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Abstract

Leveraging latent structure in high-dimensional data: causality, neuroscience, and
nonparametrics

by
Adam Edward Bloniarz

Doctor of Philosophy in Statistics
and the Designated Emphasis in
Computational Data Science and Engineering

University of California, Berkeley

Professor Bin Yu, Chair

Many scientific fields have been changed by rapid technological progress in data collection,
storage, and processing. This has greatly expanded the role of statistics in scientific research.
The three chapters of this thesis examine core challenges faced by statisticians engaged in
scientific collaborations, where the complexity of the data require use of high-dimensional or
nonparametric methods, and statistical methods need to leverage lower dimensional structure
that exists in the data.

The first chapter concerns the promise and challenge of using large datasets to uncover
causal mechanisms. Randomized trials remain the gold-standard for inferring causal effects
of treatment a century after their introduction by Fisher and Neyman. In this chapter, we
examine whether large numbers of auxilary covariates in a randomized experiment can be
leveraged to help improve estimates of the treatment effect and increase power. In particular,
we investigate Lasso-based adjustments of treatment effects through theory, simulation, and
a case study of a randomized trial of the pulmonary artery cathether. In our investigation,
we avoid imposing a linear model, and examine the robustness of Lasso to violations of
traditional assumptions.

The second chapter examines the use of predictive models to elucidate functional prop-
erties of the mammalian visual cortex. We investigate the activity of single neurons in area
MT when stimulated with natural video. One way to investigate single-neuron activity is to
build encoding models that predict spike rate given an arbitrary natural stimulus. In this
work, we develop encoding models that combine a nonlinear feature extraction step with a
linear model. The feature extraction step is unsupervised, and is based on the principle of
sparse coding. We compare this model to one that applies relatively simple, fixed nonlinear-
ities to the outputs of V1-like spatiotemporal filters. We find evidence that some MT cells
may be tuned to more complex video features than previously thought.



The third chapter examines a computational challenge inherent in nonparametric mod-
eling of large datasets. Large datasets are often stored across many machines in a computer
cluster, where communication between machines is slow. Hence, nonparametric regression
methods should avoid communication of data as much as possible. Random forests, among
the most popular nonparametric methods for regression, are not well-suited to distributed
architectures. We develop a modification of random forests that leverage ideas in non-
parametric regression by local modeling. Our method allows for training of random forests
completely in parallel, without synchronization between machines, with communication of
sufficient statistics at test-time only. We show that this method can improve the predictive
performance of standard random forests even in the single-machine case, and that perform-
ance remains strong when data is distributed.
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Chapter 1

Overview

Lord Ernest Rutherford is famously quoted as saying “if your experiment needs statistics, you
ought to have done a better experiment.” Given the increasingly central role of statistics in
many areas of scientific inquiry, one might worry that Lord Rutherford is rolling in his grave.
However, this trend is a result of advances in technology that have resulted in data sources
that are high-dimensional and high-throughput, where modern statistical tools are necessary
for even the most basic data exploration tasks. Examples include whole-genome sequencing
in biology, whole-brain fMRI in neuroscience, and high-resolution sky surveys in astronomy.
Even at a more fundamental level, statistics has become a key tool for the the discovery of
causal mechanisms in systems that are too complex to be fully characterized with the hard
sciences. Examples include agriculture, medical practice, and social impacts of public policy.
One of the greatest impacts of statistics in the 20th century has been the recognition that
deliberate randomization is a powerful tool that can separate true causal relationships from
incidental correlations even when rigorous theoretical models are not conceivable.

It is indeed a golden age to be an applied statistician, as statistics is central to scientific
discovery in so many domains. However, Lord Rutherford’s sentiment should be taken ser-
iously by statisticians, as it emphasizes the importance of experimental design and domain
knowledge in data-driven science. The last 20 years of research in statistics and machine
learning have yielded remarkable methods that can learn complex prediction rules with effi-
ciency that matches the limits imposed by information theory. However, there is a danger
that such methods obviate the need for real scientific understanding of data: in many down-
stream applications, what need is there for scientific theory when a statistical procedure can
learn a model that makes very accurate predictions, perhaps even better than a model de-
rived from current scientific understanding? Indeed, many of the most successful nonlinear
learning algorithms come at the cost of apparent inscrutability of the learned models. Sim-
ilarly, we can be thankful that in current times, data-driven medical trials have become the
gold standard for guiding medical practice, rather than imprecise theories of human biology.
However, we don’t want our doctors prescribing treatments without some understanding
their physical action, and we wouldn’t want them depending on randomized trials to de-
termine, for example, whether parachutes are effective tools for preventing gravity-induced
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mortality [85].

This thesis explores problems where modern statistical methods, particularly high-
dimensional methods and nonparametrics, help to enable real progress in scientific and
causal understanding. The methods presented in this thesis all confront the complexity
and high-dimensionality of the data by exploiting the presence of latent low-dimensional
structure. Uncovering this structure is essential for scientific understanding of the problem
at hand. In chapter 2, we consider the analysis of a randomized trial of a treatment in which
high-dimensional covariate information is recorded about each patient in the trial. In prin-
ciple, the covariate information can help reduce variance of the treatment effect estimate,
though the high-dimensionality of the covariates renders classical methods like OLS either
ill-posed or very unstable, and would yield dense, uninterpretable models. We propose us-
ing the least-absolute selection and shrinkage operator (Lasso) [90], which is well-suited to
studies where a only sparse subset of covariates are related to the outcomes. We analyze
this procedure under the Neyman-Rubin model for a randomized experiment, which makes
very weak assumptions on the data generating process. Because the Lasso selects a small
subset of covariates for adjustment, it can help guide downstream scientific studies into the
interactions of treatment with covariates. Chapter 3 examines the problem of understanding
single neuron behavior in area MT, an important mid-level visual cortex region. Early visual
areas (eg. lateral geniculate nucleus and V1) can be described fairly accurately with encod-
ing models that combine linear Gabor filters with simple nonlinearities. However, neurons
in mid-level visual regions have responses which are more complex nonlinear functions of
the visual input. End-to-end nonparametric statistical methods would require impractically
large training datasets given the complexity of visual stimuli, and may yield models that
are difficult to interpret. Instead, progress in understanding these areas has been guided
by a combination of biological understanding of brain function in combination with stat-
istical methods. We focus on motion processing in area MT, and develop encoding models
of single-neuron behavior based on the principle of sparse coding introduced in Olshausen
[71], and which use trace-norm regularized regression to leverage the approximate time-space
separability of neuronal receptive fields demonstrated in Mazer et al. [62].

Another major challenge to statisticians is the necessity of working with the constraints
of computer architectures that house and process large datasets. A major recent trend has
been a move towards parallelism in both data storage and computation. Large datasets are
generally stored in a distributed manner across many machines in a cluster. Communic-
ation between machines is extremely slow compared to communication between hard disk
and RAM within a machine. Single machines contain more and more processor cores that
can independently execute instructions. Hence, for statistics to be useful in analyzing large
scientific datasets, statisticians must design methods do not rely on communication and syn-
chronization. Chapter 4 proposes a method for adapting random forests to these criteria,
augmenting the standard random forest procedure with local modeling methods from non-
parametric statistics. This procedure allows for purely divide-and-conquer, communication-
free training of random forests, where statisticial efficiency is not sacrificed even when the
data is distributed across many workers. The key to this method is an interpretation of
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random forests as an adaptive nearest neighbor method, where the neighborhoods of a point
stretch out to ignore dimensions that are irrelevant to the regression problem.
The following sections describe the contributions of this thesis in more detail.

Lasso-adjusted treatment effect estimates

It has been known since the early 20th century that, with a randomized trial, one can estim-
ate the causal effect of a treatment without bias by simply reporting the difference in means
between treatment and control groups [86]. Furthermore, one can form confidence intervals
that are valid under very weak assumptions. This is the major reason for the prominence
of randomized trials in settings where it is impossible to identify all possible confounders.
However, when covariate data is present, investigators often use statistical modeling in the
hopes of getting a more precise treatment effect estimate. This practice has generated some
controversy. As was pointed out in a series of elegant papers by David Freedman, adjustment
through regression modeling may inadvertently increase the variance relative to the simple
unadjusted estimator [34, 35]. These issues were examined in further detail in the work of
Winston Lin [54], who showed that regression with interaction terms prevents many of the
pitfalls pointed out by Freedman. Remarkably, Lin’s results hold without assuming any un-
derlying linear generative model; instead, only moment and stability conditions on potential
outcomes and covariates are required. The variance reducing properties of regression with
interactions follow from a geometric argument about projections.

In practical work, outcome measurements in randomized trials are now often accompan-
ied with a very large number of covariates. For example, one may have demographic and
genomic information about patients in a medical trial, survey responses for individuals in a
policy experiment, or behavioral data about users in an A/B experiment. This motivates a
natural followup to Lin’s work, which is to consider Lasso-based regression adjustment of the
treatment effect estimate. This is the focus of this chapter. I collaborated on this project
with a group of researchers who became interested in this problem from different angles: Bin
Yu and Hanzhong Liu from Berkeley Statistics, Cun-Hui Zhang from Rutgers, and Jasjeet
Sekhon from Berkeley Political Science and Statistics. We approached this problem from
the standpoint of Freedman and Lin, using the Neyman-Rubin model as the basis for ana-
lysis, as it avoids imposing any explicit generative model on the potential outcomes. This
is a major feature of our analysis which differentiates it from earlier theoretical work on the
Lasso, which usually assumes an exact generative linear model or misspecified linear model
with exogenous errors. Using the Neyman-Rubin model as a baseline, we add conditions
that guarantee Lasso reduces the variance of the treatment effect estimator, and show that
one can construct asymptotically valid confidence intervals that are generally shorter than
the unadjusted confidence intervals. We carry out extensive simulations where we test the
robustness of Lasso-based adjustments to violations of assumptions. We also present an
application to a medical trial of the pulmonary artery catheter (PAC) to show Lasso-based
adjustment in action, and to discuss the important practical problem of selection of regular-
ization parameter. We also compare Lasso adjustment to Lasso+OLS, which uses Lasso for
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selection and then OLS for estimation of coefficient values. This procedure produces very
parsimonious and interpretable models compared to cross-validated Lasso, and the resulting
estimators have similar accuracy.

Modeling area MT with sparse coding principles

Starting in the mid 20th century, neuroscientists began to uncover the structural properties of
the mammalian visual cortex, and found that it is hierarchically organized into functionally
distinct cortical regions that coordinate to perform the tasks of visual cognition [33, 94]. One
way of characterizing the activity of these regions is to describe the behavior of individual
cells in response to visual stimuli. This problem is known as receptive field estimation. In
its most general sense, the receptive field of a neuron in the visual cortex is a description of
how its expected spiking rate varies depending on the contents of the visual field. This is
also referred to as an encoding model.

Chapter 3 tackles the problem of building encoding models of neurons in area MT
(middle temporal), a major extrastriate cortical region along the dorsal stream, which is
involved in motion cognition. Particularly in higher order regions such as MT, estimation
of encoding models is challenging problem due to the nonlinearity of neuron responses, the
high amount of noise, and the sparsity of neuron spiking. Furthermore, neuroscientists
have come to recognize that behavior of neurons under naturalistic conditions can be more
complex then when they are probed using only controlled artificial stimuli [91]. Hence, full
understanding of single neuron receptive fields, particularly in extrastriate regions, requires
building encoding models that are accurate over a wide range of natural video stimuli.

When expressed in raw pixel intensities, natural images and videos are very high-
dimensional objects, where low-dimensional substructure, such as object classes, positions,
texture descriptions, is not clearly represented. One important approach to estimating encod-
ing models is to use theoretical models of vision to transform the image into a representation
where image structure is more clearly represented, and modeling of brain responses becomes
more tractable. In this chapter, we follow this approach, and build encoding models that
combine a nonlinear feature representation of video stimuli with a linear model that predicts
the neuron spike rate. The initial nonlinear step is built purely using biological principles
and unsupervised learning techniques. Recordings of neuron spike counts are used as training
data to build the top-level linear model only.

Our feature representation for natural videos is inspired by the principle of sparse coding,
which has proven to be a widely applicable theoretical model for single-neuron tuning in a
variety of sensory areas [72]. Our representation, at a high level, has three layers. The
first layer acts as a caricature of V1 neurons, and filters the stimulus video with a set of
spatiotemporal wavelets. This layer reflects the extensive innervation of MT by axonal
projections from V1. The second layer transforms the output of the first layer by re-coding
image patches in a sparse dictionary. The third layer performs pools of patch representations
within spatial regions, which greatly reduces dimension and makes the video representation
more spatially invariant. This approach was previously developed for modeling neurons in
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area V4 in [58], where it was shown to yield much more accurate encoding models compared
to those based on Gabor wavelet features. The major contribution in this chapter is to extend
this feature extraction pipeline to natural video stimuli and to show that it is effective for
modeling neurons in area MT.

In this work I collaborated with Bin Yu, Julien Mairal, and members of the Gallant lab
at UC Berkeley. The dataset analyzed in this chapter consists of high-quality recordings of
52 MT neurons from Macacca mulatta, each stimulated with 20,000-40,000 frames of natural
video. This dataset, previously analyzed in Nishimoto and Gallant [69], provides a rich source
for the understanding of MT’s role in motion estimation. We compare the performance of our
sparse-coding model with the spatiotemporal Gabor wavelet model presented in Nishimoto
and Gallant [69]. The prediction accuracy of our model is higher, on average, than that of the
Gabor wavelet model. While many neurons are equally well modeled by both pipelines, we
find that the sparse coding model encodes complex video features that are useful for modeling
a subset of MT neurons. Canonical correlation analysis reveals that the two representations
are nearly identical along several directions, explaining why many M'T neurons are equally
well-modeled with or without the sparse coding map. These findings suggest that receptive
fields in area MT are heterogenous, and that a subset of neurons have senstivity to features
more complex than spatiotemporal Gabor wavelets.

Supervised neighborhoods for distributed nonparametric
regression

Large datasets hold the promise of allowing statisticians to make few assumptions when
building models. In the context of regression problems, the statistician may want to only
assume that the true generative function comes from a broad class of functions with some
degree of smoothness, but otherwise not constrain the structure of the function any further
(e.g. with assumptions of linearity, additivity, convexity, etc.). This is known as the problem
of nonparametric regression. The information theoretic challenges of this problem were
shown in a series of papers of Stone [87, 88|, who derived minimax lower bounds for pointwise
and integrated mean square risk for estimation of nonlinear functions in Hélder smoothness
classes. These results were pessimistic, in a sense, reflecting the fundamental difficulty of
nonlinear regression due to the curse of dimensionality. Their minimax rates imply that
sample size must grow exponentially in the dimension of the problem to attain a fixed error.
In problems of even moderate dimension by today’s standards (> 20), this would seem to
imply that nonparametric regression is intractable even with huge training sets.

However, the ensuing three decades have seen an explosion in successful applications
for nonparametric regression and classification even in complex, high-dimensional problems.
This reflects the fact that this minimax thinking is too conservative, and there is often
very useful lower-dimensional structure in the problem which can be exploited by statistical
methods. Though it is known that local polynomial methods like LOESS [20] attain the
minimax optimal rate over Holder classes, these methods are very rarely applied to problems
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in high dimensions, as they do not adapt to lower dimensional substructure. Instead, tree-
based methods (CART, random forests), neural networks, and support vector machines have
been much more popular in practical statistical work. Tree-based methods, in particular,
adapt very well to regression problems where there are many irrelevant predictors. Variable
selection is usually built in to the node splitting criteria, so that the irrelevant predictors are
usually ignored.

The work in chapter 4 is a result of collaboration with Ameet Talwalkar, Christopher Wu,
and Bin Yu. We develop a new procedure that attempts to merge the advantages of local
modeling with the power of random forests to adapt to the shape of the response. Leveraging
the interpretation of random forests as providing supervised neighborhoods, we fit local
models using a weight function derived from random forests. We show that the procedure is
consistent under some assumptions on the random forest training procedure. Empirically, we
see that it reduces the bias relative to standard random forest predictions. Furthermore, we
find that this local modeling method is very effective in enabling distributed nonparametric
estimation with random forests. With distributed datasets, as stated above, communication
is very slow, and it is desirable that workers can process the data as independently as possible.
At one extreme, the most simple method is for a master node to average predictions from
random forests fit independently on each worker. Averaging in such a way will yield a
low-variance estimate due to cancelling of random error; however, individual workers’ biases
do not cancel, and the overall estimator will have the same bias as the estimator fit on
the data of a single machine. Performing a local regression on the master node, however,
shifts the tradeoff in a favorable way if the function is smooth: the local regression increases
variance but yields a comparatively large reduction in bias. We examine the performance
of this method on several simulated nonlinear functions, as well as a real regression task
from the million song dataset. We implement it in Apache Spark™, a popular framework
for distributed computation, and find that it improves on the industry standard distributed
random forest implementation in terms of both statistical accuracy and computational speed.
Because our method is purely divide-and-conquer, the training time does not increase with
the number of workers in the cluster. We do perform extra communication and computation
at test time, but are still able to make predictions in less than 20 ms per test point.



Chapter 2

Lasso adjustments of treatment effect
estimates in randomized experiments

2.1 Introduction

Randomized experiments are widely used to measure the efficacy of treatments. Random-
ization ensures that treatment assignment is not influenced by any potential confounding
factors, both observed and unobserved. Experiments are particularly useful when there is no
rigorous theory of a system’s dynamics, and full identification of confounders would be im-
possible. This advantage was cast elegantly in mathematical terms in the early 20th century
by Jerzy Neyman, who introduced a simple model for randomized experiments, which showed
that the difference of average outcomes in the treatment and control groups is statistically
unbiased for the Average Treatment Effect (ATE) over the experimental sample [86].

However, no experiment occurs in a vacuum of scientific knowledge. Often, baseline co-
variate information is collected about individuals in an experiment. Even when treatment
assignment is not related to these covariates, analyses of experimental outcomes often take
them into account with the goal of improving the accuracy of treatment effect estimates.
In modern randomized experiments, the number of covariates can be very large—sometimes
even larger than the number of individuals in the study. In clinical trials overseen by regulat-
ory bodies like the Food and Drug Administration and Medicines and Healthcare products
Regulatory Agency, demographic and genetic information may be recorded about each pa-
tient. In applications in the tech industry, where randomization is often called A /B testing,
there is often a huge amount of behavioral data collected on each user. However, in this ‘big
data’ setting, much of this data may be irrelevant to the outcome being studied or there
may be more potential covariates than observations, especially once interactions are taken
into account. In these cases, selection of important covariates or some form of regularization
is necessary for effective regression adjustment.

To ground our discussion, we examine a randomized trial of the Pulmonary Artery Cath-
eter (PAC) that was carried out in 65 intensive care units in the UK between 2001 and 2004,
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called PAC-man [40]. The PAC is a monitoring device commonly inserted into critically ill
patients after admission to intensive care, and it provides a continuous measurement of sev-
eral indicators of cardiac activity. However, insertion of PAC is an invasive procedure that
carries some risk of complications (including death), and it involves significant expenditure
both in equipment costs and personnel [24]. Controversy over its use came to a head when
an observational study found that PAC had an adverse effect on patient survival and led
to increased cost of care [21]. This led to several large-scale randomized trials, including
PAC-man.

In the PAC-man trial, randomization of treatment was largely successful, and a number
of covariates were measured about each patient in the study. If covariate interactions are
included, the number of covariates exceeds the number of individuals in the study; however,
few of them are predictive of the patient’s outcome. As it turned out, the (pre-treatment)
estimated probability of death was imbalanced between the treatment and control groups
(p = 0.005, Wilcoxon rank sum test). Because the control group had, on average, a slightly
higher risk of death, the unadjusted difference-in-means estimator may overestimate the
benefits of receiving a PAC. Adjustment for this imbalance seems advantageous in this case,
since the pre-treatment probability of death is clearly predictive of health outcomes post-
treatment.

In this chapter, we study regression-based adjustment, using the Lasso to select relevant
covariates. Standard linear regression based on ordinary least squares suffers from over-
fitting if a large number of covariates and interaction terms are included in the model. In such
cases, researchers sometimes perform model selection based on observing which covariates are
unbalanced given the realized randomization. This generally leads to misleading inferences
because of incorrect test levels [77]. The Lasso [90] provides researchers with an alternative
that can mitigate these problems and still perform model selection. We define an estimator,
A/T\ELaSSO, which is based on running an [;-penalized linear regression of the outcome on
treatment, covariates and, following the method introduced in Lin [54], treatment x covariate
interactions. Because of the geometry of the [; penalty, the Lasso will usually set many
regression coefficients to 0, and is well defined even if the number of covariates is larger than
the number of observations. The Lasso’s theoretical properties under the standard linear
model have been widely studied in the last decade; consistency properties for coefficient
estimation, model selection, and out-of-sample prediction are well understood (see Bithlmann
and van de Geer [17] for an overview).

In the theoretical analysis in this chapter, instead of assuming that the standard lin-
ear model is the true data-generating mechanism, we work under the aforementioned non-
parametric model of randomization introduced by Neyman [86] and popularized by Donald
Rubin [81]. In this model, the outcomes and covariates are fixed quantities, and the treat-
ment group is assumed to be sampled without replacement from a finite population. The
treatment indicator, rather than an error term, is the source of randomness, and it determines
which of two potential outcomes is revealed to the experimenter. Unlike the standard linear
model, the Neyman-Rubin model makes few assumptions not guaranteed by the randomiza-
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tion itself. The setup of the model does rely on the stable unit treatment value assumption
(SUTVA), which states that there is only one version of treatment, and that the potential
outcome of one unit should be unaffected by the particular assignment of treatments to the
other units; however it makes no assumptions of linearity or exogeneity of error terms. Or-
dinary Least Squares (OLS) [35][34][54], logistic regression [36], and post-stratification [66]
are among the adjustment methods that have been studied under this model.

To be useful to practitioners, the Lasso-based treatment effect estimator must be con-
sistent and yield a method to construct valid confidence intervals. We outline conditions on
the covariates and potential outcomes that will guarantee these properties. We show that an
upper bound for the asymptotic variance can be estimated from the model residuals, yielding
asymptotically conservative confidence intervals for the average treatment effect which can
be substantially narrower than the unadjusted confidence intervals. Simulation studies are
provided to show the advantage of the Lasso adjusted estimator and to show situations where
it breaks down. We apply the estimator to the PAC-man data, and compare the estimates
and confidence intervals derived from the unadjusted, OLS-adjusted, and Lasso-adjusted
methods. We also compare different methods of selecting the Lasso tuning parameter on
this data.

