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Abstract
Rationale and Objectives—Our objective is to determine whether expected utility (EU) and
the area under the ROC (AUC) are consistent with one another as endpoints of observer
performance studies in mammography. These two measures characterize ROC performance
somewhat differently. We compare these two study endpoints at the level of individual reader
effects, statistical inference, and components of variance across readers and cases.

Materials and Methods—We reanalyze three previously published laboratory observer
performance studies that investigate various x-ray breast imaging modalities using EU and AUC.
The EU measure is based on recent estimates of relative utility for screening mammography.

Results—The AUC and EU measures are correlated across readers for individual modalities (r =
0.93) and differences in modalities (r = 0.94 to 0.98). Statistical inference for modality effects
based on multi-reader multi-case analysis is very similar, with significant results (p < 0.05) in
exactly the same conditions. Power analyses show mixed results across studies, with a small
increase in power on average for EU that corresponds to approximately a 7% reduction in the
number of readers. Despite a large number of crossing ROC curves (59% of readers), modality
effects only rarely have opposite signs for EU and AUC (6%).

Conclusions—We do not find any evidence of systematic differences between EU and AUC in
screening mammography observer studies. Thus, when utility approaches are viable (i.e. an
appropriate value of relative utility exists), practical effects such as statistical efficiency may be
used to choose study endpoints.
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1. Introduction
Laboratory observer performance studies utilizing receiver operating characteristic (ROC)
methodology have become a mainstay for demonstrating improvements in technology or
methodology for radiological imaging (1-5). These studies are now found widely in the
radiological literature and are often used as evidence in submissions to regulatory agencies
such as the US FDA (6). Most commonly, ROC studies use a rating of suspicion, e.g.
probability of malignancy, to determine the tradeoff between sensitivity and false-positive
fraction in a diagnostic task. In order to generalize results to the population of patients and
readers, a substantial effort is required to collect a sample of relevant cases and to evaluate a
sample of readers from which inferences regarding the imaging modality are obtained
(7-10).

These inferences are based on an index, or figure of merit, extracted from the ROC curve.
The figure of merit summarizes an ROC curve with a single number representing overall
performance that can be compared across readers, cases, and modalities. The predominant
figure of merit for ROC studies of observer performance has been the area under the curve
(AUC) which is the diagnostic sensitivity averaged over all possible false-positive fractions
(11, 12). The AUC is independent of disease prevalence and can also be interpreted as a
measure of class separability, since it represents the probability that a case from the
abnormal population will considered more suspicious than a case from the normal
population.

However, AUC has also been subjected to criticism since it is not directly related to
diagnostic utility and misclassification costs (13, 14). In averaging sensitivity across the full
range of possible false-positive fractions, AUC incorporates information at levels that may
be well beyond what is considered reasonable for a given task (15, 16). This has led to the
use of partial-area indices (pAUC) as alternative figures of merit along with sensitivity at a
fixed false-positive fraction (15, 17). These have been less widely adopted, perhaps because
of the ambiguity in defining the appropriate portion of the curve to be evaluated.
Furthermore, AUC has more recently been criticized by Hand (18) who contends that it is
fundamentally incoherent with respect to misclassification costs, requiring cost functions
that depend on the classifier. These critiques suggest that findings may change if a utility-
based endpoint is used instead of AUC.

Despite some attempts (19-21), utility-based approaches have not been widely adopted
within the medical imaging observer-performance-evaluation community, at least in part for
the reason suggested by Metz (3) and others (22), because they require that the values for the
possible outcomes (true positive, false positive, true negative, false negative) are known or
at least agreed upon. However, recent investigations in screening mammography (23) have
used a technique suggested by Lusted (24) to estimate relative utility from large clinical
trials (25) and observational studies (26). One of these studies gives an estimate of relative
utility with a reported relative error of 14%, which is sufficiently precise to consider using in
performance assessments of ROC data in terms of expected utility (EU).

