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Abstract

A recent proposal relates two dimensional holographic conformal field theories de-

formed by the integrable TT flow to AdS3 with a finite radial cutoff. We investigate this

proposal by studying perturbative correlation functions on the two sides. For low point

correlators of the stress tensor, we successfully match the deformed CFT results at large

central charge to bulk results obtained in classical pure gravity. The deformed CFT also

provides definite predictions for loop corrections in the bulk. We then include matter fields

in the bulk. To reproduce the classical bulk two-point function of a scalar operator we

show that the deformed CFT needs to be augmented with double trace scalar operators,

with the TT operator yielding corrections corresponding to loops in the bulk.
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1. Introduction

Recently, McGough, Mezei, and Verlinde [1] proposed an intriguing extension of the

AdS3/CFT2 correspondence. On the bulk side, the boundary lies not at asymptotic in-

finity, but instead at a finite radial position. The dual quantum field theory is no longer

conformal, but is rather described by a CFT deformed by the remarkable TT operator of

Zamolodchikov [2]. The bulk side of this proposed duality is interesting in that the ability

to move the boundary inward could shed on the important question of the emergence of

bulk locality; the notion of introducing a cutoff boundary surface in this context has arisen

in earlier work, e.g., [3,4], and also in relation to the fluid-gravity correspondence, e.g. [5].

In particular, [6] and (more explicitly) [7] both show that such cutoffs are dual to some

deformation of the orginal CFT. Recent work on this and related duality proposals include

[8,9,10,11,12].

The particular deformation proposed by [1] is especially interesting: the TT operator

is irrelevant in the renormalization group sense, yet the deformed theory appears to be far

more predictive than the generic non-renormalizable QFT. For these reasons, it is worth-

while to see to what extent the setup of [1] can be elevated to a full-fledged holographic

correspondence, complete with a well defined dictionary for relating observables on the

two sides, and this is the focus of the present work.

The proposal of [1] was not so much derived as motivated based on observing a non-

trivial correspondence between several quantities computed on the two sides, in particular

involving the deformed energy spectrum of certain states and the propagation speeds of

small perturbations around thermal states. Let us first review some key aspects of the

TT deformation in QFT. Given any 2d QFT with a local stress tensor, the composite

operator TT can be defined in a canonical way up to derivatives of local operators [2].

The deformed action, S(λ), is stipulated to obey dS
dλ =

∫

d2x
√
gTT . Assuming that the

undeformed theory is a CFT, as reviewed below we can equivalently say that the trace of

the deformed stress tensor obeys (up to derivatives of local operators)

T i
i = −4πλTT . (1.1)

A remarkable consequence [13,14] is that the exact λ dependence of the energy spectrum

can be written down explicitly. Taking the theory to live on a spatial circle of circumference

L and using dimensional analysis to write energy eigenvalues as En = 1
LEn(λ/L2) one can

establish the differential equation

1

π2
E ′

n − E2
n − 2λ

L2
EnE ′

n + p2L2 = 0 , (1.2)

where p is the momentum of the state. The solution yields

En = − L

2π2λ





√

1− 4π2λ

L
En,0 +

(

2π2λ

L
p

)2

− 1



 , (1.3)
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where En,0 is the energy of the state in the undeformed theory.

One of the main observations of [1] was that the formula (1.3) arises in pure AdS3

gravity by considering the quasilocal energy [15,16] defined on a surface at finite radial

location r. The expression appearing under the square root above indeed exhibits a marked

similarity to the function appearing in the standard form of the BTZ solution. In our

conventions, the quasilocal energy is given as E = 1
2π

∫

dφ
√
gφφu

iujTij , where ui is the

timelike unit normal to the integration surface, and Tij is the usual boundary stress tensor

[15,17],

Tij =
1

4G
(Kij −Khij +

1

ℓ
gij) . (1.4)

Here gij is the boundary metric, Kij is the extrinsic curvature, and ℓ is the AdS scale.