2.2 Framework and definitions

We give a brief outline of the Neyman-Rubin model for a randomized experiment; the reader
is urged to consult Splawa-Neyman et al. [86], Rubin [81], and Holland [44] for more details.
We follow the notation introduced in Freedman [35] and Lin [54]. For concreteness, we
illustrate the model in the context of the PAC-man trial.

For each individual in the study, the model assumes that there exists a pair of quantities
representing his/her health outcomes under the possibilities of receiving and not receiving
the catheter. These are called the potential outcomes under treatment and control, and are
denoted as a; and b;, respectively. In the course of the study, the experimenter observes only
one of these quantities for each individual, since the catheter is either inserted or not. The
causal effect of the treatment on individual 7 is defined, in theory, to be a; — b;, but this
is unobservable. Instead of trying to infer individual-level effects, we will assume that the
intention is to estimate the average causal effect over the whole population, as outlined in
the next section.

In the mathematical specification of this model we consider the potential outcomes to be
fixed, non-random quantities, even though they are not all observable. The only randomness
in the model comes from the assignment of treatment, which is controlled by the experi-
menter. We define random treatment indicators 7;, which take on a value 1 for a treated
individual, or 0 for an untreated individual. We will assume that the set of treated individu-
als is sampled without replacement from the full population, where the size of the treatment
group is fixed beforehand; thus the 7T; are identically distributed but not independent.
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The model for the observed outcome for individual ¢, defined as Yj, is thus
Y = Tia; + (1 — T;)b;.

This equation simply formalizes the idea that the experimenter observes the potential out-
come under treatment for those who receive the treatment, and the potential outcome under
control for those who do not.

Note that the model does not incorporate any covariate information about the individuals
in the study, such as physiological characteristics or health history. However, we will assume
we have measured a vector of baseline, pre-experimental covariates for each individual 1.
These might include, for example, age, gender, and genetic makeup. We denote the covariates
for individual 7 as the column vector x; = (z;1, ..., a:l-p)T € R? and the full design matrix of
the experiment as X = (x,...,x,)?. In the theoretical results, we will assume that there is
a correlational relationship between an individual’s potential outcomes and covariates, but
we will not assume a generative statistical model.

Define the set of treated individuals as A = {i € {1,...,n} : T; = 1}, and similarly define
the set of control individuals as B. Define the number of treated and control individuals
as ny = |A| and ng = |B|, respectively, so that ns + np = n. We add a line on top of
a quantity to indicate its average and a subscript A or B to label the treatment or control
group. Thus, for example, the average of the potential outcomes and the covariates in the
treatment group are

as = anlZieA% XA = nzliieAXu
respectively. Note that these are random quantities in this model, since the set A is determ-
ined by the random treatment assignment. Averages over the whole population are denoted

as

a=n"'>" a, b=n""S" b, x=n""Y0 %
Note that the averages of potential outcomes over the whole population are not considered
random, but are unobservable.

2.3 Treatment effect estimation

Our main inferential goal will be average effect of the treatment over the whole population
in the study. In a trial such as PAC-man, this represents the difference between the average
outcome if everyone had received the catheter, and the average outcome if no one had received
it. This is defined as

ATE =a —b.

The most natural estimator arises by replacing the population averages with the sample

averages:

14/\ def _ 7
TEunadj =aaA — bB:
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The subscript “unadj” indicates an estimator without regression adjustment. The founda-
tional work in Splawa-Neyman et al. [86] points out that, under a randomized assignment of

treatment, AT E\,,q; is unbiased for AT'E, and derives a conservative procedure for estim-
ating its variance.

While @unadj is an attractive estimator, covariate information can be used to make
adjustments in the hope of reducing variance. A commonly used estimator is

— ~(a — ~ (b
AT FE.q = [@A — (x4 —x)" 5( )} - [bB — (xp—x)" 5( :

where B(a), B(b) € R? are adjustment vectors for the treatment and control groups, respect-
ively, as indicated by the superscripts. The terms x4 —X and X g —X represent the fluctuation
of the covariates in the subsample relative to the full sample, and the adjustment vectors
fit the linear relationships between the covariates and potential outcomes under treatment
and control. For example, in the PAC-man trial, this would help alleviate the imbalance
in the pre-treatment estimated probability of death: the corresponding element of xp — X
would be positive (due to the higher average probability of death in the control group), the

~ (b
corresponding element of ﬁ( ) would be negative (a higher probability of death correlates
with worse health outcomes), so the overall treatment effect estimate would be adjusted
downwards. This procedure is equivalent to imputing the unobserved potential outcomes; if
we define

ap=aa+ (Xp—%4)' 3
we can form the equivalent estimator
ATEadj = n_l (nAC_LA + anLB) — n_l (nBl_)B + nAZ_JA> .

If we consider these adjustment vectors to be fixed (non-random), or if they are derived from
an independent data source, then this estimator is still unbiased, and may have substantially
smaller asymptotic and finite-sample variance than the unadjusted estimator. This allows
for construction of tighter confidence intervals for the true treatment effect.

In practice, the “ideal” linear adjustment vectors, leading to a minimum-variance estim-
ator of the form of fTT\Eadj, cannot be computed from the observed data. However, they
can be estimated, possibly at the expense of introducing modest finite-sample bias into the
treatment effect estimate. In the classical setup, when the number of covariates is relatively
small, ordinary least squares (OLS) regression can be used. The asymptotic properties of
this kind of estimator are explored under the Neyman-Rubin model in Freedman [34, 30]
and Lin [54]. We will follow a particular scheme which is studied in Lin [54] and shown to
have favorable properties: we regress the outcome on treatment indicators, covariates, and
treatment x covariate interactions. This is equivalent to running separate regressions in the
treatment and control groups of outcome against an intercept and covariates. If we define
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. ~ (b
B(OQI)JS and ﬁgis as the coefficients from the separate regressions, then the estimator is

ATEos = [@A — (x4 —%)" Bgis] - [BB — (x5 —%)" Bors
This has some finite-sample bias, but Lin [54] shows that it vanishes quickly at the rate
of 1/n under moment conditions on the potential outcomes and covariates. Moreover, for
a fixed p, under regularity conditions, the inclusion of interaction terms guarantees that it
never has higher asymptotic variance than the unadjusted estimator, and asymptotically
conservative confidence intervals for the true parameter can be constructed.

In modern randomized trials, where a large number of covariates are recorded for each
individual, p may be comparable to or even larger than n. In this case OLS regression can
overfit the data badly, or may even be ill-posed, leading to estimators with large finite-sample
variance. To remedy this, we propose estimating the adjustment vectors using the Lasso [90].
The adjustment vectors would take the form

~(a) [ 1 ~ _ u
IBLasso = arg min |:_ Z (ai —as — (Xi - XA)T/6>2 + )\a Z |ﬁ]|:| (21)
s L2naiA j=1
A0 1 . 2 &
BlLasso = arg;nin {% Z (bi —bp — (xi —x5)"8) + A Z |Bj’:| (2.2)
i€B =1

and the proposed Lasso adjusted ATE estimator is'
TTE _ - T »(@) 7 - T »®)
ATELHSSO = |:CLA - (XA - X) /BLasso] - [bB - (XB - X) IBLasso] :

Here A\, and ), are regularization parameters for the Lasso which must be chosen by the
experimenter; simulations show that cross-validation works well. In the next section, we
study this estimator under the Neyman-Rubin model, and provide conditions on the potential

outcomes, the covariates and the regularization parameters under which AT Ey .o enjoys

—

similar asymptotic and finite-sample advantages as AT Fors.

It is worth noting that when two different adjustments are made for the treatment and
control groups as in Lin [54] and here, the covariates do not have to be the same for the
two groups. However, when they are not the same, the Lasso or OLS adjusted estimators
are no longer guaranteed to have smaller or equal asymptotic variance than the unadjusted
one, even in the case of fixed p. In practice, one may still choose between the adjusted and
unadjusted estimators based on the widths of the corresponding confidence intervals.

5 A (b
1To simplify the notation, we omit the dependence of ,Bii)sso, ﬁé;sso, Aq and A, on the population size n.
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2.4 Theoretical results

Notation

For a vector 3 € RP and a subset S C {1,...,p}, let 5, be the j-th component of 8, B¢ = (5; :
j € 8)T, 8¢ be the complement of S, and |S| the cardinality of the set S. For any column

vector u = (uy, ..., um)?, let Jullz =37 u?, |lullh = 220, |wil, Ju)lee = maxi—1__m |u;] and

lullo = [{j : u; # 0}|. For a given m x m matrix D, let Ayin(D) and Apax(D) be the smallest

and largest eigenvalues of D respectively, and D~ the inverse of the matrix D. Let 2 and
25 denote convergence in distribution and in probability, respectively.

Decomposition of the potential outcomes

The Neyman-Rubin model does not assume a linear relationship between the potential out-
comes and the covariates. In order to study the properties of adjustment under this model,
we decompose the potential outcomes into a term linear in the covariates and an error term.
Given vectors of coefficients 89, 3% € RP, we write? for i = 1, ...,n,

a; =+ (x; —%)7B + el (2.3)

bi=0b+ (x; — )_()Tﬁ(b) + egb). (2.4)

Note that we have not added any assumptions to the model; we have simply defined
unit-level residuals, ez(-a) and egb), given the vectors B, 3®) Al the quantities in (2.3) and
(2.4) are fixed, deterministic numbers. It is easy to verify that ) = & = 0. In order to
pursue a theory for the Lasso, we will add assumptions on the populations of a;’s, b;’s, and
x;’s, and we will assume the existence of 8, 3%) such that the error terms satisfy certain
assumptions.

Conditions

We will need the following to hold for both the treatment and control potential outcomes.
The first set of assumptions (conditions 1-3) are similar to those found in Lin [54].

Condition 1. Stability of treatment assignment probability.
na/n — pa, as n — 0o (2.5)
for some p4 € (0, 1).

Condition 2. The centered moment conditions. There exists a fixed constant L > 0 such
that, foralln=1,2,...and j =1, ...,p,

-1 n — 4 .
Ty (@ — (X)) < Ly (2.6)
2Again, we omit the dependence of B(a), ﬁ(b), Ao, Ao, €@ and e® on n.
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Y (@<L Y (@) < L (2.7)

Condition 3. The means 7' 327 (e!”)2, n =2 327 ()2 and n=! 327!l converge to
finite limits.

Since we consider the high-dimensional setting where p is allowed to be much larger than
n, we need additional assumptions to ensure that the Lasso is consistent for estimating 8@
and 8. Before stating them, we define several quantities.

Definition 1. Given B<“) and ﬁ(b), the sparsity measures for treatment and control groups,
s and s® are defined as the number of nonzero elements of [3(“) and ,B(b), ie.,

s@ = {5 : B £ 0}, s® = |{j: B #0}, (2:8)

respectively. We will allow s(® and s® to grow with n, though the notation does not
explicitly show this.

Definition 2. Define §,, to be the maximum covariance between the error terms and the

covariates.
} . (2.9)

The following conditions will guarantee that the Lasso consistently estimates the adjust-

ment vectors ,3(“), B(b) at a fast enough rate to ensure asymptotic normality of AT E7.ss0. It

is an open question whether a weaker form of consistency would be sufficient for our results
to hold.

Condition 4. Decay and scaling. Let s = max {s(“), s(b)}.

1
5n:o<s\/@). (2.10)
(slogp)/v/n = o(1). (2.11)

Condition 5. Cone invertibility factor. Define the Gram matrix as ¥ = n™ 'Y " | (x; —
x)(x; — x)T: There exist constants C' > 0 and £ > 1 not depending on n, such that

|hs|l < Cs|[hw, Vh € C, (2.12)

with C = {h : ||hg|| <¢|lhs]|:}, and

S={j:B8%" #£00r B #£0}. (2.13)
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Condition 6. Let 7 = min {1/70, (3p4)?/70, (3 — 3p4)?/70}. For constants 0 < n < g—}

and % < M < o0, assume the regularization parameters of the Lasso belong to the sets

1 2(1 LY2 |21

Ao € (=, M] x < L+nL7 ng+5n>, (2.14)
n pA n
1 2(1 LY?2 |21

X € (=, M] x ( SRl ng+5n>. (2.15)
n PB n

Denote respectively the population variances of e(® and e® and the population covariance

between them by o ()
_ n a _ n b
0l =0 0 ()P ok =0T Y (),

_ -1 (a) (b)
Ocla)e®) = N Zi:lei €; -

Theorem 1. Assume conditions 1-6 hold for some B and B®). Then

Jn (@Lusso - ATE) 4 N (0,02) (2.16)
where .
g2 = nh_g)lo [ ;ApA g§<a) : prA ag(b) + 20 ()t | - (2.17)

The proof of Theorem 1 is given in section 2.A. It is easy to show, as in the following
corollary, that the asymptotic variance of AT El,ss0 is no worse than AT E n.q; when ,B(a)

and B are defined as coefficients of regressing potential outcomes on a subset of covariates.
More specifically, suppose there exists a subset J C {1, ..., p}, such that

B = (BT, 0T, B¥ = (BT, 0)7, (2.18)

where ,Bga) and ,BSb) are the population level OLS coefficients for regressing the potential
outcomes a and b on the covariates in the subset J with intercept, respectively.

Corollary 1. For 8 and g® defined in (2.18) and some A\, and X\y,, assume condi-
tions 1-6 hold. Then the asymptotic variance of \/n AT FEla.sso 18 no greater than that of

the \/n fTT\Eunadj. The difference is MA, where

A= lim X8B3 <0. Bp=(1-pa)B +pas?. (2.19)

The proof of Corollary 1 is given in section 2.B.
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FiGURE 2.1: Histograms of the unadjusted estimator and the Lasso adjusted
estimator when the moment conditions do not hold. We select the tuning parameters
for Lasso using 10-fold cross validation. The potential outcomes are simulated from a linear
regression model and then kept fixed. See section 2.E for details. For the upper two subplots,
the error terms are generated from ¢ distribution with one degree of freedom and therefore
do not satisfy second moment condition; while for the lower two subplots, the covariates are
generated from t distribution with there degrees of freedom and thus violate fourth moment
condition.

Remark 1. If, instead of eq. (2.6), we assume that the covariates are uniformly bounded, i.e.,
max; ; |z;;| < L, then the fourth moment condition on the error terms, given in eq. (2.7),
can be weakened to a second moment condition. While we do not prove the necessity of any
of our conditions, our simulation studies show that the distributions of the unadjusted and
the Lasso adjusted estimator may be non-normal when: (1) The covariates are generated
from Gaussian distributions and the error terms do not satisfy second moment condition, e.g.,
being generated from a ¢ distribution with one degree of freedom; or (2) The covariates do not
have bounded fourth moments, e.g., being generated from a t distribution with three degrees
of freedom. See the histograms in fig. 2.1 where the corresponding p-values of Kolmogorov—
Smirnov testing for normality are less than 2.2e — 16. These findings indicate that our
moment conditions cannot be dramatically weakened for asymptotic normality. However,
we also find that the Lasso adjusted estimator still has smaller variance and mean squared
error than the unadjusted estimator, even when these moment conditions do not hold. In
practice, when the covariates do not have bounded fourth moments, one may perform some
transformation—e.g., a logarithm transformation—to ensure that the transformed covariates
have bounded fourth moments while having a sufficiently large variance so as to retain useful
information. We leave it as future work to explore the properties of different transformations.
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Remark 2. The rate given in eq. (2.11), typically required in de-biasing the Lasso [103], is
stronger by a factor of v/log p than the usual requirement for /; consistency of the Lasso.

Remark 3. Condition 5 is slightly weaker than the typical restricted eigenvalue condition for
analyzing the Lasso.

Remark 4. If we assume 9,, = O (\ / 10%) which satisfies eq. (2.10), then condition 6 requires

log P

that the tuning parameters are proportional to which is typically assumed for the Lasso

in the high-dimensional linear regression model.

Remark 5. For fixed p, §,, = 0 in eq. (2.9), condition 4 holds automatically, and condition 5
holds when the smallest eigenvalue of ¥ is uniformly bounded away from 0. In this case, co-
rollary 1 reverts to corollary 1.1. in Lin [54]. When these conditions are not satisfied, we
should set A\, and A\, to be large enough to cause the Lasso adjusted estimator to revert to
the unadjusted one.

2.5 Neyman-type conservative variance estimate

We note that the asymptotic variance in Theorem 1 involves the cross-product term o))
which is not consistently estimable in the Neyman-Rubin model as a; and b; are never
simultaneously observed. However, we can give a Neyman-type conservative estimate of the
variance. Let

2
a-g(a) = ny — df(a) Z <CL1 as — —X )TﬁLasso>
1 (2.20)
~2 _
= b; — b — )
Ue(b) ng — df(b) ZGZB ( B ( ) ﬁLasso
where df(@ and df®) are degrees of freedom defined by
df(a):§()+1_H18Lasso|’0+1 df )+1_H/8LassoH0+1
Define the variance estimate of \/E(ATEL%SO — ATE) as follows:
52 n o9 UIPS)
= — 0% + — ) 2.21
OLasso na O-e( ) + ng Ue(b) ( )

We show in Theorem 2 that the limit of 67, is greater than or equal to the asymptotic

variance of \/ﬁ(z@msso — ATFE), and therefore can be used to construct a conservative
confidence interval for the ATE. We will require one additional condition for this theorem.

Condition 7. For the Gram matrix ¥ defined in condition 5, the largest eigenvalue is
bounded away from oo, that is, there exists a constant A,,,, < oo such that

)\max (Z) S Amax-
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Theorem 2. Assume conditions in Theorem 1 and condition 7 hold. Then 63, converges
in probability to

1
— lim O'e<a) + lim Ue(b>’
P n—oo 1 —py n—ooo

which is greater than or equal to the asymptotic variance of \/ﬁ(/TT\ELaSSO — ATE). The
difference is

2
b — (3@ _ 30
nh_)n;()nZ{az b — ATE — (x;, —x)7(8“ - 8 )} .
The proof of Theorem 2 can be found in section 2.C.
Remark 6. The Neyman-type conservative variance estimate for the unadjusted estimator is

given by
1 1 -
6-121nadj - = Z (a; — ELA)2 + - 1 Z (bi — 53)27

nana—1 icA pMp = 15cE

which, under second moment conditions of potential outcomes a and b, converges in prob-
ability to

n

1 1 & 1 1 _
— lim — ) (a; —a)’ + lim — > "(b; — b).

n—oo 1 1-— n—oo N
pA i=1 pA =1

Therefore, for the B3 and 8% defined in eq. (2.18), the limit of 62, is no greater than

that of 67,4 and the difference is

i Z Llix—emeen] + 12 [ —eme)]

Remark 7. With the conservative variance estimate in Theorem 2, the Lasso adjusted con-
fidence interval is also valid for the PATE (Population Average Treatment Effect) if there is
a super population of size N with N > n.

Remark 8. The extra condition 7 is used to obtain the following bounds for the number
of selected covariates by the Lasso: max (3@, 3®)) = o (min (na,np)). Condition 7 can
be removed from Theorem 2 if we redefine 62, and 62, without adjusting the degrees of

freedom, i.e.,
2
— \T A/ (a)
(a) = § , <CL1 —as — - XA) IBLasso) )

o z _ra® 2
(U )i(b) = @ Z (bl - bB - (Xi - XB)TﬁLasw) ’
i€EB

(6%)2w + 7=(6%)%). Tt follows from the bounds for max (5@ 50
2 . (6%)%,)) have the same asymptotic property.
e(@) e®

E

and define (6*)? .., =

Lasso

that (6g(a),6z(b)) and ((

3
Q; S
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Theorem 3. Assume the conditions in Theorem 1 hold. Then (6*)?

Lasso CONVETGES N Prob-
ability to

1. .
— lim o2, + lim 07,.
P n—oo 1 —py n—ooo

The proof of Theorem 3 can be found in section 2.C.

Remark 9. Though (6*)%,.., has the same limit as 67, , our simulation experience shows
that, in finite samples, the confidence intervals based on (6*)%,  may yield low coverage
probabilities (e.g., the coverage probability for 95% confidence interval can be only 80%).

Hence, we recommend readers to use 67, in practice.

2.6 Related work

The Lasso has already made several appearances in the literature on treatment effect estim-
ation. In the context of observational studies, Zhang and Zhang [103] constructs confidence
intervals for preconceived effects or their contrasts by de-biasing the Lasso adjusted regres-
sion, Belloni et al. [7] employs the Lasso as a formal method for selecting adjustment variables
via a two-stage procedure which concatenates features from models for treatment and out-
come, and similarly, Belloni et al. [5] gives very general results for estimating a wide range
of treatment effect parameters, including the case of instrumental variables estimation.

In addition to the Lasso, Li et al. [53] considers nonparametric adjustments in the estim-
ation of ATE. In works such as these, which deal with observational studies, confounding
is the major issue. With confounding, the naive difference-in-means estimator is biased for
the true treatment effect, and adjustment is used to form an unbiased estimator. How-
ever, in our work, which focuses on a randomized trial, the difference-in-means estimator
is already unbiased; adjustment reduces the variance while, in fact, introducing a small
amount of finite-sample bias. Another major difference between this prior work and ours is
the sampling framework: we operate within the Neyman-Rubin model with fixed potential
outcomes for a finite population, where the treatment group is sampled without replace-
ment, while these papers assume independent sampling from a probability distribution with
random error terms.