In this work, we reanalyze previously published observer performance studies relevant to x-
ray mammography to compare AUC and EU as study endpoints A previous study
investigating statistical power in a simulation environment finds generally good statistical
power for EU relative to AUC (27). The purpose of our analysis is to see if there are any
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systematic differences in the results that depend on the figure of merit with real data. In all
cases the studies use a fully-crossed multi-reader multi-case design, in which all readers
score all cases in all modalities. We compare AUC and EU across readers, evaluate the
inferences (i.e. p-values) for modality comparisons, and compare components of variance.
We also investigate the frequency of crossing ROC curves and the frequency of opposite
modality effects for AUC and EU; these statistics characterize how often the study results
depend on the performance measure.

2. Materials and Methods
2.A. Figures of merit for observer performance in ROC studies

An ROC curve is a well-known characterization of decision making performance in a
classification task (e.g. “recall for diagnostic workup” or “do not recall”). However, for the
purpose of comparing different imaging modalities it is desirable to summarize the ROC
curve with a single number, the figure of merit. This work considers two such figures of
merit, the traditional area under the ROC curve (AUC), and an expected utility (EU)
measure described below. Both are extracted from an estimated ROC curve fit to observer
rating data.

Figure 1 shows how the two figures of merit are defined graphically. As suggested by its
name, the AUC is determined from an ROC curve by calculating the area under it. When a
parametric model is used for the ROC curve the area can generally be determined directly
from the model parameters. Larger values of AUC indicate better performance.

The EU measure (27) is based on the utility of various task outcomes (true-positive, false-
positive, etc.) and disease prevalence. These parameters are combined to define iso-utility
lines in the ROC domain of true-positive fraction (TPF) and false positive fraction (FPF).
The slope (β) of the iso-utility lines is defined by the relative utility of the task and the
prevalence of disease (12, 22, 24). Let R be the set of all TPF and FPF points of an ROC
curve, the EU measure is defined as

(1)

The point at which this maximum is achieved is referred to as the optimal operating point.
As seen in Figure 1, EU may be interpreted graphically as the y-intercept of a line with slope
β that passes through the optimal operating point. Larger values of EU indicate better
performance.

It is clear from Equation 1 that the iso-utility slope must be known if a numerical value of
EU is to be determined from a given ROC curve. We use a value of β = 1.03 as suggested in
previous studies (28) estimating relative utility in screening mammography from large
clinical trials in the United States, which is the country of origin for all the data we analyze.
However, caution must be used in generalizing EU results to other medical tasks or other
countries because of different disease prevalence or different weightings of decision
outcomes.

2.B. Reader data
Three investigations of reader performance related to screening mammography were
analyzed here for the purpose of comparing EU to AUC. All of the data we use were
collected by the original authors under IRB approved protocols. Each investigation consisted
of 1 to 3 studies comparing various imaging modalities. Each study was analyzed as a fully
crossed factorial design in which all readers scored all cases in all modalities. Note that in a
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few instances there were missing data in the form of a missing case score for a given reader
and modality (0.4% of responses across all data). In these situations, the missing scores were
filled in by taking the average score for the case across the remaining readers in that
modality. Table 1 summarizes the general characteristics of the data.

2.B.1. DMIST Reader Studies—The Digital Mammographic Imaging Screening Trial
(DMIST) reader performance studies (29, 30) were acquired as part of the DMIST project
(25, 31) conducted by the American College of Radiology Imaging Network (ACRIN) and
funded by the NIH. The larger purpose of this effort was a comparison of screen-film
mammography – the standard of care at the time – to digital mammography systems that
were emerging on the market. DMIST included both a prospective clinical trial as well as
the retrospective reader studies used here. We analyze three reader performance studies that
investigate devices from different manufacturers including GE (Senographe 2000D, GE
Healthcare, Waukesha, WI), Fuji (Computed Radiography System for Mammography,
FujiFilm Medical, Stamford, CT), and Fisher (SenoScan, Fischer Medical Technologies,
Denver CO). For identification purposes, we identify these studies as D1, D2, and D3
respectively. Some data from a fourth manufacturer (Hologic) was available, but the limited
number of available cases, 28 in total, made this study inadequate for our purposes. The data
we use are identical that used in the primary publications (29, 30) for the three studies we
analyzed.

