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ABSTRACT OF THE DISSERTATION

Application of Software Analysis in Detecting Vulnerabilities:
Testing and Security Assessment

by

Arash Alavi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2019

Dr. Rajiv Gupta, Co-Chairperson
Dr. Zhiyun Qian, Co-Chairperson

With the increasing complexity of application software there is an acute need for

software analysis approaches that are capable of identifying bugs, failures, and most impor-

tantly vulnerabilities on a large scale. In this dissertation, first we stress the necessity of

having automated software analysis approaches and then propose analysis approaches for

detecting vulnerabilities in software via analysis and testing in general, and security assess-

ment in particular. We show the efficiency and effectiveness of these analysis techniques in

detecting vulnerabilities.

First, we study security issues in smartphone applications by studying the security

discrepancies between Android apps and their website counterparts, depicting the essential

need of efficient software analysis techniques to fully automate the mobile app analysis

process. By a comprehensive study on 100 popular app-web pairs, we find that, with

respect to various security policies, the mobile apps often have weaker or non-existent

security measures compared to their website counterparts.
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Second, as a consequence of the former, we develop AndroidSlicer, the first

novel, efficient, and effective dynamic program slicing tool for Android apps that is useful for

a variety of tasks, from testing to debugging to security assessment. Our work in this domain

focuses on making large scale applications of slicing practical in order to detect bugs and

vulnerabilities in real-world apps. We present two new applications of the dynamic slicing

technique in mobile apps: (1) detecting the “stuck” states (missing progress indicators) in

mobile apps. We present, implement, and evaluate ProgressDroid, a tool for discovering

missing progress indicator bugs based on program dependencies; and (2) detecting security

vulnerabilities in unique device ID generators.

Finally, in the same vein of deploying analysis tools for detecting vulnerabilities, we

present GAGA, an efficient genetic algorithm for graph anonymization that simultaneously

delivers high anonymization and utility preservation. Experiments show that GAGA im-

proves the defense against DA techniques by reducing the rate of successfully de-anonymized

users by at least a factor of 2.7× in comparison to the baseline and at the same time, under

16 graph and application utility metrics, GAGA is overall the best at preserving utilities.
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Chapter 1

Introduction

Many of the existing research works for detecting vulnerabilities still rely on signif-

icant manual efforts (i.e., reverse engineering, trial and error, and hacky workarounds) [66,

117, 36, 17]. On the other hand, while there are various security analysis tools which engi-

neers, developers, and researchers have at their disposal, some of them are insufficient for

effective automated vulnerability detection [122, 29, 55, 119, 121]. Hence, improving the

array of software analysis tools in order to deploy effective and efficient software analysis

approaches capable of making the vulnerability detection process far easier, widespread,

and automated is essential.

This research addresses the challenges in detecting vulnerabilities via automated

software analysis approaches. An overview is shown in Figure 1.1. Detected vulnerabilities

can be a bug which can lead to a security breach, a wrong implementation of a security

policy, or a weak defense mechanism. We stress the necessity of having automated software

analysis approaches and then propose analysis approaches for detecting vulnerabilities.

1



Software Tools

Analysis Vulnerabilities

Figure 1.1: Detecting vulnerabilities via software analysis

1.1 Security Vulnerabilities in Android Apps

Nowadays, users appear to be substituting websites for mobile applications which

may be more convenient to access throughout the day. Given that a large number of services

already exist and are offered as traditional websites, it is expected that many apps are basi-

cally remakes or enhanced versions of their website counterparts. Examples of these include

mobile financial applications for major banking corporations like Chase and Wells Fargo or

shopping applications like Amazon and Target. The software stack for the traditional web

services has been well developed and tested for many years. The security features are also

standardized (e.g., cookie management and SSL/TLS certificate validation). However, as

the web services are re-implemented as mobile apps, many of the security features need to

be re-implemented as well. This can often lead to discrepancies between security policies

of the websites and mobile apps. As demonstrated in a recent study [37], when the stan-

dard feature of SSL/TLS certificate validation logic in browsers is re-implemented on mobile

apps, serious flaws are present that can be exploited to launch MITM (Man-In-The-Middle)

attacks. Such an alarming phenomenon calls for a more comprehensive analysis of aspects

beyond the previous point studies.
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Hence, We aim to identify security vulnerabilities in mobile Apps by presenting

security discrepancies in mobile apps and their website counterparts [17]. Specifically, we

examine a number of critical website security policies that need to be re-implemented in

mobile apps. For this purpose, we explore the top 100 popular Android apps from various

categories in Google Play, as well as their website counterparts to perform a comprehensive

study about their security discrepancies on their security policies. As expected, we observe

that often the app security policies are much weaker than their website counterparts.

1.2 Dynamic Slicing for Android

Our semi-automated approaches in the above work stresses the necessity of having

more automated and efficient software analysis tools to help detect vulnerabilities. There-

fore, as our next contribution is a dynamic slicing approach for mobile applications [24] –

the choice of dynamic slicing is motivated by its versatility in automating variety of analyses

ranging from testing to debugging to security assessment. The key contribution of this work

is the design and implementation of the first novel, efficient, and effective dynamic program

slicing tool for Android apps. While dynamic slicing has targeted traditional applications

running on desktop/server platforms, our work brings dynamic slicing to Android. This

is challenging for several reasons. First main challenge is due to asynchronous callback

constructions and the IPC-heavy environment. Second, the sensor-driven, timing-sensitive

nature of the Android platform poses a significant challenge as it requires that dynamic

slicing entail minimal overhead. Any instrumentation system to support capturing relevant

system and app state should be lightweight. To address the above challeges, we introduce

3



AndroidSlicer1, the first slicing approach for Android. We present three conventional

applications of AndroidSlicer that are relevant in the mobile domain: (1) finding and

tracking input parts responsible for an error/crash; (2) fault localization, i.e., finding the

instructions responsible for an error/crash; and (3) reducing the regression test suite. Ex-

periments with these applications show that AndroidSlicer is effective and efficient.

1.3 New Applications of Dynamic Slicing in Android

We present two new applications of dynamic slicing in mobile apps domain. The

first facilitates testing Android apps from the perspective of one of the important user

interface design principles – always showing a progress indicator to the user for long-running

operations. The second helps identify a specific type of vulnerability in approaches for

forming unique device identification signature.

User interface guidelines often emphasize the importance of using progress in-

dicators [5, 6, 91] for long-running operations such as network communications. To the

best of our knowledge, there is no study addressing the “missing progress indicators” for

heavy-weighted network operations in mobile apps. Hence in the first application, we try to

automatically find “missing progress indicators” based on program semantics, in particular

program dependencies using our dynamic slicing technique.

In the second application, we identify the potential vulnerabilities in unique device

identification approaches in mobile apps. There are many use cases where the mobile app

developers need an unique ID to identify Android devices. In this work, we focus on

1https://github.com/archer29m/AndroidSlicer
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tracking the apps installations approaches where the developers try to identify unique fresh

installations on users devices. One use case of such an approach is where the developers

want to know the number of devices that have installed their apps through a specific app

promoter channel. Another use case is related to apps with initial discounts. We show the

vulnerabilities in both use cases which lead to financial loss.

1.4 Efficient Genetic Algorithm for Graph Anonymization

In the next section of this thesis, in the same direction of deploying analysis tools

for detecting vulnerabilities, we address the problem of user data privacy preservation in

graph data (e.g., social networks). The main drawback of existing anonymization tech-

niques is that they trade-off anonymization with utility preservation. To address this lim-

itation, we propose, implement, and evaluate GAGA, an efficient genetic algorithm for

graph anonymization [16]. Our results show that GAGA is highly effective and has a better

trade-off between anonymization and utility preservation compared to existing techniques.

1.5 Thesis Organization

The dissertation is organized as follows. In Chapter 2, we study security discrepan-

cies between mobile apps and their website counterparts. Chapter 3 discusses our dynamic

slicing technique. Next in Chapter 4, we present two new applications of dynamic slicing

that identify a new kind of bug and a new vulnerability in mobile apps. In Chapter 5, we

present our new efficient graph anonymization technique to preserve user privacy in graph

data. Finally in Chapter 6, we provide the conclusion and discuss the possible future work.
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Chapter 2

Security Vulnerabilities in Android

Apps

Many web services are now delivered via mobile apps. It is expected that many

apps are basically remakes or enhanced versions of their website counterparts. The re-

implementation of many of these web services in mobile apps, can often lead to discrepancies

between security policies of the websites and mobile apps. Traditional web services have

been well developed, tested, and standardized for many years but the mobile apps are newly

developed and may naturally lack the maturity of web services. Hence, our hypothesis is

that many security policies in mobile apps are significantly weaker than those in traditional

website environment. To verify our hypothesis, we study the top 100 popular Android apps

(each of which has more than 5,000,000 installs at the time of the study) from various

categories in Google play, as well as their website counterparts, to perform a comprehensive

study about their security discrepancies.
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We study the security discrepancies between apps and their websites from the

following 3 main domains: authentication policies, cookie management security policies, and

use of libraries. We identify a set of critical security policies that are commonly employed

by app/web service pairs. Since such pairs represent essentially the same services, the

discrepancy in security policies effectively lowers the security of the overall service.

2.1 Background

In this section, we provide some background knowledge of three main security

policies that we use to compare the implementations of those policies in mobile apps and

their websites. We begin with the introduction to different authentication related security

policies, and then we discuss the storage encryption methods that are used in mobile apps

and by different browsers. Finally, we give a brief overview of library use in Android apps

and how it differs from the browser scene.

2.1.1 Authentication Security Policies

We anticipate to see many different forms of authentication security policies in

place for both apps and websites. One of the most common forms of authentication policies

that can be seen are CAPTCHAs. Others include a mandatory wait period or denial of

access either to an account or service. All three of these have potential to be IP/machine-

based or globally user-based.

CAPTCHA. Though CAPTCHAs are designed with the purpose of defeating

machines, prior research has shown that they can be defeated by machines algorithmically
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[77] or via speech classification [100]. Due to the possibility of CAPTCHA replay attacks,

Open Web Application Security Project (OWASP) recommends that CAPTCHA be only

used in “rate limiting” applications due to text-based CAPTCHAs being crackable within

1-15 seconds [83].

Waiting Time. A less common method of authentication policy is the usage of

waiting periods to limit the number of logins that can be attempted. The response is in the

form of an explicit message or disguised through a generic “Error” message. Waiting periods,

either for a single IP or for the user account is a very effective method to slow down and

mitigate aggressive online credential guessing attacks. Depending on the implementation,

it may operate on a group of IPs (e.g., belonging to the same domain).

Denial of Access. An extreme policy is the denial of access, where an account

is essentially “locked” and additional steps are necessary to regain access (e.g., making a

phone call) [111]). If an attacker knows the login ID of an account, then he can lock the

account by repeatedly failing the authentication. Though denial of access is very secure

against online password guessing attacks, OWASP recommends that such method be used

in high-profile applications where denial of access is preferable to account compromises [82].

2.1.2 Storage Encryption Methods

Browsers on PCs by default encrypt critical data for long term storage. In the case

of Chrome on Windows, after a successful login into a website, by clicking “Save Password”,

the browser stores the password in encrypted form using the Windows login credential as

the key. It is not the same for mobile apps. For instance, the APIs for managing cookies

do not require the cookies to be encrypted.

8



2.1.3 Libraries

Mobile apps use libraries for different functionalities such as advertisements, au-

dio and video streaming, or social media. Previous studies [43, 30, 8] have shown security

and privacy issues that arise by use of some libraries which can lead to leakage of sensitive

user information, denial-of-service, or even arbitrary code execution. For services delivered

through websites on the other hand, no website-specific native libraries are loaded. Un-

like libraries embedded in apps that may be out-of-date and vulnerable, libraries used in

browsers (e.g., flash) are always kept up-to-date and free of known vulnerabilities.

2.2 Related Work

As far we know, there are no in depth studies that explicitly analyze the similar-

ities and differences between mobile applications and their website counterparts in terms

of security. Fahl et al. [37] understood the potential security threats posed by benign

Android apps that use the SSL/TLS protocols to protect data they transmit. Leung et

al. [62] recently studied 50 popular apps manually to compare the Personally Identifiable

Information (PII) exposed by mobile apps and mobile web browsers. They conclude that

apps tend to leak more PII (but not always) compared to their website counterparts, as

apps can request access to more types of PII stored on the device. This is a demonstration

of the discrepancy of privacy policies between apps and websites. In contrast, our work

focuses on the discrepancy of security (not so much privacy) policies between apps and

websites. Zuo et al. [123] automatically forged cryptographically consistent messages from

the client side to test whether the server side of an app lacks sufficient security layers. They
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applied their techniques to test the server side implementation of 76 popular mobile apps

with 20 login attempts each and conclude that many of them are vulnerable to password

brute-forcing attacks, leaked password probing attacks, and Facebook access token hijacking

attacks. Sivakorn et al. [93] recently conducted an in-depth study on the privacy threats

that users face when attackers have hijacked a user’s HTTP cookie. They evaluated the

extent of cookie hijacking for browser security mechanisms, extensions, mobile apps, and

search bars. They observed that both Android and iOS platforms have official apps that

use unencrypted connections. For example, they find that 3 out of 4 iOS Yahoo apps leak

users’ cookies.

2.3 Methodology and Implementation

In this section we describe our methodology and implementation details of our

approach to analyze app-web pairs. We selected the top 100 popular Android apps (each of

which has more than 5,000,000 installs) from popular categories such as shopping, social,

news, travel & local, etc. in Google play. All apps have a corresponding website interface

that offers a similar functionality. For each app-web pair, we created legitimate accounts

using default settings. This was done to mimic the processes of an actual user interacting

with an app or website.

2.3.1 Login Automation Analysis

We automate logins and logging for apps and websites for the purposes of this

study. For each app-web pair, we perform 101 login attempts automatically using randomly
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generated alphanumeric passwords for the first 100 attempts followed by an attempt with

the correct password. 100 attempts was chosen as this was an order of magnitude larger

than what an average user would perform within a span of 24 hours [18] so that we can

identify the polices when the number of lognin attempts goes much beyond the average

frequency of attempts in real world. Allowing unlimited number of login attempts is a

security vulnerability because it allows an attacker to perform brute force or dictionary

attacks. Another security aspect of login attempts is that if the system leaks the user ID

(e.g., email) during the login authentication checking, by returning error messages such as

“wrong password” either in the UI or in the response message, then an attacker can send a

login request and learn whether a user ID has been registered with the service. Therefore,

we also compare the servers’ responses to login requests, either shown in the UI or found in

the response packet, for both apps and websites.

2.3.2 Sign up Automation Analysis

Besides login tests, we perform the sign up tests that can also potentially leak

if the username has been registered with the service. Again, we simply need to compare

the servers’ responses to sign up requests for apps and websites. For both login and sign

up security policies, if a service where the website allows for only a limited number of

logins/sign-ups before a CAPTCHA is shown whereas the mobile app never prompts with

a CAPTCHA, an attacker would be inclined to launch an attack following the mobile app’s

protocol rather than the website’s. Test suites for the purposes of testing mobile apps and

websites were created using monkeyrunner and Selenium Webdriver, respectively.
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2.3.3 Authentication Throughput Analysis

From the login automation analysis, we collect the set of app-web pairs where

we find different behaviors between the app and the website counterpart, we call this set

“discrepancy list”. Using the network traffic monitoring tools Fiddler and mitmproxy, we

log network traffic traces for all app-web pairs in the discrepancy list. Using the informa-

tion in the network traffic traces, we analyze how authentication packets are structured for

each client as well as finding what sort of information is being shared between a client and

server. This enables us to determine whether the app-web pair has the same authentication

protocol and share the same set of backend authentication servers. In addition, this allows

us to construct tools capable of sending login request packets without actually running the

mobile app, pushing for higher throughput of authentication attempts. The tool also logs

all responses received from a server. To push the throughput even further, we can option-

ally parallelize the login requests (from the same client) by targeting additional backend

authentication server IPs simultaneously. Our hypothesis is that the throughput can be

potentially multiplied if we target multiple servers simultaneously.

2.3.4 IP-Changing Clients Analysis

Using VPN Gate and a sequence of 12 IP addresses from different geographical

locations, including 3 from North America and 9 from other countries, we test the apps

and websites regarding their response to accounts being logged in from multiple locations

separated by hundreds of miles in a short span of time. The motivation of this analysis was

to determine whether app/website has a security policy against IP changes can indicate
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session hijacks [35]. If not, then an attacker can use the hijacked cookies anywhere without

being recognized by the web service. For example an attacker can use a stolen cookie from

an app with any IP address to obtain personal and/or financial information pertaining to

the user account.

2.3.5 Cookie Analysis

For each app-web pair, we analyze the cookies that are saved on the phone/PC. We

collect all the cookies and analyze cookie storage security policies to find whether they are

stored in plaintext and more easily accessible. We also perform expiration date comparison

testing on 18 shopping app-web pairs from our list of app-web pairs. The hypothesis is

that mobile apps run on small screens and it is troublesome to repeatedly login through the

small software keyboard; therefore the corresponding app’s servers will likely have a more

lenient policy allowing the cookies to stay functional for longer time periods.

2.3.6 Vulnerable Library Analysis

While both apps and websites execute client-side code, app code has access to

many more resources and sensitive functionalities compared to their website counterpart,

e.g., apps can read SMS on the device while javascript code executed through the browser

cannot. Therefore, we consider the app code more dangerous. Specifically, vulnerable

app libraries running on the client-side can cause serious attacks ranging from denial of

service (app crash) to arbitrary code execution. Because of this, for each app, we identify

if it uses any vulnerable libraries. We conduct the analysis beyond the original 100 apps

to 6400 apps in popular categories. Ideally the libraries should be tagged with versions;
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unfortunately, we discover that most libraries embedded in Android apps do not contain the

version information as part of their metadata. Therefore, in the absence of direct version

information, we perform the following steps instead. First, we search the extracted libraries

through the CVE database. If there is any library that is reported to have vulnerabilities,

we perform two tests to conservatively flag them as vulnerable. First is a simple time test:

we check if the last update time of the app is before the release time of patched library.

Obviously, if the app is not updated after the patched library is released, then the app must

contain a vulnerable library. If the time test cannot assert that the library is vulnerable, we

perform an additional test on the symbols declared in the library files. Specifically, if there

is a change (either adding or removing a function) in the patched library, and the change

is lacking in the library file in question, then we consider it vulnerable. Otherwise, to be

conservative, we do not consider the library as vulnerable.

2.4 Observations

We present our results obtained from following the methodology outlined earlier

with respect to several security policies.

Security policies against filed login and sign up attempts. By performing login

attempts automatically for each pair of app and website, many interesting discrepancies in

security policies have been found. Figure 2.1 summarizes the main results for all 100 pairs,

considering their latest versions at the time of experiment (summer 2016).

In general, we see that the security policy is weaker on the app side. There are

more apps without security policies than websites. We also see that there are significantly
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Figure 2.1: Security policies against failed login attempts in apps vs. websites

fewer apps asking for CAPTCHA, presumably due to the concern about usability of the

small keyboards that users have to interact with them.

Interestingly, in the case when CAPTCHAs are used both by app and website, the

CAPTCHA shown to app users is usually simpler in terms of the number of characters and

symbols. For instance, LinkedIn website asks the user to enter a CAPTCHA with 2 words

while its app CAPTCHA only has 3 characters. Unfortunately, an attacker knowing the

difference can always impersonate the mobile client and attack the weaker security policy.

We also observe that more apps employ IP block policies for a short period of time. This

is effective against naive online credential guessing attacks that are not operated by real

players in the underground market. In reality, attackers are likely operating on a large

botnet attempting to perform such attacks, rendering the defense much less effective than

it seems. In fact, if the attackers are aware of the discrepancy, they could very well be

impersonating the mobile client to bypass stronger protections such as CAPTCHA (which
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App-Web App Security Layer
(App Verrsion)

Website
Security

Layer
App Host Website Host

Babbel
None(5.4.072011)

Account lock(5.6.060612)
Account lock www.babbel.com/api2/login accounts.babbel.com/en/

accounts/sign in

Ebay
None(3.0.0.19)

IP block(5.3.0.11)
Captcha

mobiuas.ebay.com/servicesmobile

/v1/UserAuthenticationService
signin.ebay.com/ws/eBayISAPI.dll

Expedia None(5.0.2) Captcha www.expedia.com/api/user/signin www.expedia.com/user/login

Hotels.com
None(12.1.1.1)

IP block(20.1.1.2)
Captcha ssl.hotels.com/device/signin.html ssl.hotels.com/profile/signin.html

LivingSocial
None(3.0.2)

IP block(4.4.2)
Wait time

accounts.livingsocial.com/v1/oauth

/authenticate
accounts.livingsocial.com
/accounts/authenticate

OverDrive None(3.5.6) Captcha overdrive.com/account/sign-in www.overdrive.com/account

/sign-in

Plex
None(4.6.3.383)

IP block(4.31.2.310)
IP block plex.tv/users/sign in.xml plex.tv/users/sign in

Quizlet None(2.3.3) Wait time api.quizlet.com/3.0/directlogin quizlet.com/login

Skype None(7.16.0.507)
Wait time
& Captcha uic.login.skype.com/login/skypetoken login.skype.com/login

SoundCloud
None(15.0.15)

IP block(2016.08.31-release)
Captcha api.soundcloud.com/oauth2/token sign-in.soundcloud.com/

sign-in/password

TripAdvisor
None(11.4)

IP block(17.2.2)
Captcha

api.tripadvisor.com/api/internal/1.5/

auth/login
www.tripadvisor.com

/Registration

Twitch
None(4.3.2)

Captcha(4.11.1)
Captcha api.twitch.tv/kraken/oauth2/login

passport.twitch.tv/authorize

We Heart It None(6.0.0) Captcha api.weheartit.com/oauth/token weheartit.com/login/authenticate

Zappos None(5.1.2) Captcha api.zappos.com/oauth/access token
secure-www.zappos.com

/authenticate

Table 2.1: Discrepancy of authentication policies among app-web pairs.

sometimes requires humans to solve and is hence an additional cost to operate cyber crime).