Our work is related to the estimation of heterogeneous or subgroup-specific treatment
effects; including interaction terms to allow the imputed individual-level treatment effects
to vary according to some linear combination of covariates. This is pursued in the high-
dimensional setting in Tian et al. [89]; this work advocates solving the Lasso on a reduced
set of modified covariates, rather than the full set of covariate x treatment interactions, and
includes extensions to binary outcomes and survival data. The recent work in Rosenblum et
al. [80] considers the problem of designing multiple-testing procedures for detecting subgroup-
specific treatment effects; they pose this as an optimization over testing procedures where
constraints are added to enforce guarantees on type-I error rate and power to detect effects.
Again, the sampling framework in these works is distinct from ours; they do not use the
Neyman-Rubin model as a basis for designing the methods or investigating their properties.
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2.7 PAC data illustration and simulations

We now return to the PAC-man study introduced earlier. We examine the data in more
detail and explore the results of several adjustment procedures. There were 1013 patients in
the PAC-man study: 506 treated (managed with PAC) and 507 control (managed without
PAC, but retaining the option of using alternative devices). The outcome variable is quality-
adjusted life years (QALYs). One QALY represents one year of life in full health; in-hospital
death corresponds to a QALY of zero. We have 59 covariates about each individual in the
study; we include all main effects as well as 1113 two-way interactions, and form a design
matrix X with 1172 columns and 1013 rows. See section 2.F for more details on the design
matrix. -

The assumptions that underpin the theoretical guarantees of the AT FEj .., estimator
are, in practice, not explicitly checkable, but we attempt to inspect the quantities that are
involved in the conditions to help readers make their own judgement. The uniform bounds on
the fourth moments refer to a hypothetical sequence of populations; these cannot be verified
given that the investigator has a single dataset. However, as an approximation, the fourth
moments of the data can be inspected to ensure that they are not too large. In this data
set, the maximum fourth moment of the covariates is 37.3, which is indicative of a heavy-
tailed and potentially destabilizing covariate; however, it occurs in an interaction term not
selected by the lasso, and thus does not influence the estimate®. Checking the conditions for
high-dimensional consistency of the Lasso would require knowledge of the unknown active
set S, and moreover, even if it were known, calculating the cone invertibility factor would
involve an infeasible optimization. This is a general issue in the theory of sparse linear high-
dimensional estimation. To approximate these conditions, we use the bootstrap to estimate
the active set of covariates S and the error terms e and e®. See section 2.G for more
details. Our estimated S contains 16 covariates and the estimated second moments of e(®
and e® are 11.8 and 12.0, respectively. The estimated maximal covariance 8, equals 0.34
and the scaling (slogp)/+/n is 3.55. While this is not close to zero, we should mention that
the estimation of 4, and (slogp)/y/n can be unstable and less accurate since it is based
on a subsample of the population. As an approximation to condition 5, we examine the
largest and smallest eigenvalues of the sub-Gram matrix (1/n)X%Xg, which are 2.09 and
0.18 respectively. Thus the quantity in condition 5 seems reasonably bounded away from
ZEro.

We now estimate the ATE using the unadjusted estimator, the Lasso adjusted estimator
and the OLS adjusted estimator which is computed based on a sub-design matrix containing
only the 59 main effects. We also present results for the two-step estimator A/T\ELaSSOJFOLS
which adopts the Lasso to select covariates and then uses OLS to refit the regression coeffi-
cients. In the next paragraph and in algorithm 1, we show how we adapt the cross-validation

3The fourth moments of the covariates are shown in fig. 2.G.1. The covariates with the largest two fourth
moments (37.3 and 34.9 respectively) are quadratic term interactnew? and interaction term I M scorerct :
systemnew. Neither of them are selected by the Lasso to do the adjustment.
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FIGURE 2.2: ATE estimates (red circles) and 95% confidence intervals (bars) for
the PAC data. The numbers above each bar are the corresponding interval lengths.

procedure to select the tuning parameter for A/T\ELaSSOJFOLS based on a combined performance
of Lasso and OLS, or cv(Lasso+OLS).

We use the R package “glmnet” to compute the Lasso solution path and select the tuning
parameters A, and A, by 10-fold Cross Validation (CV). To indicate the method of selecting
tuning parameters, we denote the corresponding estimators as cv(Lasso) and cv(Lasso+OLS)
respectively. We should mention that for the cv(Lasso+OLS) adjusted estimator, we com-
pute the CV error for a given value of A\, (or \,) based on the whole Lasso+OLS procedure
instead of just the Lasso estimator (see algorithm 1). Therefore, the cv(Lasso+OLS) and the
cv(Lasso) may select different covariates to do the adjustment. This type of cross validation
requires more computation than the cross validation based on just the Lasso estimator since
it needs to compute the OLS estimator for each fold and each given A, (or A;), but it can
give better prediction and model selection performance.

Figure 2.2 presents the ATE estimates along with 95% confidence intervals (CI). The
interval lengths are shown on top of each interval bar. All the methods give confidence
intervals containing 0; hence, this experiment failed to provide sufficient evidence to reject the
hypothesis that PAC did not have an effect on patient QALY (either positive or negative).
Since the caretakers of patients managed without PAC retained the option of using less
invasive cardiac output monitoring devices, such an effect may have been particularly hard
to detect in this experiment.

However, it is interesting to note that, compared with the unadjusted estimator, the OLS
adjusted estimator causes the ATE estimate to decrease (from -0.13 to -0.31), and shortens
the confidence interval by about 20%. This is due mainly to the imbalance in the pre-
treatment probability of death, which was highly predictive of the post-treatment QALYSs.
The cv(Lasso) adjusted estimator yields a comparable ATE estimate and confidence interval,
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TABLE 2.1: Selected covariates for adjustment.

Method Treatment Covariates

cv(Lasso+OLS)  treated age, p_death, age?, age:p_death

cv(Lasso+OLS)  control age, p_death, age?, age:p_death, p_death:mech_vent
cv(Lasso) treated pac_rate, age, p_death, age?, p_death?, region:im_score,

region:systemnew, pac_rate:age, pac_rate:p_death,
pac_rate:systemnew, im_score:interactnew, age:p_death,
age:glasgow, age:systemnew, interactnew:systemnew,
pac_rate:creatinine, age:mech_vent, age:respiratory,
age:creatinine, interactnew:mech_vent, interactnew:male,
glasgow:organ _failure, p_death:mech_vent,
systemnew:male

cv(Lasso) control age, p_death, age?, unitsize:p_death,
pac_rate:systemnew, age:p_death,
interactnew:mech_vent, p_death:mech_vent”

* Covariate definitions: age (patient’s age); p.death (baseline probability of death);
mech_vent (mechanical ventilation at admission); region (geographic region); pac_rate
(PAC rate in unit); creatinine, respiratory, glasgow, interactnew, organ_failure, system-
new, im_score (various physiological indicators).

but the fitted model is more interpretable and parsimonious than the OLS model: it selects
24 and 8 covariates for treated and control, respectively. The cv(Lasso+OLS) estimator
selects even fewer covariates: 4 and 5 for treated and control, respectively, but performs a
similar adjustment as the cv(Lasso). We also note that these adjustments agree with the
one performed in Miratrix et al. [66], where the treatment effect was adjusted downwards to
—0.27 after stratifying into 4 groups based on predicted probability of death.

The covariates selected by Lasso for adjustment are shown in table 2.1, where “A2”
denotes the quadratic term of the covariate A and “A:B” denotes a two way interaction
between covariates A and B. Among them, patient’s age and estimated probability of death
(p_death), together with the quadratic term “age?” and interactions “age:p_death” and
“p_death:mech_vent” (mechanical ventilation at admission), are the most important cov-
ariates for the adjustment. The patients in control group are slightly older and have slightly
higher risk of death. These covariates are important predictors of the outcome. Therefore,
the unadjusted estimator may overestimate the benefits of receiving PAC.

Since not all the potential outcomes are observed, we cannot know the true gains of
adjustment methods. However, we can estimate the gains via building a simulated set of
potential outcomes by matching treated units to control units on observed covariates. We use
the matching method described in Diamond and Sekhon [29] which gives 1013 observations
with all potential outcomes imputed. We match on the 59 main effects only. The ATE is
—0.29. We then use this synthetic data set to calculate the biases, standard deviations (SD)
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TABLE 2.2: Statistics for the PAC synthetic data set.

No. of selected covariates

Bias SD VvMSE  Covg. (%)  Length treated control
unadjusted 0.001(0)"  0.20(0.02) 0.20(0.02) 99 1.06 _ _
OLS 0.002(0)  0.18(0.02) 0.18(0.02) 99 0.95 _ :
cv(Lasso) 0.001(0)  0.17(0.02) 0.17(0.02) 99 0.94 25(23) 15(14)
cv(Lasso+OLS) 0.000(0) 0.17(0.02) 0.17(0.02) 99 0.95 6(6) 4(3)

* The numbers in parentheses are the corresponding standard errors estimated by using the bootstrap with
B = 500 resamplings of the ATE estimates.

and root-mean square errors (vVMSE) of different ATE estimators based on 25000 replicates
of completely randomized experiment which assigns 506 subjects to the treated group and
the remainders to the control group.

Table 2.2 shows the results. For all the methods, the bias is substantially smaller (by a
factor of 100) than the SD. The SD and v MSE of the OLS adjusted estimator are both 10.2%
smaller than those of the unadjusted estimator, while the cv(Lasso) and cv(Lasso+OLS)
adjusted estimators further improve the SD and v MSE of the OLS adjusted estimator by
approximately 4.7%. Moreover, all these methods provide conservative confidence intervals
with coverage probabilities higher than 99%. However, the interval lengths of the OLS,
cv(Lasso) and cv(Lasso+OLS) adjusted estimator are comparable and are approximately
10% shorter than that of the unadjusted estimator. The cv(Lasso+OLS) adjusted estimator
is similar to the cv(Lasso) adjusted estimator in terms of mean squared error, confidence
interval length and coverage probability, but outperforms the latter with much fewer and
more stable covariates in the adjustment (see fig. 2.3 for the selection frequency of each
covariate for treatment group and control group). We show in fig. 2.4 that the sampling
distribution of the estimates is very close to Normal.

We conduct additional simulation studies to evaluate the finite sample performance of
mLasso and compare it with that of the OLS adjusted estimator and the unadjusted es-
timator. A qualitative analysis of these simulations yields the same conclusions as presented
above; see section 2.E for details.
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FIGURE 2.3: Selection stability comparison of cv(Lasso) and cv(Lasso+OLS) The
left plot shows the treatment group, and the right plot shows the control group.
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the red curves are the densities of a normal distribution; the blue curves are the kernel
density estimate. The blue curves are very close to the red ones meaning that all the ATE
estimates follow normal distribution.
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2.8 Discussion

We study the Lasso adjusted average treatment effect (ATE) estimate under the Neyman-
Rubin model for randomization. Our purpose in using the Neyman-Rubin model is to
investigate the performance of the Lasso under a realistic sampling framework which does
not impose strong assumptions on the data. We provide conditions that ensure asymptotic
normality, and provide a Neyman-type estimate of the asymptotic variance which can be
used to construct a conservative confidence interval for the ATE. While we do not require
an explicit generative linear model to hold, our theoretical analysis requires the existence of
latent ‘adjustment vectors’ such that moment conditions of the error terms are satisfied, and
that the cone invertibility condition of the sample covariance matrix is satisfied in addition
to moment conditions for OLS adjustment as in Lin [54]. Both assumptions are difficult to
check in practice. In our theory, we do not address whether these assumptions are necessary
for our results to hold, though simulations indicate that the moment conditions cannot be
substantially weakened. As a by-product of our analysis, we extend Massart’s concentration
inequality for sampling without replacement, which is useful for theoretical analysis under the
Neyman-Rubin model. Simulation studies and the real data illustration show the advantage
of the Lasso-adjusted estimator in terms of estimation accuracy and model interpretation.
In practice, we recommend a variant of Lasso, cv(Lasso+OLS), to select covariates and
perform the adjustment, since it gives similar coverage probability and confidence interval
length when compared with cv(Lasso), but with far fewer covariates selected. In future work,
we plan to extend our analysis to other popular methods in high-dimensional statistics such
as Elastic-Net and ridge regression, which may be more appropriate for estimating adjusted
ATE under different assumptions.

The main goal of using Lasso in this chapter is to reduce the variance (and overall mean
squared error) of ATE estimation. Another important task is to estimate heterogenous treat-
ment effects and provide conditional treatment effect estimates for subpopulations. When
the Lasso models of treatment and control outcomes are different, both in variables selected
and coefficient values, this could be interpreted as modeling treatment effect heterogeneity
in terms of covariates. However, reducing variance of the ATE estimate and estimating
heterogenous treatment effects have completely different targets. Targeting heterogenous
treatment effects may result in more variable ATE estimates. Moreover, our simulations
show that the set of covariates selected by the Lasso is unstable and this may cause prob-
lems when interpreting them as evidence of heterogenous treatment effects. How best to
estimate such effects is an open question that we would like to study in future research.
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Appendix

2.A Proof of Theorem 1

In this section, we will prove Theorem 1 under a weaker sparsity condition than that given
in section 2.4.

Definition 3. We define an approximate sparsity measure. Given the regularization para-

meter \,, A\, and B(“) and ﬁ(b), the sparsity measures for treatment and control groups, sf\a)

a

and SE\? are defined as

p 1819 d ki
SE\C{? = Zmln )]\—, 1 5 Sg\l;) - Zmln )]\b ) 1 ) (222)
=1 ¢

Jj=1

respectively. We will allow sgi) and SE\? to grow with n, though the notation does not

explicitly show this. Note that this is weaker than strict sparsity, as it allows ,B(“) and B(b)
to have many small non-zero entries.

First, we restate conditions 4-6 from above, substituting this approximate sparsity measure.

Condition 8. Decay and scaling. Let sy, = max {sf\‘:), sf\?},

1
bn=0 (W> , (2.23)
(sxlogp)/vn = o(1). (2.24)

Condition 9. Cone invertibility factor. Define the Gram matrix as ¥ = n™ 'Y " | (x; —
x)(x; — x)T. There exist constants C' > 0 and £ > 1 not depending on n, such that

[hs|[1 < Csy[[Zh]/w, VheC, (2.25)

with Cd:ef{h s [hgelly < €[jhgl1}, and

SE G 1B > A, or |BY] > A} (2.26)
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Condition 10. Let 7 = min {1/70, (3p4)?/70, (3 — 3p4)?/70}. For constants 0 < n < g—}
and 0 < M < oo, assume the regularization parameters of the Lasso belong to the sets

1 2(1 LY2 |21

)\a c (—,M] x < ( +T> ogp +(5n> : (227>
n PA n
1 2(1 Y2 |21

N € (=, M] x ( (1+7) Y - +5n) . (2.28)
n PB n

Condition 11. Suppose there exist 3, 3%, )\, and )\, such that conditions 1-3 and 8-10
hold simultaneously.

It is easy to verify that conditions 8-11 are implied by conditions 4-6 and the assumption

stated in Theorem 1. We will prove Theorem 1 under the weaker conditions 8-11. For ease
~(a ~ (b a

of notation, we will omit the subscripts in B(La)sso, B(L;SSO, Sxs sf\a) and S(;Z). Note that we can

assume, without loss of generality, that

a=0,b=0,

b

= 0. (2.29)
Otherwise, we can consider a; = a; — E_@- = b —band X; = x; — X. Thus, we assume
ATE = a — b = 0 and the definition of AT F1,.., becomes
A/T\ELasso = [ELA - (iA)TB(a)} - [BB - (iB)TB(b)] : (2.30)
We now proceed with the proof of Theorem 1.

Proof. Recall the decompositions of the potential outcomes given in egs. (2.3) and (2.4) If

we define h(®) = B(a) — 3@ Lo = B(

V(AT Erpeso — ATE) = /0 [ég” - é§§>] —Jn [(xA)T h@ — (xp)" h<b>] .

-~ -~
* *3k

b
) _ ﬁ(b), by substitution, we have

We will analyze these two terms separately, showing that (x) is asymptotically normal
with mean 0 and variance given by (2.17), and that (xx) is o, (1).

Asymptotic normality of (x) follows from the Theorem 1 in Freedman [34] with a and b
replaced by €@ and e® respectively. To bound (xx), we will apply Hélder’s inequality to
each of the terms. We will focus on the term involving the treatment group A, but exact
same analysis is applied to the control group B. We have the bound

(%4)" B < ], 10 (2.31)

We bound the two terms on the right hand side of (2.31) by the following Lemmas 1
and 2, respectively. Using these two Lemmas, it is easy to show that («x)= y/n-0, < \/ 1"%) .

Op (\/%gp) = Op (1) O
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(147)LY*  [2logp
n

) , then as

Lemma 1. Under the moment condition of eq. (2.6), if we let ¢, =
n — oo,

Thus, ||%all,, = O, (, /10%) .

Proof. Let ¢, = (ALt f2loap By the union bound,

>cn><ZP<

P([xalloe > ) =0

=Y

ZGA

2

zGA

.....

P (%4l > ea) = ( max

> cn) . (2.32)

By Cauchy-Schwarz inequality, we have

1 1
1 n ) 1 n A 2 1 n ) 2
Substituting the concentration inequality (2.71) into (2.32),

2
_ panac,
P (||xall,, > cn) < 2exp {logp— (

—1+7)2L1/2} = 2exp {—logp} — 0.

Lemma 2. Assume conditions 8-11 hold. Then ||h|; = o, (ﬁ).

Proof. We start with the KKT condition, which characterizes the solution to the Lasso.
Recall the definition of the Lasso estimator 3:

~ . 1 — \T 2
= 5 i —aa — (X — Aa :
B arg min 5 ; (@i —aa— (i —%2)"B)" + X |18l
The KKT condition for B is
— Z — X4 (ai —aa— (x; — )‘(A)TB> = Ak, (2.34)
where  is the subgradient of ||3]]; taking value at 8 = 83, i.c.,

k; € |—1,1] for j s.t. 3. =0
k€08l |op with {J =L ] for 5 s.t. (2.35)

k; = sign(f;) otherwise
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Substituting a; by the decomposition (2.3), (2.34) becomes

.1
— Z —Xa)(x; = %a) (B - B) + — Z(Xz —Xa)(ei — €a) = Aak. (2.36)
zEA n
Multiplying both sides of (2.36) by —h” = (8 — 8)7, we have
1
—Z x; —%4)Th)* — hT =3 "(x; — %a)(e; — ea)

A e A ea
= A8 B)"% < A (181, — 1811 )
where the last inequality is because

~T N
BTk <|IBlhlsll < 11B]l1 and B k= [|8]]x.

Rearranging and by Holder’s inequality, we have

EZ xi = x4)"0)” < (181, ~ 1811:) + 17 o= 30 xa)es — )

€A

O BCEENICEEN

i€A

<X (1811~ 1811

oo
/

~N~
*

To control the term (x), we define the event £ = {* < n)\,}. Lemma 3 shows that, with A,
defined appropriately, £ holds with probability approaching 1. On L

EZ s=xa)™0)" < A (181, = 181 +n ) (2.37)

By substituting the definition of h, and several applications of the triangle inequality, we
have

181, = 1811 < Ihsll, = [hsel, +211Bsll,

Therefore,

2
=3 (6= %)"h)” < Ay (sl = el + 20185 + 0 )

€A

< Aa((n = 1) [[hgell, +

(1 +m) |[bsll, +21Bsell,)
Because ﬁ Siea (xi — )‘(A)Th)2 > 0, we obtain

(1 =) [[hge]]; <

(L+n) |[bslly + 2Bsclly < (1 +n) [[hsll; + 25Xa. (2.38)
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where the last inequality is because of the definition of s in (2.22) and S in (2.26).
Consider the following two cases:
(D) If (1 4+ 7n)|lhg|l1 + 2sAa > (1 — n)€||hg]|; then by (2.38),

1+n 25Ng _ 2s), 2
hll, = hs + hSc < <—+1> hs + < < +1>.
Il = sl + Pl < (7524 1) il + 7 < 72 (2

By the definition of A\, and the scaling assumptions (2.23), (2.24), we have that s\, =

1
o(m>
(I1) 1f (1 + ) |hsl + 25Aa < (1 — 7)E||hs|ly then by (2.38) we have [|hse|; < &]|hs]:.

Applying the cone invertibility condition on the design matrix (2.25),

]y = [[hsl[; + [[hsell, < (1 +&)hslly < (1+)Cs

1
—XTXhH (2.39)
n [e.9]

Before applying this inequality we will revisit the KKT condition (2.35), but this time we
will take the [,-norm, yielding

where the latter inequality holds on the set £. The final step is to control the deviation of
the subsampled covariance matrix from the population covariance matrix, so that we can

* > (xi — %a)(xi —%4)"h

n
Aiea

L3 o — R e — )

n
Aiea

<ot < (14+m)Aa (240)

o0 [e.9]

apply (2.39). We define another event with constant C; = 2(1?#
1 B _ v 1l rp log p
M= |— g (x; —X4)(x; —%4)" —=—X"X|| <4
na ‘= n N n

Lemma 4 shows that P(M) — 1. Continuing our inequalities, on the event £ N M,

log p
n

S

Ml + s

1
—XTXhH < Cis
n [ee]

i Z(Xz — XA)(XI' — XA)Th

€A

o0

< o(1) [[hlly + s(1 +n)Aa,

where we have applied the scaling assumption (2.24) and (2.40) in the second line. Hence,
by (2.39),
[[hfl; < (1 +&C [o(1) [l +s(1+n)Ad].

Again, applying the scaling assumptions (2.23) and (2.24), we get ||h||, = o, (ﬁ). O

Lemma 3. Define L = { %ZieA(xi —x4)(e; — éA)H < n)\a}. Then under the condi-

tions of Theorem 1, P(L) — 1.
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Proof. 1t is easy to verify that

—Z i —Xa)(e; —€a) szez €A)-

ZEA zGA
Hence,
1
n—Z(X —Xa)(e; —€a) szez + [[(xa)(€a)ll - (2.41)
Aea Aiea

We analyze these two terms on the right hand side of the mequahty separately. For the first
term, by triangle inequality and the definition of 9,, in (2.9),

Z X;€; < ||— Z X;6; — — Z X;€; l i X;€;
A e 4iea 00 " i=1 00
S —_ Z Xi€; — — Z Xi€; + 6n (242)
ZEA 00

We will again bound (2.42) by the concentration inequality of Lemma 7. By Cauchy-Schwarz
inequality, we have for any j =1, .., p,

1
i=1 =1 i=1

N

Let t, (H;LLW 21?’9 , then by the union bound and the concentration inequality (2.71),
er——er >t, | <2exp<lo p—M
AT o "= P+ eL)

= 2exp{—logp} — 0.
Taking this back to (2.42), we have

“(J-

For the second term, by Lemma 1, we have shown that,

1 LY4 [21
P(Mﬂm§(+ﬂ ,/OW>%L
pa n
1 LY4 |21
P (HéAuoo <DL, ng> oL
pa n

E Xi€;

zeA

<%+%)%L (2.43)

Similar proof yields
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Hence, under the scaling condition (2.24),

N (14 7)LY2 [2logp
P <H(XA)(€A)HOO < o . > — 1. (2.44)

Combining (2.43) and (2.44) yields

1 21+ 1)L [21
Pl|— (x—xa)e—ea)|| < L)L [2loep 5 ) Ly
"4 ea pa "
The conclusion follows from the condition A\, € (%, M] x (Q(HIL)‘LW zhap 5n>. O

Lemma 4. Assume stability of treatment assignment probability condition 1 and mo-
ment condition 2 hold. Define

f

Then P(M) — 1.

1 1
— ) (i —xa)(x; —x4)T = =XTX
n

n
Aiea

<0 logp}

n
oo

Proof. 1t is easy to see that

—Z x; — Xa)(X; — Xa) :_le )(xa)".