Each study used independent patient images as well as readers that were largely independent
(4 radiologists read in more than one study), and thus we analyzed them separately. Ground
truth was established by biopsy or a negative follow-up mammogram. Each of the three
DMIST studies compared screen-film mammography (which we identify as modality 1:
M1), soft-copy digital mammography (M2), and hard-copy digital mammography (M3).
Each modality was read independently of the others, with time between readings to negate
any memory effects (29, 30), and scored on a 7-point malignancy scale. Readers generally
used the entire categorical scale; the average number of categories used across readers was
6.9. The rate of missing responses was 0.5% (50 out of 9,918). Previous publications using
this data have found no significant effect between screen-film mammography and soft-copy
digital mammography (29), or between soft-copy digital mammography and hard-copy
digital mammography (30).

2.B.2. University of Michigan CAD Study—The University of Michigan (UM) data
consists of one study evaluating computer-aided diagnosis (CAD) using digitized screen-
film mammograms (32). The study investigated discrimination of malignant and benign
abnormalities. This is generally considered a diagnostic task, not a screening task. The
distinction is important because the expected utility measure we use here is based on the
relative utility of screening mammography. The appropriate relative utility for diagnostic
mammography is not known to our knowledge. Nonetheless, the mammographic views and
dose levels used in the study were consistent with screening, and therefore we will think of
these images as a subpopulation containing abnormalities that would be encountered in
screening. Furthermore, the purpose of this work is to compare EU and AUC results. For
these reasons, we use the EU measure as defined above for the UM data.

All cases were biopsy proven. The three modalities of the study consist of mammography
alone (M1), mammography before receiving a CAD malignancy score (M2), and
mammography after receiving a CAD score (M3). M1 was read independently of M2 and
M3, with time between readings to minimize any memory effects. The latter two modalities
were read in a sequential paradigm in which the reader scored a case on the basis of the
mammogram alone, and was then given the CAD input, and asked to re-score the case given
this new information. Under the assumption that the observer is not affected by knowing that
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a CAD score is coming, M2 may be considered a replication of M1, and we would not
expect any difference in performance. Cases were scored on a 100-point malignancy scale
(1% to 100%). On average readers used 48.9 of the 100 available categorical scores. There
was no missing data in this study. Previous publication of this data (32) found no significant
difference between M1 and M2 (i.e. mammography-alone and pre-CAD score). A
significant improvement was found comparing M3 to either M1 or M2.

2.B.3. Hologic Tomosynthesis Studies—The Hologic data consists of two studies
investigating the addition of digital breast tomosynthesis (DBT) images to DM for breast
cancer screening (33). The two-view DM images (CC and MLO) were acquired at five
participating sites using a commercial system (Selenia; Hologic, Bedford, MA). The
additional DBT images were acquired on an investigational tomosynthesis system from the
same manufacturer and used 15° tube rotation, 0.7mm aluminum filtration, 11 image taken
over a 10 second acquisition time, and at a dose equivalent to DM . The first study (H1)
compared digital mammography alone (M1) to digital mammography with 2-view DBT
(M2). The second study (H2) compared digital mammography alone (M1), digital
mammography with 1-view (MLO only) DBT (M2), and digital mammography with 2-view
DBT (M3).

The two studies used independent readers, but there was some overlap in the cases. The 48
positive (i.e. cancer) cases used in H1 were also used in H2. The negative cases were
selected at random from groups of different case types (negative at screening, negative at
recall, and negative at biopsy), and may have repeated cases as well. Thus these two studies
should not be considered independent. Positive cases were biopsy proven, and negative
cases in women that did not undergo biopsy were verified by 1 year of observation.