Table 2.1 lists app-web pairs in detail where apps operate without any security

protections whatsoever, at least for the version when we began our study but their websites

have some security policies. This allows attackers to follow the app protocol and gain

unlimited number of continuous login attempts (confirmed with 1000+ trials). In total,

we find 14 such app-web pairs; 8 apps have subsequently strengthened the policy after we

notified them. There are however still 6 that are vulnerable to date (that is the time of the

study: summer 2016). We also provide a detailed list of all 100 app-web pairs on our project

website [9]. To ensure that there is indeed no security protection for these apps, we perform

some follow-up tests against the 14 applications and confirm that we could indeed reach

up to thousands of attempts (without hitting any limit). Note that our approach ensures
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that no hidden security policy goes unnoticed (such as the account being silently blocked),

as our test always concludes with a successful login attempt using the correct password,

indicating that it has not been blocked due to the failed attempts earlier. In the table, we

also list the URLs that correspond to the login requests. Since both the domain names and

resolved IP addresses (which we did not list) are different, it is a good indication that apps

and websites go through different backend services to perform authentications, and hence

there are different security policies.

Impact of online credential guessing attacks. To perform online password guessing

attacks, one can either perform a brute force or dictionary attack against those possibilities

that are deemed most likely to succeed. As an example, the recent leakage of passwords from

Yahoo [10] consisting of 200 million entries (without removing duplicates). According to our

throughput result, at 600 login attempts per second (which we were able to achieve against

some services), one can try every password in less than 4 days against a targeted account

(if we eliminate duplicate passwords the number will be much smaller). Let us consider an

attacker who chooses the most popular and unique 1 million passwords; it will take less than

half an hour to try all of them. Note that this is measured from a single malicious client,

greatly lowering the requirement of online password guessing attacks, which usually are

carried out using botnets. Another type of attack which can be launched is Denial of Service

(DoS) attack. By locking large amount of accounts through repeated logins, attackers could

deny a user’s access to a service. As we mentioned earlier, we find more apps than websites

which have the account lock security policy against the failed authentication (11 apps vs.

9 websites). Account lock security policy is a double edge sword: while it provides security

17



against unauthorized login attempts, it also allows an attacker to maliciously lock legitimate

accounts with relative ease. The result shows that this kind of attack can be more easily

launched on the app side. We verify this claim against our own account and confirm that

we are unable to login with the correct password even from a different IP address.

To perform online username guessing attacks, we report the result of the sign up

(registration) security policy testing, which aligns with the login results. We find 5 app-web

pairs — 8tracks, Lovoo, Newegg, Overdrive, StumbleUpon — where the app has no security

protection against flooded sign up requests while the website has some security protection

such as CAPTCHA. We also find that 14 websites leak the user email address during the

authentication checking by returning error messages such as “wrong password”. In contrast,

17 apps leak such information. The three apps with weaker security policies are AMC

Theaters, Babbel, and We Heart It. The discrepancy allows one to learn whether a user

ID (e.g., email) has been registered with the service by performing unlimited registration

requests. Combined with the password guessing, an attacker can then also attempt to test

a large number of username and password combinations.

Throughput measurement. In throughput testing, we tested authentications-per-second

(ApS) that are possible from a single desktop computer. Table 2.2 shows the throughput

results for login testing. An interesting case was Expedia, which allowed ∼150 ApS when

communicating with a single server IP and upwards of ∼600 ApS when using multiple server

IPs during testing. The existence of multiple server IPs, either directly from the backend

servers or CDN, played a role in the amplification of an attack. It is interesting to note

that in the case of Expedia, different CDN IPs do not in fact allow amplification attacks.
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App ApS (Single-server-IP) ApS (Multi-server-IP) # of IPs found CDN/Host

Ebay ∼ 77 ∼100 2 Ebay

Expedia ∼150 ∼600 20 Akamai/Expedia

SoundCloud ∼77 ∼178 2 EdgeCast

We Heart It ∼83 ∼215 5 SoftLayer/ThePlanet.com

Zappos ∼84 ∼188 20 Akamai

Table 2.2: Throughput results for login testing.

We hypothesize that it is due to the fact that these CDNs still need to access the same

set of backend servers which are the real bottleneck. To identify backend server IPs, we

perform a step we call “domain name scanning” and successfully locate a non-CDN IP for

“ftp.expedia.com”. From this IP, we further scan the subnet and find 19 other IPs capable

of performing authentication. By talking to these IPs directly, we are able to improve the

throughput from 150 to 600.

Finally, we also obtain throughput results for 4 of the applications in sign up

testing and their average throughput is around 90 to 240 ApS.

Client IP changing. During IP address testing, we find that 11 app-web pairs have client

IP changing detection and associated security policy on the server side. The remaining 89

app-web pairs have no visible security policy. Among them there are 8 app-web pairs for

which both the app and the website have the same behavior against IP changing. For the

remaining 3 pairs, — Target, Twitch, Steam — the app and website have different behaviors

where the website returns an access denied error for some IP address changes (in the case

of Target and Twitch) or forces a logout for any change of the IP address (in the case of

Steam) but the app allows changing client IP address frequently.

One main consequence is that when an app/website has no security policy against
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App-Web App Cookies Expiration Time Website Cookies Expiration Time

AliExpress several months 60 minutes

Amazon several months 14 minutes

Best Buy several months 10 minutes

Kohl’s several months 20 minutes

Newegg several months 60 minutes

Walmart several months 30 minutes

Table 2.3: Cookies expiration time.

IP changing, an attacker can perform HTTP session hijacking with stolen cookies more

easily without worrying about what hosts and IP addresses to use in hijacking. For instance,

Steam is a gaming client; it does have security protection in its websites. When a cookie is

sent from a different IP, the website immediately invalidates the cookie and forces a logout.

However, using the Steam app and the associated server interface, if the attacker can steal

the cookie, he can impersonate the user from anywhere (i.e., any IP address).

Cookies. Cookies are commonly used for web services as well as mobile apps. In browsers,

cookie management has evolved over the past few decades and gradually become more

standardized and secure. However, on the mobile platform every app has the flexibility to

choose or implement its own cookie management, i.e. cookie management is still far from

being standardized.

We observe that many apps store their cookies unencrypted (47 apps among all

100 apps). An attacker can access the cookie more easily as compared to browsers on PCs.

First, smartphones are smaller and more likely to be lost or stolen. Therefore, a simple

dump of the storage can reveal the cookies (assuming no full-disk encryption). In contrast,

in the case of browsers on PCs, cookies are often encrypted with secrets unknown to the
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Library Vulnerabilities # of Apps Example Vulnerable Apps(Version)(Installs)

libzip
DoS or possibly execute arbitrary code

via a ZIP archive 13
com.djinnworks.StickmanBasketball(1.6)(10M+)

com.djinnworks.RopeFly.lite(3.4)(10M+)

FFmpeg * DoS or possibly have unspecified other impact 9
co.vine.android(5.14.0)(50M+)

com.victoriassecret.vsaa(2.5.2)(1M+)

libxml2

DoS via a crafted XML document 8
com.avidionmedia.iGunHD(5.22)(10M+)
com.pazugames.girlshairsalon(2.0)(1M+)

Obtain sensitive information 5 com.pazugames.girlshairsalon(2.0)(1M+)
com.flexymind.pclicker(1.0.5)(0.1M+)

com.pazugames.cakeshopnew(1.0)(0.1M+)
DoS or obtain sensitive information

via crafted XML data 5

DoS via crafted XML data 5

libcurl Authenticate as other users via a request 1 sv.com.tigo.tigosports(6.0123)(0.1M+)

Table 2.4: Vulnerable libraries used by apps.

* FFmpeg includes 7 libraries:
libavutil, libavcodec, libavformat, libavdevice, libavfilter, libswscale, and libswresample.

attacker even if the attacker can gain physical access to the device. For instance, Windows

password (used in Chrome) and master password (used in Firefox) are used to encrypt the

cookies [112]. Second, if the device is connected to an infected PC (with adb shell enabled),

any unprivileged malware on PC may be able to pull data from the phone. For instance, if

the app is debuggable then with the help of run-as command, one can access the app data

such as cookies. Even if the app is not debuggable, the app data can still be pulled from

the device into a file with .ab(android backup) format [54].

We also report another type of important discrepancy — cookie expiration time.

Here we focus on 18 shopping app-web pairs (a subset from the list of 100 pairs). We observe

that app cookies remain valid for much longer time than web cookies. The cookie expiration

time in all 18 shopping websites is around 3 hours on average, whereas it is several months

in their app counterparts. The result is shown in Table 2.3. We find that 6 apps have

cookie expiration time set to at least 1 month while their websites allow only minutes before

the cookies expire. An attacker can easily use a stolen cookie for these apps and perform

unwanted behavior such as making purchases. For instance, Amazon app appears to use
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cookies that never expire to give the best possible user experience. We confirmed that a

user can make purchases after 1 year since the initial login in.

Vulnerable libraries. During vulnerable library testing, we find two apps (Vine and

Victoria’s Secret) use unpatched and vulnerable libraries from FFmpeg [7] framework, which

motivates us to look at a larger sample of 6,400 top free apps in different categories. Table 2.4

summarizes our observation for vulnerable libraries with the number of apps using them. For

example, an attacker can cause a DoS (crash the application) or possibly execute arbitrary

code by supplying a crafted ZIP archive to an application using a vulnerable version of libzip

library [11]. As we discussed before, javascript vulnerabilities are unlikely to cause damage

to the device compared to app libraries, especially given the recent defences implemented

on WebView [40].

2.5 Summary

We identified serious security related discrepancies between android apps and their

corresponding website counterparts. By analyzing 100 mobile app-website pairs, we discov-

ered that Android apps in general have weaker security policies in place as compared to their

websites, likely due to either negligence or usability considerations on the smartphones. We

responsibly disclosed all of our findings to the corresponding companies including Expedia

who acknowledged and subsequently fixed the problem. The lesson learnt is that, for the

same web service, even though their websites are generally built with good security mea-

sures, the mobile app counterparts often have weaker or non-existent security measures.
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Chapter 3

Dynamic Slicing for Android

Dynamic program slicing is a very useful technique for a variety of tasks, from

testing to debugging to security. However, prior slicing approaches have targeted traditional

desktop/server platforms, and to the best of our knowledge there are no slicing techniques

have been implemented in for smartphone mobile platforms such as Android. In this chapter,

we present the challenges of slicing the event-based mobile apps and propose a technique

(AndroidSlicer) to address the challenges effectively. Our technique combines a novel

asynchronous slicing approach for modeling data and control dependences in the presence of

callbacks with lightweight and precise instrumentation. We show our technique is capable

of handling a wide array of inputs that Android supports without adding any noticeable

overhead; making AndroidSlicer a very efficient and effective tool for variety of tasks.
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Figure 3.1: Android activity simplified lifecycle

3.1 Background

In this section, first we present a brief overview of Android platform and its event-

based model, second we briefly introduce program slicing.

Android’s event-based model. Android apps consist of components (e.g., an

app with a GUI consists of screens, named Activities1) and one or more entry points.

Activities are the fundamental part of the platform’s application model. Unlike traditional

programming paradigms in which apps are launched with a main() method, the Android

system initiates code in an Activity instance by invoking specific callback methods that

correspond to specific stages of its lifecycle. Figure 3.1 shows the activity lifecycle in Android.

Each Activity provides a core set of callbacks (e.g., onCreate(), onStart(),onResume())

which are invoked by the system as an activity enters a new state. Hence, the even-driven

model in apps dictates control flow of the program. Generally, a non-deterministic event

1The vast majority of Google Play apps consist of Activities. There are other component types such as
Services, Content Providers, and Broadcast Receiver [20] but these are used much more sparsely.
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can be a user action (e.g., touch), a lifecycle event (e.g., onPause()), arrival of sensor data

(e.g., GPS), and inter- or intra-app messages. Non-deterministic manner of these callbacks

challenges the slicing. We show the details of this challenge in 3.2.

Program Slicing. Dynamic program slicing, a class of dynamic analysis, was

introduced by Korel and Laski [59] to assist programmers in debugging. The backward

dynamic slice at instruction instance s with respect to slicing criterion 〈t, s, value〉 (where t

is a timestamp) contains executed instructions that have a direct or indirect effect on value;

more precisely, it is the transitive closure over dynamic data and control dependences in

the PDG starting from the slicing criterion. The slicing criterion represents an analysis

demand relevant to an application, e.g., for debugging, the criterion means the instruction

execution that causes a crash.

3.2 Android Slicing Challenges

We now show how the Android programming model/platform introduce challenges

for constructing a dynamic slicer and hence we can not directly apply the traditional slicing

techniques, and discuss how we have overcome these challenges.

3.2.1 Challenge 1: Low Overhead

Dynamic slicing (as with any dynamic analysis) on mobile platforms must not

interfere with the execution of the app that is being analyzed. This requirement is much

more stringent on mobile platforms than in traditional desktop/server programs, because

mobile apps do not tolerate delays gracefully: we illustrate this with three examples.
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App Original run AndroidSlicer run Pin run AndroidSlicer
overhead

(s) (s) (s) (%)

Indeed Job Search 15.8 17.1 Crashed 8

Geek 29.4 32.2 Crashed 9

Scanner Radio 29.5 30.9 Crashed 5

Daily Bible 23.9 24.2 Crashed 1

CheapOair 21.7 22.8 Crashed 5

Kmart 24.5 25.2 Crashed 3

Table 3.1: AndroidSlicer and Pin comparison.

First, even just attaching the standard dynamic analyzer Pin [68] to an Android

app – a trivial operation on desktop/server – can have unacceptable overhead, or outright

crash the app. To do the comparison with Pin, we instrumented 6 well-known apps using

AndroidSlicer and Pin (for Pin we used a simple instrumenter that prints the number

of dynamically executed instructions, basic blocks and threads in the app). Table 3.1

presents the results. Apps are sorted based on number of installs. We used Monkey with

default settings to send the apps 5,000 UI events. Note that Pin instrumentation crashed

all examined apps due to non-responsiveness2 while AndroidSlicer instrumentation had

a low overhead of 5% in average. Second, introducing delays in GUI event processing can

alter the semantics of the event: an uninstrumented app running at full speed will interpret

a sequence of GUI events as one long swipe, whereas its instrumented version running slower

might interpret the sequence as two shorter swipes [41]. Third, harmful interference due to

delays in GPS timing, or in event delivery and scheduling, can easily derail an execution [52].

Our approach. We address this challenge by optimizing register tracking at the

AF/library boundary. First, in the runtime tracing phase, for a call into the AF/library

2https://developer.android.com/reference/java/util/concurrent/TimeoutException
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we only track live registers, and only up to the boundary; upon exiting the AF/library we

resume tracking registers. Second, in the static analysis phase we compute taint (source →

sink) information to identify those methods that take values upward to the AF (sources)

as well as those methods which return values downward to the app code (sinks). Finally,

in the trace processing phase we instantiate the static taint information with the registers

tracked into and out of the framework.

3.2.2 Challenge 2: High-throughput Wide-ranging Input

“Traditional” applications take their input mostly from files, the network, and

the occasional keyboard or mouse event. In contrast, Android apps are touch- and sensor-

oriented, receiving high-throughput, time-sensitive input from a wide range of sources.

Typical per-second event rates are 70 for GPS, 54 for the camera, 386 for audio, and 250

for network [52]. A simple swipe gesture is 301 events per second [41]. Thus, we require

low-overhead tracking of high-throughput multi-sourced input.

Our approach. Android employs AF-level event handlers for capturing external

events. We achieve both scalability and precision by intercepting the registers at event pro-

cessing boundary, as illustrated next. Swipes are series of touches, with the event handler

onFling(MotionEvent e1, MotionEvent e2, float velocityX, float velocityY ). We intercept

the event by tracking the registers that hold the event handler parameters, i.e., e1, e2,

velocityX, velocityY , and tagging them as external inputs. This approach has two advan-

tages. First, register tracking is efficient, ensuring scalability. Second, being able to trace

program behavior, e.g., an app crash, to a particular external input via a backward slice

allows developers to “find the needle in the haystack” and allows us to perform efficient and
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effective fault localization. Although our implementation targets Android, it is agnostic of

the low-level OS layer.

3.2.3 Challenge 3: Finding Program Starting Points

Dynamic backward slicing requires traversing the execution back to the “begin-

ning”. In traditional Java programs, this is straightforward: the slicer traverses the execu-

tion back to the beginning of the main() method. However, Android apps have multiple

entry points. Moreover, each activity can be restarted, e.g., due to screen rotation or when

taking a call; when the activity is restarted, the onCreate() callback is invoked by the sys-

tem. Hence we have to trace execution back to entry points or back across restarts. We

illustrate this on a sample activity in Figure 3.2. Suppose we want to compute the slice

with respect to variable name, using statement 7 as slicing start point. For this we need

to traverse the set of reachable nodes in the PDG. The slice should contain statements

{7, 6, 3, 2}. During execution, a configuration change (e.g., screen rotate) will restart the

activity. As a result, the onCreate() method is called to recreate the activity. Without a

lifecycle-aware slicing approach, i.e., understanding that onCreate() is called upon restart,

we would not be able to construct the correct slice (shown in Figure 3.2, right). Conse-

quently, a traditional slicing approach cannot find the start point of slicing and would yield

an empty slice rather than the correct slice {7, 6, 3, 2}. Therefore, the first challenge is to

accurately find an apps entry points (including onCreate() in our example).

Our approach. To discover all entry points, we use a fixpoint approach. Note

that Android apps must define an Activity which launches the app initially, known as the

“home activity”. Therefore we start our analysis from the home activity and create pseudo-
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1 public class AccountSetting

extends Activity {

2 S Account mAccount;

3 S String name = "";

4 @Override

5 public void onCreate(Bundle

savedInstanceState) {

6 S mAccount = new Account();

7 S name = name + mAccount.

getName();

8 }}

Program
2M 

6M 

3M 7M 
name 

mAccount 

mAccount 

PDG

Figure 3.2: Program and its associated PDG. In the program: lines marked with an S
denote the slice with respect to variable name on line 7. In the PDG: solid edges denote
data dependences; graph nodes marked with an M denote nodes that would be missed by
traditional slicing techniques. Labels on solid edges denote the variables which cause the
data dependence.

entry points that correspond to callbacks. We borrow the concept of “pseudo entry point”

from FlowDroid [22] but extend that approach with other necessary callbacks (i.e., callbacks

accepting no parameters) to increase precision, according to the following strategy:

• Start with pseudo-entry points, including life-cycle callbacks, i.e., onCreate(), onRe-

sume(), onStart().

• Analyze the resulting callgraph using SOOT [104]. If the callgraph contains calls to

AF events, such as button clicks, add the corresponding event-handling callbacks to

the list of entry points. For outgoing calls, add the incoming callbacks, e.g., for the

outgoing call sendBroadcast() we add the corresponding callback onReceive() to the

list of entry points.

• Continue this process until we converge to a fixpoint (no new callbacks to be added).
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3.2.4 Challenge 4: Inter-App Communication.

Android relies heavily on inter-process communication (IPC). Originally designed

to permit apps to access system resources in a controlled way, IPC mechanisms are also used

for intra-app communication, e.g., between two activities. The fundamental IPC mechanism

is called Intent: using an intent, an activity can start another activity, or ask another app

for a service, receiving the result via intents as well. For example, the Facebook app can

send an Intent to the Camera app asking it to take a picture. there are two types of intents:

implicit and explicit. An implicit intent starts any component that can handle the intended

action, potentially in another app; because of this, an implicit intent does not name a specific

destination component. An explicit intent specifies the destination component (a specific

Activity instance) by name. Explicit intents are used intra-app to start a component that

handles an action; we will describe the challenges introduced by explicit intents shortly,

in next section. Implicit intents and consequently, inter-app communications, complicate

slicing.

We illustrate this in Figure 3.3. The example shows the GetContacts activity that

allows the user to pick a contact. An intent can launch an activity via the startActivity

or startActivityForResult methods. Upon completion, Android calls the onActivityResult

method with the request code that we have passed to startActivityForResult method (line 5

in the example). Without understanding the impact of inter-app intents, we would not be

able to find complete slices. Assume we want to compute the slice with respect to variable

name starting at statement 14. the resulting slice should contain statements {14, 9, 10,

12, 13, 8, 11, 5, 4}. However, using traditional slicing, we would not find the complete
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1 public class GetContacts extends Activity {

2 @Override

3 public void onCreate(Bundle savedInstanceState) {

4 S Intent i = new Intent(Intent.ACTION_PICK, Uri.

parse("content://contacts"));

5 S startActivityForResult(i, PICK_CONTACT_REQUEST)

;

6 }

7 @Override

8 S public void onActivityResult(int requestCode, int

resultCode, Intent data) {

9 S if (requestCode == PICK_CONTACT_REQUEST) {

10 S if (resultCode == RESULT_OK) {

11 S Uri contactData = data.getData();

12 S Cursor c = getContentResolver().querty(

contactData,null,null,null,null);

13 S if (c.moveToFirst()) {

14 S String name =c.getString(c.getColumnIdx(

ContactsContract.Ctcs.DISP_NAME));

15 }}}}}

Program
5M	

4M	

11	

13	

8	

12	

14	

10	

9	c	

c	

re
su
ltC

od
e	

i	

i	

PDG

Figure 3.3: Program and its associated PDG. In the program: lines marked with an S
denote the slice with respect to variable name on line 14. In the PDG: solid edges denote
data dependences; dashed edges denote control dependences; graph nodes marked with an

M denote nodes that would be missed by traditional slicing techniques. Labels on solid
edges denote the variables which cause the data dependence.

slice because the technique only adds statements {14, 13, 12, 11, 10, 9} to the slice it

will miss statements 4 and 5 for two main reasons. First, traditional slicing fails to pair

startActivityForResult() with onActivityResult() – which are similar to a caller-callee – and

thus it fails to reconstruct control flow to account for IPC. Second, note how we cross

memory spaces into the Contacts app, hence we need to account for Androids sandboxing

to be able to trace the initial (request) and result intents.

