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Abstract

Asthma is a common disease with a complex risk architecture including both genetic and 

environmental factors. We performed a meta-analysis of North American genome-wide 

association studies (GWAS) of asthma in 5,416 asthma cases representing European Americans, 

African Americans/African Caribbeans, and Latinos, and replicated five regions among the most 

significant signals in 12,649 individuals from the same ethnic groups. Four were at previously 

reported loci on 17q21, and near the IL1RL1, TSLP, and IL33, genes, but we report for the first 

time that these loci are associated with asthma risk in three ethnic groups. In addition, we 

identified a novel association with asthma in the PYHIN1, gene that was specific to individuals of 

African descent (p=3.9×10−9). These results suggest that some asthma susceptibility loci are 

robust to differences in ancestry when sufficiently large samples sizes are investigated, and that 

ancestry-specific associations also contribute to the complex genetic architecture of asthma.

Asthma is a common, complex disease that affects over 300 million people worldwide1. In 

the United States, the prevalence of asthma in 2001–2003 varied between ethnic groups, 

ranging from 7.7% in European Americans, 12.5% in African Americans, and 3.9–14.5% in 

Latino Americans2. Estimates of heritability indicate that 35–80% of the variation in risk is 
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attributable to genetic variation3,4, yet attempts to identify asthma susceptibility alleles by 

candidate gene and positional cloning studies had relatively few successes5,6. Most genome-

wide association studies (GWAS) of asthma were conducted in relatively small samples of 

Europeans7, European Americans 8–10, Mexicans11, Puerto Ricans12, and African 

Americans and African Caribbeans13 and did not reveal significant associations or 

associations that replicated across studies. In contrast, the association at the IKZF3/ZPBP2/

GSDMB/ORMDL3 locus on chromosome 17q21 (henceforth referred to as the 17q21 locus) 

has been consistently replicated as an asthma susceptibility locus in ethnically diverse 

subjects from Europe, North America, and Asia14–22. Recently, a large meta-analysis of 

GWAS in European populations, called the GABRIEL Study23, reported significant 

associations with single nucleotide polymorphisms (SNPs) at six loci, including the 17q21 

locus and five other regions not identified in previous GWASs of asthma. However, it is 

currently unknown whether the additional associations, implicating HLA-DQ, IL1RL1/

IL18R1, IL33, SMAD3, and IL2RB1, play a significant role in asthma risk in European 

populations only or whether the earlier studies were just underpowered to detect associations 

with these loci.

The combined results of the previous GWAS for asthma highlight the challenges in the 

search for genetic risk factors for asthma. These include the large number of statistical tests 

performed (with millions of polymorphisms), missing genotype information (especially for 

rare variants, and due to inadequately designed genotyping platforms for non-European 

populations), modest effect sizes for associated alleles, heterogeneity in the clinical 

definition of disease, and the effects of a large number of potentially important 

environmental exposures, all of which will reduce power to detect associations. The simplest 

solution for increasing power is to pool data from many studies in a meta-analysis of 

genome-wide data sets for asthma, as in the GABRIEL Study in Europeans23. The goal of 

the EVE Consortium, which includes GWAS datasets from nine research groups in the 

United States (Table 1), is not only to increase the power to identify SNPs, genes and 

pathways associated with asthma risk by combining studies, but also to provide a better 

understanding of the patterns of variation in asthma risk genes or variants in the three major 

ethnic groups in the United States and to provide a more comprehensive understanding of 

the differences in genetic risk patterns between European American, African American/

African Caribbean, and Latino individuals. Only studies of diverse populations will allow 

for the discovery of both robust associations that replicate across ethnic groups and unique 

associations that contribute to the heterogeneity in disease prevalence across different ethnic 

groups. Moreover, studying populations with diverse ancestries can increase the resolution 

of associated regions as a result of different patterns of linkage disequilibrium (LD) between 

racial/ethnic groups. The results reported here are based on analyses of >2 million SNPs in 

3246 asthma cases, 3385 non-asthmatic controls, 1702 asthma case-parent trios, and 355 

family-based cases and 468 family-based controls, comprising three ethnic groups: 

European American, African American/African Caribbean, and Latino (Table 1).