All studies were read in a sequential paradigm in which the DM images (M1) for the case
were scored first. The reader was shown the additional DBT views (in H1) or view (in H2)
for M2 and asked to rescore the case based on the combined image data. In H2, the reader
was then shown the final DBT view and asked again to rescore the case on the basis of all
available image data for M3. The readers provided a 101-point probability of malignancy
score (0%-100%) in addition to scores related to the Breast Imaging Reporting and Data
System (BI-RADS). Our analysis focuses on the probability of malignancy scores. On
average, readers used 17.2 of the 101 possible categorical scores. The rate of missing
responses was 0.4% (31 of 8,394). Some preliminary results using EU from the Hologic
studies have been previously presented (34).

2.C. ROC Analysis and Inference
In each of the studies described above, ROC curves were fitted by maximum likelihood to
the categorical data of each reader in each modality. The contaminated binormal model
(CBM) was used as the probability model for the study (35-37). The CBM posits a latent
decision variable that is monotonically related to a standard normal distribution for normal
cases, and a mixture of a standard normal and a shifted normal for abnormal cases. In our
implementation (27), the two parameters of the model affecting the abnormal distribution
are the contamination fraction, a, and the shift parameter u, which control the mixture of the
two normal distributions and the degree of shift.

Pseudo-values for statistical inference were obtained by jackknifing and normalized as
described by Hillis and Berbaum (10, 38). Statistical modeling and inference was conducted
using the approach of Dorfman, Berbaum, and Metz (DBM), which consists of a three-way
mixed effects analysis of variance (8). The DBM method was used to test for modality
differences in the data using both AUC and EU and with significance defined at p < 0.05.
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DBM was also used to obtain the components of variance estimates for comparison of the
two figures of merit.

2.D. Modality effects and crossing ROC curves
Utility based measures have been argued for on the basis that ROC curves will often cross in
evaluations of competitive systems (18). In such cases it would be possible for a comparison
based on a utility measure to reach a different conclusion than one based on AUC. When
one ROC curve is above another at every point between 0 and 1, modality effects for EU
and AUC will generally be concordant (i.e. have the same sign) as long as the optimal
operating points are not at the extreme points of the ROC curve (the points (0,0) or (1,1) in
Figure 1). It is therefore of interest to investigate how often ROC curves cross in examples
of actual published data, and how often AUC and EU result in effects with opposite signs.

Thus, we have evaluated the fraction of cases in which ROC curves cross, and the fraction in
which the modality comparisons have opposite signs on a reader-by-reader basis. In the
CBM model, two ROC curves, with parameters (a1, u1) and (a2, u2) are guaranteed to cross
if and only if (a1 − a2)(u1 − u2) > 0. As a result, from the estimated parameters for two ROC
curves it can be readily determined whether the two curves cross, and by comparing the EU
and AUC figures of merit, we can see whether they have opposite signs.

3. Results
Table 2 gives results of the DBM analysis for the various studies. It reports the mean figure
of merit for each modality in each study, as well as the DBM p-values for various modality
comparisons. Note that we do not make any attempt to correct for multiple comparisons here
because our purpose is not to evaluate the modalities, but rather to compare the inferences
obtained under the two figures of merit. The values we report are consistent with values
determined in the various publications associated with these studies, even though the
published studies used different probability models for the fitted ROC curves and different
approaches to handling missing data. On average, the absolute deviation between the AUCs
in Table 2 and the published values for the corresponding study are 0.005. The single largest
difference between them (D3: Modality 3) is 0.026. The p-values in Table 2 also lead to the
same findings of significance that are in the published reports. This congruence suggests that
the results are reasonably stable to the different procedures to analyze the data.

Figure 2 consists of various scatterplots comparing AUC and EU. Figure 2A shows the AUC
(x-axis) and EU (y-axis) for each reader in each condition. The two performance measures
appear to be highly correlated with an overall Pearson correlation coefficient of 0.93. Figure
2B-2D shows scatterplots of pairwise modality differences in AUC and EU for each reader.
In each case the scatterplot is well fit by a line with slopes ranging from 1.37 to 1.73 and
small offsets. Pearson correlation coefficients for these plots range from 0.94 to 0.98. Thus
effect sizes appear to be somewhat amplified with the EU metric, although this fact needs to
be put in the context of how variability scales between the two measures.