Our approach. We analyze app inputs and internal callbacks to detect intents

and construct data dependence edges accordingly. In practice, IPC message objects (i.e.,

Intents) are processed by callbacks hence introduce asynchronous data dependences, which

are naturally handled by our approach.
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1 public class ActivityOne extends Activity

{...

2 S Intent i = new Intent(this, ActivityTwo.

class);

3 S i.putExtra("Value", "Some Value");

4 S startActivity(i);

5 ...}

6 public class ActivityTwo extends Activity

{...

7 S Bundle extras = getIntent().getExtras();

8 S String value = extras.getString("Value");

9 ...}

Program

4M	

3M	

2M	

7	

8	

extras	

i	

i	

i	

PDG

Figure 3.4: Program and its associated PDG. In the program: lines marked with an S
denote the slice with respect to variable value on line 8. In the PDG: solid edges denote
data dependences; graph nodes marked with an M denote nodes that would be missed by
traditional slicing techniques. Labels on solid edges denote the variables which cause the
data dependence.

3.2.5 Challenge 5: Intra-App Communication.

Explicit intents also complicate slicing, as shown in Figure 3.4. The example shows

ActivityOne starting ActivityTwo; the message “Some Value” is passed via IPC mechanisms,

the Bundle in this case. Let us assume we need to compute the slice with respect to variable

value starting at statement 8. The dynamic slice should contain statements {8, 7, 4, 3, 2}.

However, traditional slicing cannot find the precise slice because it does not account for

intra-app communication. Specifically, the example uses Bundles putExtra and getExtra

to pass the data between the two activities; the Bundle is a system component, so in this

case the data flow is mediated by the system, and would elude a traditional slicer. Hence

traditional slicing would not traverse statements {4, 3, 2} due to the missing dependences

between the two activities and would yield slice {8, 7} which would be incorrect.

Our approach. To deal with challenges imposed by inter- and intra-app commu-

nication, we track callbacks and Android Framework APIs. For example if an activity calls
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another activity through Android APIs startActivity or sendBroadcast by passing an intent,

we trace the receiver callback and the parameter referencing the intent. Hence such kinds

of callbacks employing new communication impose dependences that must be handled.

To summarize, by recording callbacks and intents, AndroidSlicer captures inter-

app and intra-app communication precisely, with no under- or over-approximation.

3.3 Algorithm Design

In this section, we describe AndroidSlicer’s implementation. An overview is

shown in Figure 3.5 : an offline instrumentation stage, followed by online trace collection,

and a final offline computation stage. In the first stage, the app is instrumented to allow

instruction tracing. Next, as the app executes, runtime traces are collected. Then we

perform an on-demand static analysis to optimize trace processing, and then compute the

PDG. Finally, we calculate slices for a given slicing criterion. We now discuss each phase.

3.3.1 Instrumentation

The purpose of this stage is three-fold: identify app entry points; construct method

summaries; and add instruction/metadata tracing capabilities to the app.

Finding app entry points. As discussed in Section 3.2, identifying app entry

points is a challenge that must be addressed in order to correctly compute backward dynamic

slices. This is performed via a fixpoint computation, as described in Section 3.2. First, we

use static analysis and create a “dummy” main method that systematically considers all

system callbacks from a callback definition file.
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Figure 3.5: AndroidSlicer overview.

Constructing method summaries. Method summaries (which include in/out

registers and method type) capture method information for the online trace collection phase.

For this purpose, we first build a callgraph for each app class from the analyzed app entry

points to create method summaries (i.e., in/out registers and method type). For each node

in the callgraph (i.e., method) we add instrumentation tags that summarize that method.

This instrumentation is an extended version of the method signature present in the Dexcode

(Android bytecode); we save information for parameter registers and return value registers.

We also detect callbacks at this time and add necessary information about input parameters.

34



We identify intents referenced through registers used as callback parameters and construct

metadata such as caller information (i.e., name of the callback-generating and broadcasting

the intent), as well as string properties associated with the intent’s action filter. This

information helps reveal callers and their callees during offline trace analysis.

Adding tracing instructions. We add tracing capabilities via Soot [104]. An-

droidSlicer’s instrumenter takes the app binary as input; the output is the instrumented

app, which we run on the phone. To support tracing, we inject a new Dexcode instruction

for every app instruction or callback routine. The trace format is described next.

3.3.2 Runtime Trace Collection

We collect the traces while the instrumented app is running on the phone. Traces

have the following format:

trace_entry := <t, instruction_number_offset, instruction, [summary]>

summary := <type, invoked_method, parameter_registers,

return_registers, callback_parameter_registers,

intent_source, intent_action_filters>

Trace entries have the following semantics: t is the actual time the instruction

was executed; instruction_number_offset is the instruction’s relative line number in the

printed dex code; Summary information is only used for method invocations; it contains the

method’s type, e.g., an IPC or a non-IPC call, in/out register values, caller information,

and where applicable, the action string (filter) associated with the intent.
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3.3.3 On-demand Static Analysis

The PDG contains data and control dependence edges for regular nodes and su-

pernodes (callbacks). To build the PDG efficiently, we conduct a post-run on-demand static

analysis that uses the collected runtime information to narrow down the scope of the static

analysis to only those app parts that have been exercised during the run. The advantage of

this on-demand approach is that, instead of statically analyzing the whole program (which

for Android apps raises scalability and precision issues), we only analyze those methods

encountered during execution. The on-demand analysis phase performs several tasks.

3.3.4 Trace Processing and PDG Construction

With the static analysis information at hand, we analyze the application traces to

generate the PDG of that particular execution. The PDG is built gradually via backward

exploration of dependences, adding nodes and edges. Our prior static analysis produces

two sets: (1) StaticDatasi – the set of static data dependence nodes for an instruction

si, and (2) StaticControlsi – the set of static control dependence nodes for an instruction

si. As mentioned in Section 3.3, suffix t distinguishes between different occurrences of an

instruction; the implementation uses a global counter for this purpose.

Sequential data dependence edges. For every occurrence of an instruction si, add a data

dependence edge to the last executed occurrence of every instruction in its StaticDatasi.

Sequential control dependence edges. For every occurrence of an instruction si, add

a control dependence edge to the last executed occurrence in its StaticControlsi.

Asynchronous data dependence superedges. For every occurrence of a callback callee
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node, add a data dependence to the last occurrence of its caller. This information is revealed

via static callback analysis. We also identify the instruction Sipct that contains the actual

IPC method call in the caller that passed the intent reference at time t. The callee receives

the intent through one of its parameter registers vintent. We then identify the last occurrence

of the first instruction in callee at time t that uses vintent. Let us name this Sint. We then

add a data dependence Sipct ←d Sint.

Asynchronous control dependence superedges. If there is no data dependence be-

tween the corresponding supernodes from two consecutive activity contexts, i.e., callback

callee and its caller (N1 and N2), we add a control dependence superedge N1 ←c N2. Oth-

erwise, we add a control dependence superedge N0 ←c N2, where N0 is the supernode N1

is control-dependent on.

3.3.5 Generating Program Slices from the PDG

We now discuss our approach for generating slices given the PDG and a slicing

criterion. The slicing criterion 〈t, st, vs〉 represents the register vs in instruction s at a

particular timestamp t. Since an instruction is a regular node in the PDG we will use

both terms interchangeably, i.e., st refers to both the exact instance of the instruction at

time t and the PDG node. We maintain a workset Ts that holds the nodes yet-to-be-

explored (akin to the working queue in Breadth-first search). The output OUTst is the set

of distinct nodes in the PDG we encounter while backward traversing from st to any of

the app entry points affecting the value held in register vs. We first traverse the edges in

the PDG starting from st and create a dynamic data dependence table Defn and a control
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Algorithm 1 Dynamic program slicing

Input: PDG, slicing criterion SliceCriterion = (t, st, vs) Output: set of nodes
OUTst

1: procedure Slice(SliceCriterion)
2: Ts ← {st} // initialize workset Ts
3: OUTst ← {st}
4: for all nodes n that are in Ts do
5: calculate set Pn = Defn ∪ Ctrln
6: for all nodes n′ in Pn do
7: if n′ is a supernode then
8: Expand & extract the last regular node nr
9: Add nr to Defn

10: else if n′ ≡ n & Pn′ ≡ Pn then
11: Merge (n′, n); remove n′ from Pn′

12: else if previous occurrence of n is in Pn′ & Pn′ ⊂ Pn then
13: Merge (n′, n); remove n′ from Pn′

14: else
15: add n′i to OUTst; add n′ to Ts; remove n from Ts
16: end if
17: end for
18: end for
19: end procedure

dependence table Ctrln for each node n on paths to entry points. For each regular node n′

in the set Pn = Defn ∪ Ctrln we add n′ to OUTst. If n′ is a supernode and n′ ∈ Defn we

expand n′. The expansion adds the last occurrence of the regular node nr inside n′ that

broadcasts an intent to Defn and recalculates Pn. Note that nr passes the IPC reference

(intents) in a register to the next supernode, and hence it should be included in the slice.

Since the same instruction can appear multiple times because of different occurrences at

different timestamps, this procedure adds nodes with the same instructions to the slice for

each occurrence. This increases the size of the slice. To reduce the number of nodes in

OUTst we make two optimizations.

1. Node merging. Given different occurrences (i.e., at times t and t′) of a
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regular node (i.e., n ≡ st, n
′ ≡ st′) if Pn = Pn′ we merge n and n′ into nmerged. For two

different occurrences N and N ′ of the same supernode, we also apply merging: if N and

N ′ have incoming or outgoing data dependence edges we expand the nodes and merge the

individual instructions, i.e., regular nodes inside them; if N and N ′ are connected by control

dependence edges only, we merge them.

2. Loop folding. In loops, for every new occurrence of a loop body instruction

s, we will add a new node in the slice. But these nodes may point to the same set of data

and control dependence in the PDG – they are different occurrences of s. To reduce these

duplications, we merge two distinct nodes n and n′ in the loop if the following conditions

are met: (a) current occurrence of n′ depends on the previous execution of n; (b) current

occurrence of n depends on the current occurrence of n′; and (c) Pn′ ⊂ Pn.

Let us call the new node created after the merge nmerged. Each time we find

a different occurrence of the merged node we compute the set Pnmerged
. Then we apply

reduction to further reduce it to a single node.

3.3.6 Limitation

Since AndroidSlicer’s instrumenter is based on Soot, it inherits Soot’s static

analysis size limitations, e.g., we could not handle extremely large apps such as Facebook.

Note that this is not a slicing limitation per se, but rather a static analysis one, and could

be overcome with next-generation static analyzers.
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3.4 Applications

We describe three applications – failure-inducing input analysis, fault localization,

and Regression test suite reduction – that leverage AndroidSlicer to facilitate debugging

and testing in Android apps.

3.4.1 Failure-inducing Input Analysis

This analysis finds the input parts responsible for a crash or error. Note that

unlike traditional programs where input propagation and control flow largely depend on

program logic, in event-driven systems propagation depends on the particular ordering of

the callbacks associated with asynchronous events. Leveraging our PDG, we can reconstruct

the input→ . . .→ failure propagation path.

Problem statement. Let I be the set of app inputs I1, I2, ... (e.g., coming from

GUI, network, or sensors) through registers v1, v2, .... Let the faulty register be verr, i.e.,

its value deviates from the expected value (including an incorrect numeric value, crash, or

exception). Hence the analysis’ input will be the tuple 〈I, verr, PDG〉 while the output will

be a sequence of registers v1, v2, ..., vn along with their callbacks c1, c2, ..., cm.

Tracking input propagation. In the PDG, for every asynchronous callback, we

can create an input propagation path by tracking the data dependence for the value of any

register vi. We determine whether the values propagated through registers are influenced

by any of the app inputs I. This is particularly useful for identifying faults due to corrupted

files or large sensor inputs (e.g., a video stream).
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29754:	getSimilarStems:com.olam.DatabaseHelper:$v5	=	virtualinvoke	$v3.<android.database.sqlite.SQLiteDatabase:	android.database.Cursor	
rawQuery(java.lang.String,java.lang.String[])>($v1,	null)		SQLite	Excep/on,	Program	crash	
29753:getSimilarStems:com.olam.DatabaseHelper:$v1	=	virtualinvoke	$v4.<java.lang.StringBuilder:	java.lang.String	toString()>()	
29749:getSimilarStems:com.olam.DatabaseHelper:$v4	=	virtualinvoke	$v4.<java.lang.StringBuilder:	java.lang.StringBuilder	append(java.lang.String)>($v1)	
29742:doInBackground:com.olam.MainSearch$doSearch:$v9	=	virtualinvoke	$v8.<com.olam.DatabaseHelper:	java.uUl.Map	
getSimilarStems(java.lang.String)>($v7)	
28451:doInBackground:com.olam.MainSearch$doSearch:$v7	=	$v0.<com.olam.MainSearch$doSearch:	java.lang.String	searchString>	
28440:doInBackground:com.olam.MainSearch$doSearch:$v0.<com.olam.MainSearch$doSearch:	java.lang.String	searchString>	=	$v7	
28439:doInBackground:com.olam.MainSearch$doSearch:$v7	=	virtualinvoke	$v6.<java.lang.Object:	java.lang.String	toString()>()	
28438:doInBackground:com.olam.MainSearch$doSearch:$v6	=	virtualinvoke	$v5.<android.widget.EditText:	android.text.Editable	getText()>()	
28437:doInBackground:com.olam.MainSearch$doSearch:$v5	=	(android.widget.EditText)	$v4	
28413:onClick:com.olam.MainSearch$1:virtualinvoke	$v8.<com.olam.MainSearch$doSearch:	android.os.AsyncTaskexecute(java.lang.Object[])>($v9)	
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Figure 3.6: Failure-inducing input analysis.

Example. We illustrate our analysis on an actual bug, due to a malformed SQL

query, in Olam, a translator app.3 The app takes an input word from a text box and trans-

lates it. In Figure 3.6 (top) we show the relevant part of the code: the number of distinct

dynamic instances of an instruction (left), the actual instruction (center) and the value

propagation through registers v1, v2, ..., vn along the PDG edges (right). In the method

getSimilarStems, the app attempts to query the SQLite database, which generates an ex-

ception, resulting in a crash. The exception trace from the Android event log indicates that

the query is ill-formed. The PDG (bottom left) points out the callback in which the ex-

ception was thrown: the onClick event associated with the search button in the MainSearch

activity. We analyze the event inputs by following the data dependence edges backwards

and see that the registers’ values are pointing towards the input text from the textbox

editText. We compute the slice using the faulty register reference as slicing criterion.

The execution slice is shown in Figure 3.6: we see that the ill-formatted string was

3https://play.google.com/store/apps/details?id=com.olam
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stored in register v1. Our approach back-propagates the value of v1 to determine whether it

was impacted by any part of the input. Back-propagation starts from the error location, i.e.,

instruction instance 29754. The value propagates to register v5 which references the return

value from getText invoked on an instance of v4 that is pointing to the GUI control element

EditTextBox. Our analysis ends by returning the register v5 with the corresponding callback

information. The second part of the figure shows the associated supernodes which reveal

that the executed slices belong to the MainSearch:onClick callback. The failure-inducing

input was thus essentially identified analyzing a much smaller set of instructions, and more

importantly, in the presence of non-deterministic callback orders.

3.4.2 Fault Localization

This analysis helps detect and identify the location of a fault in an app. For

sequential programs, fault localization is less challenging in the sense that it does not need

to deal with the non-determinism imposed by asynchronous events. Android apps are not

only event-driven but also can accept inputs at any point of the execution through sensors,

files, and various forms of user interactions. For this reason, fault localization on Android

can be particularly challenging for developers.

Problem statement. The input to the analysis will be the application trace,

and the register verr holding the faulty value in a specific occurrence of an instruction. The

output this time will be the sequence of instructions s1, s2, ..., sn that define and propagate

the value referenced in verr.
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7153:onItemLongClick:net.robotmedia.acv.ui.SDBrowserAc@vity$2:$i0	=	lengthof	$v6;	Null	pointer	Excep2on,	Program	crash	
7152:onItemLongClick:net.robotmedia.acv.ui.SDBrowserAc@vity$2:$v6	=	virtualinvoke	$v4.<java.io.File:	java.lang.String[]	
list(java.io.FilenameFilter)>($v5)	
7144:onItemLongClick:net.robotmedia.acv.ui.SDBrowserAc@vity$2:$v4	=	(java.io.File)	$v3	
7143:getItem:net.robotmedia.acv.ui.SDBrowserAc@vity$ListAdapter:$v3	=	(java.io.File)	$v2	
7142:getItem:net.robotmedia.acv.ui.SDBrowserAc@vity$ListAdapter:$v2	=	virtualinvoke	$v1.<java.u@l.ArrayList:	java.lang.Object	
get(int)>($i0)	
…	
6803:getView:net.robotmedia.acv.ui.SDBrowserAc@vity$ListAdapter:$v1	=	virtualinvoke	$v3.<java.io.File:	java.lang.String.getName()>()	
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Figure 3.7: Fault localization.

Tracking fault propagation. Our slicing approach aids fault localization as

follows. Given a fault during an execution, we determine the faulty value reference inside a

register verr by mapping the Android event log to our execution trace. Then we compute the

execution slice for verr by back propagating through the execution slice. While we traverse

the PDG backwards, we consider asynchronous callbacks and their input parameters if they

have a direct data or control dependence to the final value of verr. This way, we can both

handle the non-determinism of the events and also support the random inputs from internal

and external sources.

Example. We illustrate our approach on a real bug in the comic book viewing

app ACV.4 Figure 3.7 shows the generated dependences for the faulty execution. The bug

causes a crash when the user opens the file explorer to choose a comic book. If the user

long-taps on an inaccessible directory, the app crashes with a null pointer exception. From

Figure 3.7 we can see that the object reference stored in register v6 at instruction 7153 was

the primary cause of the error. The corresponding callback is revealed to be onItemLongClick

4https://play.google.com/store/apps/details?id=net.androidcomics.acv
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in activity SDBrowserActivity. Our analysis tracks back the object reference in v6, reaching

instruction 6803. Here we can see a file system API invocation (java.io.File.getName())

that attempts to return a filename, but fails because the file’s directory is inaccessible.

Our value propagation ends here, revealing the source of the error. We return the set

of instructions {6803, ..., 7142, 7143, 7144, 7152, 7153}, and the traversed PDG nodes. For

simplicity, we only show the data dependence edges and relevant parts of the slices. Our

approach then back-propagates through the PDG according to the execution slice to localize

the fault (for presentation simplicity we have combined consecutive supernodes in the same

activity into a single node).

3.4.3 Regression Test Suite Reduction

Regression testing validates that changes introduced in a new app version do not

“break” features that worked in the previous version. However, re-running the previous

version’s entire test suite on the new version is time-consuming and inefficient. Prior

work [14, 45] has shown that slicing reduces the number of test cases that have to be

rerun during regression testing (though for traditional apps).

Problem statement. Given two app versions (V1 and V2), and a test suite T1

(set of test cases) that has been run on V1, find T2, the minimal subset of T1, that needs

to be rerun on V2 to ensure that V2 preserves V1’s functionality.

Test case selection. Agrawal et al. [14] used dynamic slicing to find T2 as follows:

given a program, its test cases, and slices for test cases, after the program is modified, rerun

only those test cases whose slices contain a modified statement. This reduces the test suite

because only a subset of program statements (the statements in the slice) have an effect on
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the slicing start point (program output, in their approach [14]). However, this technique can

be unsound, because it only considers whether a statement has been modified, not how it has

been modified. When the changed instructions affect predicates leading to an asynchronous

control dependence, missed control dependences will lead to potentially missing some test

cases. Our approach considers such dependences to maintain soundness.

3.5 Evaluation

We first evaluate AndroidSlicer’s core slicing approach; next, we evaluate it on

the three applications from Section 3.4.

Environment. An LG Nexus 5 phone (Android version 5.1.1, Linux kernel version

3.4.0, 2.3 GHz) for online and an Intel Core i7-4770 CPU (3.4 GHz, 24 GB RAM, 64-bit

Ubuntu 14.04 kernel version 4.4.0) for offline processing.

3.5.1 Core Slicing

App dataset. We ran AndroidSlicer on 60 apps selected from Google Play, the

official Android app store. The apps were selected from a wide range of categories (shopping,

entertainment, communication, etc.) and with various bytecode sizes to ensure diversity

in tested apps. In Table 3.2, we present detailed results for all apps sorted by number of

installs. We summarize the findings (min/median/max) in the last three rows. The second

column shows the app’s bytecode size (median size of 1,485 KB). The third column shows

app popularity (number of installs, in thousands, per Google Play as of August 2018). 28

apps had more than one million installs (median popularity 500,000 - 1,000,000 installs).
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Generating inputs and slicing criteria. We used Monkey [21] to send the

app 1,000 UI events and then collected traces. To measure ’s runtime overhead, same

event sequence was used in instrumented and uninstrumented runs. For slicing criteria,

variables were selected to cover all types of registers ( local variables, parameters, fields)

from a variety of instructions (static invokes, virtual invokes, conditions, method returns),

allowing us to draw meaningful conclusions about slicing effectiveness and efficiency.

Correctness. We manually analyzed 10 out of the 60 apps to evaluate Android-

Slicer’s correctness. The manual analysis effort in some apps can be too high, because

of the large number of instructions and dependences (e.g., in the Twitch app, there are

5,969 instructions in the slice and 9,429 dependences). Therefore, we picked 10 apps whose

traces were smaller so we could verify them manually with a reasonable amount of ef-

fort. We decompiled each app to get the Java bytecode, and manually computed the slices

from the slicing criterion. The manually-computed slices were then compared with An-

droidSlicer’s; we confirmed that slice computation is correct, with no instruction being

incorrectly added or omitted.