We performed four genome-wide investigations: one meta-analysis in each of three ethnic 

groups and one in the combined sample. The quantile-quantile (QQ) plots of the results (see 

Supplementary Figs. 1–4 online) indicate that none of the studies showed inflation in test 
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statistics, but also revealed an abundance of small p-values, especially in the combined 

sample. In each of the four meta-analyses, we expected (on average) approximately two p-

values to be smaller than 10−6 by chance alone. We observed 34 SNPs with p-values smaller 

than 10−6 in the European American, four in the African American/African Caribbean, 32 in 

the Latino, and 75 in the combined meta-analyses (see Supplementary Fig. 5 online). In the 

European Americans, 33 of the SNPs are at the 17q21 asthma locus; one additional SNP on 

chromosome 17 (rs9891949) is 27 Mb from the 17q21 locus. In the African Americans/

African Caribbeans, two SNPs are in the PYHIN1 gene on chromosome 1q23 and two are in 

the intergenic region between the NNMT and C11orf71 loci on chromosome 11q23. In the 

Latinos, 13 SNPs are on chromosome 3q27 around the RTP2 gene, one is on chromosome 

5q33 in the GALNT10 gene, 12 are at the chromosome 17q21 locus, and two are on 

chromosome 19q12 between the CCNE1 and C19orf2 loci. One SNP in an intron of RTP2, 

rs2017908, reached genome-wide significance in the Latino samples (p=4.4×10−9). The 75 

SNPs with p<10−6 in the combined meta-analysis occur in 15 chromosomal regions; the 

most significant SNP in each region with at least one p<10−6 in the combined sample or in 

one of the ethnic groups is shown in Table 2, with risk allele frequencies shown in 

Supplementary Table 1 online. Among the 75 SNPs, those at the 17q21, IL1RLI, and TSLP 

loci reached genome-wide significance in the combined sample (p<2×10−8). The results for 

all SNPs with p<10−6 can be found as Supplementary Tables 2 and 3 online.

We selected one SNP from each of the 15 regions with at least one p-value <10−6 for 

replication studies (as described in Table 2). The samples used for replication are described 

in the Supplementary Note and Supplementary Table 4 online, and the results of those 

studies are shown in Table 3. Two SNPs (rs4653433 near the SRP9 gene on chromosome 1q 

and rs9891949 near the AURK gene on chromosome 17p) could not be assayed in the 

replication samples. Using a Bonferroni-corrected (for 13 tests) p-value of p<0.0038 as the 

threshold for significance in the replication studies, SNPs in five regions were significantly 

associated with asthma in the replication samples (Table 3).

SNPs near the 17q21 locus and the IL1RL1, TSLP, and IL33 genes were associated with 

asthma in all three ethnic groups in the replication studies, whereas the PYHIN1 association 

was specific to the African American replication samples. Interestingly, the associated SNPs 

in PYHIN1 occur with minor allele frequencies of 0.26–0.29 in the African American/

African Caribbean controls, but they are not polymorphic in European Americans and occur 

at low frequencies (<0.05) in the Latino populations. However, multiple other SNPs in the 

PYHIN1 region showed evidence for association only in the African American/African 

Caribbean sample (Figure 1), whereas none showed evidence of association with asthma in 

Latinos or European Americans (see Supplementary Fig. 6 online), suggesting that this 

association may be specific to populations of African descent. In fact, rs1102000 in PYHIN1 

(also known as IFIX) has a relatively large effect size (OR=1.34 in the GWAS meta-

analysis, OR=1.23 in the replication samples), suggesting an important role for this gene in 

risk for asthma in African American and African Caribbean populations.

The associations with SNPs in PYHIN1 (pyrin and HIN domain family member 1; IFIX, 

interferon inducible nuclear protein X) with asthma are the first genome-wide significant 

associations reported in African Americans or African Caribbeans and may be the first 
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asthma susceptibility gene specific to populations of African descent. The associated SNPs 

are in an LD bin in HapMap YRI samples, spanning ~30kb within the seventh intron of the 

gene, suggesting that the causal variation is contained within this intron. Imputation of 

additional SNPs in PYHIN1 using pilot data from the 1000 Genomes Project yielded no 

additional signals of association (see Supplementary Fig. 7 online). However, the 

incomplete coverage of PYHIN1 makes any conclusions on causal variation inaccurate (see 

Supplementary Fig. 8 online). Interestingly, the most strongly associated variants discovered 

in this study are not present in populations of European descent. Although, it is possible that 

rare variants in PHYIN1 that are not tagged by the SNPs included in this study are risk 

alleles for asthma in European American and Latino populations, none of the multiple SNPs 

in this gene that were associated with asthma in the African American/African Caribbean 

populations showed evidence for association in the European Americans or Latinos. This 

further suggests that the African-specific variants may be causal or in LD with other 