Evaluated in BTZ on a surface of fixed r, the quasilocal energy turns out to match (1.3)

under the identification λ = 4Gℓ
π

; L = 2πr. Note that our conventions differ from those of

[1] which instead give λ = 4Gℓ
πr2 and L = 2π, though both result in the same dimensionless

ratio λ
L2 . This dimensionless ratio is the only physical measure of the ‘distance’ that the

boundary has been moved into the bulk. We henceforth set ℓ = 1.

As for propagation speeds, if one considers a QFT state in the deformed theory with

constant 〈T++〉 and 〈T−−〉, then small perturbations of the stress tensor can be shown to

propagate at speeds

v+ = 1 + 2πλ〈T++〉+O(λ2) , v− = 1 + 2πλ〈T−−〉+O(λ2). (1.5)

The same propagation speeds arise in pure AdS3 gravity by considering perturbations that

preserve Dirichlet boundary conditions on the cutoff surface [5,18].

The following observations are useful to understand the origin and generality of these

correspondences. First of all, if we use coordinates such that ds2 = dρ2 + gij(ρ, x)dx
idxj

with a cutoff surface at fixed ρ, then the ρρ component of the Einstein equations is

−1

2
R(2) +

1

2

[

K2 −KijKij

]

− 1 = 0 . (1.6)

We then note that this equation applied to the stress tensor (1.4) is easily seen to imply

the key trace relation (1.1) under the identification λ = 4G/π, assuming a flat boundary

metric. This observation suffices to explain the agreement of the propagation speeds, since

these can be obtained by studying linearized perturbations of the conservation equation

∇iTij = 0 combined with the trace relation. The agreement of the energy spectrum also

follows readily from the Einstein equations; this time we note the the tt component of

the Einstein equations becomes the flow equation (1.2), and hence the same solution (1.3)

obtains.

To further explore the proposed correspondence, we consider the computation of stress

tensor correlation functions on the two sides, focussing on two and three point functions.
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Elementary considerations on the QFT side yield results for the two-point functions to

order λ2, and we find, for example, 〈Tzz(x)Tzz(0)〉 = c/2
z4 + 5π2λ2c2

6
1

z6z2 + O(λ3). On the

bulk side, we adopt the standard AdS methodology of relating boundary stress tensor

correlators to the variation of the on-shell action with respect to the boundary metric.

Perhaps surprisingly, this leads to the result that two-point functions are exactly the same

whether the boundary is at a finite radial location or off at infinity as usual1; in particular

we have 〈Tzz(x)Tzz(0)〉 = c/2
z4 where c is the usual Brown-Henneaux central charge. Does

this conflict with the presence of an order λ2 correction on the QFT side? Under the

correspondence, λ = 4G/π ∼ 1/c, and so we see that the λ2c2 contribution is down

by a factor of 1/c compared to the leading term. On the bulk side, this corresponds to a

suppression by a factor of G, which implies that it is a one-loop effect and therefore not seen

by our classical analysis. So our results are not in conflict with the proposed correspondence

provided one compares results order by order in 1/c, recalling that λ ∼ 1/c.

To test this further, and in particular to check agreement between quantities that do

receive corrections in λ, we next turn to three-point functions. Consider the representative

examples 〈TzzTzzTzz〉 and 〈TzzTzzTzz〉. These both vanish in the undeformed CFT, but

get contributions of order λc2 in the deformed theory, and the explicit results are easily

computed in conformal perturbation theory. Since λc2 ∼ c ∼ 1/G we expect these results

to agree with a classical bulk computation, and we indeed establish precise agreement. We

similarly establish agreement for all stress-tensor three-point functions at this order.

As in the case of the two-point functions, the three-point functions in the QFT also

receive higher order corrections in 1/c, and the prediction is that these should match the

corresponding loop diagrams in the bulk. It would of course be interesting to verify the

one-loop (and higher) agreement, but we leave this to future work.