Effectiveness. Table 3.2 demonstrates that AndroidSlicer is effective. The

“Instructions Executed” column shows the total number of instructions executed during

the entire run. The median number of instructions is 14,491. If the programmer has to

analyze these, the analysis task will be challenging. AndroidSlicer reduces the number of

instructions to be analyzed to 44, i.e., 0.3% (column “Instructions In slice”). The median

number of dependences to be analyzed, data and control, is not much larger, 63, (column

“CD+DD”). The next column shows the number of callback events fired during the run.
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App Dex Installs Instructions CD Callback Time (seconds) Over-
code Executed In slice +DD events Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) Instrumentation run Instrumented run Slicing (%)

Twitter 50688 500000-1000000 107847 559 563 557 293.5 233.4 236.5 40.3 1

*Indeed Job Search 2457 50000-100000 21752 246 264 235 24.0 222.2 234.3 12.1 5

Geek 12902 10000-50000 152640 1422 1423 1420 116.3 215.2 221 84.9 2

GroupMe 14438 10000-50000 45876 471 476 467 81.1 205.4 212.8 45.4 3

ROM Manager 7270 10000-50000 141333 181 184 178 82.1 233.7 236.9 56.3 1

*Scanner Radio 9216 10000-50000 83190 745 750 741 120.6 231 238.2 51.6 3

Twitch 30105 10000-50000 2025505 5969 5978 5965 144.2 260.3 284.9 103.0 9

Weather by WeatherBug 18841 10000-50000 235773 355 356 353 141.6 242.3 245.7 68.6 1

*AHABER 1228 1000-5000 166 17 19 1 17.0 237.4 240 9.2 1

Apps Organizer 850 1000-5000 28685 15 22 12 7.7 241.6 262.5 5.9 8

BankID sakerhetsapp 1638 1000-5000 25833 19 24 1 22.4 233.1 237.4 13.2 1

Energy Saver 9011 1000-5000 175612 150 198 139 65.9 235.6 242.3 54.2 2

Hypnotic Spiral 47 1000-5000 15356 270 280 1 3.7 238.5 240.3 2.9 0

Idiotizer Pro 299 1000-5000 2426 32 33 30 3.9 248.8 254.7 8.2 2

iTelHybridDialer 1433 1000-5000 1899 19 23 18 17.1 214.8 221.5 8.7 3

Johnny’s web 621 1000-5000 246 24 27 23 13.2 257.7 262.7 9.4 1

Turkish English Translator 1536 1000-5000 23525 65 72 63 19.2 227 260.3 24.9 14

*XFINITY Home 2150 1000-5000 1567 23 28 19 10.7 219.9 223.4 14.9 1

Contactor Select 373 500-1000 1362 6 6 4 2.5 223.9 227.4 3.6 1

Notepad for Android 2867 500-1000 17 4 8 2 30.6 233.5 237.8 7.2 1

Phone2Phone Internet Call. 764 500-1000 10487 800 952 748 14.1 229.6 253.1 8.2 10

The Art of War E-Book 404 500-1000 16855 5 8 4 6.5 232.1 238.5 4.4 2

Weight Diary 1740 500-1000 24017 6 9 5 34.0 240.5 244.6 14.8 1

CallTrack 75 100-500 114 4 5 2 3.6 227.6 235.3 4.2 3

Droid Splitter 467 100-500 20322 48 54 14 3.3 220.5 223 4.0 1

Element53 Lite 411 100-500 31399 80 88 75 9.7 237.8 255.4 8.0 7

Ethiopian Calendar 290 100-500 1671 105 124 92 2.3 228.5 233.4 3.2 2

Event Planner 2252 100-500 15846 186 202 184 21.0 234 256.1 12.2 9

Learn Advertising&Mktng. 2150 100-500 13626 72 77 70 16.6 219.6 238.5 21.9 8

NewsBook News Reader 2150 100-500 6935 24 39 20 41.3 228.3 243.5 24.7 6

Noticias Caracol 1331 100-500 1794 42 43 40 21.5 223.6 228.7 6.5 2

Öffnungszeiten Österreich 1638 100-500 7933 56 65 55 23.5 240.8 241.4 11.4 0

Out Call Blocker 440 100-500 1546 3 6 2 7.8 221.7 234.5 5.0 5

PDD Rus 3072 100-500 3195 51 62 50 30.5 228.6 241.4 5.9 5

Scrollable News Widget 759 100-500 1489 28 34 19 5.7 241.2 260.2 5.2 7

Time-Lapse - Lite 331 100-500 2274 8 10 5 7.2 234.6 236.7 5.1 0

backport.android.bluetooth 143 50-100 460 25 29 23 4.3 231 232.4 6.4 0

Digital Tasbeeh Counter 417 50-100 28911 3 4 2 7.2 219.4 221.5 6.5 0

Glasgow 1433 50-100 1144 75 79 60 3.7 240.6 256.7 3.5 6

*Mirrord Picture Reflection 1331 50-100 16938 73 82 65 17.3 238.5 249 13.3 4

Power writer 482 50-100 33383 4 5 2 6.9 227.3 241.7 22.5 6

*Alo 1740 10-50 129 5 8 1 21.9 224.3 236.5 33.8 5

*Australian Postcode Search 1024 10-50 3350 13 18 8 3.7 260.7 266.3 3.7 2

Fail Log 233 10-50 135 13 17 9 3.6 230.2 234.8 6.9 1

Got-IT! Free 1843 10-50 19664 240 256 237 5.7 253.9 255.6 13.8 0

Grid Size Free File Manager 296 10-50 3830 9 13 7 9.6 231 237.5 6.4 2

Pad - a simple notepad 91 10-50 35 2 2 1 3.6 217.1 235.6 2.0 8

Quickcopy 193 10-50 1360 19 23 17 4.3 229.7 237.8 4.1 3

StayOnTask 987 10-50 2297 24 26 23 5.3 238.7 269.2 6.6 12

TagNote 160 10-50 935 17 26 13 4.0 231.8 246.8 7.2 6

*Time Tracker 1433 10-50 57 5 6 4 20.9 225.7 233.6 24.3 3

*ToDoid 976 10-50 5518 93 104 89 5.5 220.3 229.7 6.3 4

TPV-POS Haird. Peluq. 2150 10-50 1019 5 6 4 10.3 226.9 238.8 7.9 5

*Upvise Projects 968 10-50 11903 11 26 22 18.9 229.5 247.7 6.5 7

Vremenska napoved 3174 10-50 6131 17 22 14 29.5 230.3 251.5 12.4 9

Bundlr 3174 5-10 3159 101 120 99 19.2 241.6 246.1 11.6 1

HNotes 671 5-10 82937 6 8 3 3.7 236 247.7 27.1 4

HP Designjet ePrint & Share 2560 - 2377 27 32 25 23.8 238.6 261.1 16.4 9

Update your phone 182 - 10 3 3 1 9.0 224.4 231.3 6.5 3

Yandex.Auto 1536 - 2109 5 7 4 5.9 246.7 272.1 6.4 10

Across min 47 10-50 10 2 3 1 2.3 205.4 212.8 2.0 0
all 60 median 1,485 500–1000 14,491 44 63 23 19.1 229.85 239.7 11.9 4
apps max 50,688 500,000-1,000,000 2,025,505 5,969 5,978 5,965 293.5 260.7 284.9 103.0 14

Table 3.2: AndroidSlicer evaluation: core slicing results.
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Efficiency. The remaining columns (“Time” and “Overhead”) show that An-

droidSlicer is efficient. We show the time for each processing stage. Stage 1 (instrumen-

tation), typically takes just 19.1 seconds, and at most 293.5 seconds for the 50.6 MB Twitter

app. The “Original run” column shows the time it took to run the uninstrumented app –

typically 229.85 seconds, and at most 260.7 seconds. Column “Stage 2 Instrumented run”

shows the time it took to run the instrumented app, while collecting traces. The typical run

time increases to 239.7 seconds. The “Stage 3 Slicing” column shows post-processing time,

i.e., computing slices from traces, including on-demand static analysis; this time is low,

typically just 11.9 seconds, and at most 103 seconds. The “Overhead” column shows the

percentage overhead between the instrumented and uninstrumented runs; the typical figure

is 4% which is very low not only for dependence tracking, but for any dynamic analysis in

general. Furthermore, our instrumentation strategy does not require monitoring the app or

attaching the app to a third-party module – this allows the app to run at its native speed.

We emphasize that AndroidSlicer’s low overhead is key to its usability, because Android

apps are timing-sensitive (Section 3.2).

3.5.2 Failure-inducing Input Analysis

We evaluated this application on real bugs in 6 sizable apps (Table 3.3) by re-

producing the bug traces. Our failure-inducing input analysis is very effective at isolating

instructions and dependences of interest – the number of executed instructions varies from

320 to 182,527, while slices contain just 16–57 instructions. The CD and DD numbers are

also low: 18–73.
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App Dex Installs Instructions Log CD+ Call- Time (seconds) Over-
code Executed In slice size DD back Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) (KB) events Instrumentation run Instrumented run Slicing (%)

Etsy 5,400 10,000–50,000 182,527 19 20,623 24 9 94 8.7 10.4 129.2 19

K-9 Mail 1,700 5,000–10,000 13,042 30 1,937 34 16 89.1 107.4 125.3 58.8 16

AnyPlayer M. Player 780 100–500 26,936 16 3,714 18 11 21.9 7.6 7.8 17.2 2

Olam M. Dictionary 651 100–500 31,599 57 3,802 73 22 17.3 46.7 50.1 19.4 3

Etsy 5,400 10,000–50,000 182,527 19 20,623 24 9 94 8.7 10.4 129.2 19

K-9 Mail 1,700 5,000–10,000 13,042 30 1,937 34 16 89.1 107.4 125.3 58.8 16

AnyPlayer M. Player 780 100–500 26,936 16 3,714 18 11 21.9 7.6 7.8 17.2 2

Olam M. Dictionary 651 100–500 31,599 57 3,802 73 22 17.3 46.7 50.1 19.4 3

¿¿¿¿¿¿¿ .r2562VuDroid 475.5 100–500 320 21 38 27 20 8.7 6.2 6.7 6.4 8

Slideshow 3,700 10–50 68,013 43 9,918 52 22 52.6 7.2 8.1 28.9 12

Table 3.3: AndroidSlicer evaluation: Failure-inducing input analysis.

App Dex Installs Instructions Log CD+ Call- Time (seconds) Over-
code Executed In slice size DD back Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) (KB) events Instrumentation run Instrumented run Slicing (%)

SoundCloud 516.3 100,000–500,000 9,590 128 1,910 173 62 41.7 63.5 71.6 32.7 9

Notepad 44.2 10,000–50,000 2,366 15 343 17 6 4.5 36.5 41 9.1 12

A Comic Viewer 569.1 1,000–5,000 12,679 18 2,007 24 13 26.7 52.6 61.3 18.7 16

AnkiDroid Flashcards 804.6 1,000–5,000 27,164 32 3,722 38 27 87.6 17.3 19.5 28.7 12

APV PDF Viewer 52.9 1,000–5,000 24,672 67 3,436 79 45 11 10.3 11.2 27.2 8

NPR News 285.1 1,000–5,000 45,298 239 5,473 327 107 28.7 49.3 52.7 42.5 6

Document Viewer 3,900 500–1000 5,451 8 854 11 2 11.2 34 36.1 9 6

Table 3.4: AndroidSlicer evaluation: Fault localization.

3.5.3 Fault Localization

We evaluated our approach on 7 apps. Table 3.4 shows the results. Note how fault

localization is effective at reducing the number of instructions to be examined from thou-

sands down to several dozen. SoundCloud and NPR News have large slices due to intense

network activity and background services (audio playback), which increase the callback

count substantially.

3.5.4 Regression Test Suite Reduction

We evaluated our reduction technique on 5 apps. For each app, we considered two

versions V1 and V2 and ran a test suite T1 that consisted of 200 test cases; on average, the

suite achieved 62% method coverage. Next, we used to compute the reduced test suite as

described in Section 3.3.
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App Dex code Installs Test Covered Instructions Reduced
size V1–V2 suite methods test

(KB) size (%) V1 V2 suite

Mileage 443.8-471.3 500-1,000 200 66 28,252 36,531 22

Book Catalogue 444.9-445.4 100-500 200 69 28,352 28,450 7

Diary 125.5-129.8 100-500 200 53 4,591 4,842 47

Root Verifier 462.9-1700 100-500 200 58 23,482 83,170 5

Traccar Client 49.4-51.6 50-100 200 66 1,833 1,937 8

Table 3.5: AndroidSlicer evaluation: Regression testing.

Table 3.5 shows the results: the bytecode sizes for V1 and V2, the number of

installs, the coverage attained by T1 on V1, and the instructions executed when testing V1

and V2, respectively. The last column shows the size of T2. Notice how our approach is

very effective at reducing the test suite size from 200 test cases down to 5–47 test cases.

3.6 Related Work

Slicing event-based programs has been investigated for Web applications [73, 103,

87] written in HTML, PHP, and JavaScript. These approaches record traces through a

browser plugin [73] and construct the UI model to generate the event nodes. While both

Web and Android apps are event-based, their slicing approaches differ significantly. First,

Android apps life-cycle cause apps to run in different scopes (i.e., activity, app, system),

and handle different sets of requests (launch another activity, respond to an action, pass

data). In contrast, Web apps have different build phases: UI building phase (HTML nodes)

and event-handling phase (JavaScript nodes). Second, Web app slicing tool (e.g., as a

browser plugin) does not require low-overhead like in Android. Third, Android requires

IPC tracking; that is not the case for Web.
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Traditional program slicing of Java bytecode has only targeted single-entry se-

quential Java programs [109, 107, 2, 97]. Zhou et al. [122] and Zeng et al. [116] have used

bytecode slicing for Android apps, but to achieve entirely different goals: mining sensitive

credentials inside the app and generating low-level equivalent C code. They create slices

at bytecode level and consider data dependences only; this makes the approach imprecise

as there is no tracking of code dependences or accounting for many Android features (e.g.,

callbacks, IPC, input from sensors).

Compared to Agrawal and Horgan’s slicing for traditional programs [13], we add

support for Android’s intricacies, node merging for control dependence edges, dealing with

slicing in the presence of restarts as well as asynchronous callback invocation. We support

loop folding for regular nodes inside the supernodes. Slicing multithreaded programs is

tangentially related work, where slicing was used to debug multithreaded C programs [118,

99, 98, 110, 108] — this setup differs greatly from ours.

Hoffmann et. al. developed SAAF [48], a static slicing framework for Android

apps. A static slicing framework such as SAAF would not be sufficient to achieve our goals

as it does not consider myriad aspects, from late binding to the highly dynamic event order

in real-world Android apps.

3.7 Summary

We presented AndroidSlicer, a novel slicing approach and tool for Android

that addresses challenges of event-based model and unique traits of the platform. Our

asynchronous slicing approach that is precise yet low-overhead, overcomes the challenges.
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Experiments on real Android apps show that AndroidSlicer is effective and efficient.

We evaluated three slicing applications that reveal crashing program inputs, help locate

faults, and reduce the regression test suite. In the future we plan to investigate forward

slicing [27, 49] and language-agnostic slicing that would permit slicing apps containing code

in different programming languages [28].
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Chapter 4

Applications of Dynamic Slicing in

Android

In this chapter we explore two new problems (bug and vulnerability) and show

how we use the dynamic slicing technique introduced in the previous chapter to identify

these two types of new bug/vulnerability. In the first problem, we address the issue of

missing progress indicators in mobile apps. We present a novel semantic approach based

on slicing for automatic detection of missing progress indicators for long-running operations

such as network communications in mobile apps. In the second problem, we briefly show

a new type of vulnerability in unique device identification techniques used in mobile apps

which can lead to financial loss.
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4.1 Missing Progress Indicators

A standard tenet of user interface (UI) design is to maintain “visibility of system

status” [81]: the user should always be made aware of what work is currently being per-

formed by the software. In particular, when a program is performing some long-running

operation in response to a user action, a progress indicator should be displayed to indicate

that the operation is ongoing. Missing progress indicators can lead to user confusion and

frustration, as noted by Nielsen [80]:

”Progress indicators have three main advantages: They reassure the user that
the system has not crashed but is working on his or her problem; they indicate
approximately how long the user can be expected to wait, thus allowing the user
to do other activities during long waits; and they finally provide something for
the user to look at, thus making the wait less painful.”

User interface guidelines frequently emphasize the importance of consistent use of progress

indicators [5, 6, 91] as one of the main UI design principles.

Hence, we present a new technique for automatically detecting cases where an

application is missing an appropriate progress indicator. We focus on the scenario where

some user interaction leads to a long-running operation, and the output of that operation

is required to render a final result. This scenario is extremely common in networked mobile

and web applications, as any network request can potentially be long running, depending

on network conditions and the amount of data requested.

Recent work by Kang et al. [58] presents a technique for detecting unresponsive

Android UIs, which are often caused by a missing progress indicator. Their technique works

by monitoring app execution at a system level and detecting cases where after a user input,

there are no UI updates of any kind for some given time period. While this approach finds
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Figure 4.1: High-level illustration of relevant dependencies for correct use of a progress
indicator.

many real issues, it suffers from having no way to distinguish different types of UI updates.

Their approach may treat a non-progress-related UI update as evidence of a responsive UI,

leading to missed bugs. (See Section 4.1.1 and Section 4.1.6 for further discussion.)

Unlike Kang et al. [58] work, we present a novel semantic approach to detecting

missing progress indicators based on program dependencies [38]. Figure 4.1 gives a high-level

illustration of relevant dependencies and matchings for correct progress indicator usage. The

white nodes represent the main logic processing the user request: a user interaction triggers

the start of a long running operation, and the result of the operation can only be shown once

it has completed. The grey nodes indicate desired indicator behavior: the user interaction

should also trigger the display of a progress indicator, which should be stopped after the

long-running operation has ended. The dashed edges reflect the natural pairing between

the start and stop of the long-running operation and display of the progress indicator.

The solid edges in Figure 4.1 represent (forward) program dependencies, which

can be control or data dependencies depending on the scenario. With this formulation,

missing progress indicators can be detected via the following two high-level steps:

1. Find sequences of program operations matching the white nodes and their dependen-

cies (user interaction, start of long-running operation, etc.).
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2. For each such sequence from step 1, ensure that there are interleaved progress indicator

operations with the corresponding dependencies. If such indicator operations are

absent, report a bug.

This approach requires knowing which program operations map to the correspond-

ing nodes in Figure 4.1; e.g., we must know which operations start and stop progress indi-

cators. Hence, some level of manual semantic modeling is required. However, once these

semantics are captured, the approach has a number of desirable properties:

• More complete bug detection is possible compared to previous work [58], since the

approach can distinguish progress indicator operations from other unrelated UI up-

dates.

• When bugs are discovered, they can easily be mapped to source constructs when

reporting to the developer, easing understandability and bug fixing.

• Decades of work from the research community on computing program dependen-

cies [38] and program slices [102] can be applied to the problem.

We instantiate the above approach in a tool ProgressDroid for finding missing

progress indicators in Android applications. Figure 4.2 gives an overview of the different

components of ProgressDroid. As inputs, ProgressDroid requires an app and also

API mappings detailing how to map API calls to the high-level operations shown in Fig-

ure 4.1. This mapping is mostly app-independent, but it can also accommodate app-specific

APIs, e.g., to handle custom progress indicator libraries. ProgressDroid leverages the

recently-released AndroidSlicer [24] to compute dynamic slices for apps. For Android, de-
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Figure 4.2: An overview of the different components of ProgressDroid.

pendencies related to user interactions, UI operations, and long-running network requests

often cut across threads and asynchronous operations, and AndroidSlicer has built-in

support for tracking such dependencies. ProgressDroid also uses DroidBot [64] to auto-

matically exercise app behaviors, optionally aided by a custom test script.

Developing a technique and tool capable of detecting progress indicator bugs in

real-world apps required overcoming three key challenges. First, a näıve use of program

slices to relate long-running operations to user interactions leads to conflation of chained

operations. Section 4.1.2 discusses this issue and introduces the notion of immediate depen-

dence to capture the problem precisely, and Section 4.1.4 gives an algorithm for precise bug

finding based on dynamic slicing. Second, we found that the semantic dependencies in An-

droidSlicer [24] did not cover some key cases required for handling our use case, and we

had to add support for these cases without compromising performance (see Section 4.1.5).

Finally, we found that computing slices with AndroidSlicer was the most expensive part
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Figure 4.3: Motivation: Jamendo music player app.

of our technique, so we devised ways to avoid computing some slices without significant

impact on precision (Section 4.1.5).

4.1.1 Motivating Example

In this section, we give a motivating example to illustrate the problem of missing

progress indicators, both in terms of visible app behavior and at the source code level. We

use an example adapted from the open-source Jamendo music player app.1 Figure 4.3 shows

relevant screens from the app, and Figure 4.4 shows the corresponding code.

We first describe a user interaction with a proper progress indicator. In the

app’s home screen (HomeActivity in Figure 4.3), when the user taps on ”Radio”, the

1https://f-droid.org/en/packages/com.teleca.jamendo/

58

https://f-droid.org/en/packages/com.teleca.jamendo/


1 public class HomeActivity extends

Activity {

2 @Override

3 protected void onResume() {

4 RadioActivity.launch(HomeActivity.

this);

5 }

6 }

1 public class RadioActivity extends

Activity {

2 @Override

3 public void onCreate(Bundle ...) {

4 RadioLoading mRadioLoading = new

RadioLoading(...);

5 mRadioLoading.execute();

6 ...

7 mRadioListView.

setOnItemClickListener(

mRadioLstListener);

8 }

9 private OnItemClickListener

mRadioLstListener =

10 new OnItemClickListener() {

11 playlist = new JamendoNetworkAPI()

.getPlaylist(...);

12 PlayerActivity.launch(

RadioActivity.this, playlist);

13 }

14 }

1 public class RadioLoading extends

AsyncTask<...> {

2 @Override public void onPreExecute() {

3 progressDialog.show();...