ZEA ZEA

Then, by triangle inequality,

é S = %)~ xa) - LXTX (2.45)
< le - —le +| (%) (%)) .- (2.46)
A i€A h ~

o0,
J

~~
*

We control the first term (x) again using the concentration inequality (2.71) and the
union bound. By Cauchy-Schwarz inequality, for j, k =1, ..., p,

1 1
- lej L = ( Z xz]) (% 12:1: a:fk) <L
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Then,
1 l & 1 LY/2 /31
P ||—ZX1‘X¢T——ZX¢X¢T||OOZ (1+7) o8P
A A neia pa n

3pana(l+7)*Llogp
(1+7)2Lpin

< 2exp {QIng - } = 2exp{—logp} — 0. (2.47)

The second term (xx) is bounded by again observing that, by Lemma 1 and the scaling
condition (2.24),
logp
Combining (2.47) and (2.48) yields the conclusion. O

() < |I%all% = 0p( (2.48)

2.B Proof of Corollary 1

Proof. By Theorem 1 in Freedman [34], the asymptotic variance of /n A/T\Eunadj is

1;2*‘ lim,, 00 02 + lf?m lim,, 00 07 + 21im,, o 0ap, so the difference is
1 —pa P
. 2 2 A . 2 2 .
lim (ae<a> — aa) + lim (ae(b) — Ub) +2 lim (Op@) o) — Oap) -
pa  n—oo 1— PA n—oo n—oo

We will analyze these three terms separately. Since X B and XB® are the orthogonal
projections of a and b onto the same subspace, we have

(Xﬁ(“))Te(a) — (Xﬁ(“))Te(b) — (Xﬁ(b))Te(a) — (Xﬂ(b))Te(b) —0.
Simple calculations yield

2
o2 — 02 = ||~ llall; = = || x5 . (2.49)

2
o2 — ot = [ = lell; = — | X8 . (2.50)
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Oetwe = 0ap = (1)1 () — a’b = —(X )" (XBY) (2.51)
Combining (2.49), (2.50) and (2.51), we obtain the corollary. O

2.C Proofs of Theorems 2 and 3

Preparatory Lemmas

Before proving Theorem 2, we present the following two lemmas. Lemma 5 bounds the
number of selected covariates (covariates with a nonzero coefficient). Lemma 6 is an analogue
of the weak law of large numbers for sampling without replacement.

Lemma 5. Under conditions in Theorem 2, there exists a constant C, such that the following
holds with probability going to 1:

§@ < s 30 < Cs. (2.52)

Proof. In the proof of Lemma 2, we have shown that, on £ defined in Lemma 3,

2 A A
EZ( =% (8-8) <X (181, — 181 + 118 - Bll:)
Aa(1+n)]18 = Bl (2.53)

Let x7 be the j-th column of the design matrix X and )‘(f;‘ =ny, Y ica Tij- Again, by KKT
conditon, we have

LSy 5 (00— 2 xm)‘ e i, 20

n
Aiea

Substituting a; by the decomposition (2.3) yields

1 1 . ”

— > (i — %)) (ei — €a) + — > (i — %)) (xi — %) (B = B)| = Ao
Aiea Aiea
Combining with the definition of the event £, we have if Bj # 0
1 » B .
Aj = - D (i — %) (xi = %4) (B B)| = (1— ). (2.54)
€A

Let Z = (21, ...,2,) € RP*" with z; = x; — X4 € R? and denote w = Z7 (3 — ,3), then

—||wA||2=—Z( %~ %) (8- B)) <148 Bl
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Let Z4 = (z; : i € A), since the largest eigenvalues of Z4Z4 and Z,Z7 are the same,

1
WEZZ;ZAWA < _2)\maX<Z£ZA)HWA||§
1 .
< Al ZaZE)Naln+ 118 = Bl
n A~
< Amax_)\a(l—i_n)H/B_ﬂHl'
na
The last inequality holds because
Amax(Z42%) = max u AV
u:||ull2=1
T > \T
= max u ; — X i —X4) U
u:|ul|2=1 Z A A)

= max u’ Zx,-xi u—nu’ (x4)(%4) u

u:f[uf[2=1
<  max u? X x u < nl oy 2.55
T uwffulla=1 Z T (2:55)
On the other hand,
1
— WhZ N Zawy = ZAQ > oA 7)2A23. (2.56)
A j=1 §:B;#0

Combining (2.54), (2.56) and the fact that with probability going to 1 (see the proof
of Lemma 2) A
1B = Bl < Cs(1+n)A,,

where C' is a constant. We conclude that with probability going to 1

11 n C(1+n)28

< e AL+ ) Cs(L 4 m)A <
S AR A( n)Cs(1+n) oAl =)

]

Lemma 6. Let {z;,i = 1,...,n} be a finite population of real numbers. Let A C {i,...,n}
be a subset of deterministic size |A| = na that is selected randomly without replacement.
Suppose that the population mean of the z; has a finite limit and that there exist constants
€ >0 and L < oo such that

1 n
= alte< L (2.57)
n =1
If 4 — py € (0,1), then
Za 5 lim Z. (2.58)

n—oo
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Proof. For any t > 0, we have
P(|Za — lim 2| > t) < P(|24a — 2| > t/2) + P(|Z — lim Z| > t/2). (2.59)
n—oo n—oo

The second term in the right hand side of (2.59) obviously converges to 0 as n — oco. To
bound the first term, we apply the concentration inequality (2.71). By (2.57), it is easy to

show
1 & 1 & 2 1
=N 2= =Sl el < () Zyz\l+fngnm.
n =1 n =1

Concentration inequality (2.71) yields

L panat®
P(|Za — 2| > t/2) <2exp — —— ¢ — 0.
4(1 4 7)2LTHen 15
O
Proof of Theorem 2
Proof. To prove Theorem 2, it is enough to show that
6% 5 lim o), (2.60)
n—oo
6%, > lim o%y). (2.61)
n—oo

We will only prove the statement (2.60) and omit the proof of the statement (2.61) since it
is identical. By definition (2.20) and simple calculations,

1 EEVFSON
2+ _ _ T
Ola) = nA—df(“) E a; — xa)' B )

(
_ df 1 Z(az
(

—x4)"8 + (xi — %) (B - B(a))>2

nap —

aa
Qg —
w(a) \ 2
N nA——de) ZEZA a; —x; B — (a4 — (%4)"BW) + (xi — %4)" (B - 5( ))>

1 “ o _ - (a) )\ 2
L LS (- ) ) (8 67)

na —df @ n, icA

& ! “ e\ ’ 1 < a ~(a) 2
- m-—%{a;(é)—ek)) +a;(<xi-m>w>_g >)}

LS B (@ @\e = \T/a@ _ 3@
+nA—df(a){nA;(ei —ey)(xi—Xa) (B =B )¢
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The second to last equality is due to the decomposition of potential outcome a:
=xIB 4 el s = (x4)7B + Y.

It is easy to see that
1 ( (a) —(a))2 (a 2 _ (a)
g e;’ —é€ = E . 2.62
N — % A Ny 4 €; ( )

By the 4th moment condition on the approximation error e® (see (2.7)), and apply-
ing Lemma 6 gives

1 a
—Z(el(- )2 hm ae(a), 654 2 lim @ = 0.

n—o0

Therefore,

@\? »
_Z < éﬁ) 5 lim o?,,. (2.63)
’]’LA e n—oo
By simple algebra,

SO CESUEERER

i€A
= (89 -8 [ni PIICEENCEEN ] (8 - B")
< a8 |- Sk - %) - x)” (2.64)
S | R ey ~

We next show that (2.64) converges to 0 in probability. By Lemmas 2 and 4, we have

1
(@) _ — |h@|, =0, [ —— 2.
1 _
— D (xi—=a)(xi — xa)"|| = 0,(1). (2.66)
Aiea ~
Therefore,
1 _ PN OR
- ((xi %)Y - 3 )) L) (2.67)
A ea

By the Cauchy-Schwarz inequality;,
1 a _(a — a ~ (a)
= e ) x — %) (B9 - 87

na“

1 2
< 3 ( (a) _ 7<a>>
—= [nA €; €A

€A

NI

[ni S (6= x)"(8 - B“‘)))z] (2.68)
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which converges to 0 in probability because of (2.63) and (2.67).
By Lemma 5 and condition 4, we have

nA nA P
= — 1. 2.69
TLA—df(a) TLA—§(a) -1 ( )

Combining (2.63), (2.67), (2.68) and (2.69), we conclude that
5‘3{,1) £> lim 0-3(“)’
n—oo

The remaining part of the proof is to study the difference between the conservative
variance estimate and the true asymptotic variance:

I 1 : 1 —pa .. pa .. .
— lim 0%, + —— lim 0%, | — lim aia) + lim O'z(b) + 2 lim 0.0
n—oo © 1-— n—oo © n—00 1-— n—00 n—00
pa pa Pa Pa
= lim O'g(a> -+ lim O-g(b) — 2 lim O ¢(a)e(b)
n—o0 n—oo n—o0

_ 1 2
= hm Ue(a)fe(b)

n—oo

I T(a@) _ gb)y)°

—nll_{{.loﬁ;<ai_bi_xi(/3 -B )) : (2.70)
0

Proof of Theorem 3

Proof. By Lemma 5, max (5@, 5®) = o,(min(na,np)). Therefore, (6%,,6%,) and

((6%)%4), (6%)21)) have the same limits. The conclusion follows from Theorem 2. O
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2.D Concentration inequality for sampling without
replacement

Our proofs rely heavily on the following Massart concentration inequality for sampling
without replacement.

Lemma 7. Let {z;,i=1,...,n} be a finite population of real numbers. Let A C {i,...,n} be
a subset of deterministic size |A| = na that is selected randomly without replacement. Define
pa=mna/n, 02 =n"t3"" (2 — 2)?. Then, for anyt >0,

panat? }

a1 (2.71)

P(EA—Zzt)gexp{—

with T = min {1/70, (3p4)?/70, (3 — 3pa)?/70}.

Remark 10. Massart showed in his paper [60] that for sampling without replacement, the
following concentration inequality holds:

t2
P(Ea—2>1)< exp{—pA”j }
o
His proof required that n/n4 must be an integer. We extend the proof to allow n/n4 to be
a non-integer but with a slightly larger constant factor (1 + 7).

Proof. Assume z = 0 without loss of generality. For ny < n/2, let m > 2 and r > 0 be
integers satisfying n — nam = r <nu. Let u > 0, we first prove that

€A i€B

Eexp (uz zl> < Eexp (u&Z zi/{m(m+1)} + u2n02/4> (2.72)

for a random subset B C {1,...,n} of fixed size |B| < n/2 and a certain fixed 6 € {—1,1}.
Let P, be the probability under which {iy,...,i,} is a random permutation of {1,...,n}.
Given {i1,...,7,}, we divide the sequence into consecutive blocks By, ..., B, , with |B;| =
m+1forj=1,...,rand |Bj| =mfor j =r+1,...,n4. Let Z; be the mean of {z; : i € By}
and P, be a probability conditionally on {iy,...,4,} under which wy is a random element
of {z;:i€ By}, k=1,...,n4. Then {wy,...,w,,} is a random sample from {z,...,2,}
without replacement under P = P, P;. Let A; = max;ep, 2 — min;ep, 2; and denote E, the
expectation under P,. The Hoeffding inequality gives

na naA nA
Esexp (uZwk> < exp <uz Z + (u?/8) Z Ai) : (2.73)
k=1 k=1 k=1
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As A7 < 22163 (2 — 2)° < 2ZieBk 27,

na na
Esexp (u Z wk> < exp (u Z Zr + u2n02/4> (2.74)
k=1 k=1

Let B =U}_,By. As z =0,

sz—z,zz/{m (m+1)}. (2.75)

i€B

This yields (2.72) with § = 1 when |B| < n/2. Otherwise, (2.72) holds with § = —1 when B
is replaced by B¢, as ), .pzi = — Y _.cpe 2 due to z = 0.
Now, as m(m + 1) > 6, repeated application of (2.72) yields

Eexp (uZzZ> < Fexp

€A

ud’ Z zifim(m + Dm/(m’ + 1)} + (14 {m(m + 1)} 72) u*no? /4
< exp [(1+ {m(m+ 1)} *(1+1/364+1/36>+---)) u’no”/4]
= exp[(1+ 36/35 {m(m + 1)} 7?) u’no? /4]

[(1+7)* u’no? /4] (2.76)

< exp

with 7 = (18/35){m(m+1)}~2. The upper bound for 7 follows from 2 < m < n/ny < m+1.
As zZ = 0, we also have

Eexp (u Z z,) <exp[(1+ 7)? u’no® /4] (2.77)

i€A
for ny > n/2. This yields (2.71) via the usual

P{zy—z>1t} < exp|—ut+ (1+7)u’no?/(4n?)]

panat? panat?

(14+7)202  (1+7)2%032 (2.78)

= exp [—2

with u = 2panat/{c(1 + 7)}% O

2.E Simulations

In this section we carry out simulation studies to evaluate the finite sample performance of
AT .60 estimator. We also present results for the AT Fopg estimator when p < n and

the two-step estimator @Lasso+OLS which adopts Lasso to select covariates and then uses
OLS to refit the regression coefficients, see Efron et al. [30], Meinshausen [64], Belloni and
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Chernozhukov [6] and Liu and Yu [56] for statistical properties of the Lasso+OLS estimator
in the linear regression model.

Let B(a) be the Lasso estimator defined in eq. (2.1) (we omit the subscript “Lasso” for
the sake of simplicity) and let S@) — {j: Béa) # 0} be the support of ﬁ(a). The Lasso+OLS

adjustment vector BAE;)SSO +org for treatment group A is defined by

~ (a) . 1 _ _ T 2
BlLassoroLs =  Argmin . Z (ai —aa — (X — Xa) ,3) .
B: B;=0, vjgs(® “NA

NC
We can define the Lasso+OLS adjustment vector ﬁ(L;SSO +oLg for control group B similarly.

Then @LassoJrOLS is given by

mLasso+OLS = |:C_LA - (XA - 5(>TB£aa)sso+OLSi| - [BB - (XB - 5(>TB£b;sso+OLS :

We use the R package “glmnet” to compute the Lasso solution path. We select the tuning
parameters A, and A, by 10-fold Cross Validation (CV) and denote the corresponding adjus-
ted estimators as cv(Lasso) and cv(Lasso+OLS) respectively. We should mention that for the
cv(Lasso+OLS) adjusted estimator, we compute the CV error for a given value of the A, (or
Ap) based on the whole Lasso+OLS estimator instead of the Lasso estimator, see algorithm 1
for details. Therefore, the cv(Lasso+OLS) adjusted estimator and the cv(Lasso) adjusted
estimator may select different covariates to do the adjustment. This type of cross validation
for cv(Lasso+OLS) requires more computation effort than the cross validation based on just
the Lasso estimator since it needs to compute the OLS estimator for each fold and for each
Aq (0r Ap), but it can give better prediction and covariates selection performance.

The potential outcomes a; and b; are generated from the following nonlinear model: for

1=1,..,n,
a; = Z $i]ﬂ](-al) + exp <Z xi]ﬂ](.az)> + EZ('a)’
j=1 J=1
b; = injﬁg(‘bl) +exp (Z xijﬁj('w)) +e”),
j=1 j=1
(a)

where €, and egb) are independent error terms. We set n = 250, s = 10, p = 50 and 500.
For p = 50, we can compute OLS estimator and compare it with the Lasso. The covariates
vector x; is generated from a multivariate normal distribution N (0,%). We consider two
different Toeplitz covariance matrices X which control the correlation among the covariates:

Yi=1; Ty = Vi £

where p = 0,0.6. The true coefficients ﬁ](.al), BJ(-GQ), Bj(bl), BJ@) are generated independently
according to
Bty B 0%ty j=1,.8
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Algorithm 1: K-fold Cross Validation (CV) for the Lasso+OLS estimator

Input: Design matrix X, response Y and a sequence of tuning parameter \q, ..., As;
Number of folds K.

Output: The optimal tuning parameter selected by CV: Ajptimai-

Randomly divide the data z = (X,Y) into K roughly equal parts zx, k =1,..., K

for each k =1,..., K do

Denote S® (o) = 0 and Bl ors(Ao) = 0

Fit the model with parameters \;,j =1, ..., J to the other K — 1 parts z_, = 2z \ 2

W N =

of the data, giving the Lasso solution path B(k)()\j),j =1,...,J and compute the
selected covariates set S®(\;) = {1 : Bl(k)()\j) #0},7=1,...,J on the path

5 for each 7 =1,...,J do

compute the Lasso+OLS estimator:

1 . R
Aoy 2 B 0 i SO £ 500,

1€E2_ |

(k) arg min
ﬂLasso—&-OLS()\j) = B: B;=0, Vj¢g(k>()‘j)

Ak '
5£a)sso+OLs()\j—1), otherwise

B (2.79)
7 Compute the error in predicting the kth part of the data PE®) :

1 R 2
PEOO) = =3 (v = of Blikorons())

Compute the optimal \ selected by CV

©

Aoptimar = argmin CV (););
Ajrg=1,....J

10 return Agptimai-
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B~ B gy B~ BT 400ty =1,
where t3 denotes the t distribution with three degrees of freedom. This ensures that the
treatment effects are not constant across individuals, and that the linear model does not
hold in this simulation. The error terms ez(»a) and ez(»b) are generated according to the following

linear model with hidden covariates z;:

e = > 2B + &,
j=1

S

b b ~(b
65):2%@( Ve,

j=1

where &% and 62@ are drawn independently from a standard normal distribution. The

vector z; is independent of x; and is also drawn independently from the multivariate normal
distribution A(0,%). The values of x;, 8D, plad gED  go2) 5 &9 20 4 and b, are
generated once and then kept fixed.

After the potential outcomes are generated, a completely randomized experiment is sim-
ulated 25000 times, assigning n4 = 100, 125, 150 subjects to treatment A and the remainder
to control B. There are 12 different combinations of (p, p,n4) in total.

Figures 2.E.1-2.E.3 show boxplots of different ATE estimators with their standard de-
viations (computed from 25000 replicates of randomized experiments) presented on top of
each box. Regardless of whether the design is balanced (n4 = 125) or not (n4 = 100, 150),
the regression based estimators have much smaller variances and than that of the unadjusted
estimator and therefore improve the estimation precision.

To further compare the performance of these estimators, we present the bias, the standard
deviation (SD) and the root-mean square error (v MSE) of the estimates in table 2.E.1. Bias
is reported as the absolute difference from the true treatment effect. We find that the bias of
each method is substantially smaller (more than 10 times smaller) than the SD. The cv(Lasso)
and cv(Lasso+OLS) adjusted estimators perform similar in terms of SD and v MSE: reducing
those of the OLS adjusted estimator and the unadjusted estimator by 10% — 15% and
15% — 31% respectively. We also compare the number of selected covariates by cv(Lasso)
and cv(Lasso4+OLS) for treatment group and control group separately, see table 2.E.2. It
is easy to see that the cv(Lasso+OLS) adjusted estimator uses many fewer (more than
44%) covariates in the adjustment to obtain similar improvement of SD and v MSE of ATE
estimate as the cv(Lasso) adjusted estimator. Moreover, we find that the covariates selected
by the cv(Lasso+OLS) are more stable across different realizations of treatment assignment
than the covariates selected by the cv(Lasso). Overall, the cv(Lasso+OLS) adjusted, the
cv(Lasso) adjusted, the OLS adjusted and the unadjusted estimators perform from best to
worst.

We move now to study the finite sample performance of Neyman-type conservative vari-
ance estimates. For each simulation example and each one of the 25000 completely random-

ized experiments, we calculate the ATE estimates (@) and the Neyman variance estimates
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Boxplot with Standard Deviation on top (na=100)

O Unadjusted® cv(Lasso) B cv(Lasso+OLS) B OLS
1.17 1.17

0.79 02
_ . 0.79
~ ﬁ 0.67
0.72

S T Y

ATE - ATE

—

-2

4

-6

(50,0) (50,0.6) (500,0) (500,0.6)

FiGURE 2.E.1: Boxplot of errors of ATE estimates for n, = 100. Unadjusted, OLS
adjusted, cv(Lasso) and cv(Lasso+OLS) adjusted estimators are shown with their standard
deviations presented on top of each box. The OLS adjusted estimator is only computed
when p = 50.

(6) and then form the 95% confidence intervals [A/ﬁ —1.96-6//n, ATE + 1.96 - a//nl.
Figures 2.E.4-2.E.6 present the boxplots of the interval length with the coverage probability
noted on top of each box for the unadjusted, OLS adjusted (only computed when p = 50),
cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators. We find that all the confid-
ence intervals for the unadjusted estimator are conservative. The cv(Lasso) adjusted and
the cv(Lasso+OLS0 adjusted estimators perform very similar: although their coverage prob-
ability (at least 92%) may be slightly less than the pre-assigned confidence level (95%),
their mean interval length is much shorter (26% — 37%) than that of the unadjusted estim-
ator. The OLS adjusted estimator has comparable interval length with the cv(Lasso) and
cv(Lasso+OLS) adjusted estimator, but has slightly worse coverage probability (90% —93%).

We conduct more simulation examples to evaluate the conditions assumed for asymptotic
normality of the Lasso adjusted estimator. We use the same simulation setup as above, but
for simplicity, we generate the potential outcomes from a linear model (set 342 = 32 = ()
and remove the effects of the hidden covariates z; in generating the error terms eE“) and egb)
and set p =0, ny = 125. We find that the distribution of the cv(Lasso) adjusted estimator
may be non-normal when:

(1). The covariates are generated from Gaussian distribution and the error terms do not



CHAPTER 2. LASSO ADJUSTMENTS OF TREATMENT EFFECT ESTIMATES IN
RANDOMIZED EXPERIMENTS

ATE - ATE

—

Boxplot with Standard Deviation on top (na=125)

O Unadjusted® cv(Lasso) B cv(Lasso+OLS) B OLS
1.15 1.15

LR

69

(50,0) (50,0.6) (500,0) (500,0.6)

45

FiGURE 2.E.2: Boxplot of errors of ATE estimates for n, = 125. Unadjusted, OLS
adjusted, cv(Lasso) and cv(Lasso+OLS) adjusted estimators are shown with their standard
deviations presented on top of each box. The OLS adjusted estimator is only computed

when p = 50.

satisfy second moment condition, e.g., being generated from ¢ distribution with one
degree of freedom, see the upper two subplots of fig. 2.1 for the histograms of unadjusted
the cv(Lasso) adjusted estimators (the corresponding p-values of Kolmogorov—Smirnov
testing for normality are less than 2.2e — 16).