On the QFT side, the trace relation (1.1) is an exact operator statement for any

deformed CFT, and the energy spectrum (1.3) is similarly an exact relation governing the

change in energy of all states in the original CFT. On the other hand, the statements made

on the bulk side so far apply only to pure gravity solutions. But what happens when there

are nontrivial matter fields in the bulk? One can first ask whether the duality can persist

as before, with the boundary QFT still being just a TT deformed CFT. It is easy to see

that this does not work. In terms of our previous discussion, the new issue is that the

Einstein equations now pick up an extra matter stress tensor term. So instead of getting

(1.1) in the bulk we get T i
i = −4πTT − tρρ, where tij is the matter stress tensor. There is

no reason for tρρ to vanish, so there is a conflict. Similarly, the energy flow equation (1.2)

now gets a contribution from ttt. The quasilocal energy as a function of radial location can

still be worked out explicitly in the case of a static solution, but the result is a much more

1 The commutator part of this result follows from the symplectic structure computations of

[19].
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complicated dependence on the radial coordinate, and the simple relation between λ and

r is lost.

To gain more insight we consider scalar two-point functions. In the bulk we compute

the two-point function for a free scalar field with Dirichlet boundary conditions on the

cutoff surface. At long distance this goes over to the usual AdS correlator, but there is

an infinite series of corrections to this result. To reproduce these we need to add to the

QFT action a series of double trace operators built out of the operator O dual to the bulk

scalar. The presence of such additional terms in the action is consistent with our statement

above regarding the change in the trace relation and energy spectrum. We also study the

effect of the leading order TT perturbation on the two-point function in the QFT, which

turns out to yield both power law and logarithmic corrections to the correlator. These

corrections, perhaps supplemented by other interactions that involving both the stress

tensor and scalar operator, should correspond to one-loop graviton corrections in the bulk,

by the same logic as in the stress tensor correlators.

To summarize our findings, it appears to us that the duality proposed in [1] can

successfully relate stress tensor correlators in the TT deformed CFT to the corresponding

correlators computed in pure gravity with boundary conditions at a finite location in the

bulk, although this statement remains to be checked at loop level. On the other hand,

the situation is more complicated once bulk matter is introduced. Interactions above and

beyond those of TT need to be introduced, and essentially fixed by hand to reproduce bulk

results.

2. TT review

We begin by reviewing salient features of TT deformed conformal field theories

[2,13,14].

We define the stress tensor via the metric variation of the Euclidean action,

δS =
1

4π

∫

d2x
√
gT ijδgij . (2.1)

Given a general 2D QFT, we can define the bilocal operator

TT (x, y) =
1

8
T ij(x)Tij(y)−

1

8
T i
i (x)T

j
j (y) . (2.2)

On the flat metric ds2 = dzdz, to which we now restrict unless stated otherwise, this

reduces to

TT (x, y) = Tzz(x)Tzz(y)− Tzz(x)Tzz(y) . (2.3)

As shown in [2], this operator exhibits a remarkable OPE structure as x → y,

TT (x, y) = O(y) +
∑

α

Aα(x− y)∇yOα(y) . (2.4)
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The (possibly divergent) functions Aα(x−y) multiply y-derivatives of local operators. We

can use this relation to identify the local operator TT (y) as O(y) modulo derivatives of

other local operators. Another way to say this is that
∫

d2x
√
gTT (x) ≡ lim

ǫ→0

∫

d2x
√
gTT (x, x+ ǫ) (2.5)

provides an unambiguous and UV finite definition of the integrated operator
∫

d2x
√
gTT (x),

and we adopt this definition henceforth.

Starting from a generic QFT with Euclidean action S0, the TT deformed action is

defined via the equation2

dS(λ)

dλ
=

∫

d2x
√
gTT (x) (2.6)

subject to the boundary condition S(0) = S0. Importantly, the TT operator appearing

on the right hand side is defined in terms of the stress tensor corresponding to the action

S(λ). Hence the equation (2.6) implies a nonlinear λ-dependence for S(λ). We can imagine

solving (2.6) by starting with a given S(λ), computing the stress tensor of that theory, and

then using (2.6) to obtain S(λ+ δλ).