Table 3 gives the six DBM components of variance for AUC and EU in each study,
consisting of the reader variance (R), case variance (C), the treatment by reader interaction
(TR), the treatment by case interaction (TC), the reader by case interaction (RC) and the
residual error (TRC). The components are scaled to the individual item level (modality,
reader, and case). The values are determined from linear combinations of mean-square
estimates used in the ANOVA model, and are truncated to zero when these estimates lead to
negative values (10, 38). In all studies, the largest source of variance is the residual TRC
variance, followed by the case variance, the reader by case interaction, and the treatment by
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case interaction. Additional statistical properties, including standard errors of modality
effects averaged across readers and cases are given in the appendix.

Figure 3 plots the rate of crossing ROC curves in each study along with the rate of opposite
signs in the observed effects for the EU and AUC measures. The rate of crossing ROC
curves is generally quite high, ranging from 33% to 94% with an average of 59%. Not
surprisingly, rates of crossing ROC curves were higher in the DMIST studies where effect
sizes were smaller, suggesting that the resulting ROC curves were usually closer together.
However, it is notable that even in the UM and Hologic studies where significant effects
were found, ROC curves still crossed at a fairly high rate.

In contrast, the rate of opposite effect signs between EU and AUC is fairly low, ranging
from 0% to 14% across studies with an average of 6%. This finding is not surprising in light
of Figure 2, where the vast majority of observed effect sizes (See Fig. 2B-2D) fall in the 1st
and 3rd quadrants (upper right and lower left) indicating concordant effects. Furthermore,
Figure 2 shows that the relatively small number of discordant effects (in the 2nd and 4th
quadrant of the plots) occur for readers with quite small observed modality effects. Thus, for
the EU measure used here, a large number of crossing ROC curves translates to relatively
few discordant observations that occur when these noisy effect sizes are small.

4. Discussion
There has been debate about the use of AUC because of its tenuous connection to
misclassification costs (13, 14, 18), and there is relatively little practical experience with
utility-based methods in the kinds of ROC studies used to make claims about different
imaging modalities. A notable exception is the work of by Halpern et al. (19), which
analyzed previously published data over a range of possible ROC slopes and motivated our
investigation. These authors treated the ROC slope in Equation 1 as a free parameter that
ranged from 0.1 to 3. The ambiguity of the ROC slope, and by inference the diagnostic
utility underlying the clinical task, was subsequently pointed out as a limiting factor for the
approach by Metz (3). Our work focuses on screening mammography where we have
additional knowledge of a clinically justified ROC slope (23, 28) along with additional tools
for the evaluation of statistical power in ROC studies (39) that have been developed since
the Halpern et al. publication. The purpose of our study was to see if there was any evidence
for different study results or different statistical efficiency in the datasets available to us.

4.A. Effect sizes and components of variance
The comparative results in Figure 2 and Tables 2 and 3 establish basic properties of EU
relative to AUC in these studies. The two measures are clearly correlated (Fig. 2), and lead
to identical inference regarding the imaging modality (Table 2). EU generally appears to
have larger effect sizes (Fig. 2), but also has larger components of variance as well (Table
3). For a direct comparison of EU and AUC components of variance, Figure 4 plots the ratio
of the EU and AUC components across studies. The components of variance that are used in
the DBM procedure to test for modality differences are indicated with an asterisk (*). Ratios
are not plotted if either component was small (> 0.0001) or truncated to zero. This plot gives
a sense of the inflation of variance for the EU measure relative to AUC.

If we use slopes of the linear relationships in Figure 2 as a guide, we would expect ratios in
Figure 4 that are in the range of 1.9 to 3.0 to balance the increase in effect size. A ratio
above this range suggests that the increased effect size for EU is not large enough to balance
the increase in variability of that component. Conversely a ratio below this range suggests
less relative variance for EU compared to AUC. The reader and case variance components
are generally above this range. The interaction terms that are used for determining the
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significance of modality differences (indicated by *) are variable, with ratios covering this
range as well as above and below it.