(2). The covariates do not have bounded fourth moments, e.g., being generated from ¢
distribution with three degrees of freedom, see the lower two subplots of fig. 2.1 for the
histograms of unadjusted the cv(Lasso) adjusted estimators (again, the corresponding

p-values of Kolmogorov—Smirnov testing for normality are less than 2.2¢ — 16).

These findings indicate that our moment condition (condition 2 and remark 1) cannot be
dramatically weakened. However, we also find that the cv(Lasso) adjusted estimator still has
smaller SD and vMSE than the unadjusted estimator even when these moment conditions

do not hold.
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FiGURE 2.E.3: Boxplot of errors of ATE estimates for n, = 150. Unadjusted, OLS
adjusted, cv(Lasso) and cv(Lasso+OLS) adjusted estimators are shown with their standard
deviations presented on top of each box. The OLS adjusted estimator is only computed

when p = 50.
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TABLE 2.E.1: Bias, standard deviation (SD) and root-mean square error

of ATE estimates.

47
MSE

(P, p)
Statistic Method (50,0) (50,0.6) (500,0) (500,0.6)
nap = 100
Unadjusted 0.003(0.004)°  0.005(0.005)  0.002(0.003)  0.003(0.005)
b OLS 0.014(0.005) 0.013(0.006) )
cv(Lasso) 0.007(0.004) 0.014(0.005) 0.006(0.004) 0.005(0.004)
cv(Lasso+OLS)  0.011(0.004) 0.013(0.005) 0.009(0.004)  0.003(0.004)
Unadjusted 0.79(0.08) 1.17(0.11) 0.79(0.07) 1.17(0.11)
SO OLS 0.72(0.07) 0.96(0.09) - ;
cv(Lasso) 0.62(0.06) 0.82(0.08) 0.67(0.06) 0.84(0.08)
cv(Lasso+OLS) 0.63(0.06) 0.82(0.08) 0.65(0.06) 0.84(0.08)
Unadjusted 0.79(0.08) 1.17(0.11) 0.79(0.07) 1.17(0.11)
o OIS 0.72(0.07) 0.97(0.09) - }
cv(Lasso) 0.63(0.06) 0.82(0.08) 0.67(0.06) 0.85(0.08)
cv(Lasso+OLS) 0.63(0.06) 0.82(0.08) 0.65(0.06) 0.84(0.08)
na =125
Unadjusted 0.008(0.005) 0.011(0.007) __ 0.006(0.004) __ 0.01(0.007)
s OLS 0.008(0.004)  0.005(0.005) - ]
cv(Lasso) 0.005(0.003)  0.012(0.005) 0.007(0.004) 0.004(0.004)
cv(Lasso+OLS)  0.012(0.004) 0.012(0.005) 0.011(0.004)  0.003(0.003)
Unadjusted 0.80(0.08) 1.15(0.11) 0.8(0.08) 1.15(0.11)
<D OLS 0.69(0.06) 0.90(0.09) ] ;
cv(Lasso) 0.62(0.06) 0.79(0.07) 0.67(0.06) 0.82(0.08)
cv(Lasso+OLS) 0.62(0.06) 0.79(0.07) 0.65(0.06) 0.81(0.08)
Unadjusted 0.80(0.07) 1.15(0.11) 0.8(0.07) 1.15(0.11)
g OIS 0.69(0.07) 0.90(0.09) ] )
cv(Lasso) 0.62(0.06) 0.80(0.08) 0.67(0.06) 0.82(0.08)
cv(Lasso+OLS) 0.62(0.06) 0.79(0.07) 0.65(0.06) 0.81(0.08)
na = 150
Unadjusted 0.004(0.004) 0.000(0.005) 0.002(0.003) 0.005(0.005)
s OLS 0.002(0.003)  0.006(0.005) - -
cv(Lasso) 0.003(0.003) 0.002(0.004) 0.01(0.005) 0.002(0.003)
cv(Lasso+OLS)  0.011(0.004) 0.006(0.004) 0.017(0.005)  0.001(0.003)
Unadjusted 0.85(0.08) 1.19(0.11) 0.85(0.08) 1.19(0.11)
- OLS 0.76(0.07) 0.96(0.09) - -
cv(Lasso) 0.66(0.06) 0.82(0. 08) 0.72(0.07) 0.84(0.08)
cv(Lasso+OLS) 0.67(0.06) 0.81(0.07) 0.71(0.07) 0.84(0.08)
Unadjusted 0.85(0.08) 1.19(0.11) 0.85(0.08) 1.19(0.11)
g OLS 0.76(0.07) 0.96(0.09) - -
cv(Lasso) 0.66(0.06) 0.82(0.08) 0.72(0.07) 0.84(0.08)
cv(Lasso+OLS) 0.67(0.06) 0.82(0.08) 0.71(0.07) 0.84(0.08)

* The numbers in parentheses are the corresponding standard errors estimated by using the bootstrap with
B = 500 resamplings of the ATE estimates.
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TABLE 2.E.2: Mean number of selected covariates for treated and control group.

(p, p)
Group Method (50,0)  (50,0.6) (500,0) (500,0.6)
na = 100
cv(Lasso) 16 13 22 22
treated  { (Lasso+OLS) 6 6 7 7
control cv(Lasso) 20 11 32 28
cv(Lasso+OLS) 8 6 7 7
ng = 125
cv(Lasso) 17 13 25 24
reated cv(Lasso+OLS) 7 6 6 6
control cv(Lasso) 19 11 32 27
cv(Lasso+OLS) 8 6 9 8
ng = 150
cv(Lasso) 18 13 29 26
reated cv(Lasso+OLS) 8 7 6 6
trol cv(Lasso) 19 12 30 25
oMo cv(Lasso+OLS) 8 6 11 8
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Boxplot of interval length (95% confidence interval) with coverage probability on top (na=100)
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FiGURE 2.E.4: Boxplot of the confidence interval length for n, = 100. Intervals for
unadjusted, OLS adjusted, cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators are
shown. Coverage probability (%) is shown on top of each box. The OLS adjusted estimator
is only computed when p = 50.
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Boxplot of interval length (95% confidence interval) with coverage probability on top (na=125)
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FI1cURE 2.E.5: Boxplot of the confidence interval length for n, = 125. Intervals for
unadjusted, OLS adjusted, cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators are
shown. Coverage probability (%) is shown on top of each box. The OLS adjusted estimator

is only computed when p = 50.
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Boxplot of interval length (95% confidence interval) with coverage probability on top (na=150)
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FiGUure 2.E.6: Boxplot of the confidence interval length for n, = 150. Intervals for
unadjusted, OLS adjusted, cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators are
shown. Coverage probability (%) is shown on top of each box. The OLS adjusted estimator
is only computed when p = 50.
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2.F The design matrix of the PAC data

In the PAC data, there are 59 covariates (main effects) including 50 indicators which may
be correlated with the outcomes. One of the main effects (called interactnew) has heavy
tail, so we perform the transform: = — log(|z| + 1) to make it more normally distributed.
We then centralize and standardize the non-indicator covariates. The quadratic terms (9
in total) of non-indicator covariates and two-way interactions between main effects (1711
in total) may also help predict the potential outcomes, so we included them in the design
matrix. The quadratic terms and the interactions between non-indicator covariates and the
interactions between indicator covariates and non-indicator covariates are also centered and
standardized. Some of the interactions are identical to other effects and we only retain one
of them. We also remove the interactions which are highly correlated (with correlation larger
than 0.95) with the main effects and remove the indicators with very sparse entries (where
the number of 1’s is less than 20). Finally, we form a design matrix X with 1172 columns
(covariates) and 1013 rows (subjects).

2.G Estimation of constants in the conditions

Let S©@ = {j : B§-a) # 0} and S® = {j : ﬂgb) # 0} denote the sets of relevant covariates
for treatment group and control group respectively. Denote S = S@ [ JS® = {j ,Bg»a) =+
0 or ,ng) # 0}. We use bootstrap to get an estimation of the relevant covariates sets
S@_ S®) and then the approximation errors e(® and e® are estimated by regressing the
observed potential outcomes a and b on the covariates in S respectively. We only present
how to estimate S® and e(® in detail and the estimation of S® and e® are similar.

Let A, B be the set of treated subjects (using PAC) and control subjects (without using
PAC) respectively. Denote a;,i € A the potential outcomes (quality-adjusted life years
(QALYs)) under treatment and z; € R the covariates vector of the ith subject. For each
d=1,...,1000, we draw a bootstrap sample {(af(d),z}(d)) : i € A} with replacement from
the data points {(a;, z;) : i € A}. We then compute the LassoOLS(CV) adjusted vector 8(d)
based on each bootstrap sample {(a}(d),z}(d)) : i € A}. Let 7; be the selection fraction of
non-zero f3;(d) in the 1000 bootstrap estimators, i.e., 7; = (1/1000) (110:010 L4, ()0, Where
I is the indicator function. We form the relevant covariates S by the covariates whose
selection fraction are larger than 0.5: S = {j : 7; > 0.5}.

To estimate the approximation error e(®), we regress a; on the relevant covariates Tij,] €
S(@) and compute OLS estimate and the corresponding residual. That is, let 7@ denote the
complement set of S(@,

: 1 i _ 2
gl%s = argmin s (ai —aa — (x; — XA)Tﬂ) :
B: B;=0, VieT(@ 2NA =4

€§a) = a; — (_IA — (Xi — iA)Tﬁ(OaIzs, 7 - A
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FIGURE 2.G.1: Fourth moment of each covariate. The covariates with the largest two
fourth moments (37.3 and 34.9 respectively) are quadratic term interactnew? and interaction
term [ Mscorerct : systemnew respectively. Neither is selected by the Lasso to do the
adjustment. All the fourth moments of the main effects are less than 7.

The maximal covariance ¢, is estimated as:
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Chapter 3

Modeling area M'T with sparse coding
principles

3.1 Introduction

The mammalian visual cortex is organized in a hierarchy of regions delineated by physiolo-
gical and functional boundaries [94]. A major challenge in systems neuroscience is to under-
stand the roles of these regions in performing the various tasks of visual cognition, including
object detection and localization, face recognition, object tracking, and depth perception.
Complete characterization of nervous system function is essentially impossible due to the
staggering complexity of the brain and the limitations of the various technologies for re-
cording neural activity. However, the last 50 years have shown that it is possible to make
progress on our understanding of the computations performed in the visual cortex through
analyzing data available from current technologies.

One problem which has received considerable attention is the characterization of single-
neuron receptive fields, which is made possible by recordings of single-neuron extracellular
voltage. The term “receptive field” was coined by Sherrington in the context of studying
the spatial extent of the scratch reflex in vertebrates [83]. It was applied to the study
of visual neurons by Hartline, who defined it as the region of the visual world, in retinal
coordinates, that must be illuminated in order to achieve a neuronal response [39]. Since
then, the concept has broadened considerably to delineate sensitivity of neurons to many
parameters beyond just spatial localization. In visual neuroscience this may include spatial
frequency, orientation, phase, or more complex image features. In this chapter we consider
a very general definition: the receptive field of a neuron is a real-valued function of the
recent history of the contents of the visual field of the experimental subject. This function
describes the strength of a single neuron’s response (probability of spike, expected spiking
rate, or deviation relative to the resting spike rate). The problem of receptive field estimation
is to learn this function from recordings of a neuron’s activity in response to visual stimuli.

Of course even successful estimation of an encoding function over an arbitrary input does
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not provide complete understanding of the neuron or a brain region, but does capture some
feed-forward transmission of stimulus information from the outside world to the neuron’s
cell body. It does not necessarily offer any biophysical information on how this information
is transmitted or transformed, nor does it address the role of recurrent or feedback neural
connections, which in fact are as plentiful as feed-forward connections in ventral stream
of the visual cortex [33]. It is indeed surprising that neural activity can be explained at
all in this way, as, a priori it is not obvious that single neurons would marginally encode
information about the stimulus [74]. However, the foundational work of Hubel and Wiesel
showed that receptive fields of neurons in anesthetized cat and monkey lateral geniculate
nucleus (LGN) and V1 could be meaningfully characterized according to a relatively small
number of stimulus parameters [47, 46]. This led to biological models explaining how early
visual cortex neurons pool the activity of upstream neurons to produce these receptive fields.
Since then, there has been a blossoming of experimental work on establishing receptive fields
of neurons in the LGN and V1 that now there are established models of receptive fields in
these regions [18].

A current frontier in visual neuroscience is in understanding receptive fields of brain re-
gions further downstream in the extrastriate cortex. Here the visual pathway diverges into
two dominant streams of information, the so-called dorsal and ventral streams. Through ab-
lation studies and single neuron recordings, it is understood that the dorsal stream performs
spatial reasoning, motion perception, object tracking, and visual guidance for movement
(e.g., reaching). The ventral stream is generally understood to be involved in shape, color,
object and facial recognition [93]. Tt is still largely a mystery how these complex cognitive
tasks are performed, and understanding single-neuron receptive fields in these areas is an
essential step.

In this chapter, we focus on visual area MT, or V5, a major area in the dorsal stream
which is involved in the perception of motion and is sensitive to speed and direction of
moving objects. We use recordings of 51 MT cells from macacca mulatta taken while the
subject was stimulated by 20,000 - 40,000 frames of short natural video clips. A prior
study, for which this data was collected, found that a V1-like Gabor wavelet transform,
followed by biologically motivated nonlinearities, provided very high-accuracy fits of these
MT cells [69]. These findings were consistent with the theory that MT receptive fields pool
the output of V1 inputs corresponding to the same velocity of motion [13]. In this chapter
we build models for these neurons from a different neuroscientific motivation. We adapt a
pipeline developed in Mairal et al. [59] for modeling responses of neurons in V4 to natural
images. Their model was inspired by the principle of sparse coding, which posits that visual
representation is optimized such that neuron spiking is a sparse phenomenon. It insert an
extra layer between outputs of V1-type cells and the activity of V4 cells which recodes
the activity of pooled V1 cells in a sparse manner. Besides being biologically plausible,
this approach is similar to a popular architecture for computer vision systems that perform
automated object recognition [100]. Because motion information is so important in area MT,
we adapt the pipeline to represent spatiotemporal features. Averaged over the set of 51 MT
cells, our resulting model is more accurate than the model in Nishimoto and Gallant [69] in
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predicting neuron spike rates on a holdout set of natural images. This does not contradict
the conclusions of Nishimoto and Gallant [69], but suggests that the sparse coding layer
generates feature representations that can better match the tuning of some MT neurons.

To better understand the difference between our model and the spatiotemporal Gabor
wavelet model, we compare the representations of natural video provided by the two models.
We perform canonical correlation analysis, which measures the amount of overlapping in-
formation in the two representations in linear a sense. We find that, despite the nonlinearity
of the sparse coding map, that there are many canonical variables that are highly correlated
between the two representations. In other words, the two representations are identical in
certain directions. Hence, many MT cells that lie approximately in the span of these top
canonical variables are equally well modeled by the two approaches. However, the sparse
coding operation adds flexibility to the representation, and encodes some more complex fea-
tures that are a significantly better match for a subset of M'T neurons. Our findings indicates
that MT is a mixed region, in that some cells have tuning to wavelet-like features similar to
V1 cells, whereas some are more sensitive to features of greater complexity.

3.2 Receptive field estimation in extrastriate visual
cortex

Nonlinear receptive fields

Receptive field estimation is challenging because of the essential nonlinearity of neural sys-
tems. Visual receptive fields are determined by the coordinated activity of many neurons
connected in a circuit that originates in the rod and cone cells of the retina. Photoreceptor
cells encode their signal through varying levels of hyperpolarization of membrane potential,
but very quickly, the signal is digitized into discrete action potentials, or spikes. Hence, neural
activity is fundamentally a nonlinear phenomenon, as it is encoded in a discrete-valued sig-
nal. It is thus perhaps surprising that linear methods such as spike-triggered average (more
generally, linear regression), or simple nonlinear extensions thereof are able to produce fairly
accurate receptive field models all the way downstream to area V1. Here, ‘linear’ signifies
a function that is a linear transformation of the pixel intensities of the image viewed by an
experimental subject. In V1, these models are accurate in the sense that they can accurately
predict neuron spiking rate in response to a wide variety of images, both artificially designed
(eg. Fourier basis functions or wavelets) and naturally occurring (eg. scenes, faces, movie
clips). In particular, simple cells in V1 can be modeled as performing a linear filtering to the
input image, followed by a few simple nonlinear operations such as response normalization
and a static thresholding nonlinearity [18]. Such models capture about 40% of the variance
in V1 cells that can be explained through feed-forward propagation of signal from the retina.

However, linear methods do not generalize well to more complex brain regions down-
stream from V1 [91]. This presents a fundamental challenge for receptive field estimation.
By analyzing neural responses to repeated presentations of visual stimuli, it is clear that a
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large proportion of the variance in spike rates of single neurons in these areas is explainable
by feed-forward propagation from the stimulus input. However, nonlinear modeling, in full
generality, is essentially intractable in high dimensions. Minimax theory shows that, if one
wants to entertain all possible nonlinear functions in a certain smoothness class, to reach
a fixed mean-square error in estimation of the function, sample size must scale exponen-
tially with the dimension. Training data is limited by the difficulty of recording from single
neurons; for example, data from awake macaques can only be gathered while the monkey is
successfully fixating, which may only last for several seconds at a time. In the MT datasets
we analyze in this chapter, each neuron was successfully probed for 20,000-40000 frames of
video; while these are extraordinarily large training sets by the standards of electrophysiolo-
gical experiments, they are still too small for unconstrained nonlinear function estimation
in the dimensions of the input. The stimulus images are 128 x 128 pixels, and, because the
neuron integrates information over recent history of the stimulus, approximately 10 prior
frames of video must be included to model the spike count occuring in the duration of a
single frame.

Hence, the space of possible models of receptive fields must be constrained to allow for
tractable estimation. Fortunately, decades of research into the connectomics of the visual
cortex, the biophysics of single neurons and synaptic transmission, and basic properties of
spiking neurons provide a wealth of knowledge about what kinds of receptive field models
are plausible, biologically. Our general strategy is to fit models that are a combination of
linear and nonlinear components. Denote the stimulus video as a function of two spatial
coordinates and a time coordinate, i.e. I(z,y,t) where z,y € {0,... W} te{0,..., T — 1}
where W is the width of the input video (assumed here to be square), and 7" is the number
of frames in the stimulus set. We denote the nonlinear feature extraction component of
our model as a vector-valued function f : R¥***! — RP where [ delineates the amount of
temporal information incorporated into the features, and p is the dimension of the feature
set. For notational ease, we define the feature vector at time ¢ in terms of the last [ frames

of video prior to t
def

x, = £ (I(, ), I(, -t —1),.... I(-, -, t = 1))
The linear component then predicts the actual neuron’s response at time ¢ as a linear function
of the features of the last h frames of stimulus video shown up to and including time t. h is
a tuning parameter that reflects duration of the ‘memory’ of a cell:

>
—_

y(t) = B?.thfj (3.1)

<.
Il
o

In the approach taken in this chapter, the nonlinear transformation f is constructed without
consideration of neural data, being guided instead by prior knowledge of the visual cortex,
neurobiological motivations, and unsupervised learning methods. The recordings of neural
data are only used in determining the vectors Bl, e ,Bh. This approach is also commonly
known as ‘linearizing the response,’ since a well-designed f will transform the stimulus video



CHAPTER 3. MODELING AREA MT WITH SPARSE CODING PRINCIPLES 58

in such a way that the linear modeling step will produce accurate models of neuron spike
rates [26, 98]. More precisly, we desire that the neuron’s response is close in ¢, distance
to a linear combination of the components f. This is essential for tractable estimation of
the receptive fields, since estimating linear models requires far fewer samples than nonlinear
estimation. In this chapter we use feature representations that are high-dimensional: p is
approximately 10,000, h = 9, and hence the total number of parameters is approximately
100,000. Because our training data is limited (n < 40,000), we are in the regime where p > n,
and ordinary least squares is ill-posed. Hence we use modern statistical techniques for high-
dimensional estimation. Sample-size requirements for high-dimensional linear regression are
much more favorable than for nonlinear regression: if the true model can be assumed to lie
in an £ ball (i.e. a sparse signal), then sample size must only scale linearly in the true size of
the model, s and logarithmically in the total number of variables, p [101, 78]. Hence another
objective for our transformation f is that the neuron’s response be close to a sparse linear
combination of elements of f.

Feature representations via sparse coding

We leverage the principle of sparse coding in designing our linearizing transform f. Sparse
coding was originally motivated from two physiological properties of the early visual cortex.
First, individual neurons have high lifetime sparsity. We informally define this to mean that
their spike rates have a heavy-tailed distribution (or high kurtosis); see Willmore et al. [97]
for a more precise definition. In the case of a binary-valued variable (e.g. spike indicators),
this corresponds to low probability of an event. Second, V1 seems to use an overcomplete
code in the sense that there are far more output fibers than input fibers from the retina
(estimated at 50:1 in macaque V1) [74]. In Olshausen [71] these two properties are taken
as constraints for designing a coding scheme for natural image patches. This defines the
problem of sparse dictionary learning. We let a;,...,ay be a large bank of small patches
from natural images (16 x 16 patches in Olshausen [71]). Sparse dictionary learning finds
a k-element dictionary {dy,...,d,} that is able to reconstruct each patch accurately using
only a small number of dictionary elements. Let m be the total dimensionality of each patch
(e.g. 16%). The dictionary learning problem is then:

N
N 1 )
D =argmin min — a, — Daul|Z + )\ ||

where C = {D € R™* s.t. ||d;||, < 1 for all j}

The constraint set C is used to prevent the dictionary elements from becoming arbitrarily
large (this was not originally present in Olshausen [71], but has now become standard).
Remarkably, the resulting basis functions (columns of ]j) share the essential properties of
V1 simple cell receptive fields: they are band-pass, spatially localized, and oriented. As is
shown in Olshausen and Field [73], the dictionary elements decompose natural images into
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independent components; this is in line with the hypothesis that neurons tranform natural
stimuli into independent features to maximize efficiency of information transmission [3, 4].

Sparse coding model for area MT

Due to the extensive innervation of MT by fibers projecting from V1, we develop a model
whose guiding principle is that MT neurons may be well approximated by using a sparse
code on the output of V1 neurons. The model has three main layers. The first layer is a
caricature of the activity of V1 neurons. It consists of a bank of spatiotemporal wavelet
filters of varying orientations, followed by several biologically plausible nonlinearities. The
second layer consists of a patch-wise application of the sparse coding transformation. The
third layer is a spatial pooling operation. The model is similar to the popular SIFT + sparse
coding approach in computer vision [14, 100], but with several modifications that make it
more successful in modeling neural data.