In general, for a theory with a single mass scale µ dimensional analysis yields

µ
dS

dµ
=

1

2π

∫

d2x
√
gT i

i . (2.7)

A CFT deformed by TT has the single scale3 λ = 1/µ2, and so the relation (2.6) yields

T i
i = −4πλTT . (2.8)

Strictly speaking this result holds only under the integral since the right hand side is only

defined up to total derivatives. However, (2.8) is correct as written to first order in λ since

the operator product defining TT is nonsingular when the stress tensor is that of a CFT.

2.1. Deformed free scalar action, and Nambu-Goto

It is instructive to carry out this procedure at the classical level starting from the

action for free scalar fields (this was done in [14])

S0 =
1

4π

N
∑

n=1

∫

d2x
√
g∂iφn∂iφn . (2.9)

2 Note that our λ is related to µ in [1] by µ = 4π2λ, since our stress tensor differs by a factor

of 2π.
3 This statement is not entirely innocuous; one should consider the possibility of scales arising

through renormalization and from the possible presence of a UV cutoff, but we ignore these issues

here.
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First consider a single scalar field, and write the ansatz

S(λ) =

∫

d2x
√
gλ−1F (λ∂iφ∂iφ) . (2.10)

The defining equation (2.6) becomes a differential equation for F (z) which is readily solved

as

S(λ) =
1

2π

∫

d2x
√
g

(

1−
√

1− πλ∂iφ∂iφ

πλ

)

. (2.11)

The case of multiple scalar fields requires a more general ansatz,

F = F (λ∂iφn∂iφn, λ
2∂iφm∂jφm∂iφn∂jφn) . (2.12)

This leads to a partial differential equation for F which turns out to have a solution

corresponding to the action

S(λ) =
1

2π

∫

d2x

√
g −

√

det(gij − πλ∂iφn∂jφn)

πλ
. (2.13)

The relation (2.8) is readily verified. Up to an additive constant, the action (2.13) is

recognized as the Nambu-Goto action written in static gauge, as is made manifest by

writing

X0 = x0 , Xn =
√
−πλφn , XN+1 = x1 , (2.14)

so that

S(λ) =
1

2π2λ

∫

d2x
√

det ∂iXA∂jXA + constant , A = 0, 1, . . .N + 1 . (2.15)

The Nambu-Goto action exhibits manifest SO(N + 2) global symmetry, along with

reparametrization invariance. The SO(N + 2) symmmetry is nonlinearly realized in the

gauge fixed form (2.13) due to the need to perform a compensating reparametrization to

maintain static gauge. There is no obvious a priori connection between the TT deforma-

tion and the existence of this global symmetry. Of course, our discussion of the free boson

theory has been purely classical, and at the quantum level one encounters the usual issues

regarding the quantization of the Nambu-Goto action outside the critical dimension. This

discussion is most naturally phrased in the language of effective strings (see [20] for a very

clear review of the relevant issues), in which a series of higer derivative terms are added to

S(λ). Based on physical considerations, namely that effective strings appear as solutions

of Lorentz invariant theories – e.g. as QCD strings or Nielsen-Oleson vortices – one expects

that there exists a quantization of (2.15) that preserves the SO(N + 2) symmetry.

6



Returning to the single scalar theory (2.11), now in Lorentzian signature, the Hamil-

tonian is

H(λ) = − 1

2π2λ

∫

dx1
[√

(1− 4π3λπ2
φ)(1− πλ(φ′)2)− 1

]

. (2.16)

This illustrates that the choice of sign for λ is quite significant; taking λ > 0 implies a

rather unusual constraint on the phase space in order to preserve reality conditions. From

this perspective, λ < 0 appears rather more conventional than λ > 0.

