. XXX, NO. YYY, DATE

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

S. Muggleton and L. de Raedt, “Inductive logic programming: Theory
and methods,” The Journal of Logic Programming, vol. 19-20, no. 1,
pp. 629-679, 1994.

H. Fox, “Agent problem solving by inductive and deductive program
synthesis,” Ph.D. dissertation, Massachusetts Institute of Technology,
Dept. of Electrical Engineering and Computer Science, 2008.

T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” in Proc. ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation
(PLDI), June 2001, pp. 203-213.

E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, O. Sturs-
berg, and M. Theobald, “Verification of hybrid systems based on
counterexample-guided abstraction refinement,” in TACAS, 2003, pp.
192-207.

A. Gupta, “Learning abstractions for model checking,” Ph.D. disser-
tation, Computer Science Department, Carnegie Mellon University,
2006.

M. Case, “On invariants to characterize the state space for sequential
logic synthesis and formal verification,” Ph.D. dissertation, EECS
Department, UC Berkeley, Apr 2009.

R. Sharma and A. Aiken, “From invariant checking to invariant
inference using randomized search,” in 26th International Conference
on Computer Aided Verification (CAV), 2014, pp. 88-105.

Dimitra Giannakopoulou and Corina S. Pasareanu, eds., “Special issue
on learning techniques for compositional reasoning,” Formal Methods
in System Design, vol. 32, no. 3, pp. 173-174, 2008.

A. Tiwari, H. RueB, H. Saidi, and N. Shankar, “A technique for
invariant generation,” in In 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
2001, pp. 113-127.

S. A. Seshia, “Adaptive eager boolean encoding for arithmetic reason-
ing in verification,” Ph.D. dissertation, Carnegie Mellon University,
2005.

R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in Proceedings of the IEEE International
Conference on Formal Methods in Computer-Aided Design (FMCAD),
October 2013.

S. Jha and S. A. Seshia, “Are there good mistakes? a theoretical
analysis of cegis,” in 3rd Workshop on Synthesis (SYNT), July 2014,
pp. 84-99.

W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for synthe-
sis,” in Proceedings of the Ninth ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE), July
2011, pp. 43-50.

W. Li, “Specification mining: New formalisms, algorithms and applica-
tions,” Ph.D. dissertation, EECS Department, University of California,
Berkeley, Mar 2014.

X. Jin, A. Donzé, J. Deshmukh, and S. A. Seshia, “Mining require-
ments from closed-loop control models,” in Proceedings of the In-
ternational Conference on Hybrid Systems: Computation and Control
(HSCC), April 2013, pp. 43-52.

T. Wongpiromsarn, “Formal methods for design and verification of
embedded control systems: application to an autonomous vehicle,”
Ph.D. dissertation, California Institute of Technology, 2010.

T. Wongpiromsarn, U. Topcu, and R. Murray, “Receding horizon tem-
poral logic planning for dynamical systems,” in 48th IEEE Conference
on Decision and Control (CDC), Dec. 2009, pp. 5997 —6004.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370-1381, 2009.

P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donzé, and S. A. Seshia, “A contract-based method-
ology for aircraft electric power system design,” IEEE Access, vol. 2,
pp. 1-25, 2014.

N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”
in 7th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), ser. Lecture Notes in Computer
Science, vol. 3855. Springer, 2006, pp. 364-380.

K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Environment
assumptions for synthesis,” in Proceedings of the 19th international
conference on Concurrency Theory (CONCUR). Springer-Verlag,
2008, pp. 147-161.

S. A. Seshia and A. Rakhlin, “Game-theoretic timing analysis,” in
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE Press, 2008, pp. 575-582.

——, “Quantitative analysis of systems using game-theoretic learning,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 11,
no. S2, pp. 55:1-55:27, 2012.

(58]

[59]

[60]

[61]

[62]

[63]
[64]
[65]
[66]
[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions
and uninterpreted functions,” in Proc. Computer-Aided Verification
(CAV’02), ser. LNCS 2404, E. Brinksma and K. G. Larsen, Eds., July
2002, pp. 78-92.

B. Brady, R. E. Bryant, and S. A. Seshia, “Learning conditional
abstractions,” in Proceedings of the IEEE International Conference on
Formal Methods in Computer-Aided Design (FMCAD), October 2011,
pp. 116-124.