The nominal slope (β) used to compute the EU measure has a small effect on these results.
In addition to the slope of 1.03 used, we have evaluated the effect of a 20% increase or
decrease in the ROC slope used to compute EU (data not shown). The different slopes have
no effect on the pattern of significance in Table 2. The average slope of the line relating
observed effects from AUC to those from EU (analogous to Figure 2 B-D) changes by less
than 5%, and the intercept changes by less than 0.003. The average of the components of
variance (analogous to Table 3) changes by less than 14%.

4.B. Power calculation
As a way of putting the relative inflation of effect size and variance in context, we have used
them in a power calculation to hypothetically size an observer performance study. We used
the approach of Hillis and Berbaum (39), which is based on hypothesized effect sizes and
components of variance. The power calculation considered a comparison of two modalities
with components of variance indicated by each of the studies considered. The effect size for
the UM and Hologic studies was set to the largest observed difference between modalities in
the study, for each endpoint. For example, in the UM study the AUC effect size was set to
ΔAUC = 0.0496 (M3 – M1 in Table 2) while the EU effect size was set to ΔEU = 0.0790. In
the DMIST studies, the observed effect sizes were relatively small relative to components of
variance, and non-significant. In these studies we posited a default AUC modality effect of
ΔAUC = 0.1, and then use the linear relationships in Figure 2 to determine the EU modality
effect. For example, in study D1 we obtain an EU modality effect of ΔEU = 0.135 (=
0.137×ΔAUC−0.002). The number of cases in each power analysis was set to the number
actually used in the study. The number of readers was varied over a range from 3 to 20.

Figure 5 gives the results of this power analysis. The plots show power as a function of the
number of readers for AUC (Fig. 5A) and for EU (Fig. 5B). As expected, statistical power
for both measures increased considerably as the number of readers was increased. To
facilitate comparisons between AUC and EU, we also show a plot of the number of readers
needed for 80% power in each study (Fig. 5C). This plot shows that the estimated number of
readers needed varies considerably over the different studies, from 4 in study H1 using EU
to 19 in study D3 using AUC. There is also variability in which figure of merit results in the
lowest number of readers for a given study. In 4 of the 6 studies, EU results in fewer readers
needed for 80% power, with the other 2 studies favoring AUC. Averaging across all studies,
we find a 7% reduction of number of readers needed for 80% power with the EU measure.

4.C. Crossing ROC curves
As seen in Figure 3, the majority of modality comparisons (59%) ROC curves were
crossing. However, this translated to relatively few observations in which modality effects
changed sign (6%). Furthermore, inspection of Figure 2 suggests that the few observed sign
changes occurred for very small observed effects, and Table 3 shows that these few
differences did not alter the pattern of significance.

It is important to recognize the limitation of our analysis that focused on one particular
clinical task. Nonetheless, within this domain the different endpoints did not appear to
change the findings in any of the studies. Even though it is possible to construct examples in
which the choice of AUC or EU can change which modality is considered best (13, 20),
these results provides some evidence that the two are interchangeable in practice.
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4.D. Summary and conclusions
In these three published observer performance studies related to breast cancer screening,
acquired for diverse purposes, and with different experimental designs, we find remarkable
concordance between the traditional AUC and an EU figure of merit that uses a relative
utility derived from large scale clinical trials. The figures of merit themselves as well as
differential effects between imaging modalities agree well across readers. There is little
evidence of systematic differences in performance between AUC and EU, despite the fact
that the majority of reader ROC curves are crossing in these studies, leaving open the
possibility of discordant effects. Furthermore EU and AUC give identical inferences with
regard to modality effects. Thus EU and AUC would appear to be interchangeable as
endpoints of an observer performance study in these data.