African-specific causal variants in this gene. Moreover, estimates of local ancestry at 

PYHIN1 in the African American/African Caribbean samples did not differ between cases 

and controls for any of the studies (combined p=0.77; see Supplementary Table 6 online for 

more details), indicating that the African-American specific association is present in the 

absence of an admixture signal and that the observed association is not due to uncorrected 

local ancestry. At present, little is known about the function of PYHIN1, although it is 

expressed in both adult leukocytes and lung tissues and the pyrin domain is a protein-protein 

interaction domain that is present in many interferon-inducible proteins that functions in 

both apoptotic and inflammatory pathways (see URL). This family of genes has been 

previously associated with autoimmunity24, but to date PYHIN1 has not been implicated in 

asthma pathogenesis.

Lastly, we examined the evidence for association with SNPs that were associated with 

asthma in previous GWAS other than those included in the EVE meta-analysis (see 

Supplementary Table 5 online). These included SNPs in or near HLA-DQ9,23, the 17q12 

asthma locus23, IL3323, IL1RL123, SMAD323, IL2RB23, RORA23, SLC22A523, IL139,23, 

RAD509, and DENND1B10. We were able to replicate at p<0.05 associations with SNPs at 

the HLA-DQ locus in all three ethnic groups and in the combined sample, although no single 

SNP was associated in all three groups. The two SNPs associated at the 17q21 asthma locus 

in the GABRIEL Study were also associated with asthma in our study, although one 

(rs2894194) showed little evidence for association in the African American/African 

Caribbean samples. Among the remaining SNPs associated in the GABRIEL study, we 

replicated associations with the same SNPs in or near the IL18RL1, IL33, SLC22A5, 

SMAD3, and RORA genes. SNPs at the latter three loci were associated only in the European 

American sample. Lastly, we replicated associations with two SNPs in RAD50, with the 

signals coming largely from the Latino and African American/African Caribbean samples. A 

SNP at the IL2RB locus that was associated with asthma in the GABRIEL Study was nearly 

significant in the European American EVE sample (p=0.06). We did not replicate 

associations with SNPs at the IL139,23 and DENNDB110 loci.

The results reported here highlight the importance of studying large datasets of diverse 

populations in several ways. First, the large sample size allowed us to first discover and then 
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replicate loci with modest effects. For example, SNPs at the IL1RL1, TSLP, and IL33 loci 

did not reach genome-wide significance in any of the ethnic-specific meta-analyses, but 

SNPs in IL1RL1 and TSLP reached this threshold of significance, and IL33 approached 

genome-wide significance, in the overall analysis (Table 2; see Supplementary Figs. 10–12 

online). The modest, but real, effect of variants on asthma risk likely explains why this locus 

was not identified as an asthma susceptibility locus in previous genome wide association 

studies in individual samples7–11,13, but was among the most significant associations in the 

EVE and GABRIEL meta-analyses.

Second, the diverse ancestries of the EVE Consortium samples provided a more accurate 

and more complete picture of asthma risk by identifying common variants at four loci 

(17q21 locus, IL1RL1, TSLP, and IL33) that increase risk in all ethnic groups and at least 

one locus (PYHIN1) that may contribute to risk only in populations of African descent. 

Replication of previously associated variants in the EVE samples may also provide 

additional insights into those genes. For example, the SNPs in or near SMAD3 and RORA 

reported in the GABRIEL Study meta-analysis were modestly associated with asthma in the 

European American EVE samples but showed no association in the African American/

African Caribbean samples, suggesting that these may be risk variants only in populations of 

European descent. We anticipate that ongoing studies in the EVE Consortium data sets will 

identify other loci contributing to asthma risk and, ultimately provide a better understanding 

of the molecular pathways and networks that are common to the risk architecture of asthma 

in diverse populations, and those that are specific to certain groups.

Methods

GWAS subjects, genotyping and statistical analyses

Asthma cases, unaffected controls, asthmacase parent trios, and extended families were 

recruited in clinics in the U.S, Mexico, and Barbados. Twelve samples with GWAS data 

were included in this study (Table 1). Detailed descriptions of the individual studies, 

ascertainment schemes, genotyping platforms, quality control (QC) protocols, and statistical 

analyses for the primary association testing are described in the Supplementary Note online.