In terms of the energy and momentum of the undeformed theory,

E0 =

∫

dx1
(

ππ2
φ +

1

4π
(φ′)2

)

, p = −
∫

dx1πφφ
′ (2.17)

a configuration of constant πφ and φ′ on a circle of length L has energy

H(λ) = − L

2π2λ





√

1− 4π2λ

L
E0 +

(

2π2λ

L
p

)2

− 1



 . (2.18)

This illustrates that for λ > 0 configurations of sufficiently large E0 for a given p render

the energy complex in the deformed theory. The expression (2.18) is a classical version of

the general quantum result, which we now review.

2.2. Energy spectrum

We start with a CFT on a spatial circle of size L, and assume the theory has a discrete

spectrum. Assuming λ is the only scale present in the TT deformed theory, the energy of

the nth state can be written

En =
En(λ/L2)

L
. (2.19)

The momentum p is integer quantized in units of 2π/L and so does not change with λ. As

shown in [13,14] the following differential equation holds

1

π2
E ′

n − E2
n − 2λ

L2
EnE ′

n + p2L2 = 0 . (2.20)

The solution yields

En = − L

2π2λ





√

1− 4π2λ

L
En,0 +

(

2π2λ

L
p

)2

− 1



 , (2.21)

where En,0 = E(0)/L is the energy of the state in the undeformed theory. This agrees

with the previous classical result (2.18). We emphasize that the assumptions going into

the result (2.21) are quite minimal, essentially just that the TT deformed CFT exists as a

theory with a single scale λ.
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3. AdS3 gravity with a radial cutoff

We now turn to the gravity side of the correspondence. Most of the following section

is a rederivation of results in [1] from a slightly different point of view.

3.1. Basic formulas

The action for pure gravity in AdS3 is

S = − 1

16πG

∫

M

d3x
√
g(R+ 2ℓ−2)− 1

8πG

∫

∂M

d2x
√
h(K − ℓ−1) . (3.1)

We work in Euclidean signature, and henceforth set the AdS radius to 1: ℓ = 1. Our

curvature conventions are that R(AdS3) = −6. hij is the metric on the boundary. In a

coordinate system such that the metric takes the form

ds2 = dρ2 + gij(x, ρ)dx
idxj , (3.2)

the extrinsic curvature is

Kij =
1

2
∂ρgij . (3.3)

It is also useful to note that after integration by parts the action takes the form

S = − 1

16πG

∫

d3x
√
g
(

R(2) +K2 −KijKij + 2
)

+
1

8πG

∫

∂M

d2x
√
h . (3.4)

Einstein’s equations Rµν − 1
2Rgµν − gµν = 0 in the coordinate system (3.2) take the form

Ei
j = −∂ρ(K

i
j − δijK)−KKi

j +
1

2
δij
[

KmnKmn +K2
]

− δij = 0

Eρ
j = ∇i(Kij −Kgij) = 0

Eρ
ρ = −1

2
R(2) +

1

2

[

K2 −KijKij

]

− 1 = 0 .

(3.5)

The on-shell variation of the action, δS = 1
4π

∫

d2x
√
hT ijδhij yields the stress tensor

Tij =
1

4G
(Kij −Kgij + gij) (3.6)

which obeys ∇iTij = 0 by virtue of the field equation Eρ
i = 0.

8



3.2. Trace relation

Recall that on the CFT side the trace relation T i
i = −4πλTT is equivalent to (2.6)

which fixes the form of the deformed action. So we would like to see this relation appearing

on the gravity side as well. Using the definition of the boundary stress tensor (3.6), together

with the constraint equation Eρ
ρ = 0 we compute

T i
i =

1

4G
(2−K)

TT =
1

8
(T ijTij − (T i

i )
2) = − 1

64G2
(2−K)− R(2)

128G2
.