4 }

5 @Override protected void

onProgressUpdate(...){ ... }

6 @Override public Result doInBackground

(...) {

7 recommendedRadios =

8 new JamendoNetworkAPI().getRadios

(...);

9 }

10 @Override public void onPostExecute(

Result result) {

11 progressDialog.dismiss();...

12 }

13 }

1 public class JamendoNetworkAPI {

2 public Playlist getRadios(...){ doGet

(...) }

3 public Playlist getPlaylist(...){

doGet(...) }

4 public String doGet(String url){

5 HttpGet httpGet = new HttpGet(new

URI(url));

6 HttpResponse httpResponse =

7 new DefaultHttpClient().execute(

httpGet);

8 return httpResponse.getEntity().

getContent();

9 }

10 }

Figure 4.4: Motivation: Jamendo music player source code.
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RadioActivity is launched (line 4 in Figure 4.4), causing a UI transition. Upon initial-

ization, the RadioActivity starts a RadioLoading background task (line 5 in RadioActivity

class). The RadioLoading class extends and overrides the methods of Android AsyncTask

class, used for executing long-running tasks on a background thread. The Android Frame-

work first invokes the object’s onPreExecute() method on the main thread, which displays

a progress dialog (line 3 in RadioLoading class), shown as the first RadioActivity screen in

Figure 4.3.

Meanwhile, the framework runs the AsyncTask’s doInBackground() method in a

background thread. In this case, the code retrieves a list of radio stations by calling into

the JamendoNetworkAPI class (line 8), which gets the data via an HTTP GET request (lines

4–9 in JamendoNetworkAPI class). Once the network result becomes available, the progress

dialog is dismissed (line 11 in RadioLoading class), and the result, a list of recommended

radio stations, is displayed (the second RadioActivity screen in Figure 4.3). The progress

indicator shows the user that work is ongoing as the app awaits the result.

In the next user interaction, a progress indicator is not properly employed. A user

can tap on one of the radio stations shown by the previous step to play the music in a

player UI. The code handles such taps via an OnItemClickListener, attached at line 7 in

RadioActivity class of Figure 4.4. The listener directly uses JamendoNetworkAPI to retrieve

a playlist (line 11), and then uses the playlist when launching the player (line 12). On a

fast network connection, this interaction could proceed smoothly, as shown in Case 1 in

Figure 4.3. However, on a slow network connection, the UI will freeze until the playlist is

received, with no indication that work is being done. If the request takes too long, the user
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will see an Application Not Responding (ANR) dialog, as shown in Case 2 of Figure 4.3.

This example illustrates the challenge of ensuring progress indicators are always employed

when needed; even when a developer is aware of the need for such indicators, it is easy to

forget them in some cases.

The first interaction that correctly used a progress indicator (showing the station

list) is useful for showing how the work of Kang et al. [58] can miss real bugs. That technique

finds issues by looking for cases with no UI updates at all for a certain time period. Consider

a case where in Figure 4.4, lines 3 and 11 in RadioLoading class were removed, so there is no

longer a progress indicator shown while downloading the station list. Even with these lines

removed, after the user taps the ”Radio” option on the home screen, there would still be an

immediate UI update to transition to the RadioActivity (line 4 in HomeActivity class). The

app would then be “stuck” at the blank RadioActivity screen until the network response

was received. A technique looking for any type of UI update would miss the bug in this

case, due to the immediate transition to a new Activity. We found this scenario to occur

frequently in our evaluation (for 84% of discovered bugs; see Section 4.1.6), justifying our

approach of distinguishing progress indicator operations from other UI updates.

4.1.2 Problem Definition and Terminology

In this section, we give a semantic definition of correct progress indicator usage

in a program, based on standard notions of program dependencies. We introduce some

terminology and background. Then, we present our definition in Section 4.1.3, and discuss

some of its practical tradeoffs.

We first introduce some terminology used to define progress indicator correctness.
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Our definition refers to the following key operations in programs:

User event handler. A user event handler is the code that executes in response to some

user interaction with the application, like a tap or swipe in a mobile app. When

referring to a user event handler as a program point, we mean the start of the handler

(e.g., the entrypoint of a handler callback).

Long-running operation. A long-running operation is any operation that may run long

enough to cause a perceptible “lag” in the application, necessitating use of a progress

indicator. We do not study the length of time corresponding to perceptible lag here,

as this has been studied extensively in previous work, e.g., Kang et al. [58].

Progress indicator. Progress indicator operations control the display of a progress indi-

cator in the user interface, like the spinner in first RadioActivity screen in Figure 4.3.

UI update. UI update operations are those that update the visible user interface, excluding

progress indicator operations.

We assume an API mapping is provided that describes which program API calls

or statements correspond to the above key operations. For each long-running operation,

we assume that the API mapping provides a start point and end point for the operation.

E.g., a start and end point could respectively be the call and return for a long-running

synchronous function, or a starting function call could be matched with an ending callback

invocation for an asynchronous API. Similarly, we assume a start and end point is provided

for each progress indicator, typically API calls to show and hide the indicator.

We also make use of some standard terminology from the program dependence
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and slicing literature. A program dependence graph (PDG) [38] represents dependencies

between statements in a program. Dependencies include data dependencies, where one

statement uses a value computed by another, and control dependencies, where one statement

determines whether another statement may or may not execute. For program constructs

like procedure calls and asynchronous callbacks, more sophisticated dependence graphs have

been devised, such as system dependence graphs (SDGs) [50] and hierarchical PDGs [24].

For our purposes, we assume that an appropriate dependence graph has been constructed

for the program at hand. We also assume appropriate notions of reachability and paths

exists for the dependence graph, ignoring details of which paths are valid (e.g., paths must

have matching calls and returns for SDGs [50]).

Finally, we introduce a notion of immediate dependence for our relevant operations.

Statement b is dependent on statement a if there exists a path from a to b in the dependence

graph.2 Statement b is immediately dependent on statement a if there exists a path p

from a to b in the dependence graph, such that p contains no statements corresponding

to the start of a user event handler or a long-running operation start or end point. We

use immediate dependence to avoid conflating dependent user interactions, to be discussed

further in Section 4.1.3.

4.1.3 Correct Progress Indicator Usage

We now define correct progress indicator usage for a program P . We first define

which sequences of operations require use of a progress indicator. A relevant interaction is

a tuple 〈e, ls, ln, u〉 with the following properties:

2For this discussion, we assume dependence graph edges are in the forward direction.
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• e is a user event handler in P ;

• ls is a start point for a long-running operation that is immediately dependent on e;

• ln is the end point corresponding to ls; and

• u is a UI update operation immediately dependent on ln.

A relevant interaction requires a progress indicator since the UI update u is performed due

to the completion of the long-running operation (ls, ln), which was started due to user event

e. Hence, u usually corresponds to the result the user expected by triggering e (further

discussion below).

The relevant interaction definition uses immediate dependence instead of standard

dependence to avoid conflation of sequenced user events and UI updates. For example, in

Figure 4.3, the user first taps to transition from the HomeActivity to the RadioActivity, and

then taps again to get to the PlayerActivity. The long-running network request and UI

update for the second tap are both dependent on the first tap, as neither are possible until

the app has transitioned to show the RadioActivity. However, we should not require a single

progress indicator to cover both the UI transitions. The use of immediate dependence avoids

this issue, as the second network request and UI update are not immediately dependent on

the first HomeActivity tap.

A program P makes correct use of progress indicators iff for all relevant interactions

〈e, ls, ln, u〉 in P , the following two conditions hold:

1. A progress indicator start point ps is immediately dependent on e; and

2. The matching progress indicator end point pn is immediately dependent on ln.
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In other words, the progress indicator should be displayed due to the user event, and only

hidden once the long-running operation is complete. We again make use of immediate

dependence to avoid conflating sequenced interactions. Figure 4.1 shows the required im-

mediate dependencies graphically.

Discussion Our definition of correct progress indicator usage is designed to make bug

finding practical, but it does not perfectly capture all possible progress indicator behaviors.

Some correct behaviors are not captured by the definition, potentially leading to false posi-

tives in a bug-finding tool. For example, consider an interaction where after a user tap, the

application quickly shows the relevant result, but it also performs an asynchronous request

for some optional information. (E.g., in a game, a score could be updated immediately,

while a server could be asynchronously queried to check if a high score has been exceeded.)

In such cases, our definition necessitates use of a progress indicator for the network request,

though it is unnecessary.

Our definition ignores time delays in showing progress indicators, possibly leading

to missed bugs. Consider a contrived case where in an event handler e, a program starts a

long-running operation immediately, but only shows a progress indicator after a five-second

delay. This delay is too long, and the app may appear to be unresponsive. However, this

code may still meet our definition of correct progress indicator usage, as it only requires ps to

be immediately dependent on e, without considering timing delays. Correctly incorporating

delays into the definition is non-trivial—some applications use delays to avoid showing a

progress indicator when a network request completes very quickly, and such patterns should

not be prohibited.
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The definition also assumes that a UI update corresponds to at most one long-

running operation. In general this assumption may not hold, as a UI update may only

occur after multiple long-running operations, run either sequentially or in parallel. Such

cases could lead to false positives or false negatives, but we have not observed them in

practice and expect them to be quite rare. If such cases arise more frequently, they could be

handled by wrapping the multiple long-running operations inside a higher-level abstraction,

and modeling the start and stop APIs of the new abstraction as long-running.

We plan to study improvements to our correctness definition in future work. But,

our experimental evaluation showed that our current definition is sufficient for finding a

variety of bugs (see Section 4.1.6).

4.1.4 Dynamic Bug Finding Algorithm

In this section, we present an algorithm for finding violations of correct progress

indicator usage (as defined in Section 4.1.3) via dynamic slicing. Dynamic slicing tools do

not directly support our notion of immediate dependence. The key insight of the algorithm is

that in the dynamic setting, we can combine trace ordering with slicing to handle immediate

dependence requirements. Our tool ProgressDroid, to be discussed in Section 4.1.5, uses

this algorithm (with minor modifications) to analyze Android applications.

Our algorithm FindProgressBugs is shown in Algorithm 2. FindProgress-

Bugs operates on a trace t of some dynamic execution of a program. We assume the trace

is indexed, so that the relative ordering of events in the trace can easily be computed.

SubTrace(t, s, s′) returns the portion of trace t occurring between events s and s′, and
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Algorithm 2 Algorithm for finding progress indicator bugs using dynamic slicing.

1: procedure FindProgressBugs(t)
2: U ← UIUpdates(t)
3: for all u ∈ U do
4: Su ← BackSlice(u, t)
5: E ← EventHandlers(Su)
6: if E = ∅ then . no user interaction involved
7: continue
8: end if
9: e← Latest(E) . for immediate dependence

10: r ← SubTrace(t, e, u)
11: L← LongRunningOps(r)
12: if ∃ (ls, ln) ∈ L | e ∈ BackSlice(ls, t) ∧ ln ∈ Su then
13: P ← ProgressOps(r)
14: if 6 ∃ (ps, pn) ∈ P | (e ∈ BackSlice(ps, t) ∧

ln ∈ BackSlice(pn, t)) then
15: ReportBug(e, ls, ln, u)
16: end if
17: end if
18: end for
19: end procedure

Latest(S) returns the latest event in S. We assume a routine BackSlice(s, t) for com-

puting the backward (dynamic) slice of an event s from trace t, with the slice represented

as a set of trace events. We base the algorithm on backward slicing as that is the primitive

provided by the slicing tool AndroidSlicer used by ProgressDroid [24]. Finally, we

assume routines EventHandlers and UIUpdates for finding user event handlers and

UI updates in a trace, and LongRunningOps and ProgressOps for respectively finding

start-stop pairs for long-running and progress operations.

Given these primitives, FindProgressBugs proceeds as follows. First, all UI

updates in the trace are found (line 2). For each discovered UI update u, a backward

slice Su is computed (line 4). Lines 5–8 ensure there is some user event handler in Su;

otherwise, the UI update was unrelated to a user interaction. Line 9 selects e as the latest
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user event handler from Su. This choice ensures that subsequent steps will only consider

long-running and progress operations respecting immediate dependence conditions, thereby

avoiding conflation with previous interactions.3

The remainder of the algorithm fairly closely tracks the definition of correct

progress indicator usage in Section 4.1.3. Lines 11–12 search for an appropriate long-

running start and stop operation in the sub-trace between e and u. If such an operation is

discovered, lines 13–15 search for a corresponding progress indicator and report a bug if it

is missing. Again, since our search is limited to the portion of the trace between e and u,

we can simply leverage backward slices to find appropriate dependencies, without directly

computing immediate dependence.

4.1.5 Bug Finding for Android

Here, we describe how we implemented Algorithm 2 in a tool ProgressDroid

for finding progress indicator bugs in Android apps. The structure of ProgressDroid

was previously shown in Figure 4.2. Here we detail ProgressDroid’s API mappings

(Section 4.1.5), extensions to AndroidSlicer [24] for collecting traces and slicing (Sec-

tion 4.1.5), practical modifications of Algorithm 2 (Section 4.1.5), and input generation

strategies (Section 4.1.5). All code for ProgressDroid will be made available as open

source upon publication.

3This relies on the assumption of one long-running operation per UI update, discussed in Section 4.1.3.
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API mappings

As shown in Figure 4.2, ProgressDroid leverages an API mapping to identify

which API calls correspond to the key operations from Section 4.1.2. Our API mappings

are mostly derived from a thorough study of the APIs made available by the Android

Framework. For user event handlers, we re-use the API modeling implemented in An-

droidSlicer [24]. For UI updates, our mapping includes over 4,000 built-in UI API meth-

ods from the Android framework. Apps often implement their own UI components by

sub-classing standard Android framework classes. For each app to be analyzed, Progress-

Droid performs a lightweight analysis to find such classes, and includes their overriding

APIs in the mapping. Like AndroidSlicer, this analysis is implemented using the Soot

framework [105].

For long-running operations, ProgressDroid’s current focus is on network re-

quests, the most common type of long-running operation in Android applications. Pro-

gressDroid includes standard APIs for performing network requests in its mapping, in-

cluding the standard HTTP APIs provided by Android and APIs for fetching URL data

for WebViews. However, Android apps also make use of a variety of third-party libraries

for networking; we have not exhaustively modeled these APIs in ProgressDroid. So, in

some cases, ProgressDroid may not automatically identify that a user interaction leads

to a network request. Such gaps appeared rarely in our evaluation (see Section 4.1.6). In

a commercial setting, a company could easily add mappings for their chosen networking

APIs to ProgressDroid to ensure good coverage of their apps. Similar issues exist for

progress APIs, and as with network requests, ProgressDroid’s mapping contains the

69



most commonly-used APIs that we identified.

Extending AndroidSlicer

ProgressDroid uses AndroidSlicer [24] both to instrument apps to collect

dynamic traces and to compute slices over those traces, as shown in Figure 4.2. Progress-

Droid relies heavily on AndroidSlicer’s ability to slice across asynchronous operations

in Android applications, as the relevant dependencies for progress indicator bugs often cut

across asynchronous operations.

We found that we had to extend the dependencies modeled by AndroidSlicer

in two key ways to make ProgressDroid effective. First, we had to add modeling of the

dependencies arising from use of Android’s AsyncTask type, as it is used often for network

requests (e.g., see Figure 4.4). AndroidSlicer only instruments application code, so it

relies on models of framework code like AsyncTasks to operate correctly. Dependencies

introduced via these framework models are termed semantic dependencies [24].

The lifecycle of an AsyncTask execution is comprised of four steps as shown on

the left side of Figure 4.5. First, onPreExecute() is called by the framework on the main

thread. Second, doInBackground() is invoked on a background thread, immediately after

onPreExecute(), to execute the long-running operation. While running, doInBackground()

can invoke publishProgress() to provide a progress update; this update is rendered in the

UI via a call from the framework to onProgressUpdate(). Finally, when the long-running

task is complete, onPostExecute() is invoked to render the result.

The semantic dependencies introduced for AsyncTask execution are shown on the

right of Figure 4.5. We define a semantic control dependence from doInBackground() to
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onPreExecute() to capture their sequencing.4 We also define a semantic data dependence

from doInBackground() to execute(), for the URLs that execute() passes into the task.

Finally, we introduce semantic data dependence edges from onProgressUpdate() to any calls

to publishProgress() within doInBackground(), and from onPostExecute() to the returned

result of doInBackground(). Note that these semantic dependencies are a template: they

are instantiated for every occurrence of these AsyncTask operations in the dynamic trace.

Our second extension of AndroidSlicer was to handle control dependences for

Java’s try-catch blocks. We found that exception handling code appeared frequently along-

side networking and progress indicator code (e.g., to handle network timeouts), necessitating

better handling. AndroidSlicer did not already include these dependencies since Soot

did not provide exceptional control dependencies in its control-dependence graph. Static

exclusion of such dependencies is a common design decision, as nearly every statement in

Java may throw an exception, leading to an overwhelming number of dependencies [94]. For

our scenario, we avoid this dependence explosion by specializing our handling to observed

traces. Given a trace and knowledge of which statements C start catch blocks (computed

from the app bytecode), we introduce a control dependence from any statement execution

in C to the last statement observed to execute in the corresponding try block.

4This semantic control dependence does not indicate that onPreExecute() controls
doInBackground()’s execution. Instead, it ensures that doInBackground() is control-dependent
on any node that onPreExecute() is control dependent on, to capture these dependencies across
threads [24].
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Figure 4.5: Semantic dependencies for AsyncTask.

Algorithm Modifications

ProgressDroid uses a modified version of Algorithm 2 when detecting progress

indicator bugs in a trace, both for performance and to deal with limitations of our semantic

dependence modeling. In general, as apps and traces become larger, computing slices with

AndroidSlicer becomes increasingly expensive. So, ProgressDroid skips two of the

BackSlice computations shown in Algorithm 2. For line 12, ProgressDroid does not

check that the user event handler is in the backward slice of the start of the long-running

operation. In practice, if ln ∈ Su and ls and ln are matched, we have never observed a case

where ls was not dependent on e.5

For Algorithm 2 line 14, ProgressDroid does not perform the slice from the

end progress operation pn to check for the presence of ln. Similar to the previous case, in

our experience, if the progress indicator start operation was dependent on the user event

handler, the matched end operation was also dependent on the network request. Another

5In principle this could occur, e.g., if the UI update was dependent on some network operation unrelated
to the user interaction.
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issue for this case is that pn would typically be control-dependent on ln, and modeling all

the relevant semantic control dependencies in AndroidSlicer for the variety of networking

libraries used would be a significant amount of work. In contrast, usually the UI update is

data-dependent on ln (to display the result), making it easier to capture the dependence.

Input Generation

ProgressDroid uses the DroidBot tool [64] to automatically generate inputs to

exercise subject apps for trace collection. As shown in Figure 4.2, DroidBot can optionally

take as input a manually-written test script for exercising parts of the app. Such scripts

were useful for some of our test subjects, e.g., to get past an initial login screen. In an

industrial setting, we would expect usage of test scripts to play a large role alongside test

generation, as industrial apps often have a scripted test suite for UI interactions.

We added a randomized exploration strategy to complement DroidBot’s depth-

first and breadth-first strategies [64]. For our goal of finding UI interactions involving long-

running network requests, we found disadvantages to both the DFS and BFS approach. DFS

would sometimes get stuck deep within an app on a screen unrelated to network interactions,

whereas BFS could get stuck attempting to tap every element in a long list view (all of which

exercised roughly similar behavior). In our experience, a randomized exploration strategy

was more successful in avoiding these states and exploring more network-related behavior.

A deeper study of the tradeoffs of these approaches is beyond the scope of this work. We

note that even with the randomized approach, we retained DroidBot’s ability to replay an

interaction sequence of interest, a useful feature for understanding discovered bugs.
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4.1.6 Evaluation

We performed an experimental evaluation of ProgressDroid on 30 Android

applications, aiming to answer the following research questions:

RQ1. Effectiveness / Precision: Can ProgressDroid identify missing progress

indicator bugs in real-world Android apps, with a low false-positive rate?

RQ2. Comparison: Does ProgressDroid find bugs that would be missed by

the previous state-of-the-art [58]?

RQ3. Scalability : Does ProgressDroid run in a reasonable amount of time on

real-world applications?

Benchmarks. We ran ProgressDroid on 30 apps randomly selected from the

top 100 apps in a wide range of categories in the Google Play Store (shopping, food & drinks,

lifestyle, etc.). We rejected apps that could not be instrumented by , either due to limitations

of or Soot, or due to checksum calculations in the app that prevented modifications. We also

rejected apps that did not involve network communication, as ProgressDroid is focused

on finding issues involving network requests. Otherwise, the apps were chosen randomly,

before any input generation or further exploration of app behavior was performed.

Table 4.1 gives details of our 30 subject apps. The first column shows the app’s

name. The second column and third column show the app’s category and popularity (num-

ber of installs, in millions, per Google Play as of August 2019) respectively. The final

column gives the app’s bytecode size. All the apps have more than 100,000 installations,

and the apps are of a significant size, ranging from 1.5MB to 11.5MB (median size = 4.9

MB).
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App Category Installs Dex code
M+ size (MB)

Allama Iqbal Shayari Books & Ref. 1 4.2

Audiobooks.com Books & Ref. 1 10.6

Best Love Messages Lifestyle 0.1 3.5

Bible Hub Books & Ref. 0.1 1.4

CA DMV Tools 1 6.2

Cabela’s Business 0.5 10.2

CarWale Auto & Vehicles 5 11

Classified Listings Lifestyle 1 3.7

Daily Tamil News News & Mag. 1 4

Dominos Pizza Carib. Food & Drinks 0.1 2.9

DOS Careers Travel & Local 0.1 11.5

Enfermagem Education 0.5 3.3

Fast Food Specials Food & Drinks 0.1 8.6

Free Oldies Radio Music & Audio 1 7

GoodRx Gold Medical 0.1 1.5

House Plans at Family House & Home 0.1 2

JackThreads Shopping 1 2.8

Karmakshetra Online Education 0.5 5.2

KBB.com Lifestyle 1 4

Learn English Words Education 5 7.4

Meeting Guide Lifestyle 0.1 10.3

NA Meeting Search Health & Fitness 0.1 8.5

Restaurant.com Lifestyle 1 3.4

Salud Universal News & Mag. 0.5 4.7

Startpage Private Search Lifestyle 0.5 4.3

Stock Quote Finance 0.5 5

Toyota Financial Finance 0.5 10.1

VOA News News & Mag. 1 10

Web Browser & Exp. Communication 5 7.2

Yogurtland Food & Drinks 0.1 4.3

Table 4.1: Benchmark: 30 apps.
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Environment. All experiments were conducted on the Android emulator running

Android version 9, running on an Intel Core i7-4770 CPU 3.4 GHz, 24 GB RAM desktop

machine running 64-bit Ubuntu 16.04 LTS. For all the experiments, to drive the app ex-

ecution, we used DroidBot to send the app 30 UI events. For some of the apps, we used

additional test scripts to bypass specific screens/states (e.g., welcome pages, login pages,

and text fields requiring specific inputs) to help DroidBot explore deeper app behavior.