In section section 3.3 we provide background on area MT, in section 3.4 we present the
model in more detail, in section 3.5 we show results of fitting the model to the MT data,
comparing prediction accuracy to other popular approaches. In this section we also compare
the representations of natural videos from our model with that of Nishimoto and Gallant
[69]; the two representations, though architected in very different ways, end up producing
linearizing transformation with a great deal of overlap. We quantify this relationship using
canonical correlation analysis (CCA).

3.3 Area MT

This section gives a brief introduction to the functional and physiological properties of MT
relevant to this chapter. MT is one of the earliest discovered and most studied extrastriate
visual cortex regions. Part of the reason for this is its distinctive physiological and functional
characteristics, which enables reliable identification in electrophysiological studies. For a
more detailed overview, see Born and Bradley [13].

Lesion studies

Several studies have investigated deficits in performance of visual tasks after chemical le-
sions of area MT. These results underscore the importance of MT in perception of motion.
Newsome et al. [68] found that, after lesions, a monkey’s ability to track smoothly translat-
ing objects was impaired, as was its ability to perform a rapid saccadic eye movement to a
moving target; saccades to stationary objects were unaffected. A later study performed an
experiment in which a monkey was trained to detect a subtle motion bias amidst otherwise
randomly moving dots; after lesions to MT the subjects only could detect the motion if the
signal was made much stronger [67].
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Tuning to artificial stimuli

MT has been extensively studied using artificial stimuli similar to those used in early studies
of V1, such as moving bars of varying orientation, speed, and direction of motion. In Maunsell
and Van Essen [61], the authors recorded from over 100 MT cells in anesthetized, paralyzed
macaque using such stimuli. They provided a fairly complete characterization of tuning
properties along these dimensions. They found that MT cells become very active when
exposed to bars moving in a preferred direction (up to 126 spikes per second), and that most
cells’ responses were very peaked around this direction. The cells were also tuned to a specific
speed of motion, and, again, most showed a sharp peak around the preferred speed (average
preferred speed of 32°/s). Neurons showed comparatively weak responses when exposed to
static bars; however, they did show some specificity in orientation tuning, and generally the
preferred of orientation of static bars was perpendicular to the preferred direction of motion.

Given these results, it is an open question as to how MT receptive fields differ from those
of V1 cells [13]. V1 cells are similarly direction and orientation selective, though relatively
more orientation selective than MT neurons. One major theory is that MT solves the aper-
ture problem. This refers to the issue that motion of edges that extend beyond the spatial
extent of a cell’s receptive field can only be perceived as occuring in a direction perpendic-
ular to the orientation of the edge. There is strong physiological evidence supporting this
hypothesis. In Pack and Born [75], the authors stimulated MT neurons with a moving field
of bars where the direction of motion was varied relative to the orientation of the bars. They
found that MT neurons initially respond to the component of motion perpendicular to bar
orientation, but after a period of 60 ms their response encoded the true motion; this tuning
was reflected in the pursuit eye movements of the subjects, which were initially in the direc-
tion perpendicular to the orientation of the bars no matter what the direction of motion. It
is still a matter of debate as to how exactly this is accomplished; it may involve nonlinear
combination of inputs from several V1 cells, or may involve innervation V1 hypercomplex
cells, which are sensitive to the length of an edge.

Tuning to natural stimuli

Surprisingly, there have been relatively few studies of MT that use naturalistic stimuli.
This is surprising since other visual cortical areas have different response properties when
stimulated with natural images vs. artificial images [27, 91]. Hence, the paper of Nishimoto
and Gallant [69], in which MT cells were recorded while being stimulated with 20,000-
40,000 frames of natural video, represents an important milestone. This paper found that
a spatiotemporal Gabor wavelet model with several biologically motivated nonlinearities
provided an effective linearizing transform for MT neurons. Their major scientific finding
was that responses to natural images were consistent with theoretical predictions as to how
MT pools inputs of V1 neurons. Specifically, they found that many MT cells’ receptive fields,
when plotted in the motion-energy Fourier domain, were excitatory along a planar subset,
and inhibitory off the plane. This is consistent with the model of Simoncelli and Heeger [84],



CHAPTER 3. MODELING AREA MT WITH SPARSE CODING PRINCIPLES 61

who suggested that such receptive fields could account for MT cells” solution to the aperture
problem, as well as the observed tuning of MT cells to speed and direction of motion, rather
than 2-D content of the stimulus.

3.4 Description of sparse-coding model for MT

The encoding model we develop for MT is an extension of the model introduced in Mairal
et al. [59] for V4 neurons. The major challenge in adapting this model is that MT requires
features that incorporate motion information. The stimulus set used in Mairal et al. [59]
was a series of still images (i.e. uncorrelated over time), whereas the set used in Nishimoto
and Gallant [69] was a series of short video clips of 25-30 frames each. It is not sufficient to
simply concatenate frames of static image features derived from the pipeline of Mairal et al.
[59], as MT is sensitive more complex, nonlinear, low-level spatiotemporal features. It was
similarly shown in Nishimoto and Gallant [69] that concatenation of static Gabor wavelet
features lead to poor MT models. In this section, we present the model in the context of area
MT; the major difference from the V4 model of Mairal et al. [59] is the use of spatiotemporal
wavelets in the first layer.

We first give a high-level outline of steps of the model, then each step is described in
detail.

Summary of MT Encoding Model

e First, generate features (xi,...,xr) for each frame of the stimulus video in an unsu-
pervised way.
— Layer 1:
1. 3-D convolution with 38 spatiotemporal Gaussian derivative wavelets

2. Positive rectification
3. {, pooling and downsampling
— Layer 2:
1. Extract 3-D patches (width x height x wavelet orientations)
2. Contrast-normalize patches
3. Code patches in sparse dictionary

— Layer 3:

1. Pool patches in spatial regions within each frame of video
e Finally, learn a linear model of MT neuron spike rate

1. Perform trace-norm regularized linear regression of spike count at time ¢ against
features x;_; to x;

2. Regularization parameter chosen by testing several values on a holdout set.
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FicUrE 3.1: Tiling of wavelet angles on spatiotemporal sphere. Wavelets lying on
the zy-plane (i.e. # = 7/2) have no motion content and respond to fixed edges. Wavelets
oriented exactly along the t-axis (i.e. 8 = 0) have no spatial information but respond to
changes from light to dark and vice-versa.

First layer: a caricature of a population V1 simple cells

We represent the activity of the population of V1 simple cells as a 3-D convolution of the
input video with wavelets of varying orientation, followed by a half-rectification and spatial
pooling.

3-D convolution with 38 spatiotemporal Gaussian derivative wavelets

While V1 is generally modeled using Gabor wavelets filters, we use 3-D Gaussian derivative
wavelets, as they are faster to compute and are qualitatively very similar to Gabor wavelets.
While Gabor wavelets provide a better fit to V1 neurons, we have found empirically that
Gaussian derivative and Gabor wavelets are equally successful in providing a first layer for
our MT models.

We compute the first layer transformation as follows. Define the spatiotemporal Gaussian

() ()]

Define the usual specification of angles in 3-D using spherical coordinates, (0, ¢), then the
first-layer convolutional operator is defined as

1
wgz,ﬂy,at(xay,t) X exp —5

Up.sl1] ¢ in 6 cos gb%([ * Poy.00,00) TSI O sin d)(%([ * QVoy.01,00) T COS 9% (I * Yoy 51.00) (3.3)

The widths o1 and o; are parameters. Note that, due to properties of convolution, a% (Ixp) =
VA a%go; hence the above is equivalent to filtering the input video with Gaussian derivatives
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of various orientations. The partial derivates a%(I % ) are computed numerically by simply
taking the differences of neighboring pixels. To achieve a sufficiently rich feature set, we tile
the spatiotemporal sphere with 38 different orientations: 6 € {O, o %”,W}, and for each
value of 0 ¢ {0, 7}, 12 different values of ¢ evenly spaced from 0 to 27. See fig. 3.1 for an
illustration of this scheme.

Positive rectification and ¢, pooling and downsampling

The operator Uy, is followed by two biologically plausible nonlinearities. The first is the
positive rectification, i.e. define as usual, for a generic function g

(o) def {g(z) if g(z) >0

0 otherwise

This simply reflects the fact that neuron spike rates are positive. Without this nonlinearity,
the filter outputs would be redundant, as the output of a linear filter is simply the negative
of the output of the filter with opposite orientation.

The second nonlinearity is a spatial ¢, pooling operation, which we implement as another
convolution with a Gaussian filter after applying a pointwise nonlinearity

Fooll] = [([Usg[11],)* * Ponono) '

The exponent « and the width g, are parameters. Setting the temporal width to 0 here is
an abuse of notation that simply indicates that we are applying a spatial filter only. After
applying this spatial pooling, we downsample the output of the operator F', since the Gaus-
sian filter has removed much high-frequency information (this is equivalent to antialiasing
before downsampling). We refer to output of the operator F, after downsampling, as an
‘orientation map,’ since it reflects the energy in the stimulus at various orientations in the
spatiotemporal sphere.

Second layer: sparse coding of patches

Instead of working directly on the orientation map Fj 4, we now operate on small patches
extracted from the orientation map. Each patch captures a very spatially localized represent-
ation of the contents of the input video. We apply two nonlinear functions to these patches.
These steps operate on the patches in the spatial dimensions, and no longer extract extra
motion information. However, motion information is encoded in the patches themselves, due
to the use of spatiotemporal gradients above.

Extract 3-D patches (width x height x wavelet orientations)

We define p, . to be the patch whose top left coordinates are (z,y), taken from frame t.
Each patch is a 3-dimensional array: p,,, € RV**3. The first two dimensions are spatial
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(x and y coordinates), and the third dimension represents the orientation of the first-layer
spatiotemporal filter. In practice we use filter with 38 different angles spaced out on the
spatiotemporal sphere. The patch width w is another tuning parameter of the model.

Contrast-normalize patches

The first nonlinearity we apply to each patch is a divisive contrast normalization. The
particular normalization we use dampens the magnitude of high-energy patches, while not
boosting the magnitude of low-energy patches (which may be dominated by noise). It takes

the form
norm def Pzy,t

b 7t -
P00 max ([[paglly s €)
We set ¢ to be the median ¢, norm of a large bank of natural image patches; effectively, the

normalization reduces the energy of patches above the median to a fixed value and leaves
the patches below the median untouched.

Code patches in sparse dictionary

The second nonlinear transformation is the sparse coding transformation. This transforma-
tion uses the Lasso to represent a patch p as a sparse linear combination of elements from
a learned dictionary D. We notate it as follows

~ : 1 norm ~
bese = argmin | 3 o7 — e, + |

acRk
This is a complex nonlinearity; there is no explicit evidence that such a coding scheme is
implemented in the circuitry of the visual system. However, it has been shown that the sparse
coding nonlinearity can be plausibly implemented in an artificial neural network [38]. These
authors reinterpret the iterations of the standard first-order soft thresholding algorithm for
the Lasso [25] as layers of a neural network. They show that a relatively shallow network,
with parameters tuned to the particular dictionary, can approximate the ISTA algorithm
very well.

We learn the dictionary D by solving the optimization problem given in eq. (3.2), but the
dictionary is learned in the domain of the 3-D patches p;7}' taken from the orientation maps,
rather than raw image patches. This leads to dictionary elements that encode more com-
plex, higher order features. Figure 3.2 shows a visualization of randomly selected dictionary
elements. We see some elements are similar to spatiotemporal wavelets, and some describe
curves in motion or undergoing transformation. To actually perform the optimization we use
the online algorithm presented in Mairal et al. [58] and implemented in the SPAMS toolbox
for MATLAB. We train the dictionary on a set of 1,000,000 patches randomly drawn from
the stimulus set for a particular neuron.
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FIGURE 3.2: Dictionary elements visualized in the original video domain. 48 ran-
domly selected dictionary elements from a dictionary of size 2048 are shown. Each dictionary
element is 16 x 16 x 6 in the original video domain. Dictionaries are learned in the domain
of orientation maps; to visualize in the original video domain, we average 100 video patches
that are highly correlated with the dictionary element. The dictionary encodes a variety of
spatiotemporal features; we can see moving blobs, moving bars, and moving wavelets.

Third layer: spatial pooling

The final step is an element-wise f5 pooling of the coded patches within regions of the
stimulus image. This pooling operation provides further invariance to spatial deformation,
and greatly reduces the dimensionality of the output. We define 5 different image regions as
in fig. 3.3. For each image region ¢, we define the pooled feature

fq(t): Z ﬁ?ﬁ,y,t

(z,y)ERq

where R, is the set of (z,y) coordinates in pooling region ¢, and f)i,%t represents elementwise
squaring of p, ;. Note that the dimension of f,(¢) is equal to k, the number of dictionary
elements in D.

In the end, concatenating the fi(t)’s of the different pooling regions gives our final feature
representation for the stimulus frame at time t. It is perhaps worth taking stock of the set
of tuning parameters of the model. Table 3.1 shows the full set. In the first layer filters, we
fixed the values 07 = 1 pixel (width of first spatial filter), oo = 2 pixels (width of second
spatial filter, as we are downsampling by a factor of 4, this performs standard anti-aliasing).
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F1GURE 3.3: Pooling regions for final representation of video frames. Patches lying
within each regions are combined with elementwise /5 pooling. We use this circular layout
of regions to better match the center-surround dynamics of neurons.

TABLE 3.1: Parameters of our two-layer sparse coding pipeline.

Parameter Description
o1 Spatial frequency of Gaussian derivative wavelet
o Temporal frequency of Gaussian derivative wavelet
Q Degree of exponent for spatial pooling of convolutional outputs
09 Width of Gaussian filter prior to downsampling the orientation maps
w Patch size after downsampling
k Size of dictionary
A1 {1 penalty for sparse coding

In the second layer, we set w = 4 pixels (patch size), & = 2048 (dictionary size), and
A = 0.1 (penalty for sparse coding). These are standard parameter values used in computer
vision. The other two parameters were tuned on a small subset of the MT neurons using
the holdout set. We found that a = 4 (exponent for spatial pooling in first layer) and
o, = 1 pixel (temporal width of filters in first layer) led to the best predictive models. Aside
from these two tuning parameters, the three-layer feature representation just described was
designed and trained without supervision from neural data. It is based on a simple model
of the activity of V1 neurons and the principle of sparse coding. We will see that it provides
an effective linearizing transform for modeling MT neurons.

Learning the top-level linear model of neuron spike counts

With this linearizing transformation in hand, the final step in our model is learning the
linear map connecting the above video features to expected spike count for each MT cell.
The feature set described above is very high-dimensional: with the stated parameters, the
final dimensionality is k x (number of pooling regions) X (number of delays) = 92,160. Hence
the number of features is greater than the number of training examples, and we employ
penalized regression techniques that exploit low-dimensional structure. The most popular
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such techniques are the least absolute shrinkage and selection operator (Lasso) [90] and ridge
regression [43]. While these are both effective in this problem, find that trace-norm penalized
regression performs best.

This trace-norm penalization method is motivated by the space-time separability of many
neural receptive fields [62]. Perfect space-time separability would mean that the spatiotem-
poral receptive field is, in fact, perfectly described by the tensor product of a two-dimensional
spatial receptive field and a one dimensional temporal receptive field. In the context of our
model, we can define this as follows. First, define the coefficient matrix

» ] |
B= ,31 ﬁ2 T ﬁh
| |

This is simply the coefficient vector of our model rearranged into a matrix. Perfect space-
time separability would imply that B should have rank 1. We hypothesize the MT models
should be approximately space-time separable, and its singular values should be sparse or
delay quickly. The trace-norm (i.e. the sum of singular values) provides a convex heuristic for
the rank of a matrix [32], and we use it as a penalty term when performing linear regression:

T
| |

T
~ 1
B = arg min 2 Z X¢ o0 Xepg1 | B+ A B, (3.4)
5 25\ |
Here || - ||, is the trace norm. The tuning parameter Ay was set individually for each neuron

by testing several values and using a small subset of the training data as a holdout set.
This regularization was previously shown to be effective in fitting V4 receptive field models
in Mairal et al. [59].

3.5 Prediction results

Predictive accuracy

Using the above pipeline, we fit encoding models of the 52 MT neurons analyzed in Nishimoto
and Gallant [69]. To measure we accuracy of the models, we calculate the correlation between
the prediction of the model and the observed spike rates of the neurons on the holdout sets.
As described in Nishimoto and Gallant [69], the holdout data consists of averaged spike
counts from repeated presentations of the stimuli; each frame in the holdout set was repeated
between 5 and 20 times (the number varies due to the attentional shifts of the macaques
during stimulus presentation). Although the model fitting procedure described in eq. (3.4)
optimizes for mean squared error (MSE), we evaluate using the correlation coefficient both
because it allows for comparison to the results in Nishimoto and Gallant [69] and is invariant
to scale and constant biases in prediction.
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Comparison of MT model predictive performance
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FIGURE 3.1: Scatter plot of correlation scores for the 3 layer sparse coding model
of section 3.4 and the Gabor motion energy model of Nishimoto and Gallant
[69]. The sparse coding model has better prediction accuracy when averaged over the 52
MT (p = 0.002, Wilcoxon signed rank test). However, the improvement is not uniform, as
many cells are better modeled by the Gabor motion-energy wavelet model.

When calculating the correlation, we first convolve the time series of holdout spike rates
with a Gaussian filter, following the same procedure as in Nishimoto and Gallant [69]. This
was done to smooth over discontinuities introduced by the tiling of separate recording ses-
sions in the averaging procedure, and we observe that it boosts the correlations of the
models. Figure 3.1 compares the predictive accuracy of our encoding model with that of the
Gabor motion-energy model used in Nishimoto and Gallant [69]. While the two procedures
give similar accuracies, the procedure of section 3.4 is statististically significantly higher
when averaged over the 52 neurons. The average correlation for our models is 0.551, while
the average correlation for the Gabor motion energy model is 0.522. A Wilcoxon signed-rank
test for the population of 52 differences in scores yields a p-value of 0.002. Our model yields
a 7% increase in predictive accuracy on average.

We have just made a comparison between two complex end-to-end modeling pipelines
that are distinct in many ways; hence it is difficult to establish what properties of our model
lead to the improvement in performance. One plausible hypothesis is that the improvement
in fact comes from the first layer of our pipeline, where we use Gaussian derivative wavelets
as opposed to the Gabor wavelets used in Nishimoto and Gallant [69], and that the sparse
coding nonlinearity is simply a reparametrization that does not effect (or perhaps even
hinders) model performance. To investigate this hypothesis and demonstrate that the sparse
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coding step is essential, we have fit models of all neurons using a modification the first layer of
our model as the feature representation. We do not attempt to use the raw first-layer outputs
because they are extremely high-dimensional and likely would swamp the amount of training
data, even with regularization: with the parameter values defined in section 3.4, the number
of features (including delays) would be 32 x 32 x 36 x 9 = 331,776. Instead, we optimized the
first layer in several ways to make it more compact and similar to the model of Nishimoto and
Gallant [69], which has 5956 wavelets x 9 delays = 53,604 dimensions. A major component
of the model in Nishimoto and Gallant [69] is the use of wavelets of different spatial scales
and frequencies. We have implemented something similar in our pipeline by using a spatial
pyramid [52]. Instead of using Gaussian derivative filters of varying scales, we apply a fixed-
scale filter to rescaled versions of the original stimulus image, and then concatenate the
representations. While the two operations are not identical, they give similar results. The
full pyramid we use is a concatenation of features from the stimulus image scaled to 128 x 128
(original dimensions), 96 x 96,64 x 64, and 32 x 32. Also, to reduce overall dimension, we
have performed more aggressive subsampling: for each level of the pyramid, we subsample
to 8 x 8 images after applying the wavelet filters and pointwise nonlinearities. The final
dimensionality of the feature set is 4 x 8 x 8 x 9 = 82,944

We find these that first-layer features do not explain the overall superior performance of
our model. The predictive accuracy of models built from the first-layer features is signific-
antly inferior to that of the model of [69]. The average correlation score over the 52 neurons
is 0.481. Figure 3.2 compares the predictive accuracies.

Thse sparse-coding layer, then, is crucial for the success of our feature representation in
linearizing MT responses. To further establish this point, we compare predictive accuracy
of models based on the pyramid of first-layer features and models using the full three-layer
pipeline which includes the sparse coding map. We perform an additional analysis to assess
which individual neurons are better fit by the three-layer pipeline. To motivate this, we see
that it is clear from fig. 3.1 that the improvement from our three-layer model, while signi-
ficant, is quite heterogenous over the set of neurons. Some neurons have higher correlation
scores using the model of Nishimoto and Gallant [69], and many neurons lie very close to
the diagonal, meaning the two models perform very similarly. We perform a significance test
for model selection on an individual neuron basis; the particular test we use is quite simple
and is described in the next section. Figure 3.3 shows the scatter plot of correlation scores
between models based on one-layer and three-layer feature representations, and neurons are
additionally colored according to whether the three-layer representation yields a signific-
antly better model according to our test. Adjusting for multiple comparisons by setting the
FDR at 0.05 and determining the p-value cutoff with Benjamini-Hochberg procedure [8], 13
neurons are significantly better modeled using the three-layer feature set, and 1 neuron is
significantly better modeled using the one-layer feature set only. The remainder do not show
a significant difference.
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Comparison of MT model predictive performance
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FIGURE 3.2: Scatter plot of correlation scores for layer 1 of our model (Gaussian
derivative wavelets) vs. the Gabor motion energy model of Nishimoto and Gal-
lant [69]. The Gabor motion energy model performs significantly better, indicating that
layer 1 of our model cannot account for the superior performance shown in fig. 3.1

Description of the significance test for model selection

The significance test whose results are shown in fig. 3.3 is a refinement of traditional model
selection procedures such as AIC and BIC which make a discrete choice between competing
models. The significance test we describe here, in a sense, offers a third option, which is
that there is no evidence to prefer either model. We test the null hypothesis of Vuong [95],
that both models are equally close, in the sense of Kullback-Leibler distance, to the true
distribution. We do not use the directed tests of non-nested models of Cox [23, 22], as we do
not have particular reason to prefer either model, and we do not seek more power in testing
either alternative. We treat the fitted models as fixed (i.e. we condition on the training
data), and perform the test on the holdout data. Assuming errors in observed spike rate
are normally distributed, the Vuong test boils down to a simple paired, two-sided t-test of
squared residuals from the two models. Because of dependence in errors due to correlations
in the noise of spike trains, as well as correlations between frames of video, we subsampled
the test set by a factor of 5. The normality assumption is a strong one for these data,
since relatively few repeats are averaged in the test set, and hence the central limit theorem
may not apply. Sacrificing this assumption means the test no longer has an interpretation
in terms of Kullback-Leibler divergence; the paired t-test of residuals still has value as an
exploratory tool, however.