In comparing the statistical properties of the two endpoints, we find that EU increases the
effect size between modalities, but it also generally increases components of variance.
Averaging over all studies considered suggests that there may be a small benefit in statistical
power to the EU measure. This is consistent with previous simulation studies (27).

The investigation of EU described here has been limited to studies related to x-ray
mammography for breast cancer screening. Furthermore, EU has been set to represent utility
in screening mammography as derived from large clinical trials in the United States. Thus it
is not guaranteed that the results will extend to different medical tasks, or substantially
different misclassification costs that may occur in other countries. Nonetheless, the results
provide some measure of confidence in using EU within the domain it has been tested in,
and motivates the investigation of these extensions.
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5. Appendix
The purpose of this appendix is to report some further statistical properties of the reader
studies used in this work. It is hoped that these will give the interested reader additional
information for comparing EU and AUC.

Table A1 shows the standard error of the reader and case averaged estimate of performance
for a single modality, and the standard error of the difference between modalities. These can
be computed from the components of Table 3, with appropriate normalization for the
number of readers and cases in the study. We also give the correlation coefficient between
reader and case averaged modality effects, which gives a sense of how much dependence
arises as a function of the common readers and cases.

Table A1

Additional study statistics. The table shows standard error estimates for performance in a
given modality (SE-Mod.), standard error estimates for modality differences (SE Dif.), and
the Pearson correlation coefficient (CC) between modalities.

Study Endpoint SE-Mod. SE-Dif. CC

D1
AUC 0.036 0.029 0.69

EU 0.058 0.041 0.75

D2 AUC 0.045 0.029 0.80
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Study Endpoint SE-Mod. SE-Dif. CC

EU 0.080 0.041 0.87

D3
AUC 0.049 0.049 0.50

EU 0.072 0.059 0.66

UM
AUC 0.022 0.013 0.83

EU 0.043 0.030 0.76

H1
AUC 0.031 0.027 0.63

EU 0.054 0.039 0.74

H2
AUC 0.028 0.016 0.84

EU 0.051 0.029 0.83
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Figure 1.
This diagram shows how AUC and EU are determined for a given ROC curve. A smooth
ROC curve is fitted to observed (hypothetical) data using the contaminated binormal model
and maximum likelihood fitting. The area under the ROC curve (AUC) is depicted in gray.
Under the assumption that task utilities result in iso-utility lines with a given slope, the y-
intercept of the highest iso-utility line that intersects the ROC curve defines the expected
utility (EU) measure. Note that the iso-utility line is tangent to the ROC curve at the optimal
operating point.
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Figure 2.
Modality Effects. The AUC and EU figures of merit are shown for each reader and modality
in the scatterplot of performance measures (A). Pairwise differences between modalities for
each reader are shown for each of the three studies considered (B-D) with differences
arranged so that the average difference across readers for any comparison is positive. In each
study, the equation of the least-squares fitted line relating effect sizes is given.
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Figure 3.
Crossing ROC curves. The plot shows the fraction readers with crossing ROC curves in each
study as well as the fraction of readers with modality differences in AUC and EU that have
different (opposite) signs. Note that both of these are elevated in the DMIST studies where
there is less of a modality effect.
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Figure 4.
The relative size of components of variance. Ratios of the elements of Table 2 are shown for
each component of variance. The ratio is only shown for variance components greater than
0.0001. The three components directly related to modality comparisons in the MRMC
design are indicated (*).
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Figure 5.
Power Analysis. Plots of statistical power based on the Hillis and Berbaum method [35] are
plotted as a function of the number of readers for area under the ROC curve (A) and
expected utility (B) figures of merit in each study (Legend in A applies to both plots). The
number of cases used in the power calculation is the same as the number in the actual study.
The effect size was set to the largest difference in reader averaged performance across
modalities, except in the DMIST studies where a default of 0.1 was used for AUC and 0.136
was used for EU based on the regression line in Figure 2B. The number of readers needed to
get 80% power (C) varies considerably from study to study. On average, EU results in a 7%
reduction in the number of readers needed to achieve 80% power.
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