Such apps are marked with a ‘*’ in Table 4.2.

RQ1. Effectiveness / Precision

Table 4.2 gives key data from our evaluation of ProgressDroid. The most

relevant columns for RQ1 are:

• Meth. cov.: the percentage of app methods covered by the generated test input;

• UI slice: the number of UI update operations from which we perform slices;

• UI → Net: the number of cases where the slice showed that the UI update was

dependent on a long-running network request; and

• Error report: the number of missing progress indicator errors reported by the tool.

Our median method coverage was 5.3%, but we were still able to trigger a signifi-

cant number of UI update calls per app. In 8 apps (denoted by a ‘*’ in Table 4.2), we wrote

manual test scripts to bypass specific screens/states. Still, with better method coverage our

tool may be able to discover even more issues. Automated test generation for Android is an

76



App Trace Meth. UI UI Error Static
(MB) cov. slice → report UI

(%) Net

Allama Iqbal. 36.7 3.4 23 5 5 1

Audiobooks.com 32.3 7.2 8 3 0 -

Best Love. 149 6.8 22 3 0 -

Bible Hub 4 7.9 20 6 6 (FP) -

CA DMV (*) 23.2 10.6 47 13 0 -

Cabela’s 38.0 31.3 50 2 1 1

CarWale (*) 83.9 5.6 36 11 3 3

Classified. (*) 17.9 7.0 9 6 6 0 (ad)

Daily Tamil News 19.9 1.6 7 0 0 -

Dominos Pizza. 4.3 2.6 25 5 4 4

DOS Careers 27.6 4.4 14 4 1 1

Enfermagem 18.5 4 30 8 6 0 (ad)

Fast Food Specials 36.4 5.1 62 15 0 -

Free Oldies Radio 16.1 2.5 18 3 0 -

GoodRx Gold (*) 1.5 0.15 9 3 3 1

House Plans. 21.1 2.8 12 3 1 1

JackThreads 9 8.0 7 2 2 0

Karmakshetra. 16.9 1.3 16 5 2 2

KBB.com 53.8 10.9 61 11 0 -

Learn English. 54.5 9.1 9 3 0 -

Meeting Guide 278.7 6.7 18 4 0 -

NA Meeting. 39.4 4.2 8 2 0 -

Restaurant.com (*) 6.7 2.0 14 10 0 -

Salud Universal 4.9 2.7 10 4 4 4

Startpage Private. 8.4 1.1 6 1 0 -

Stock Quote (*) 40.1 1.4 4 3 1 (FP) -

Toyota. (*) 40.1 7.4 33 4 4 4

VOA News 104 7.1 55 12 0 -

Web Browser. (*) 23.4 7.2 34 6 2 2

Yogurtland 77.3 6.4 34 6 5 5

min 1.5 0.15 4 0 0 0
median 25.5 5.3 18 4 1 2
max 278.7 31.3 62 15 6 6

Table 4.2: ProgressDroid evaluation: core results.
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orthogonal problem to ours and an active area of research [72, 44]; ProgressDroid can

easily integrate improved techniques as they are developed.

ProgressDroid reported a total of 56 missing progress indicator bugs, with at

least one error report on 17 of the 30 applications. We manually inspected all of the

reported bugs, leveraging DroidBot’s ability to reproduce the same event sequence used

during testing [64]. We also artificially reduced the bandwidth of the test emulator, to

increase the time required for network requests and make bugs more evident. We confirmed

all except seven reported progress indicator bugs to be a true positive error. The exceptions

were from the Bible Hub and Stock Quote apps, which indicate progress to the user via a

TextView with a ”Loading...” text label, a scenario that was not included in our API model.

Our API model could easily be extended to handle this scenario.

Also, in one app (Daily Tamil News), we observed that ProgressDroid did not

correctly identify the network request calls, due to a bug in the instrumentation phase. In

this case it did not lead to false negatives, as Daily Tamil News uses progress indicators

correctly, but it could have caused false negatives in a buggy app.

In general, a wide variety of progress indicator and networking APIs are used in

Android applications, including custom APIs for individual apps. In testing more apps with

our current API models, we expect ProgressDroid would have occasional false positives

due to un-modeled progress APIs and false negatives due to un-modeled network APIs. We

believe that having a pluggable and extensible API model is critical for real-world usage

scenarios, so developers can easily handle these new APIs as they arise.
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RQ2. Comparison with Previous Work

We compared ProgressDroid against the approach of the Pretect tool of Kang

et al. [58], the only previous work we are aware of on detecting unresponsive Android UIs.

Pretect works by monitoring app execution at a system level to detect cases where after

some user input, there is a complete absence of UI updates for some pre-defined period

of time. This approach can suffer from false negatives when some non-progress-indicator

UI update occurs after the user input, as described in Section 4.1.1. Unfortunately, we

were unable to obtain the Pretect tool or source code.6 So, to compare with Pretect , we

investigated all true positive issues reported by ProgressDroid, counting cases where

some unrelated UI update would have caused Pretect to miss the issue.

The relevant results for this comparison appear in Table 4.2, in the “Static UI”

column. The column reports the number of cases with missing progress indicators for which

there is an immediate screen transition after the user event (like to a new activity), but

then no progress indicator appears. This is the primary type of unrelated UI update we

observed that would affect Pretect . Additionally, some apps include ads, which can animate

independently of the user interaction, leading to unrelated UI updates. We note two cases

in the table where the app does not have a static UI update but does show ads during the

interaction with a missing indicator.

Overall, for all apps with an observed bug except for one, at least one of the missing

indicator issues involved a static UI update or an advertisement. As a result, 41 out of the

49 bugs that ProgressDroid found (84%) would not have been found by Pretect . These

6We were unable to access the URL given for the tool in Kang et al. [58].
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Network API call Number of bugs

AsyncTask helper class 34

Volley HTTP library 10

WebView web content displayer 12

Table 4.3: Network API categorization of apps with missing progress indicator detected by
ProgressDroid.

data indicate that tracking all UI updates without distinguishing progress indicator APIs

leads Pretect to miss a significant number of progress indicator bugs.

Additionally, ProgressDroid can leverage its API mappings to provide more

details on which operations were involved when a progress indicator is missing. Table 4.3

shows a categorization of discovered progress indicator bugs based on which API was used to

manage the background network request. This kind of information could speed bug fixing—

for example, for AsyncTask, typically a proper implementation of onProgressUpdate() can

be used to fix the problem. In contrast, Pretect can flag which user interaction led to the

UI update delay, but cannot automatically provide details on what long-running operation

caused the delay.

Example. We discuss one issue in detail from the House Plans at Family Home

app, to make more concrete the workings of ProgressDroid and the distinction with Pre-

tect . Figure 4.6 shows screens for two user interactions and corresponding UI transitions for

the app (numbered 1 and 2), with excerpts from the corresponding dynamic traces appear-

ing below. In transition 1, when the user taps on the “SEARCH HOUSE PLANS” button,

a progress indicator is shown after the activity transition, while the network operation is

running. Upon the completion of the operation, a list of houses is shown to the user.
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1

2

10521:onClick:com.nvc.familyhomeplans.HousePlanSearchPage$9:$r3 = virtualinvoke $r2.<com.nvc.familyhomeplans.HousePlanSearchPage: android.app.Application getApplication()>()
[…]

10750:loadPlans:com.nvc.familyhomeplans.PlanListPage:$r1 = staticinvoke <android.app.ProgressDialog: android.app.ProgressDialog show
(android.content.Context,java.lang.CharSequence,java.lang.CharSequence,boolean,boolean)>($r0, " Working...", " Retrieving Data", 1, 0)
[…]
66778:getView:com.nvc.familyhomeplans.PlanListAdapter:$r11 = $r5.<com.nvc.familyhomeplans.data.vo.PlanVO: java.lang.String imageURL>
66779:getView:com.nvc.familyhomeplans.PlanListAdapter:virtualinvoke $r13.<com.nvc.familyhomeplans.ImageDownloader: void download(java.lang.String,android.widget.ImageView)>($r11, 

$r12)CAUGHT_FIRST_INST
66798:download:com.nvc.familyhomeplans.ImageDownloader:specialinvoke $r0.<com.nvc.familyhomeplans.ImageDownloader: void forceDownload(java.lang.String,android.widget.ImageView)>($r11, $r2)
66820:forceDownload:com.nvc.familyhomeplans.ImageDownloader:virtualinvoke $r7.<com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:android.os.AsyncTask execute(java.lang.Object[])>($r8)
66822:doInBackground:com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:$r3 = $r0.<com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask: java.lang.String url>")
66823:doInBackground:com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:$r1 = virtualinvoke $r4.<com.nvc.familyhomeplans.ImageDownloader: android.graphics.Bitmap 

downloadBitmap(java.lang.String)>($r3)")
66854:downloadBitmap:com.nvc.familyhomeplans.ImageDownloader:specialinvoke r29.<org.apache.http.client.methods.HttpGet: void <init>(java.lang.String)>($r13)
66855:downloadBitmap:com.nvc.familyhomeplans.ImageDownloader:r31 = (org.apache.http.client.HttpClient) $r16
66856:downloadBitmap:com.nvc.familyhomeplans.ImageDownloader:$r19 = interfaceinvoke r31.<org.apache.http.client.HttpClient: org.apache.http.HttpResponse 
execute(org.apache.http.client.methods.HttpUriRequest)>(r29)

[…]
66868:access$000:com.nvc.familyhomeplans.PlanListPage:r1 = $r0.<com.nvc.familyhomeplans.PlanListPage: android.app.ProgressDialog dismiss()>
[…]
66879:onPostExecute:com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:$r2 = (android.graphics.Bitmap) $r1
66880:onPostExecute:com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:virtualinvoke $r0.<com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask: void 

onPostExecute(android.graphics.Bitmap)>($r2)
66893:onPostExecute:com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:$r5 = $r0.<com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask: java.lang.ref.WeakReference 
imageViewReference>
66895:onPostExecute:com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:$r6 = virtualinvoke $r5.<java.lang.ref.WeakReference: java.lang.Object get()>()
66896:onPostExecute:com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:$r7 = (android.widget.ImageView) $r6

66909:onPostExecute:com.nvc.familyhomeplans.ImageDownloader$BitmapDownloaderTask:virtualinvoke $r7.<android.widget.ImageView: void setImageBitmap(android.graphics.Bitmap)>($r2)

Progress indicator start point

Progress indicator end point

UI update

User interaction

1

72450:onItemClick:com.nvc.familyhomeplans.PlanListPage$returnClickedItem:$r3 = $r0.<com.nvc.familyhomeplans.PlanListPage$returnClickedItem: com.nvc.familyhomeplans.PlanListPage this$0>
[…]
73463:moveToState:android.arch.lifecycle.LifecycleRegistry:$r0.<android.arch.lifecycle.LifecycleRegistry: boolean mHandlingEvent> = 0
73464:<init>:com.nvc.familyhomeplans.PlanDetailPage:specialinvoke $r0.<android.support.v7.app.AppCompatActivity: void <init>()>()
73479:onCreate:com.nvc.familyhomeplans.PlanDetailPage:specialinvoke $r0.<android.support.v7.app.AppCompatActivity: void onCreate(android.os.Bundle)>($r1)
[…]
73705:onCreate:com.nvc.familyhomeplans.PlanDetailPage:virtualinvoke $r20.<java.lang.StringBuilder: java.lang.StringBuilder 
append(java.lang.String)>("http://www.familyhomeplans.com/mobile/mobileDetail.cfm?switch=")
73782:onCreate:com.nvc.familyhomeplans.PlanDetailPage:virtualinvoke $r20.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>($r6)
73783:onCreate:com.nvc.familyhomeplans.PlanDetailPage:virtualinvoke $r20.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>("&token=")
73784:onCreate:com.nvc.familyhomeplans.PlanDetailPage:virtualinvoke $r20.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>($r22)
73785:onCreate:com.nvc.familyhomeplans.PlanDetailPage:$r6 = virtualinvoke $r20.<java.lang.StringBuilder: java.lang.String toString()>()
73786:onCreate:com.nvc.familyhomeplans.PlanDetailPage:$r11 = $r0.<com.nvc.familyhomeplans.PlanDetailPage: android.webkit.WebView webView>
73787:onCreate:com.nvc.familyhomeplans.PlanDetailPage:virtualinvoke $r11.<android.webkit.WebView: void loadUrl(java.lang.String)>($r6)

User interaction

UI update

Static
UI

update

2

Figure 4.6: App screens and trace details for the House Plans at Family Home app, including
(1) a correct transition and (2) a bug that would be missed by Pretect .

In the corresponding trace excerpt, a UI update call to setImageBitmap is the slicing

criterion. From the trace, we can see that setImageBitmap is called from onPostExecute()

of ImageDownloader.BitmapDownloaderTask, which is a subclass of AsyncTask. The semantic

dependence support for AsyncTask described in Section 4.1.5 enables ProgressDroid to

reason about dependencies between different AsyncTask functions. In this case, our extended

support enables to discover that the object reference stored in register $r2 at line number
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66909 contains the image bitmap stored variable $r1 at line 66823, the result of a network

request. The corresponding user event handler for the UI update is the onClick callback

at line 10521, and we can see the progress indicator start and stop calls (lines 10750 and

66868 respectively) between the event handler start and UI update trace entries.

For transition 2, when a house is selected by the user, the activity transition occurs

without displaying any progress indicator. Here, ProgressDroid creates the slice with

respect to the UI update at line 73787 in the second trace excerpt in Figure 4.6. The latest

user interaction found in the slice appears at line 72450. Since there are no progress indicator

operations in the relevant trace range, ProgressDroid reports a bug. However, Pretect

would miss this bug since upon the user interaction, an immediate transition happens to

the next activity, visible in the trace as the the onCreate() call at line 73479, labeled “Static

UI update.”

RQ3. Scalability

In general, we found that ProgressDroid could scale to moderate length execu-

tions (the 30 UI events used in our tests), but longer executions still pose challenges. The

running time of ProgressDroid increased proportionately to the trace size, and slicing

with was by far the most expensive computation performed by ProgressDroid. Trace

sizes for all our tests are shown in Table 4.2. For the app with the largest trace in our tests

(Meeting Guide, with a 278.7MB trace), instrumentation took 29 seconds, test execution

took 150 seconds, and analyzing the trace and computing slices took 49 minutes and 17

seconds.

We took some steps to reduce the cost of the expensive slicing step. First, as
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described in Section 4.1.5, we elide computing some slices entirely, as we found empirically

that they were not worth the cost. Also, we manually filtered out trace events from 21

well-known libraries (for advertising, analytic, reporting, authentication, etc.) that are

unrelated to our problem. In future work, we plan to improve scalability by performing

multiple short executions with DroidBot, using randomized exploration with different seeds,

and then analyzing these traces in parallel.

4.1.7 Related Work

To our best knowledge, Kang et al. [58] were the first to propose an automatic

tool for discovering missing progress indicators. We have compared our work to theirs in

Section 4.1.1 and Section 4.1.6 of the paper. We believe our approaches are complementary.

An advantage of Kang et al.’s approach is that it requires no API mapping, so it can find

unresponsiveness independent of the underlying long-running operation. But, this lack of

API knowledge can lead their technique to miss many bugs, as shown in Section 4.1.6. An-

other advantage of the Kang et al. approach is that they need not instrument applications,

since they observe app behavior at a system level. Instrumentation of production APKs

can fail for a variety of reasons, as discussed in Section 4.1.6, though we expect this to be

much less of a problem in real-world developer usage (since the developers have the source

code and control the entire build process).

Previous work has studied automatic detection of other types of user interface

bugs, such as web page layout failures [106, 70, 15, 88] and accessibility issues [84]. Other

work detects potential crashes from performing user interface updates on a background

thread [96, 42]. But, other than Kang et al., we are unaware of previous work capable of
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detecting missing progress indicator bugs.

Our work has interesting relationships to detection of event-based race conditions

for web and mobile applications [51, 71, 26, 86]. Like event races, progress indicator bugs

involving slow network requests may be difficult to identify with testing in a standard

developer environment, as network connections tend to be very fast. Detecting both types

of bugs require tools that can precisely model asynchronous application behaviors. More

recently, static analysis approaches have been devised for detecting event races [89, 53]. In

future work we plan to investigate static approaches to detecting common progress indicator

bugs as well.

Android’s Strict Mode [3] prevents certain types of I/O operations from running

on the main thread. When such operations run on the main thread, they block the user

interface from updating, potentially leading to an ANR dialog [4] (see the example in

Section 4.1.1). While Strict Mode can help catch some cases of unresponsiveness, it does not

give any warning when I/O is performed on a background thread without a corresponding

progress indicator.

Lin et al. [65] present a refactoring to transform usages of AsyncTask to types

like IntentService more suitable for long-running tasks. Their refactoring also translates

the progress indicator code from an AsyncTask into corresponding IntentService code. It

would be interesting future work to see if such an approach could also detect and introduce

progress indicator code when it is missing.

A wide variety of work studies specification mining [19], which can learn API usage

patterns from program executions or from static analysis or machine learning over large code
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bases [92, 78]. Progress indicator bugs often involve typestate of multiple related objects

(the progress indicator, the network request, UI data structures), and learning of multi-

object specifications is not supported by most techniques (the work of Pradel et al. is an

exception [85]). Even so, specification mining could be a useful way to handle the multitude

of networking and progress indicator APIs used in practice without needing handwritten

models.

4.1.8 Summary

Missing progress indicator bugs are a serious problem in modern applications, but

understudied by the software engineering community. We have described a novel technique

for discovering missing progress indicator bugs based on program semantics, in particular

program dependencies. The technique was implemented in a tool ProgressDroid, which

found several bugs in real-world Android applications that would have been missed by previ-

ous techniques. Our hope is that our semantic definition of these bugs and our implemented

tool will lead to more future work on addressing this type of user interface issue.

4.2 Vulnerabilities in Identifying Unique Devices in Android

In this section, we briefly show a new type of vulnerability in unique device identifi-

cation techniques used in mobile apps which can lead to financial loss. We leverage dynamic

slicing technique to identify the unique device identifier parameters. We show how one can

get an illicit financial benefit of creating fake activations from a vulnerable unique device

identification mechanism. Lastly, we present the future research direction in this domain.

85



First we provide some background knowledge of unique device ID generation ap-

proaches used in Android apps and then we give a brief overview of the possible vulnerability

in mobile apps that use multiple distributors/promoters.

4.2.1 Unique Device Identification in Android

The Android OS offers different types of IDs with different behavior characteristics

for various test cases. Based on Android documentation [1], there are four types of IDs with

respect to the resettability and persistence feature of the ID:

1) Session-only: A new ID is generated every time the user restarts the app.

2) Install-reset: ID survives app restarts but a new ID is generated every time the user

re-installs the app.

3) FDR-reset: ID survives app re-installs but a new ID is generated every time the user

factory resets the device.

4) FDR-persistent: ID survives factory resets.

The later one is used when developers need to identify a unique first installation

of the app. There are many reasons that developers may need to identify a unique first

installation of the app rather than a unique user registered to the app. Identifying the first

installation of the app requires gathering device information.

In general, several solutions exist for identifying unique ID in Android apps but

none is perfect. Different solutions and their advantages and disadvantages are categorized

in Table 4.4. As shown in Table 4.4, none of the approaches are perfect and reliable enough

for identifying a unique device in Android. Hence, if developers want to absolutely identify

a particular device physically, they usually combine different approaches/parameters to
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ID Approach Advantages Disadvantages

Unique Telephony Number To retrieve this ID, - Survives to re-installation, - Limited to smarthphones
(IMEI, MEID, ESN, IMSI) TelephonyManager.getDeviceId() rooted, or factory reset (i.e., device should use a

is used; it returns IMEI in SimCard)
the case of GSM phones and - For dual sim devices, we
MEID or ESN in the case of get two different values
CDMA phones - Needs android.permission.

READ PHONE STATE

MAC and Bluetooth address Unique identifier for devices with - Survives factory reset - Not all devices have
Wi-Fi or Bluetooth hardware Wi-Fi connections

- Does not work for newer
versions of Android
(Android 6.0 and up)
- WifiManager.getScanResults(),
BluetoothDevice.ACTION
FOUND, and

BluetoothLeScanner.startScan
(ScanCallback) are needed

Serial Number To retrieve this ID, - Works in devices without - Not all android devices
android.os.Build.SERIAL is used telephony services have a serial number

Secure Android ID To retrieve this ID, - Available for both - Changes after factory reset
Settings.Secure.ANDROID ID smartphones and tablets - Buggy implementation
is used

GUID To retrieve this ID, - Good solution for - Changes per installation
UUID.randomUUID() is used particular installation

Table 4.4: Unique ID approaches in Android apps.

generate a customized unique ID.