Note that, as we see in fig. 3.3, this test is not a simple function of the difference in
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FIGURE 3.3: Scatter plot of correlation scores for models based on the full three-
layer sparse coding feature set of section 3.4 and models based on layer 1 features
only. Colors of points show the result of a significance test for model selection; rejection
(blue points) indicate that the three-layer sparse coding pipeline provides a significantly
better fit for that neuron.

correlation scores or MSE. The test differentiates between the case where the residuals from
one model are consistently slightly smaller than those of the other model and the case where
the residuals from one model are smaller, on average, than those of the other model, though
the differences are quite varied and can be both positive and negative. For instance, we
see in fig. 3.3, that there is a significant cell that lies very close to the diagonal; this would
correspond to the former case. Similarly, some non-significant cells lie far above the diagonal,
corresponding to the latter case.

Since we are testing many cells at once, as stated, we set the threshold for significance
using the Benjamini-Hochberg procedure. The p-values for all 52 MT neurons are plotted
in fig. 3.4 along with the BH cutoff line. The tests reveal that, for most neurons, the three-
layer and one-layer feature representations are essentially indistinguishable. The additional
sparse coding layer is important to capture the activity of only a small subset of neurons.
However, since only one cell is significantly better modeled with first-layer features only, we
can conclude that the sparse coding layer preserves most information from the first layer
that is relevant for MT cells, while adding additional flexibility to the representation. In the
next section we examine, in more detail, the similarity between the feature representations
to better understand the nonlinear transformation performed by sparse coding.
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FiGUuRrRE 3.4: Benjamini-Hochberg procedure for model selection test between
1-layer and 3-layer models of 52 MT neurons. FDR was set at 0.05

3.6 Similarity between stimulus representations

We have seen in the previous section that our three-layer sparse coding representation leads to
more accurate M'T models, on average, than either the Gabor motion-energy wavelet model
of Nishimoto and Gallant [69] or a single-layer Gaussian derivative wavelet representation
that does not perform sparse coding. However, for many neurons, the models perform very
similarly, or are perhaps even indistiguishable when the model selection test is applied.
Hence, although the feature representations are architected very differently, they arrive at
feature sets which contain a great deal of overlapping information when used as the basis for a
linear model; indeed they are indistinguishable from the standpoint of many MT neurons. In
this section we explore these relationships, quantify the amount of overlapping information,
and examine the action of sparse coding in more detail.

At one extreme, it is plausible that two different feature extraction architectures could
arrive at representations that are related by a unitary linear transformation (i.e. a rotation).
From the standpoint of any unitarily invariant regression procedure (which includes OLS,
ridge regression, and in our specific setup, trace-norm regularization), such feature sets
would be completely indistinguishable - they would give the same model predictions, and
hence have the same accuracy. At the other extreme, the two architectures could give feature
sets that span subspaces that are orthogonal in expectation over natural images. The actual
neuron’s spiking rate, then, may lie closer to one subspace than another, or, in fact, may
have the same distance from both subspaces (in which case the two models are equally poor
at providing a linearizing transform for the neuron’s behavior). Our feature representations
lie somewhere in between these two extremes.

We characterize these relationships by calculating principal angles between the spaces de-
scribed by the feature sets; in the regression setting this is equivalent to performing canonical
correlation analysis (CCA) [45]. Given two feature sets (i.e. design matrices) X; € R
and Xy € R™* P2 canonical correlation analysis finds contrasts u € R”* and v € RP' that
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maximize the correlation between the resulting vectors

uTX1TX2V
p1 = max
wv ([ Xgull, [ X,

We define uy, vy as the vectors that solve this optimization. The quantity p; is also the
cosine of the first principal angle between the column spaces of the matrices X; and Xs.
Further principal angles, or canonical correlations, can be defined recursively by optimizing
the correlation under an orthogonality constraint relative to the earlier vectors:

{ U.TX{XQV

b u'XTXuy, = u" X Xovy, = vIXG Xovy, = 0 for all k < j
T, v, oF W XX = w X Xavi = viX, Xavi = 0 for all k < g

p; = max

u,v
The vectors X u;, Xyv; are called the jth pair of canonical variables. If two feature sets have
many high canonical correlations, this does not necessarily mean that they will have similar
performance in modeling neuron spike rates: the neuron spike rate could, in principle, be
orthogonal to the pairs of canonical variables. However, the canonical correlations give a
good indication, before considering neural data, of how much representational similarity is
shared between the feature sets of the two models.

Canonical correlation analysis of three-layer model and
spatiotemporal Gabor-wavelet model

We first compare our three-layer sparse coding model with the spatiotemporal Gabor-wavelet
model of Nishimoto and Gallant [69]. In this comparison, we do not tile the design matrix
with time delays, as we are interested in the similarity of the stimulus representations frame-
by-frame. Because both models are still very high-dimensional, unreguarlized CCA is very
unstable and is prone to overfitting. Hence we used a regularized version of CCA introduced

in Bach and Jordan [2], which solves the following. Let A be a regularization parameter.
Then define

O{{ <X1X{) (XQX?) (6]

p1 = max

a1,a2€R™ 1/2

1/2
<a1T (X, XT + \I)? a1> <a2T (XoXT + A)? a2>

The linear transformations of the original design matrices are then u; = del, vy = ngg,
where &y, &g solve the above optimization. We solve this using the method given in Bach and
Jordan [2], which recasts it as a generalized eigenvalue problem. We perform this regularized
CCA on the natural video stimulus set from Nishimoto et al. [70]. We pick the regularization
parameter by splitting the data and validating on a holdout set: we fit the CCA parameters
using 90% of the data, and then use the learned vectors uy, vy to recalculate the top canonical
correlation on the holdout set consisting of the last 10% of the data. When test a series of
possible values of A and choose the one that leads to the largest top canonical correlation on
the holdout set.
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FiGurE 3.1: Regularized canonical correlation analysis of three-layer sparse cod-
ing pipeline and Gabor motion energy model. Both plots show canonical correlations
on the training set (blue points) and on a test set (red points). The test set correlations
are similar to the training set correlations for the initial canonical variables, but are much
smaller for later variables, due to overfitting. The right plot provides a null model for the left
plot: by permuting rows of one of the design matrices, the two signals are made independent,
and any correlation found is noise.

To establish a null model for comparison, we permute the rows of one of the design
matrices, re-run CCA, and examine the resuling correlations. The permutation makes the
two sets of design matrices independent, and should yield a pair of design matrices where the
top canonical correlation is zero in expectation. In fig. 3.1 we show the resulting correlations.
We see that, in the unpermuted data, the top canonical correlations are very high in both
the training and test set: the first canonical correlation is 0.95, and the top 50 canonical cor-
relations are all larger than 0.65 in the test set. Hence the two representations encode much
overlapping information. This explains why many MT neurons are equally well-modeled by
the two pipelines: their responses must lie somewhere in the space of these top canonical
variables. We also see that, even after aggressive regularization, the lower canonical vari-
ables are purely the result of overfitting. Although their training set correlations are quite
high (the first 2000 do not drop below 0.65), most do not attain test-set correlation that is
any better than that of the permuted datasets. Using the holdout set correlations of the
permuted dataset as a null distribution, we calculate empirical p-values for the holdout set
correlations of the original datasets. Setting the FDR at 0.05, and applying the Benjamini-
Hochberg-Yekutieli procedure (allowing for arbitrary dependence between the p-values [9])
we find that there are 258 significant canonical variables, with the smallest correlation being
0.29.
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Canonical correlation analysis of representations at the patch level

Considering that the pipeline of section 3.4 contains a highly nonlinear sparse coding op-
eration, it is surprising that it yields features that can be so highly correlated with those
of the spatiotemporal Gabor wavelet model. However, the model of Nishimoto and Gallant
[69] contains several nonlinear operations (divisive normalization, compressive nonlinearity,
{5 pooling) that may, in fact, perform actions that are similar to our sparse coding layer.
Thus, we examine the degree of nonlinearity of the sparse coding transform itself. To do
so, we perform CCA of orientation map patches before and after sparse coding. We use
patch size 4 x 4 (giving total feature dimension 4 x 4 x 38 = 608). To reduce dimension-
ality and prevent overfitting of CCA, we use a dictionary of size 512, which is qualitatively
very similar to the dictionary of size 2048 that we use in fitting the encoding models. We
extract 700,000 patches from the stimulus set and perform unregularized CCA. The results
are shown in fig. 3.2. The canonical correlations are surprisingly large: the top 100 are
all above 0.5. This can explain the representational similarity of the two pipelines shown
in fig. 3.1. Although the sparse coding operation is followed by pooling operations in our
pipeline, which may further decorrelate the representations, sparse coding does leave some
information relatively intact. MT cells whose responses lie in the span of these top canonical
variables would be equally well modeled by both pipelines.

Regression of dictionary-coded features against layer 1 features

To gain a more detailed understanding of the nonlinear action of sparse coding transform,
we perform a complementary analysis to CCA. We use the same procedure as in the previous
section, extracting 700,000 patches from the orientation maps, and coding them in the sparse
dictionary. Instead of running CCA, we perform column-wise linear regression of dictionary-
coded features against the patch representations before sparse coding; that is, we calculate

8= (XIX,) " XTX,

We split the data into training and holdout sets, and then, for each dictionary element, we
calculate a correlation score of on the holdout set (i.e. correlation of predicted dictionary
activation vs. actual dictionary activation). High correlation indicates that a particular dic-
tionary element can be accurately represented by a linear combination of 1st-layer features,
while low correlation indicates that the dictionary element is not easily represented by such
a linear combination. Figure 3.3 shows a sample of dictionary elements both at the high
and low ends. The dictionary elements whose activations are more easily predicted with
Ist-layer features (top plot) tend to resemble moving bars or wavelets. Those that are not
easily predicted (bottom plot) tend to encode complex curved features or textural elements.
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Ficure 3.2: CCA of orientation map patches before and after sparse coding.
We see that sparse coding, despite being a highly nonlinear operation, yields features that
can have very high correlation with the original patch representation. Here the original
patch representation has dimension 608, and a dictionary of size 512 was used for sparse
coding. CCA was trained with a large number of patches (700,000), so regularization was
unnecessary. We see that training and test set correlations are very similar.
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FIGURE 3.3: Dictionary elements that are well-modeled (top) and poorly-modeled
(bottom) as linear combinations of 1st-layer features. The top plot shows the 48
dictionary elements with highest holdout set correlation; the bottom plot shows the 48
elements with lowest correlation. The dictionary elements that are easily modeled by 1st-
layer features are simple moving bars or static luminances. The dictionary elements that are
poorly modeled are generally more complex curved features.
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3.7 Discussion

Ablation studies and electrophysiological experiments using artificial stimuli have clearly
shown the importance of area MT in tasks related to motion cognition. There have been
many electrophysiological studies of MT using artificial stimuli, which have revealed MT’s
tuning to direction and speed of moving bars. There have been surprisingly few investiga-
tions of MT using natural stimuli. A major exception is the paper of Nishimoto and Gallant
[69], which is the source of the data analyzed in this chapter. They present a model of MT
that uses a bank of spatiotemporal Gabor wavelet filters, followed by several biologically
plausible nonlinearities, as a linearizing transform. Their results largely confirms the the-
oretical predictions of Simoncelli and Heeger [84], which proposes that MT receptive fields
integrate the results of V1-like filters that lie along a plane in the spatiotemporal Fourier
domain. However, they do find that many MT neurons do not precisely follow this model,
and have receptive fields that are more selective to specific spatial frequencies than expected.

The model developed in this chapter differs from that of Nishimoto and Gallant [69] and
Simoncelli and Heeger [84] in that the outputs of V1-like filters are first transformed by a
nonlinear sparse-coding step before being used as features for linear models of MT neurons.
The sparse coding step is motivated by physiological evidence of sparsity in neuron spike
rates [97], as well as success of sparse coding in explaining tuning properties in other cortical
regions [72]. We find that, although this model was originally developed to study shape
selectivity of V4 neurons [59], it also describes MT neurons very well. It performs better,
averaging over 52 MT cells, than the spatiotemporal Gabor wavelet model of Nishimoto and
Gallant [69]. This success suggests that sparse coding may provide a very good approx-
imation, in general, of the transformation that takes place between striate and extrastriate
visual cortex regions.

However, we find that, for many MT neurons, the sparse coding layer does not signi-
ficantly affect the prediction accuracy of the model. A significance test for model selection
reveals that only 13 of 52 MT neurons are significantly better modeled with the inclusion of
the sparse-coding layer. Thus, we have investigated the degree to which the sparse-coding
transformation actually changes the feature representation. We have found through canon-
ical correlation analysis that the sparse coding step, surprisingly, preserves a great deal of
information, in the sense that many of the principal angles between the two feature sets (be-
fore and after sparse coding) are very small. This explains why the majority of MT neurons
in our dataset are not significantly better modeled by features based only on the first, V1-like,
layer of our pipeline, than on the full 2-layer pipeline incorporating sparse coding. However,
the nonlinear operation of sparse coding adds flexibility to the representation, which we can
see by visualizing the features, and generates many video features that cannot be explained
by linear combinations of the outputs of the filters in the first layer of our model.

Our results underscore the heterogeneity of receptive fields of neurons in MT. Wavelets
constructed using the classical parameters of orientation, direction of motion, and speed of
motion accurately describe many MT neurons. However, our results indicate that some MT
neurons are tuned to more complex video features and shapes that cannot be constructed
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from linear combinations of spatiotemporal wavelets.
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Chapter 4

Supervised neighborhoods for
distributed nonparametric regression

4.1 Introduction

Modern datasets collected via the internet and in scientific domains hold the promise for
a variety of transformational applications. Non-parametric methods present an attractive
modeling choice for learning from these massive and complex datasets. While parametric
methods that optimize over a fixed function space can suffer from high approximation error
when the task is complex, non-parametric methods augment the capacity of the underlying
statistical model as the datasets grows in scale and diversity. Moreover, the scale of these
datasets makes non-parametric estimation feasible even when considering minimax rates
for non-parametric functions that require the data to scale exponentially in the feature
dimension.

Global non-parametric models, e.g., neural networks and kernel methods, learn complex
response surfaces and can be quite expensive to train on large-scale datasets. Both machine
learning and computer systems researchers are actively exploring techniques to efficiently em-
bed these learning approaches into parallel and distributed computing frameworks, e.g., [79,
106, 28, 49, 57]. In contrast, local models are simple, interpretable, and provide an attractive
computational profile, by potentially drastically reducing training time at the expense of a
moderate increase in test time.

However, to date local methods have been rarely employed on large-scale learning tasks
due to both statistical and computational concerns. Statistically, classical methods struggle
with even a moderate number of features due to the curse of dimensionality. Although these
local methods are minimax optimal, this minimax rate is quite conservative when the re-
sponse does not involve all dimensions. Although local approaches relying on ‘supervised
neighborhoods,” e.g., DANN [41], CART [16], Random Forests [15], and Rodeo [51], demon-
strate empirical and theoretical success at overcoming this dimensionality issue, they do so
at great computational expense.
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In this work, we address these statistical and computional issues, focusing on the problem
of non-parametric regression. We propose a novel family of Supervised Local modeling
methods (SILO) that build on the interpretation of random forests as a local model to
identify supervised neighbors. Like k-NN methods, the width of our neighborhoods adapts
to the local density of data: higher density leads to smaller neighborhoods while lower density
means neighborhoods spread out and borrow strength from distant points. Unlike k-NN or
local polynomial methods, our neighborhoods are determined by the shape of the response
rather than some fixed metric (hence they are supervised neighborhoods).

Additionally, we observe that datasets of the size we need to fit nonparametric func-
tions are often stored and processed in a distributed fashion. We thus devise an efficient
distributed variant of S1LO, which naturally targets massive, distributed datasets. In this
setting, worker nodes at training time independently calculate supervised neighborhoods us-
ing information from distinct random forests. Given a test point, the master node gathers
supervised neighborhood data from all workers, and then trains a local linear model using
this neighborhood data.

To summarize, our contributions are as follows:

e We introduce a novel adaptive local learning approach, SiLO, based on the idea of
supervised neighbors.

e We present a distributed variant of SILO that is well suited for large-scale distributed
datasets.

e We prove consistency of SILO under a simple model of random forests.

e We show experimentally that SILO outperforms both standard random forests and
Euclidean-distance based local methods in single node settings.

e We implement the distributed variant of SILO in Apache Spark [102], and demonstrate
its favorable performance relative to the default Spark/MLIib [65] Random Forest
implementation.

4.2 Methods based on local models

There are three ingredients to a method for local model-based nonparametric regression: a
loss function L : R — R, a weight function w(-,-), and a function space F. In this work,
we assume that the loss function is the squared loss, i.e., L(u) = u*. The weight function is
a mapping w(-,-) : R? x R? — [0, 00), which may be fixed, or may depend on the training
dataset. F is a family of functions where f € F maps R? — R. Generally F is a fairly
simple function space, as it need only provide a good approximation to the response surface
locally. Common function spaces are constant functions, linear functions, or higher-order
polynomials of fixed degree.

We now describe the general form for local modeling methods. Assume we have a set of
training data pairs, {(v;,x;)},_,. Given a test point x € R?, we define a function g(x) which
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approximates E(y | x), via the following two-step process:

let fy(-) = arg minZw(xi,x) (yi — f (x; — x))? (4.1)

fer

§(x) = /(0). (4.2)
For instance, we can consider k-NN regression under this framework by first defining K as

the set of x’s k nearest neighbors. Then, w(x;,x) = 1 if x; € K, and zero otherwise, and
Jx(+) is a constant function that returns Y- ;. Partitioning methods like CART [16],

and random forests [15] can also be seen as examples of local models with constant fi(-)
functions.

LOESS [20] uses a fixed weighting function, and fits local polynomial functions. We
describe the particular setting of linear functions in more detail in section 4.3 (see egs. (4.8)
and (4.9)). Other methods exist that are similar in spirit to the local modeling framework
defined in egs. (4.1) and (4.2) but do not fit precisely with our formulation, e.g., tree-based
piecewise polynomials models [19], and multivariate adaptive regression splines [37].

Euclidean distance-based local methods

A common form for the weight function w is the following:
w(xi, %) = k(||x1 — %) (4.3)

where ||-|| is the Euclidean, or L? norm; k : [0,00) — [0, 00) is a univariate kernel function.
Common examples include the rectangular, triangular, Epanechnikov, cosine, and Gaussian
kernels. If the local model family F is chosen to be polynomials of degree ¢, such an
estimator is denoted as an LP(¢) method (we adopt the notation of Tsybakov [92]). If the
true conditional expectation function E(y | x) belongs to the Holder class (3, L), then, with
appropriate scaling of the kernel function, the mean square error of the LP(|3]) estimator

converges to zero at the minimax optimal rate of n_%. In practice, despite their optimality
properties, LP({) estimators are not generally applied to higher dimensional problems where
some dimensions may be irrelevant. As an example, fig. 4.1 shows the empirical performance
of k-nearest neighbors, LOESS with local linear models, and random forests on the popular
Friedmanl simulation from Friedman [37]. In this simulation, p = 10, x is distributed
uniformly on the hypercube in 10 dimensions, and y = 10sin (rz122) 4 20 (xg — %)2 +10z4 +
55+ €, where € ~ N(0,9). Note that only 5 of the 10 dimensions of x are relevant to y. We
see that random forests outperform LOESS and nearest neighbor methods; in this case the
tuning parameters of LOESS and k-NN have been optimized on the holdout set, while the
tuning parameters of random forests have been set to their default. Unlike random forests,
the Euclidean distance based methods to not adapt to the fact that irrelevant predictors are
included in the model, and the local neighborhoods for each test point do not ‘spread out’
in the flat directions. We explore this property of random forests in the next section.
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FIGURE 4.1: Comparison of nonparametric techniques on the Friedmanl simula-
tion. Parameters of LOESS and k-NN were tuned on the holdout set, while random forest
parameters were set at default values (3 candidate variables at each node, trees trained to 5
points per leaf.

Random forests as adaptive nearest neighbors

Soon after the introduction of the random forest algorithm, Lin and Jeon [55] observed that
random forests can be considered an adaptive potential nearest neighbor method (PNN). To
explain this idea, we introduce some notation. Given a random forest consisting of K trees,
we define 6 to be the random parameter vector that determines the growth of a tree (for
example, 0 specifies the sampling of training points and the selection of covariates at each
node). The tree built with 0 is denoted as T'(0), and for x € RP, let R(x, ) be the rectangle
corresponding to the terminal node of 7'(d) containing x. We define the connection function
of a tree, which is the indicator that two points share the same terminal node of a particular
tree.

w(x1,Xg,0) =1 {x; € R(x2,0)} (4.4)

Define the number of training points contained in a leaf-node containing the point x, for a
tree trained with parameter 0 as kg(x) = >, w(x;,%,0). Then the prediction of a random
forest can be written as

- 1 Z |:ZZL:1 w<xi7xﬁej)yi (45)
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FIGURE 4.2: Weights of a random forest. Each circle represents a point in the training
set, and diameter of the circle represents the weight of that point when making a prediction
at the origin. The function being fit does not vary along the z; coordinate.

Note that this takes the form of eqgs. (4.1) and (4.2), where F is the family of constant
functions, and we define the random forest weighting function

xl,x 6;)
WRF (X4, X) =% ; [ ] (4.6)

Note that this weighting function is not derived from any explicit distance metric. However,
as noted in Lin and Jeon [55], assuming the training procedure trains decision trees with at
most k training points per leaf node, and the full training set is used for each tree, then any
point x; with positive weight is in fact a k-nearest neighbor under some monotone distance
metric. Moreover, due to the training procedure of each constituent regression tree, this
function assigns high weight to pairs of points that share a similar value of the response,
y. Hence, we can interpret it as providing an adaptive distance measure, where distances
are shortened in directions where the function E(y | x) is flat. This is illustrated in fig. 4.2,
where we plot the values of the weighting function for a random forest fit on a function of
two variables that does not vary in the first coordinate, when making a prediction at the
origin (0,0). Note that the weights taper off much more quickly along the xs dimension, and
that the random forest ‘borrows strength’ from points that have very different values of x;.