(3.7)

This implies that on a flat boundary metric we have

T i
i = −16GTT . (3.8)

Comparing to T i
i = −4πλTT we read off

λ =
4G

π
. (3.9)

We emphase that (3.8) holds for any solution of the Einstein equations with a flat bound-

ary metric. In [1] the relation between the deformation parameter λ and bulk quantities

involves the radial location r of the cutoff surface, whereas the relation (3.9) involves no

such thing. T i
i and TT are both coordinate independent objects, so the relation between

them cannot involve an arbitrary radial coordinate. However, a radially dependent ex-

pression for λ will emerge naturally below when we consider the spatial circle to have a

specified size L.

3.3. Propagation speed

The fact that under the dictionary (3.9) we get the same trace relation in CFT and

gravity immediately implies that we will get agreement for the propagation speed of stress

energy perturbations. This follows because the propagation speed is derived using just the

conservation equations and the trace relation. Namely, on a flat metric ds2 = dzdz these

equations are
∂zTzz + ∂zTzz = 0

∂zTzz + ∂zTzz = 0

Tzz + πλ
(

TzzTzz − (Tzz)
2
)

= 0 .

(3.10)

Upon linearizing these equations (after converting to Lorentzian signature) around a back-

ground of constant 〈Tij〉 it is straightfoward to show that perturbations propagate at

speeds

v+ = 1 + 2πλ〈T++〉+O(λ2) , v− = 1 + 2πλ〈T−−〉+O(λ2) (3.11)

9



in agreement with results stated in [1]. The superluminal nature of these speeds for λ > 0

has been discussed in [5,18]. In the bulk this can be understood simply as coming from the

coordinate transformation needed to put the metric on the constant r surface in standard

form.

3.4. Energy spectrum

We now consider the Euclidean BTZ metric

ds2 =
dr2

f(r)2
+ f(r)2dt2 + r2(dφ− iω(r)dt)2 (3.12)

with

f(r)2 = r2 − 8GM +
16G2J2

r2
, ω(r) =

4GJ

r2
. (3.13)

It is convenient here to focus on the dimensionless “proper energy”

E = EL =
L

2π

∫

dφ
√
gφφu

iujTij , (3.14)

where ui is the unit normal to a constant t slice of the boundary,

ut =
1

f
, uφ =

iω

f
. (3.15)

L =
∫

dφ
√
gφφ is the proper size of the spatial circle on the boundary. We have L = 2πr

and λ = 4G
π
. We now compute

E =
L2

2π2λ

(

1− r−1f(r)
)

=
L2

2π2λ



1−

√

1− 4π2λ

L
M +

(

2π2λ

L
J

)2


 ,

(3.16)

which agrees with (2.21) under the identification M = E0, J = p.

Another way to arrive at this conclusion is to observe that the flow equation (2.20)

follows from Einstein’s equations. For simplicity, consider the case p = 0 corresponding to a

static metric. Writing a general static metric in the form ds2 = dr2/f(r)2+g(r)2dt2+r2dφ2,

and without using the Einsten equations we compute E = L2

2π2λ

(

1−r−1f(r)
)

. The Einstein

equation Et
t = 0 is then easily seen to be nothing but (2.20).

10



4. Correlation functions in the deformed CFT

A CFT deformed by TT has an action that obeys dS
dλ =

∫

d2x
√
gTT , which implies

S(λ) = S0 + λ
∫

d2x
√
g[TT ]0 + O(λ2), where S0 and [TT ]0 are the action and perturbing

operator of the undeformed CFT. We now ask whether it is sensible to compute correlation

functions in the deformed theory. The obvious issue is that since we are perturbing the

CFT by an irrelevant (in the RG sense) operator, we potentially have to deal with all

the issues associated with non-renormalizable theories. In particular, we could take the

effective field theory point of view, imposing a UV cutoff and computing correlators in

the presence of an infinite number of counterterms, each with an arbitrary coefficient.

However, if we restrict attention to correlation functions of the stress tensor the situation

is much more favorable and it is possible to draw some universal conclusions.