4.2.2 Distribution via Multiple Channels

Mobile apps can be distributed via several channels such as different App stores

or third party app promoters. For non-free promoters, the amount of financial transac-

tions between the mobile app developer/vendor and the promoter is based on the number

of devices that have installed the app. Hence, the app developers/vendors who want to

distribute their app via multiple channels need to have a mechanism to track the number of

devices that have installed their app. None of the existing approaches is perfect and reliable

for the purpose of identifying unique device installation. Hence, developers implement their

own approaches to generate these unique IDs. Next, we show the possible vulnerability in

such mechanisms.

87



4.2.3 Vulnerabilities in Unique Device Identifiers

To show the potential vulnerabilities in unique device identification techniques,

we study several Android apps from one of the largest shopping companies in China. We

anonymize the name for security concerns. For this purpose, we aim to find the relevant

parameters that the app sends to the servers over the first network communications between

two. We use AndroidSlicer [24] both to instrument the apps to collect dynamic traces

and to compute slices over those traces with respect to the slicing criteria. For slicing

criteria, we use the point that the app sends parameters to the server. We illustrate this

in Figure 4.7. The slice (left) points out the important instructions in the slice with respect

to the network execute() call argument register ($r2 ). The register ($r2 ) is data dependent

on register ($r4 ) as the URL entity register which is constructed from various parameters

(e.g., deviceid, brand, model, etc). We repeat the slicing for the first 3 different network

requests that the app makes within the first moments of execution. We collect the slices

for all 3 network communications as shown in Figure 4.7 (right). After this, we repeat the

requests using fake and still legitimate-look values (for example the same size and format

as the original values). Our experiments show that 25 out of 160 (16%) randomly fake

activations were successful and were considered as a new installation on a unique new

device by the company. Hence, an attacker can cause serious financial losses by repeatedly

activating fake devices on the company’s servers.

In this section, we presented a new type of potential vulnerability in identifying

app installations on unique devices in Android and we showed how we can use a dynamic

program analysis technique such as slicing to detect the unique ID generation process and
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$r2 = new org.apache.http.client.methods.HttpPost
$r3 = "http://REGISTER_SERVER_ADDRESS"
$r2.<init>($r3) 
$r4 = new org.apache.http.client.entity.UrlEncodedFormEntity 
$r4.<init>($r0, $r5)
$r2.setEntity($r4)
$r20.execute($r2 )

$r0.add($r1)

$r0.add($r1)

$r0.add($r1)

$r1 = <android.os.Build: java.lang.String MODEL>

$r1 = <android.os.Build: java.lang.String BRAND>

$r1 = <android.telephony.TelephonyManager: 
java.lang.String getDeviceId()>()

Server 1 (register node 1)

Server 2 (register node 2)

Server 3 (report node)

deviceid
brand
model

…

appinfo
deviceinfo

…

deviceinfo
UUID

UNIONID
…

Figure 4.7: Analyzing UUID parameters generation via slicing in the vulnerable app.

then re-generate the process using fake values to fool the server into perceiving the fake

activation as a normal unique new activation.

Nonetheless, there exist a wide range of potentially interesting avenues for future

research in this domain. For example, another use case of unique IDs is for apps with initial

discounts (e.g., free delivery for first order, free items for new users of the app, etc). An

interesting research direction is to analyze the mechanisms that these apps developers/ven-

dors use to generate the initial discounts for legitimate users via unique device identification

mechanisms and identify the potential vulnerabilities in these techniques.
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Chapter 5

Efficient Genetic Algorithm for

Graph Anonymization

In this chapter, we address the issue of preserving user privacy in graph data

anonymization techniques. As it has been shown that state-of-the-art graph anonymization

techniques suffer from a lack of strong defense against De-Anonymization (DA) attacks

mostly because of the bias towards utility preservation, we propose GAGA, an Efficient

Genetic Algorithm for Graph Anonymization, that simultaneously delivers high anonymiza-

tion and utility preservation.

5.1 Background and Motivation

Preserving data privacy has been widely studied. One of the main approaches used

to preserve data privacy is based upon the concept of anonymity. Graphs and databases

have played an important role in this domain [75, 25, 69, 12, 23]. In this work, we address
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the data privacy preservation in graphs, specifically for graphs representing social networks.

A number of graph anonymization techniques have been proposed to preserve users’ privacy.

We discuss the limitations of these techniques first from the perspective of defense against

DA attacks and then from the perspective of utility preservation to motivate our approach.

As a concrete motivating example, consider the sample graph shown in Figure 5.1.

The social graph on the left side is going to be publicly published. Assume that an adversary

knows that Alice has 2 friends and each of them has 4 friends, then the vertex representing

Alice can be re-identified uniquely in the network (black vertex in Figure 5.1). The rea-

son is that no other vertices have the same 2-neighborhood structure to the 2-neighborhood

structure for Alice. Existing graph anonymization techniques fail to anonymize this ex-

ample graph so that an adversary cannot re-identify any user certainly. The k-degree-

anonymity based algorithm in [67] removes/adds edges from/to the original graph to create

a graph in which for every vertex there are at least k-1 other vertices with the same degree.

Based on k-degree-anonymity, the graph is 2-degree-anonymized. In the other approach,

k-neighborhood-anonymity based algorithm in [120] adds edges to the original graph to cre-

ate a graph in which for every vertex there are at least k-1 other vertices with the same

1-neighbourhood graphs. Based on k-neighborhood-anonymity, the graph is 2-neighborhood-

anonymized. Hence, the existing k-anonymity approaches are inadequate when the attacker

has more complex knowledge about the neighborhood structures.

Based upon the above discussion, we conclude that we must support

k(d)-neighborhood-anonymity for any d, instead of k-degree-anonymity or k-

neighborhood-anonymity for d=1-neighborhood considered in prior works. That
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Figure 5.1: Graph to be publicly published on the left and 2-neighborhood structures for
each vertex on the right. Black vertex represents Alice.

is, our approach will provide an algorithm that efficiently enables d-neighborhood

privacy preservation for any d to protect against attacks that use complex neigh-

borhood acknowledgements of the target vertex.

Next we consider the issue of utility preservation. SecGraph introduced by Ji et

al. [56], evaluates different anonymization algorithms using various utilities. According to

their study, k-neighborhood-anonymity preserves most of the graph and application utilities.

The one application utility which k-neighborhood-anonymity algorithm cannot preserve is

the role extraction utility where it considers the uniqueness of each vertex based on their

structure in the graph. Among all anonymization algorithms, the Rand Switch approach

introduced in [115] where existing pair of edges are switched randomly n times, is the only

one that can preserve role extraction.

Because of the above reason, we give higher priority to edge switching

over edge adding and removing since edge switching can effectively preserve

degree and its related utilities (e.g., role extraction) leading to preserving more

utilities. We further apply edge switching to the k(d)-neighborhood-anonymity

model and use Genetic Algorithm as the main approach for utility preservation.
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Summary: With more knowledge about the local neighborhood structures in a

social network, an adversary has more chances to re-identify some victims. We show that

existing anonymization techniques not only do not present a complete model to defend

against DA attacks, specially structure-based attacks, but also they fail to make minimum

number of changes. In contrast, an additional goal of our approach is applying fewer changes

and thus providing a better trade-off between anonymization and utility preservation.

As a motivating example, Figure 5.2(a) depicts the original graph, and the

anonymized graphs generated by our approach, k-degree Anonymization, and Random Walk

Anonymization techniques using the minimum values for the parameters of each approach

(k=2 and d=2 for our approach, k=2 for k-degree Anonymization, and r=2 for Random

Walk Anonymization). Assume an adversary knows that a user has 3 friends and only one

of them has another friend, then the user can be re-identified easily (colored bigger vertex

in Figure 5.2(a)), since this is the only user with that friendship neighborhood structure.

(Our Approach) In Figure 5.2(b), our approach applies minimum number of

changes of 3 edges switches and 1 edge removal to the original graph (i.e., we preserve

degrees for all vertices except for only two vertices). We anonymize the graph in a way

that for each vertex there is at least one other vertex with similar 2-neighborhood structure

(i.e., there is another user with similar 2-neighborhood friendship to the target user 2-

neighborhood depicted with two colored vertices which reduces the re-identification chance

by 50%).

(K-degree Anonymization) In Figure 5.2(c), by applying slightly more changes

compared to our approach, the k-degree-anonymity concept introduced in [67] is achieved
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Figure 5.2: Sample social network graph (a) Original graph to be publicly published, big-
ger colored node shows the victim vertex (b) Anonymized graph using our approach with
k=2 and d=2, bigger colored nodes show the victim vertex and the vertex with similar
2-neighborhood (c) Anonymized graph using k-degree Anonymization in [67] with k=2 (d)
Anonymized graph using Random Walk Anonymization in [76] with r=2.

which is weaker in comparison to k(d)-neighborhood-anonymity. This means that for each

vertex there is at least one other vertex with similar degree which is already satisfied with

our approach. Hence, the adversary can still re-identify the target user easily.

(Random Walk Anonymization) In Figure 5.2(d), while introducing much

more noise compared to our approach, this technique only ensures some level of link privacy.

The reason of comparing our approach with Random Walk Anonymization technique is that

it is the only graph anonymization technique which takes the concept of neighborhoods

structures into consideration. That is, in social network graph G, replace an edge (u,v) by

the edge (u,z) where z denotes the terminus point of a random walk algorithm. As a result,

noise is introduced into the graph leading to huge data loss.

5.2 GAGA

In this section, we present an Efficient Genetic Algorithm for Graph Anonymiza-

tion (GAGA). GAGA creates an optimal anonymized graph by applying minimum number
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Figure 5.3: GAGA overview.

of changes to the original graph in comparison to existing approaches which make the graph

less responsive to various queries. GAGA can preserve data privacy against many compli-

cated DA attacks. To achieve these goals we use Genetic algorithm (GA) as the main

approach. GAs are optimization algorithms that have been applied on a board range of

problems like classification, game theory, bioinformatics etc. In this section, we describe

how we apply GA to the graph anonymization problem. Figure 5.3 shows an overview of

GAGA. Now we discuss each step of GA that we used in GAGA:

5.2.1 Precomputation Step

Before applying the GA to the original graph, we perform precomputations that

evaluate the original graph so that we can choose the best parameters to create the opti-

mal k(d)-neighborhood-anonymized graph. As a result, the original graph is categorized as

one of: good, bad, or ugly scenarios. In the good scenario, the original graph is close to a

k(d)-neighborhood-anonymized solution and hence it needs a small number of changes. In

the bad scenario, many vertices do not satisfy the k(d)-neighborhood-anonymity and hence

the original graph needs changes to large number of vertices. In the ugly scenario, few ver-
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tices violate the k(d)-neighborhood-anonymity but they have a very different neighborhood

compared to other vertices; hence it requires huge changes to a small number of vertices.

Our precomputations involve the following steps:

Step 1. Percentage of violating vertices: We identify the vertices that violate

the k(d)-neighborhood-anonymity (i.e., there are less than k-1 other vertices with similar d-

neighborhood to the d-neighborhood of these violating vertices) and compute the percentage

of violating vertices. A low percentage of violating vertices means that by applying some

changes to a small group of vertices, we can create a k(d)-neighborhood-anonymized graph.

We further observe that the changes can be small or big themselves. Hence, we consider

a threshold value (Tpv) and if the percentage is below the threshold value, we consider the

graph as one of the good ones (i.e., small changes to small number of vertices are required)

or an ugly one (i.e., big changes to small number of vertices are required). If the percentage

is above the threshold value, we consider the graph as bad (i.e., some changes to large

number of vertices are required).

Step 2. Violating vertices’ neighborhoods analysis: After the previous step,

the original graph is categorized as good/ ugly or bad. To distinguish between good and ugly

scenarios, we analyze the neighborhoods around violating vertices and compare them with

the neighborhoods of vertices that satisfy the k(d)-neighborhood-anonymity. If some of

the violating vertices have a very different neighborhood than others (we simply compare

degrees for this purpose), we categorize the graph as ugly. Otherwise, we categorize the

graph as good. To analyze the rate of difference, we again define a threshold value (Tu) so

that if the value is above the threshold we consider the graph as ugly scenario. Otherwise, if
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R0.60

(a)Good (b)Bad (c)Ugly

Figure 5.4: Black vertices represent the violating vertices. Assume that k=2, d=1, and
Tpv=10%. (a) Good scenario: 5% of vertices violate the 2(1)-neighborhood-anonymity. (b)
Bad scenario: 66% of vertices violate the 2(1)-neighborhood-anonymity. (c) Ugly scenario:
9% of vertices violate the 2(1)-neighborhood-anonymity but the violating vertex has a very
different neighborhood than other vertices.

the value is below the threshold, we consider the graph as good scenario. We illustrate the

scenarios using three sample graphs in Figure 5.4. The treatment for each of three scenarios

is described next:

Good Scenario. In the good scenario, in the beginning of the GA process, we

focus only on violating vertices according to a probability and apply the GA to them. For

this purpose, we select the vertices –selection in GA– from violating vertices to apply the

changes (switches, adds, removes) –mutation in GA– so the number of violating vertices

will decrease. As we proceed forward towards the end of the process, we select some vertices

from other non violating vertices and apply the changes to them based on a probability.

This increases the probability of searching more areas of the search space causing the graph

to become k(d)-neighborhood-anonymized faster.

Bad Scenario. In the bad scenario, there is no advantage to focus only on

violating vertices neighborhoods. So we apply the GA to the whole graph. For this purpose,

we select the vertices –selection in GA– from all the vertices in graph to apply the changes.
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In comparison to the good scenario, the bad scenario, in general requires more changes

and thus more time to create the k(d)-neighborhood-anonymized graph. As we will see in

Section 5.3, even in bad scenarios, our results are much more efficient in terms of minimum

number of changes and hence utility preservation compared to the existing techniques.

Ugly Scenario. In the ugly scenario, we again focus on violating vertices in the

beginning of the GA process like in good scenario but we apply more changes in each step

of GA compared to good scenario so that the graph becomes k(d)-neighborhood-anonymized

faster. Again, as we move forward, we select some vertices from other non-violating vertices

to increase the probability of searching more areas of the search space.

5.2.2 Initial population

In this step we randomly apply edge switches on the original graph to create a fixed

number of chromosomes as the initial population. We present chromosome representation

details in section 5.2.6. As we discussed earlier, we create a larger initial population in bad

scenarios compared to the good and ugly scenarios.

5.2.3 Fitness function and Selection

For each chromosome, the fitness value – which defines how good a solution the

chromosome represents – is computed and the chromosomes are selected for reproduction

based on their fitness values. Therefore, first, we need to define a function which computes

the distance between the modified graph and the original graph (fitness function) and

second, we need a function to compute the distance between the modified graph and the

solution of a k-neighborhood-anonymized graph (selection function). We define the fitness

98



function as below:

fitness(G, G̃) =
1

size((E \ Ẽ) ∪ (Ẽ \ E))
(5.1)

Given the original graph , is the set of vertices and is the set of edges in , and

the modified graph G̃(Ṽ,Ẽ), we evaluate the distance between the modified graph and the

original graph by computing the number of edges in the union of relative complement of E

in Ẽ and relative complement of Ẽ in E. Finally, we consider the inverse of the computed

number of different edges so that a graph with higher fitness value has fewer changes. After

we compute the fitness values, we use roulette wheel selection so that the chromosomes

with a higher fitness value will be more likely to be selected. With this method, in each

step of GA we select those chromosomes which need fewer modifications to the original

graph. As we discussed earlier, we need to define a selection function as well. We define the

selection function as the inverse of the number of vertices in the graph that do not satisfy

the k(d)-neighborhood-anonimity concept for a given k and d. Using this selection function,

in each step of GA, we select those chromosomes which are closer to the solution.

5.2.4 Crossover and mutation

Crossover and mutation are the two basic processes in GA. Crossover process

copies individual strings (also called parent chromosomes) into a tentative new population

for genetic operations and mutation is used to preserve the diversity from one generation

to the next. Mutation prevents the GA from becoming trapped in a local optima. For

crossover, the main function we employ is edge switch as follows. Given graph and a pair
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of edges (u,v) ∈ E and (w,z) ∈ E such that (u,w) /∈ E and (v,z) /∈ E, we remove edges (u,v)

and (w,z) and we add edges (u,w) and (v,z) to the graph. Note that edge switch can be

considered as the process of combining the parent chromosomes where the parents are the

chromosome and a copy of itself.

For mutation, we remove/add one or some number of random edges to some chro-

mosomes. Specifically in our GA, first we try to perform edge switch for a certain number

of times (s in Figure 5.3). If we fail to reach to a solution by applying s edge switches,

then we start to remove/add one or some number of random edges to some chromosomes

to create the new generation and then we repeat the GA for the new generation. If it is

a good scenario, we remove/add very small number of edges in each step and if it is a bad

scenario, we remove/add greater number of edges in each step. To decide whether to add

or remove edges, if the selected vertex has a degree higher than average graph degree, we

remove an edge while if the vertex degree is lower than average degree, we add an edge.

5.2.5 Checking stopping criteria

GAGA always returns at least one k(d)-neighborhood-anonymized graph as the

solution by trying to apply minimum number of changes (switches, adds, removes) to the

original graph. Therefore, in general we only have one stopping criteria except for in-

valid cases\inputs i.e. suppose a graph with —V —=n is given and a k(d)-neighborhood-

anonymized graph is requested for some k¿n. The problem has no solution unless we add

fake vertices. GAGA does not introduce any fake vertices as in some previous works [33, 63],

since adding fake vertices often makes the generated graph useless by changing the global

structure of the original graph.
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5.2.6 Implementation highlights

We implemented GAGA in Java. The implementation challenges are as follows.

Chromosomal representation. As discussed earlier, we need to represent the

graph in an effective way such that k(d)-neighborhood-anonymity concept can be put into

action and the d distance neighborhood for each vertex can be easily considered. For this

purpose, we represent the graph as a HashMap structure where each key represents a vertex

of the graph and the value represents the d-neighborhood structure around the vertex.

Thresholds and parameters. As we discussed, k and d are the main parameters

of GAGA which provide the data owners some application-oriented level of control over

achieving the desired level of data preservation and anonymization. Besides the k and d

parameters, GAGA contains other thresholds and parameters used in GA: initial population

size, s as the number of maximum edge switches before remove/add one or some number of

random edges, ,thresholds Tpv and Tu to categorize the scenario of the graph, a parameter

to indicate finding local maxima as opposed to the global maximum for scenarios where the

user/data owner can tolerate some number of violating vertices. GAGA receives the above

parameters as the input.

Graph isomorphism test. The problem of graph isomorphism which deter-

mines whether two graphs are isomorphic or not is NP [39]. The graph isomorphism tests

are frequently conducted in the selection phase of GA. For this purpose, we used the VF2

algorithm introduced in [34] as a (sub)graph isomorphism algorithm with efficient perfor-

mance specially for large graphs. Since the nature of any isomorphism test is that it takes

time, we perform multiple level of prechecks to avoid applying the algorithm as much as
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possible. As a simple example, when two subgraphs have different number of vertices (or

edges), or different degree sequences, we do not apply the VF2 algorithm.

5.3 Experimental Evaluation

In this section, first, we evaluate the effectiveness of GAGA against the existing

De-Anonymization (DA) attacks using real world graph. Second, we evaluate GAGA under

various utility metrics and compare the results with the state-of-the-art graph anonymiza-

tion approaches. Finally, we compare the performance of GAGA with work by Zhou and

Pei [120]. All the experiments were conducted on a PC running Ubuntu 16.04 with an Intel

Core i7-4770 CPU running at 3.4 GHz and 23 GB RAM.

5.3.1 Evaluating GAGA against DA attacks

As discussed in Section 5.1, Ji et al. [56] implemented the SecGraph tool to con-

duct analysis and evaluation of existing anonymization techniques. In this subsection, we

compare GAGA with the state-of-the-art anonymization techniques using SecGraph against

different DA attacks.

Dataset and DA attacks. We use Facebook friendship network collected from

survey participants using the Facebook app [61] consisting of 61 nodes and 270 undirected

edges representing the friendship between users. We evaluate the anonymization approaches

against the following five practical DA attacks:

1) Narayanan and Shmatikov [79]: They proposed a re-identification algo-

rithm to de-anonymize the graph based on the graph topology. Here the attacker, in ad-
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dition to having detailed information about a very small number of members of the target

network, also has access to the data of another graph (a subgraph from the target graph or

another social network). Thus, the power of the attack depends on the level of the attacker’s

access to auxiliary networks.

2) Srivatsa and Hicks [95]: They presented an approach to re-identify the

mobility traces. They used the social network data of the participating users as the auxiliary

information. They used heuristic based approach on Distance Vector, Randomized Spanning

Trees, and Recursive Subgraph Matching to propagate the DA.

3) Yartseva and Grossglauser [114]: They proposed a simple percolation-

based graph matching algorithm that incrementally maps every pair of node with at least r

(predefined threshold) neighboring mapped pairs. They also showed that the approach used

in [79] has a sharp phase transition in performance as a function of the seed set size. That

is, when the seed set size is below a certain threshold, the algorithm fails almost completely.

When the number of seeds exceeds the threshold, they achieve a high success rate. This

is again consistent with the evaluation of [79] which shows that the power of the attack

depends on how large the auxiliary networks are.

4) Korula and Lattanzi [60]: They presented a similar approach to [114] where

they use an initial set of links of users across different networks as the seed set and map a

pair of users with the most number of neighboring mapped pairs

5) Ji et al. [57]: They proposed two DA attack frameworks, namely De-

Anonymization and Adaptive De-Anonymization. The later attack is used to de-anonymize

data without the knowledge of the overlap size between the anonymized data and the aux-
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iliary data. In their attack, besides the vertices’ local properties, they incorporate global

properties as well.

Our evaluation methodology is basically the same as in [56]. We compare GAGA

with the following anonymization techniques:

Add/Del approach introduced in [67] which adds k randomly chosen edges fol-

lowed by deletion of other k randomly chosen edges.

Deferentially Private Graph Model (DP) proposed in [90], in which a parti-

tioned privacy technique is employed to achieve differential privacy.

K-Degree Anonymization (KDA) technique presented in [67], in which some

edges are added to or removed from the original graph so that each vertex has at least k-1

other vertices with the same degree.