S. Jha, S. A. Seshia, and A. Tiwari, “Synthesis of optimal switching
logic for hybrid systems,” in Proceedings of the International Confer-
ence on Embedded Software (EMSOFT), October 2011, pp. 107-116.
V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in
Proceedings of the 8th International Conference on Hybrid Systems:
Computation and Control (HSCC 2015), April 2015, pp. 239-248.

E. A. Lee and S. A. Seshia, Introduction to Embedded Sys-
tems: A Cyber-Physical Systems Approach, first edition ed.
http://leeseshia.org, 2011.

G. Nicolescu and P. J. Mosterman, Model-Based Design for Embedded
Systems. CRC Press, 2009.

The MathWorks Inc., “Simulink, version 8.0 (R2012b),” Natick, Mas-
sachusetts, 2012.

National Instruments, Inc., “LabVIEW,” 2015. [Online]. Available:
http://www.ni.com/labview/

R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Syst., vol. 2, no. 4, pp. 255-299, 1990.

R. Alur, T. Feder, and T. A. Henzinger, “The Benefits of Relaxing
Punctuality,” J. ACM, vol. 43, no. 1, pp. 116-146, Jan. 1996.

O. Maler and D. Nickovic, “Monitoring Temporal Properties of Con-
tinuous Signals,” in Proc. of Formal Modeling and Analysis of Timed
Systems/ Formal Techniques in Real-Time and Fault Tolerant Systems,
2004, pp. 152-166.

E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifi-
cation of temporal properties,” in Proc. of Runtime Verification, 2011,
pp. 147-160.

Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankara-
narayanan, “S-TaLiRo: A Tool for Temporal Logic Falsification for
Hybrid Systems,” in Proc. of Tools and Algorithms for the Construction
and Analysis of Systems, 2011, pp. 254-257.

A. Donzé, “Breach, A Toolbox for Verification and Parameter Synthe-
sis of Hybrid Systems,” in Proc. of Computer Aided Verification, 2010,
pp. 167-170.

J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Arechiga,
“Simulation-guided Lyapunov analysis for hybrid dynamical systems,”
in 17th International Conference on Hybrid Systems: Computation and
Control (HSCC), 2014, pp. 133-142.

A. Puggelli, A. Sangiovanni-Vincentelli, and S. A. Seshia, “Robust
strategy synthesis for probabilistic systems applied to risk-limiting
renewable-energy pricing,” in Proceedings of the 14th International
Conference on Embedded Software (EMSOFT), October 2014.

D. Sadigh, E. S. Kim, S. Coogan, S. Sastry, and S. A. Seshia,
“A learning based approach to control synthesis of markov decision
processes for linear temporal logic specifications,” in Proceedings of
the 53rd IEEE Conference on Decision and Control (CDC), December
2014, pp. 1091-1096.

Sanjit A. Seshia Sanjit A. Seshia received the
B.Tech. degree in Computer Science and Engi-
neering from the Indian Institute of Technology,
Bombay in 1998, and the M.S. and Ph.D. de-
grees in Computer Science from Carnegie Mellon
University in 2000 and 2005 respectively. He is
currently an Associate Professor in the Department
of Electrical Engineering and Computer Sciences
at the University of California, Berkeley. His re-
search interests are in dependable computing and
computational logic, with a current focus on ap-

plying automated formal methods to embedded and cyber-physical systems,
electronic design automation, computer security, and synthetic biology. He
has served as an Associate Editor of the IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. His awards and honors
include a Presidential Early Career Award for Scientists and Engineers
(PECASE) from the White House, an Alfred P. Sloan Research Fellowship,
the Prof. R. Narasimhan Lecture Award, and the School of Computer Science
Distinguished Dissertation Award at Carnegie Mellon University.

http://www.ni.com/labview/

	Introduction
	SID: Formalization and Related Work
	Verification and Synthesis Problems
	Verification by Reduction to Synthesis
	Invariant Inference
	Abstraction-based Model Checking
	Reduction to Synthesis

	Elements of the SID Methodology
	Structure Hypothesis
	Inductive Inference
	Deductive Reasoning
	Q: Interface between I and D
	Discussion

	Soundness and Completeness Guarantees
	Validity of the Structure Hypothesis
	Conditional Soundness

	Context and Previous Work
	Instances of SID
	Techniques that are not SID
	Recent Theoretical Results

	SID for Specification Synthesis
	Synthesis of Environment Assumptions
	Synthesis of Requirements for Cyber-Physical Models
	Summary of Other Instances

	Conclusion and Future Directions
	References
	Biographies
	Sanjit A. Seshia