We confine our analysis to perturbation theory in λ; the definition of correlators at

the non-perturbative level is of course a much more difficult question. The first point to

recall is that the operator
∫

d2x
√
gTT defined as in (2.5) is finite and unambiguous, and so

no dependence on a renormalization scale enters. Next, let’s recall the standard statement

that conserved currents, such as the stress tensor, are not renormalized in perturbation

theory. The usual argument for this (e.g. chapter 4 of [21]) involves deriving a Ward

identity by making an infinitesimal symmetry transformation in the renormalized path

integral. The Ward identity takes the schematic form

〈∂µJµ(y)φ(x1) . . . φ(xn)〉 = δ(y−x1)〈δφ(x1) . . . φ(xn)〉+ . . .+ δ(y−xn)〈φ(x1) . . . δφ(xn)〉 ,
(4.1)

where δφ is the transformation generated by the current. Since the correlators on the right

hand side are those of renormalized fields they are by definition finite, and hence so too is

the left hand side. Thus, the current Jµ obtained by applying Noether’s theorem to the

renormalized action has the property that ∂µJ
µ has finite correlators with renormalized

fields. Thus, up to the possible addition of an identically conserved vector operator, the

same is true of Jµ. We should note that such identically conserved vector operators can

indeed make an appearance; for example they do so for the U(1) current in QED, where

the operator is V µ = ∂νF
µν [22].

Here we are concerned with the stress tensor, corresponding to Jµ = Tµνξν , where

ξν is a Killing vector. We will assume that there exists no identically conserved tensor

that can mix under renormalization with the stress tensor; this should hold generically,

since any such operator would need to have scaling dimension equal to precisely 2. Under

this assumption, the stress tensor defined in the usual way from the renormalized action

will have finite correlators with renormalized fields. In particular, combining this with the

statement about the finiteness of the deforming operator, we conclude that stress tensor

correlators are finite and independent of renormalization scale (they do of course depend

on the dimensionful scale λ).
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We should note that this argument assumes the existence of a stress tensor obeying

the Ward identity. However, a complete argument should give a prescription for defining

this object. We would like to define the stress tensor as the variation of the action with

respect to the background metric, but the issue here is that the TT perturbation is only

unambiguously defined on a flat background. Therefore, we leave to the future a definitive

answer to the question of whether all stress tensor correlators can be computed perturba-

tively in λ without ambiguity. Here we will only consider low point correlators at the first

nontrivial order in perturbation theory, where this subtlety does not appear to arise.

4.1. Two-point functions

We first place general constraints on the form of the two-point functions; these hold

equally well in CFT and in the bulk. On the metric ds2 = dzdz and in the presence of the

TT deformation, dimensional analysis, and translation/rotational symmetry imply

〈Tzz(x)Tzz(0)〉λ =
1

z4
f1(y)

〈Tzz(x)Tzz(0)〉λ =
1

z3z
f2(y)

〈Tzz(x)Tzz(0)〉λ =
1

z2z2
f3(y)

〈Tzz(x)Tzz(0)〉λ =
1

z2z2
f4(y)

(4.2)

and then also by symmetry we have

〈Tzz(x)Tzz(0)〉λ =
1

z4
f1(y)

〈Tzz(x)Tzz(0)〉λ =
1

zz3
f2(y) .

(4.3)

Here the dimensionless variable y is

y =
zz

λ
. (4.4)

Demanding stress tensor conservation implies

f ′

1 + y3
(

f2
y3

)

′

= 0

(

f2
y

)

′

+ y

(

f3
y2

)

′

= 0

(

f2
y

)

′

+ y

(

f4
y2

)

′

= 0 .

(4.5)
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Since we have a CFT perturbed by an irrelevant deformation, correlators should go over

to their CFT values at long distance, which implies that we are looking for solutions with

boundary conditions

f1 → c

2
,

1

y2
f2 → 0 ,

1

y2
f3 → 0 ,

1

y2
f4 → 0 , y → ∞ (4.6)

4.2. Two-point functions in deformed CFT

It is now simple to work out the deformed CFT two-point function to order λ2. We

consider operators at distinct points corresponding to ignoring possible contact terms.