Random Walk Anonymization (RW ) approach proposed in [76], where the

graph is perturbed with replacing the edges by random walk paths in order to provide link

privacy.

t-Means Clustering Algorithm (t-Means Cluster) introduced in [101], uses

conventional t-Means algorithm to create clusters with size of at least k.

Union-Split Clustering (Union Cluster) technique presented in [101], is sim-

ilar to t-Means Clustering Algorithm while cluster centers are not chosen arbitrarily to

bypass the variability in clustering results.

We present the results in Table 5.1. The criteria for parameters settings for each

anonymization technique are the same to settings as in [56] which follows the same settings

in original works. That is for Union Cluster, k is the size of each cluster; for Add/Del, f is the
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fraction of edges to be modified; for KDA, k is the anonymization parameter indicating the

number of similar nodes with respect to degree; for DP, ε is the parameter that determines

the amount of noises that must be injected into the graph where a larger value of ε means

that it is easier to identify the source of the graph structure and hence a lower level of graph

privacy is preserved; for t-Means Cluster, t is the parameter which shows the minimum size

of each cluster; for RW, r is the number of steps; and finally, for GAGA, k indicatess the

number of similar nodes with respect to neighborhood structures and d shows the level

of d-neighborhood. For DA attacks, we randomly sample a graph with probability s=80%

and s=90% from the original graph as the auxiliary graph and then we apply the graph

anonymization approaches to obtain the anonymized graphs. A larger value for s results in

successfully de-anonymizing more users since with a large s, the anonymized graph and the

auxiliary graph are likely to have similar structures. We also feed each DA technique 20 pre-

identified seed mappings. Then we use the auxiliary graph to de-anonymize the anonymized

graph. We use Union Cluster as the baseline for our evaluation. For each anonymization

technique, SecGraph provides the number of successfully de-anonymized users – this number

for Union Cluster is given in parenthesis. For rest of the techniques, Table 5.1 provides

the factor by which number of successfully de-anonymized users is reduced in comparison

to the baseline. Note that GAGA is the optimal solution against all DA attacks

(bold values in Table 5.1) as for all DA attacks GAGA offers the most defense

– in fact the number of de-anonymized users is either 0 (perfect defense) or 1

(near perfect) of 50–57. GAGA (wih d=3) reduces the de-anonymization rate

by at least a factor of 2.7× over the baseline. A factor of ∞ means no user

105



DA s Union Add/Del KDA DP t-Means RW GAGA
Cluster Cluster

(k=5) (f=0.23) (k=5) (ε=10) (t=5) (r=2) (k=5 , d=1) (k=5 , d=2) (k=5 , d=3)

Ji et al. [57] 0.8 1 (2 of 42) 1.1× 1.1× 1.2× 1.3× 1.8× 1.5× 2.3× black2.7× (1 of 57)
0.9 1 (2 of 37) 1.1× 1.1× - 1.4× - 1.4× 2.2× black3.1× (1 of 57)

Korula and 0.8 1 (2 of 48) 1.2× 1.2× 1.2× 1.2× 1.3× 1.5× black∞ black∞ (0 of 51)
Lattanzi [60] 0.9 1 (2 of 45) 0.9× 1.2× - 1.1× - 1.2× 2.5× black∞ (0 of 50)
Narayanan and 0.8 1 (3 of 51) 0.8× 1× 1× 1.6× 1.4× 1.5× black3.1× black3.1× (1 of 53)
Shmatikov [79] 0.9 1 (3 of 44) 0.8× 1× - 1.5× - 1.5× 3.3× black3.6× (1 of 53)
Srivatsa and 0.8 1 (2 of 42) 1.1 × 1.1× 1.2× 1.3× 1.6× 1.5× 1.9× black2.7× (1 of 57)
Hicks [95] 0.9 1 (2 of 38) 1× 1.1× - 1.3× - 1.4× 1.9× black3× (1 of 57)
Yartseva and 0.8 1 (4 of 52) 1.4× 1.7× 1.8× 2× 2.2× 2.1× 3.6× black4× (1 of 52)
Grossglauser [114] 0.9 1 (4 of 44) 1.3× 1.5× - 1.7× - 2× 3.9× black4.7× (1 of 52)

Table 5.1: Comparing GAGA’s preservation of privacy with existing approaches introduced
in [56] against five DA attacks. Using Union Cluster as the baseline, the factor by which
number of de-anonymized users is reduced by each other technique is presented.

has been de-anonymized successfully. Larger values of d make GAGA more powerful

against DA attacks. This is because each DA attack uses a combination of structural

properties/semantics while each anonymization technique usually focuses on one structural

property/semantic (e.g., vertex degree in KDA [67] or 1-neighborhood-anonymity in [120]).

However in GAGA we use k(d)-neighborhood-anonymity for any d-neighborhood which makes

all complex neighborhoods structures similar to at least k-1 other neighborhoods structures

followed by other structural properties/semantics changes. Note that no values for DP and

RW when s=90% are given because the anonymized graphs obtained in these two cases do

not have enough edges; however, we are able to report the results for them when s=80%.

5.3.2 Evaluating GAGA for Utilities

Now we compare GAGA with the state-of-the-art anonymization techniques using

SecGraph from the graph and application utility preservation perspective.

Dataset and utility metrics. We use DBLP co-authorship network [61] con-

sisting of 8734 nodes and 10100 undirected edges representing the co-authorship where two
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authors are connected if they publish at least one paper together. We apply the same

graph anonymization approaches that we used in previous subsection along with GAGA to

anonymize the original graph and then measure how each data utility is preserved in the

anonymized graph compared to the original graph. We use the following 16 popular graph

and application utility metrics to measure the utility preservation:

Authorities Score: which is the sum of the scores of the hubs of all of the vertex

predecessors.

Betweenness Centrality: which indicates the centrality of a vertex. It is equal

to the number of shortest paths from all vertices to all others that go through the specific

vertex.

Closeness Centrality: which is defined as the inverse of the average distance to

all accessible vertices.

Community Detection: a communication in a graph is a set of vertices where

there are more connections between the members of the set than the members to the rest

of the graph. SecGraph uses the hierarchical agglomeration algorithm introduced in [113]

to measure the Community Detection.

Degree: which indicates the degree distribution of the graph.

Effective Diameter: which is the minimum number of hops in which some

fraction (say, 90%) of all connected pairs of vertices can reach each other.

EigenVector: let A be the adjacency matrix of a graph G, the EigenVector is a

non-zero vector v such that Av = λv, where λ is a scalar multiplier.

Hubs Score: which is the sum of the authorities scores of all of the vertex suc-

107



cessors.

Infectiousness: which measures the number of users infected by a disease in a

infectious diseases spreading model where each user transmits the disease to its neighbors

with some infection rate.

Joint Degree: which indicates the joint degree distribution of the graph.

Local Clustering Coefficient: which quantifies how close the vertex neighbors

are to being a complete graph.

Network Constraint: which measures the extent to which a network is directly

or indirectly concentrated in a single contact.

Network Resilience: which is the number of vertices in the largest connected

cluster when vertices are removed from the graph in the degree decreasing order.

Page Rank: which computes the ranking of the vertices in the graph.

Role Extraction: which automatically determines the underlying roles in the

graph and assigns a mixed-membership of the roles to each vertex to summarize the behavior

of the vertices. SecGraph uses the approach in [47] to measure the Role Extraction.

Secure Routing: to address the security vulnerabilities of P2P systems, Marti et

al. [74] proposed an algorithm to leverage trust relationships given by social links. SecGraph

uses their approach to measure the Secure Routing utility metric.

Table 5.2 presents the results and provides the parameters that were used for each

approach. Each value in the table represents one of the the following: Cosine Similarity in

case of Authorities Score, Betweenness Centrality, Closeness Centrality, Degree, Hubs Score,

Infectiousness, Joint Degree, Local Clustering Coefficient, Network Constraint, Network
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Utility Add/Del DP GAGA KDA RW t-Means Cluster Union Cluster
(f=0.06) (ε=10) (k=5, d=1) (k=5) (r=2) (t=5) (k=5)

Authorities Score 0.4995 0.324 0.7079 0.4013 0.3792 0.6773 0.6976

Betweenness Centrality 0.8256 0.762 0.9606 0.8459 0.8247 0.9378 0.8755

Closeness Centrality 0.9123 0.785 0.9604 0.9788 0.8612 0.9632 0.9832

Community Detection 0.3926 0.1766 0.8783 0.8747 0.2933 0.5324 0.9103

Degree 0.9877 0.9265 0.9998 0.9979 0.9648 0.9972 0.9989

Effective Diameter 0.9559 0.6268 0.9632 0.9205 1.7626 0.9394 0.9629

EigenVector 0.8562 0.4443 0.9927 0.6573 0.5573 0.9598 0.9909

Hubs Score 0.6844 0.2971 0.7259 0.5274 0.3967 0.6997 0.686

Infectiousness 0.8033 0.8675 0.8393 0.8364 0.7093 0.8513 0.8622

Joint Degree 0.7645 0.6102 0.9875 0.7713 0.2679 0.6832 0.7943

Local Clustering Coefficient 0.9846 0.9074 0.9977 0.997 0.9561 0.9909 0.9939

Network Constraint 0.9885 0.9777 0.9992 0.9999 0.987 0.9994 0.9999

Network Resilience 0.9989 0.9954 0.9997 0.9999 0.9913 0.9999 0.9999

Page Rank 0.3722 0.3323 0.3766 0.3681 0.3625 0.3758 0.3742

Role Extraction 0.5519 0.2271 0.6685 0.3134 0.2418 0.5282 0.6248

Secure Routing 1.0346 1.1149 1.0024 1.007 0.9571 0.9505 1.1717

Table 5.2: Comparing the utility preservation of GAGA with the utility preservation of
existing approaches introduced in [56] with respect to various utilities.

Resilience, Page Rank, Role Extraction, and Secure Routing; Ratios in case of Effective

Diameter and EigenVector; and Jaccard Similarity in case of Community Detection between

the anonymized and original graphs.

For GAGA, we set k=5 and d=1 and hence as a result, 297 edge adds and 307 edge

removes (including 145 edge switches in total) have been applied to the graph. Accordingly,

we set the similar parameters for other approaches so that the number of changes to the

original graph can be compared with GAGA fairly. For example, we used the same k=5 and

t=5 for KDA, Union Cluster, and t-Means Cluster accordingly. For Add/Del, we set f to

0.06, that is because 297 edge adds, and 307 edge removes in GAGA map to 307+297 edge

adds/deletes for Add/Del. We also used a reasonable value for ε in DP that is the same

value in original work, as we mentioned earlier larger value of ε means smaller changes to

the graph so we set ε to the reasonable value of 10. For RW, we set r to the minimum value

of 2. In general, our evaluation results are consistent with the results presented in [56]:

109



most of the graph and application utilities can be partially or conditionally preserved with

most anonymization algorithms.

Despite the fact that no anonymization scheme is optimal to preserve

all utilities, note that for most of the utilities (11 out of 16 highlighted as bold

values in Table 5.2) GAGA is the best approach to preserve these utilities. For

some other utilities, Union Cluster and KDA have good performance. However, as we

discussed in the previous subsection, Union Cluster and KDA are very vulnerable to DA

attacks. This makes GAGA the most efficient practical approach which can preserve most

of the utilities and at the same time also defend well against modern DA attacks.

5.3.3 GAGA vs. Zhou & Pei [120]

As we discussed in Section 5.1, Zhou and Pei [120] presented the k-neighborhood-

anonymity model to preserve users’ privacy against some neighborhood attacks. They

evaluated the anonymization cost of their approach using various data sets generated by

the R-MAT graph model [32]. To compare our work with Zhou and Pei’s work, we used the

same model with the same default parameters to generate the same data sets. Figure 5.5

compares the anonymization cost of GAGA with their work. Recall that as discussed earlier,

Zhou and Pei [120] only support 1-neighborhood and only apply edge addition to the original

graph. However, GAGA supports any d and applies three different changes to the graph:

switch, add, and remove. Therefore, to compare the cost of GAGA to their approach we

use d=1 and we compute the sum of all edge additions and deletions that GAGA applies to

the original graph. The results show that in all cases GAGA is far more efficient in terms of

the anonymization cost (i.e., number of changes to the original graph) than Zhou and Pei’s
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Average vertex degree = 3 Average vertex degree = 7

Figure 5.5: Comparing the cost of GAGA with the cost of Zhou and Pei [120] on various
data sets.

Num. of k Average vertex degree=3 Average vertex degree=7
vertices Num. of Avg. Deg. of Num. of Num. of Avg. (GAGA Num. of Avg. Deg. of Num. of Num. of Avg. (GAGA

violating violating adds removes cost÷Zhou violating violating adds removes cost÷Zhou
vertices vertices and Pei [120] vertices vertices and Pei [120]

(scenario) cost) (%) (scenario) cost) (%)

5000 5 36(g) 16 39 63
64

321(b) 24 217 614
67

25000 5 116(u) 25 97 129 700(b) 38 388 825

5000 10 115(b) 14 103 120
72

429(b) 22 315 744
71

25000 10 178(u) 23 177 194 1009(b) 34 457 1093

5000 15 184(b) 12 175 209
81

505(b) 21 339 827
68

25000 15 284(u) 21 241 309 1187(b) 32 528 1207

5000 20 217(b) 11 192 261
72

553(b) 20 397 829
61

25000 20 354(u) 19 317 422 1299(b) 32 659 1421

Table 5.3: GAGA anonymization cost on various data sets.

approach when obtaining the same level of privacy preservation. Notice how our approach

is efficient even for denser graphs where the average vertex degree is 7 – while the number

of dummy edges for Zhou and Pei varies from around 1100 to 3300, the total number of

edge adds and removes applied by GAGA varies only from 830 to 2230.

We present the results in further detail in Table 5.3. The first column shows the

number of vertices used to generate the graphs using R-MAT graph model. For brevity, we

report only the cases of 5,000 and 25,000 vertices. The third and eighth column give the

number of violating vertices along with the corresponding scenario with respect to different

k values (g is the good scenario, b is the bad scenario, and u is the ugly scenario). We give
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the average degree of violating vertices in fourth and ninth column. A high average degree

means that some violating vertices have much higher degree than the graph’s average degree

(3 or 7) and as a result greater number of removes than adds are needed to anonymize the

graph.

Note that since Zhou and Pei [120] only consider d=1 scenario, the degree of the

vertices can be considered as a good parameter to represent the structure of neighborhoods.

Thus, we also present the average degree for violating vertices in the tested data sets. Since

in GAGA we consider k(d)-neighborhood Anonymization for any d-neighborhood, degree is

not a good parameter to represent the complex structure of d -neighborhoods. Thus, we

report the number of adds, and removes (including edges switches). Finally, we compare

the anonymization cost of GAGA with Zhou and Pei’s [120] cost in the ”Avg. (GAGA

cost÷Zhou and Pei [120] cost)” column. In all cases, our approach is more efficient.

On average, our approach incurs only 69% of the cost of Zhou and Pei’s approach

in terms of number of changes to the original graph.

5.4 Related Work

As we discussed in section 5.1, several graph anonymization techniques have been

proposed. Casas-Roma et al. [31] compare random-based algorithm [46] and k-degree-

anonymity algorithm [67] in terms of graph and risk assessment metrics and it was shown

that k-degree-anonymity is more effective. The evaluation was limited to 3 small data sets,

moreover, only 6 metrics to measure the graph utility preservation are used and no DA

attacks were considered in the evaluation. The sole use of degrees in representing graphs
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and characterizing anonymization introduces limitations. First, it makes anonymization

vulnerable to attacks that use more complex graph characteristics such as neighborhood

structure of a target vertex. Second, a graph is represented by degree sequence which is not

desirable since two different graphs can have same degree sequence.

To overcome the limitations of k-degree-anonymity, Zhou and Pei [120] introduced

the concept of k-neighborhood-anonymity [120] that considers graph structure. As we dis-

cussed, they only consider d=1-neighborhood which is not efficient for complex DA attacks.

Finally, Ji et al. [56] implemented the SecGraph tool to analyze existing anonymization

techniques in terms of data utility and vulnerability against modern DA attacks. They

conclude that it is a big challenge to effectively anonymize graphs with desired data util-

ity preservation and without enabling adversaries to utilize these data utilities to perform

modern DA attacks. Therefore, aiming to address the limitations in k-anonymity graph

anonymization techniques, we implemented and evaluated GAGA that not only provides

defense against modern DA attacks, but also preserves most of the utilities.

5.5 Summary

We addressed the limitations in graph anonymization techniques. We proposed,

implemented, and evaluated GAGA, an efficient genetic algorithm for graph anonymiza-

tion. Our results show that GAGA is highly effective and has a better trade-off between

anonymization and utility preservation compared to existing techniques. First, by applying

the concept of k(d)-neighborhood Anonymization for any d, GAGA preserves data privacy

against the modern DA attacks. Second, with the help of genetic algorithm and giving higher
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priority to edge switching over edge adding and removing, GAGA preserves the graph and

application utilities. GAGA gives application-oriented level of control on anonymization

and utility preservation to the users via selection of k and d parameters. There are other

parameters and thresholds (GA initial population, s, Tpv, Tu, etc) used in GAGA. These

could be further tuned to obtain the optimal solutions for any graph.
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Chapter 6

Conclusions and Future Work

Any security vulnerability in software has a large effect on user privacy and secu-

rity, especially if it is in the domain of mobile apps which have entered into people’s lives

nowadays. We believe that traditional and manual efforts (i.e., reverse engineering, trial

and error, and hacky workarounds), are not sufficient to detect several types of potential

vulnerabilities in software. Hence, we stress the necessity of having software analysis ap-

proaches to help automate vulnerability detection process. We propose couple of software

analysis approaches capable of detecting vulnerabilities in software analyzing/testing phase

in general, and security assessment in particular. In this context, this thesis makes the

following contributions:

• We identify serious security related discrepancies between android apps and their

corresponding website counterparts. That is, for the same service, even though the

websites are generally built with good security measures, the mobile app counterparts

often have weaker or non-existent security measures. As a result, the security of the
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overall service is only as good as the weakest link.

• We present, implement, and evaluate AndroidSlicer, a novel slicing approach and

tool for Android that addresses challenges of event-based model and unique traits of

the Android platform. Our asynchronous slicing approach that is precise yet low-

overhead, overcomes the challenges and is effective and efficient.

• Upon the application of slicing in mobile apps, we present a new type of vulnerability

in identifying app installations on unique devices in Android using dynamic slicing.

• ProgressDroid is the first tool to automatically discover missing progress indicator

bugs in Android apps using a technique based on program semantic.

• We present GAGA, an efficient genetic algorithm for graph anonymization that is

highly effective and has a better trade-off between anonymization and utility preser-

vation compared to existing techniques.

We have shown that there is a practical need for conducting several analysis to

detect different types of vulnerabilities in software such as mobile Apps. We demonstrated

various applications that can directly benefit from our work. Nevertheless, a wide range of

possibilities exists to continue further the research works presented in this dissertation. In

this chapter, we outline some future directions.

6.1 Vulnerabilities/Bugs in Mobile Apps

Automatic vulnerability and bug detection techniques presented in this disserta-

tion can be further extended by adding more functionalities to the tools or exploring other
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potential vulnerabilities.

Dynamic slicing for Android Apps. In Chapter 3, we introduced AndroidSlicer as

the first novel slicing infrastructure for smartphone apps. We expect AndroidSlicer will

provide a solid foundation for future research. A wide range of applications in security, pro-

gram verification and debugging, software maintenance and testing, etc can be supported,

including improving dynamic taint analysis, undo computing to detect malicious/buggy

actions and restore the system to the last ”clean” state, analyzing ripple effort, etc.

Progress indicators for long-running operations. In Chapter 4, we described a novel

technique for discovering missing progress indicator bugs based on program semantics, in

particular program dependencies. Our hope is that our semantic definition of these bugs and

our implemented tool will lead to more future work on addressing this type of user interface

issues. ProgressDroid automatically detects missing progress indicators for long-running

network operations. However, our technique can be extended further to capture missing g

progress indicators for any long-running operations, e.g., any types of I/O operations by

adding the corresponding API calls. Another interesting future work in this domain would

be an approach which can recommend the minimum number of progress indicator handlers

needed to cover the long-running operations.

Vulnerabilities in identifying unique devices. In Chapter 4, we presented another

new type of vulnerability in techniques that aim to identify unique devices in Android apps.

However, other types of related vulnerability can also be taken into consideration. For

example nowadays, there are many apps that offer various types of discounts for new users.
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These apps use some types of unique device identification mechanisms. Any vulnerability in

their mechanisms which might lead to fake activations can cause serious financial damage.

6.2 Preserving User Privacy in Graph Data

In Chapter 5, we introduced, implemented and evaluated GAGA that simultane-

ously delivers high anonymization and utility preservation. We implemented GAGA via an

efficient genetic algorithm. As we showed, there are tuneable parameters and thresholds

(s, Tpv, Tu, etc.) in GAGA that impact the performance and runtime of the tool. This

opens future directions and challenges to find the efficient values for different parameters

to obtain the optimal solutions for any graph.
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Random-Based and k-Anonymity-Based Algorithms for Graph Anonymization, pages
197–209. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[32] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A Recursive
Model for Graph Mining, pages 442–446.

[33] Sean Chester, Bruce Kapron, Ganesh Ramesh, Gautam Srivastava, Alex Thomo, and
Sistla Venkatesh. Why waldo befriended the dummy? k-anonymization of social
networks with pseudo-nodes. Social Network Analysis and Mining, 3, 09 2012.

[34] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 1367–1372, Oct 2004.

[35] Philippe De Ryck, Lieven Desmet, Frank Piessens, and Wouter Joosen. Secsess:
Keeping your session tucked away in your browser. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing, SAC ’15, 2015.

[36] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep me
updated: An empirical study of third-party library updatability on android. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 2187–2200, New York, NY, USA, 2017. ACM.

121



[37] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben,
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