Meta-analysis: QC and testing for association

Summary files on a common set of SNPs were shared among the EVE investigators. The 

common set of SNPs consisted of all Phase 2, Release 21 consensus HapMap variants. Prior 

to genotype imputation, each center oriented their SNPs to the plus strand, and filtered for 

call rates (> 95%) and consistency with Hardy-Weinberg expectations (p > 10−5 for case/

control studies, p > 10−6 for trio studies). Genotype imputation using HapMap reference 

panels were performed separately in each sample with the program MACH25, and 

associations were tested using the genotype dosages that are part of the imputation 

algorithms output, with adjustments for admixture in the African American and Latino case-

control samples (see Supplementary Note online). The shared summary files contained the 

SNP identifiers (rs number, chromosome, position, alleles), SNP QC metrics (call rate, 

Hardy-Weinberg equilibrium p-value, imputation quality metrics), and information related 

to the test for association (allele frequencies in cases and controls or in the transmitted and 
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untransmitted alleles in trios, association p-value, odds ratios with standard errors). 

Reference alleles were assigned as the allele coded 0 in the HapMap release 21 phased 

consensus haplotypes during genotype imputation in MACH. The QC checks performed on 

summary file data included consistency in reference allele and strand orientation (see 

Supplementary Figs. 13−15 online), and imputation quality (see Supplementary Fig. 16 

online). SNPs with imputation quality scores below a threshold were removed from the 

analysis (Rsq < 0.3 or < 0.5 for the Barbados study). QQ plots were visually inspected to 

compare the distribution of association p-values for genotyped and imputed markers 

separately for each cohort.

The meta-analysis searched for asthma susceptibility variants for which the same allele was 

associated with asthma in the different studies. For each study, we constructed a test statistic 

that has a standard normal distribution under the null hypothesis of no association and 

captures the direction of the effect (i.e., the statistic was positive if the reference allele was 

associated with an increased risk of asthma). The meta-analysis test statistic was calculated 

as a linear combination of the individual study scores with weights proportional to the 

square root of the number of cases (or trios). P-values were obtained using normal 

approximations. Odds ratios were calculated by combining linearly log odds ratios with 

weights reflecting the standard errors from the genome-wide association studies.

Replication samples and genotyping

The replication cohorts and sample sizes are shown in Supplementary Table 4 online. 

Detailed descriptions of these samples, genotyping technologies, QC protocols, and 

statistical analyses are described in the Supplementary Note online.

Association testing in replication samples

The combined analysis of the replication samples was performed in a similar manner to the 

meta-analysis. For each study, we constructed a test statistic that had standard normal 

distribution under the null hypothesis of no association, and that also captured the direction 

of the effect. A combined test statistic was calculated as a linear combination of the 

individual study scores with weights proportional to the square root of the number of cases, 

and p-values were obtained using normal approximations.

Imputation of pilot data from the 1000 Genomes Project

Pilot data from the 1000 Genomes Project (August 2010 haplotypes) was used to impute a 

2Mb region surrounding the PYHIN1 gene in all studies using impute226. The EUR 

haplotypes (European) were used as a reference for the European American studies 

(assuming an effective population size [Ne] of 11418), the EUR and AFR (African) 

haplotypes were used as a reference for the African American studies (assuming Ne=15000), 

and the EUR, AFR, and ASN (Asian haplotypes) were used as a reference for the Latino 

studies (assuming Ne=15000). Individual genotypes were filtered for probabilities > 90%, 

and only SNPs with call rates > 90% were included in allelic tests of association. For family-

based studies, SNPs with Mendelian errors were removed.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Results of Meta-Analysis on the Chromosome 1 Region of Association in African 
Americans/African Caribbeans
The relative location of the PYHIN1 gene and direction of transcription are shown in the 

lower portion of the figure, and the chromosomal position on the x-axis. The light blue line 

shows the recombination rate across the region (right y-axis), and the left y-axis shows the 

significance of the associations. The large red diamond shows the p-value for rs1102000. 

The small diamonds in show the p-values for all other SNPs, color-coded according to the 

level of LD with rs1102000 in the HapMap YRI (red, r2 > 0.9; orange, r2 = 0.7–0.9; yellow, 

r2 = 0.5–0.7). Results for the European American, Latino, and combined meta-analysis are 

shown in Supplementary Fig. 6 online.
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