4.3 Supervised neighborhoods

The prior discussion sets up the introduction of our method for nonparametric regression.
The first step is to use the standard random forest training algorithm to fit a global ran-
dom forest to the training data {(y;,x;)}. This yields a random forest weighting function
wgrr(+, +); note that, given the training set, this is still a random function, as it depends
on the underlying tree-training parameters 61, ...,60r. We then use this weighting function
in eq. (4.1), but unlike random forests, we expand the function class F to a broader, more
flexible class than just constants. In our experiments and theoretical analysis, we use the
set of linear functions with an intercept term:
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Test-set RMSE vs. training set size
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FIGURE 4.1: Test-set RMSE of standard random forest vs. random forest com-
bined with local linear modeling.

F={fst fx)=a+B"xacR BeR} . (4.7)

For convenience, define w; = wgr(x;,x), and let U(x) € RFF! = (1,2q,...,2,)7, i.e. U(x)
is the vector x prefixed by 1. Substituting into egs. (4.1) and (4.2), to make a prediction at
a point x € RP, our method can be written in the following form:

By = arg min Z w; (i — BTU(x; — X))2 (4.8)
PERPTL iy
9(x) = BXU(0). (4.9)

Equation (4.8) is standard weighted linear regression, re-centered at x, and the prediction
at point x is the resulting intercept term (which motivates evaluating 3, at U(0)). We note
that this method can, in fact, be written as a local averaging method, but where the original
weights from the random forest are transformed [92]. Define

Y= Z w;U(x; — x)U(x; — x)7 (4.10)

ay = Z U(x; — x)wy; (4.11)
i=1
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FIGURE 4.2: Empirical bias and variance of standard random forest vs. random
forest + local linear regression. Both were trained on the same prediction task as fig. 4.1,
with 5000 training points.

Then, if we assume that 3y is invertible,

g(x) = U(0)" 3, "ax

1 — 4.12
= 23 U0 S U — 2
=1

Thus, local modeling transforms the weights as w; — W; := U(0)"Z;'"U(x; — x)w;. Note
that the weight update is unsupervised (y is not incorporated), and has the effect of cor-
recting local imbalances in the design; for an empirical investigation of this property, see,
for example, Hastie and Loader [42]. It is a well-known feature of local linear regression
that it reproduces linear functions exactly; see proposition 1.12 of Tsybakov [92]. Hence the
transformed weights balance the design about the point x; we have that:

1 n
- > U(0)'S' U — x)wiU(x; —x)" =0

i=1

Note that the term U(0)TX! extracts the first row of ¥_!; the elements of this row are
related to the difference between x and the weighted average of the x;; we explictly calculate
this vector in the proof of Theorem 4.

Figure 4.1 compares the predictive root mean-square-error (RMSE) of standard random
forests with local-regression augmented random forests, i.e., SILO, when training on the
Friedmanl simulated dataset, for varying sizes of training sets. We see that the additional
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local linear modeling step improves the predictive RMSE. In fig. 4.2 we calculate an empirical
bias-variance trade-off for predictions of each method. To calculate these estimates of bias
and variance, we fit the models 500 times, fixing all the training and test set data except
the values of ¢; in the training data (i.e. this is bias and variance conditional on the design).
We then estimate the bias by calculating the difference between the mean prediction over
the 500 models and the true expected outcome, and the variance is estimated by calculating
the variance of the predictions over the 500 models. We see that local modeling reduces the
bias of the original random forest at the expense of a slight increase in the variance; overall
the RMSE is diminished.

Consistency of random forests + local regression

Consistency properties of random forests have been extensively studied since the original
results in Breiman [15]. The true random forest algorithm is notoriously difficult to ana-
lyze, due to the many complex ingredients (greedy partitioning scheme, bagging, and deeply
trained trees), so most analyses make simplifications to make the analysis more tractable.
Local polynomial methods based on Euclidean distance, on the other hand, are very well
understood theoretically: they are known to have minimax-optimal rates of convergence [88],
can correct bias problems at the boundary of the data [31], and that, with slight modific-
ations to avoid pathological behavior, they are known to be consistent over arbitrary joint
distributions of y and x with Ey* < oo [50].

In our analyses, we make several simplifications to the true random forest algorithm.
Most notably, our analysis relies on the assumption that the procedure used to build the
regression trees proceeds independently of the data used in building the local models; this
assumption is also made in Biau [12] and is similar to the ‘honest tree’ assumption defined
in Wager and Athey [96]. The more detailed mathematical analysis in Scornet et al. [82]
proves consistency of random forests for additive regression functions while avoiding this
assumption. In our results, we refer the ‘training data’ as the dataset {(y;,x;)} which is
used to fit local models, but is not used to determine the structure of the trees. Also, we
assume that these data are sampled without replacement in each of the trees of the forest,
to avoid difficulties in analyzing sampling with replacement. More specifically, we require
the following:

Assumption 1. The training data {(v;,x;),i = 1,...,n} are generated i.i.d. from a joint
distribution that satisfies the following properties:

x; ~ Uniform([0, 1]7) (4.13)
Y = g(xi) + w(x;)€; (4.14)
where ¢; is independent of x;, the function w(x) is bounded, E(¢;) = 0, and E(e}) < oc.

The function g must be sufficiently well-behaved such that assumption 4 can be satisfied. A
minimal requirement is that g is continuous.
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Assumption 2. The splits of the constituent regression trees of the random forest are
calculated using a dataset that is independent of the training data.

Assumption 3. We require that

in ko (x) = 415
nin Ko, (x) = o0 (4.15)
je(l,...,K)

i.e., the number of training points contained in each node of each tree of the random forest
goes to infinity.

Assumption 4. For each x € [0, 1]7, the trees are trained in such a way that

max [w(x;, X, 0)|g(x:) — g(x)]] =0 (4.16)
i.e., that the cells containing x shrink in such away that the maximal variation of the function
g within a cell shrinks to 0 in probability.

Assumption 5. The data in each tree are sampled without replacement from the original
training set, so that all training points occuring in a particular leaf node have the same
weight.

Theorem 4. Under assumptions 1-5, for all x € [0, 1],
g(x) — g(x) 20 (4.17)

The proof is provided in section 4.A.

Remark 11. Assumption 4 allows us to ensure that the approximation error at point x
vanishes asymptotically. This can be shown to hold, for example, by combining Lemma
2 of Meinshausen [63] with continuity of g; however, this requires additional assumptions
on the tree-training procedure that deviate somewhat from the usual random forest tree-
training procedure. Proposition 2 in Scornet et al. [82] proves a slightly weaker version of
this assumption: the pointwise statement is not proven, but a similar statement is shown to
hold for a random draw of x. It is an open question whether such pointwise control over the
leaves can hold for the true random forest tree-training procedure.
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Algorithm 2: Distributed Nonparametric Regression via SILO
Input: Number of workers W; Distributed training dataset
{(yij,xij);7=1,...,W;i=1,...,N,} where Z;/V N; = n; Test points
(X1,...,Xy) stored on master node
for each worker j =1 — W do in parallel
| Fit random forest on local data (y;,X; ;)

N =

3 for each m=1— M do

4 Master broadcasts test point x,,

5 for each worker j =1 — W do in parallel

6 Worker j calculates supervised neighborhood of x,,, yielding {w; ;, (vi;, % )}
7 Worker j calculates weighted covariance matrix and cross-covariance vector:

Nj Nj
Yijm = Z wiaU (% — ) U (%5 — Kpn) " Ajm = Z w;U (Xji — Xm) Yjii
i i

8 | Worker j communicates (¥;,,a;,,) to the master

9 Master node solves linear system and calculates
-1
. T [—W w
g (%) =U(0) [23:1 Ej,m} Zj:l @j,m

return (§(X1),...,9(Xun))

1

o

4.4 Distributed Silo

There is a rich literature on algorithms for recovering nearest neighbors from large datasets in
high dimension, leading to efficient implementations of k-nearest neighbors in the distributed
setting [10, 48, 1]. The possibility of using supervised neighborhoods in a distributed setting
remains less explored. We propose an approach for distributed nonparametric estimation
which is based on the random forest-supervised neighborhood method introduced above.
In the setting of distributed data, communication latency is high, and implementing the
random forest algorithm on a distributed dataset is prohibitively expensive, due to the
necessity of performing several distributed sorts at each internal node in the CART training
procedure. However, approximations based on binning data, extracting order statistics, and
using randomized searches for split-points has led to several scalable implementations of
distributed random forests [76, 65].

Here, we take a different approach, which avoids communication at training time. We
extend SILO to the distributed setting, but instead of attempting to train a global random
forest, we train random forests separately on each worker. At test-time, supervised neigh-
borhoods of each test point are determined independently by each worker node, using the
usual random forest procedure of finding weighted PNNs. Then the master node gathers the
workers’ supervised neighborhoods and fits a local linear model. The local model helps to
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FiGure 4.1: Effect of distributing the data for the Friedmanl and Gaussian
Process simulations, and the Year Prediction dataset. The black bar represents a
random forest trained on the full dataset. The error bars represent the ranges between the
0.1 - 0.9 quantiles after performing 40 different runs of the experiments, fixing the training
and test data data, but fitting different random forests. In the case of the simulations, the
test datasets are noise-free, so the true regression function would have an RMSE of zero.

lower the bias of the workers’ individual predictions; this is similar in spirit to the approach
taken in Zhang et al. [104], which uses bootstrap bias correction. Our method is presented
in more detail in algorithm 2. Note that, instead of communicating the training data itself,
the workers communicate sufficient statistics for performing local regression - the weighted
covariance matrix >, and the weighted cross covariance vector ay; the master then must
simply add together these results from the workers and solve a linear system. Additionally,
to amortize latency costs, we batch the communication at test-time; the master can broad-
cast a set of several test-points in a single message, and the workers can communicate a
corresponding set of sufficient statistics. In practice, this significantly speeds up test-time
computations.

Simulation and Real Data Experiments

We analyze the performance of algorithm 2 in two ways. First, we plot the out-of-sample
predictive accuracy of distributed estimation as we increase the number of worker nodes but
fix the size of the overall dataset. Second, we plot the accuracy as the size of the dataset
is fixed per worker, but the number of workers is varied. We compare the performance of
our algorithm to both naive averaging of divide-and-conquer random forests (equivalently,
local constant models in algorithm 2), and, in the second case, the global distributed random
forest implementation in MLIib.
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Fixing the training set size

We demonstrate the effect of parallelization on two simulated datasets and one real dataset.
The first simulation is the Friedman1 function described in section 4.2. The second simulation
is a Gaussian process, generated by fixing M different vectors in RP, drawing 71, ..., Zy; i.i.d.
N(0,1), setting 02 = 0.05, and generating the function g(x) = S0 | Zye~zl«kl*e® cos(w?'x).
We generate a function in p = 10 variables, but for our simulation, we append an additional
20 variables unrelated to the outcome. This prediction task is very difficult - even with 1
million training points, a random forest attains a test-set correlation of 0.83. The real dataset
is a prediction task drawn from the Million Song Dataset [11]. The task is to predict the year
of a song’s release given 90 acoustic features of the song. The training set consists of 463, 715
songs appearing between 1922 and 2011, and the test set consists of 51,630 songs. The results
are shown in fig. 4.1. The plots show the performance of a random forest trained on the full
datasets (black lines), a ‘naive’-divide and conquer random forest, which simply averages
predictions from random forests trained on the workers (blue points), and the distributed
SILO procedure outlined in algorithm 2. The number of workers ranges from 5 to 195 for the
two simulations (corresponding to 200k to 5k training points per worker), and from 5 to 105
for the Year Prediction task (corresponding to approximately 92k to 4k training points per
worker). The error bars in the plots represent 0.1-0.9 quantile ranges, as the experiments
were repeated 40 times, holding the training and test set fixed, while fitting different random
realizations of random forests. We see that, in the case of the Friedmanl simulation, the
Distributed SI1LO procedure consistently outperforms the full random forest and, in contrast
to the naively distributed random forest, shows little decay in performance as the data are
distributed. In the Gaussian process simulation, the performance of Distributed SILO does
deteriorate as the data are distributed, and we can see an increase in variance, but it still
significantly outperforms the naively distributed random forest. For the Year Prediction
task, Distributed S1LO significantly improves upon the full random forest for all numbers of
workers.

Fixing the dataset size per worker

We now explore the performance of distributed-S11.0 when we fix the training dataset size per
worker, but increase the number of workers, and hence, the overall amount of training data.
We use the two simulation setups outlined above: the Friedmanl function, and the higher-
dimensional Gaussian process. We slightly altered the Friedmanl simulation, adding an
additional 45 noise features to increase the overall size of the training dataset and to make the
random forest fitting procedure more computationally challenging, as the mtry parameter
(number of variables considered at each node) is increased from 3 to 18. We implemented
distributed-SILO in Spark, a popular open source framework for distributed computation,
and we compare our method with the implementation of distributed random forests in MLlib.
To attain similar accuracy between S1LO and MLIlib’s random forests, we set the maxDepth
parameter of MLIib to be 15 and the minInstancesPerNode parameter to be 10. We ran our
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FIGURE 4.2: Performance of Silo, MLlib’s random forest, and naively distributed
random forests on simulated datasets with growing training set size. We fixed
the amount of training data per partition to 100,000 observations, and varied the number of
partitions from 4 to 32. The y-axis shows the test-set RMSE. In the Friedmanl simulation,
SILO consistently fits better models with more training data. In the Gaussian process sim-
ulation, both S1Lo and MLIib generally improve with more training data. For most cluster
sizes, SILO improves upon naive averaging of workers’ predictions. For large cluster sizes, it
is more than 2x faster than MLIib due to its avoidance of communication; see fig. 4.3 for
details.

experiments on Amazon EC2, using r3.xlarge instances, which have 4 processors and 30.5 GB
of RAM per node. We set the number of Spark partitions to equal the number of processors,
testing clusters of size 2 to 8 nodes. The training dataset size was fixed at n = 100,000
per partition, yielding n ranging from 800k to 3.2 million. The results of our experiments
are shown in fig. 4.2. In these plots we show three different methods: Distributed-SILo,
naive divide-and-conquer random forests, and MLIib’s distributed random forest. Similar
to the results in fig. 4.1, the local modeling step in SILO improves performance relative to
the naive averaging method for most cluster sizes. The performance of Distributed-SILO is
particularly strong in the Friedman1 simulation, as the predictions consistently improve with
more training data, unlike MLIlib. In the Gaussian process simulation, both Distributed-SiLo
and MLIib generally improve with more data, though the trend is not monotone. Training
time of Distributed-SILO is essentially constant because it avoids communication entirely. In
both simulations, it is more than 2x faster than MLIib for the largest clusters (see fig. 4.3).

We note that distributed-SILO has traded training time for test time, as communication
of supervised neighborhoods between workers and master must occur, and a local model
must be fit for every test point. However, we find that the increase in test time is negligible
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compared to the gains in training time; for example, by batching test points into groups
of size 100, we are able to amortize the cost of communication latency, and find that the
predictions can be made at an overall rate of approximately 20 milliseconds per test point.
While this is several orders of magnitude slower than making predictions using a model
that is stored locally (as is the case with MLIib), it is still fast enough that overall gains in
training time are dominant unless very large test sets are required. We also note that, in the
standard random forest algorithm, the trees are built such that the leaves contain a small
number of test points (usually less than 10 for regression tasks). Thus, the overall storage
costs of random forests scales linearly with the size of the training set, and the models may
grow beyond the in-memory storage capacity of a single machine; for example, we estimate
that, in our Scala implementation, a random forest trained on a dataset of size 3.2 million
points would require more than 6 gigabytes of memory.

Friedmanl simulation Gaussian Process simulation
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o o
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60004 3000-
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Method SILO —— MLlib Method SILO —— MLIib

FIGURE 4.3: Training timing for Distributed-Silo and MLIlib with growing dataset
size. The amount of training data per Spark partition was fixed at 100,000 observations.
Experiments were run on Amazon EC2 clusters using r3.xlarge instances, which have 4 pro-
cessors and 30.5 GB of RAM per node. For each experiment, the cluster size was chosen such
that the number of partitions was equal to the number of processors. As expected, training
time of Distributed SILO is fairly constant as size of the dataset is increased, due to the lack
of communication between workers. While MLIlib’s implementation avoids communication,
particularly at deeper nodes in the trees, it does pay some communication penalty as more
workers are added.
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4.5 Conclusion

SILO is a novel local learning algorithm that uses random forests to identify supervised
neighborhoods for the problem of non-parametric regression. We proved the consistency of
S1LO, introduced a distributed variant, and demonstrated its favorable empirical performance
(in terms of accuracy and computation) relative to natural baselines.

We note that the contemporaneous work of Xu et al. [99] introduces a local learning
method that also relies on random forests to identify supervised neighborhoods for non-
parametric regression. They also introduce a reweighting procedure for the local models that,
in contrast to ours, is supervised using a small scale local random forest. This work focuses
on empirical studies and does not investigate the scalability of the proposed algorithm.
However, in followup work, they show that the underlying ideas motivating the distributed
variant of SILO are applicable to their approach as well [105].

Moving forward, it would be interesting to extend SILO to the classification setting, study
the degree to which SILO can be parallelized by characterizing the relationship between n,
N; and W in algorithm 2, and investigate the theoretical performance of local methods
with supervised neighborhoods relative to classical non-adaptive methods under sparsity
assumptions, e.g., when the response only involves s < p predictors.
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Appendix

4.A Proof of Theorem 4

Proof. For convenience, we introduce a shorthand for the random forest weight of train-
ing point i, defining w; = wrp(x;,x). We substitute eq. (4.14) into the definition of §(x)
in eq. (4.12).

§(x)—g(x)=U(0) o' [Z w;U (x; —x) (9 (x;) — g (x) + W(X)Gi)] (4.18)
Note that we have used the fact that
U(0)" ;! [Z wiU (x; —X) g (X)] = g(x) (4.19)

This is a well-known property of local linear estimators: that they reproduce linear functions
(in this case, a constant). See, for example, Proposition 1.12 in Tsybakov [92].
We decompose §(x) — g(x) into a bias-type term and a variance-type term, defining

b(x)=U(0)" 5 > wiU(x—x)(9(x)—g (X))] (4.20)
Li=1
v(x) =U(0)" ot Z w;U (x; — x) w(xi)ei] (4.21)
Li=1
We will show that each of these terms converges to 0 in probability. O]

Lemma 8. v(x) =0

Proof. For notational convenience, we introduce a shorthand for the indicator that a training
point x; belongs to the same leaf node as x in a tree trained with random parameter 6: let
w;(0) = w(x;,x,6). We drop the dependence on x in the notation, because we will work
with a fixed x for the duration of the proof. By assumption 5, a particular training point
will only occur once in a leaf node, so w;(#) € {0, 1}, and it both indicates the presence of
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7 in the leaf node, and can be used to represent the weight of training point x;. We define
the bandwidth matrix of the random forest to be a diagonal matrix with diagonal elements
set to be the largest component-wise distances from x to a training point that has nonzero
weight. Let x; = (2;1,...,2;,), and let x = (xq,...,x,). We define

hm = max [w;i(0;) |Tim — Tonl]
i (4.22)
H = diag(L hy, ..., hy)

By assumption 3, the number of training points falling in a leaf node goes to infinity. Using as-
sumption 2, if we condition on the variables w;(6;), the subset of the training data falling
in R(x,0;) is independent and identically distributed uniformly in the rectangle R(x,6;).
By definition, |[H'U (x; — x)||,, < 1, and we have assumed that w(x) is bounded and
E(e;) = 0. We apply the weak law of large numbers (in fact, just a variance calculation) to

obtain

1(X) S (0, H U (x = x) wlxi)es 5 0 (4.23)

ko,

Thus, averaging over trees, we have
n
> wHTU (xi — x)w(x;)e; 0 (4.24)
i=1
We now examine the covariance matrix Y.

Yx = ZwiU(Xi —x)U(x; —x)7
i=1

n

K
1 1 T
We define the tree-level contributions to Xy as

n

Zwi(ej)U(Xi —x)U(x; —x)T

=1

1
kgj (X)

Ex(0;) =

We define §; = w;(;)(x; — x), and denote the components of §; as §; = (0;1,...,9;,). For
convenience, we have dropped the dependence on j in the notation for §,, but it is to be
understood that it is only nonzero for data falling in the leaf node of tree j. Then

ko,(x) > .01 o Di0ip
1 Soi0in D00 2i0i10ip

Yk (05) = o ()

| . | (4.25)
Zi 5%',17 Zz 52',1?5%11 Zz 52'2,17
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We define the width of the rectangle R(x, 6;) in each dimension as wy, j, and define the offsets
of x from the center of the rectangle R(x,6;) in each dimension as A, ;, m € {1,...,p},j €
{1,..., K}. Then we have, by the weak law of large numbers, assumptions 2 and 3, and the
i.i.d. uniform distribution of x;,

) Gim AL 4.2
1 n
ey Z 05 0im — DAy 5 0 for 1 #m (4.27)
2 .
(3A2 %) 2 (4.28)

We define the tree-averaged quantltles

1 K
A, = = Z A (4.29)
K 2
1 1 Wiy

We define the vector A = (Aq,..., A ) and define the matrix

crf o0
S=1: .. |+AAT (4.31)
0o - Uz%
The above has shown that
> —(1 AT):O(l) (4.32)
* A S P '

Then, we will apply the Woodbury formula and the formula for the inverse of a block-
partitioned matrix to explicitly calculate the inverse of this matrix. We define

p
A? A2 A2
n= >~ 2 (433)
M AN

i

Then .
_ 1-n _
1 |AL SP A1AG
_ 17,,7 o2 A2 m=1 0.20.2
U T 1 AT ! ! 1+ZJ 1 2 ! 4 34
0 = ) - .
O (5 5 5 (1.34)
1|4y 1 P ApAY
1 2 a7 -1 o252
K _ap 1+ZJ 1 2 " TpTm ]
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Since A2 = O(c?,), we see that this vector is

0 (1)

o ()
o(2)

—~

U(0)'S =

Hence, because h,, = O(o,,),

U(O0)7SH = (0(1), ..., 0,(1)
Thus, we have that U(0)TE 13" w,U(x; — x) = 0,(1)
Lemma 9. b(x) = 0

Proof. We have, by definition,

b(x)=U(0) ='H [Z wiHU (x; — %) (9 (x;) — g (X))]

98

(4.35)

(4.36)

(4.37)

where H was defined in eq. (4.22). By assumption 4, and the definition of H, we have that

[Z w,H U (x; —x) (9 (x;) —g(x))| = 0,(1)

(4.38)

As we have shown in Lemma 8, U (0)" S7'H = (0,(1),...,0,(1)), hence b(x) = 0,(1) [
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