Recall that we have the operator equation Tzz = −πλTT , and so

Tzz = −πλTzzTzz +O(λ2) (4.7)

where the stress tensors appearing on the right hand side are those of the undeformed CFT.

So we can compute 〈Tzz(x)Tzz(0)〉 to order λ2 by using the above relation and evaluating

correlators in the undeformed theory. This gives

f4(y) =
π2c2

4y2
+ . . . (4.8)

where . . . are terms with further 1/y suppression. The conservation equations (4.5) and

boundary conditions (4.6) now fix the leading behavior of the other functions, and the

result is

〈Tzz(x)Tzz(0)〉λ =
c

2z4
+

5π2λ2c2

6

1

z6z2
+ . . .

〈Tzz(x)Tzz(0)〉λ = −π2λ2c2

3

1

z5z3
+ . . .

〈Tzz(x)Tzz(0)〉λ =
π2λ2c2

4

1

z4z4
+ . . .

〈Tzz(x)Tzz(0)〉λ =
π2λ2c2

4

1

z4z4
+ . . .

(4.9)

Higher order corrections can be worked out in conformal perturbation theory.

Note that there are no corrections at order λ. The correlator 〈Tzz(x)Tzz(0)〉 would

seem to get an order λ contribution by bringing down one λTT interaction vertex, but the

corresponding integral turns out to vanish.

4.3. Three-point functions in deformed CFT

We start by considering a couple of examples that can be easily computed. The

simplest nontrivial three-point function result is the order λ contribution to the correlator

〈Tzz(x1)Tzz(x2)Tzz(x3)〉. We simply use the relation (4.7) to obtain

〈Tzz(x1)Tzz(x2)Tzz(x3)〉λ = −πλc2

4

1

(z1 − z2)4(z1 − z3)4
+O(λ2) . (4.10)
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A slightly less trivial example is provided by the order λ contribution to the corre-

lator 〈Tzz(x1)Tzz(x2)Tzz(x3)〉. Using
√
gd2x = 1

2d
2z, ∂z

1
z = 2πδ2(z),4 and repeatedly

integrating by parts, we have

〈Tzz(x1)Tzz(x2)Tzz(x3)〉λ

= −λ

∫

d2x
√
g〈Tzz(x1)Tzz(x2)Tzz(x3)Tzz(x)Tzz(x)〉

= −λc2

4

∫

d2z
1

(z − z1)4(z − z2)2(z − z3)2(z2 − z3)2

=
λc2

12

∫

d2z∂z
1

(z − z1)3
1

(z − z2)2(z − z3)2(z2 − z3)2

= −λc2

12

∫

d2z
1

(z − z1)3
∂z

1

(z − z2)2(z − z3)2(z2 − z3)2

=
πλc2

6

∫

d2z
1

(z − z1)3
∂zδ

2(z − z2)
1

(z − z3)2(z2 − z3)2
+ (x2 ↔ x3)

=
πλc2

3

∫

d2z
1

(z − z1)3
δ2(z − z2)

1

(z − z3)3(z2 − z3)2
+ (x2 ↔ x3)

= −πλc2

3

1

(z1 − z2)3
1

(z2 − z3)5
+ (x2 ↔ x3)

(4.11)

A little thought reveals that all three-point functions at order λ are fixed by simple

considerations. Consider a correlator involving Tzz. We can evaluate this to order λ by

using (4.7) and the undeformed correlators. Noting the symmetry under z ↔ z, this just

leaves the 〈TzzTzzTzz〉, which we worked out in (4.11), and 〈TzzTzzTzz〉. But the latter

correlator clearly has no order λ contribution, since the Tzz operator in the interaction

term has nothing to contract against.

5. Correlators in cutoff AdS

We now turn to the computation of stress tensor correlation functions in the bulk. We

assume the same basic framework as in standard AdS correlator computations. Namely,

4 We should note that the justification of the standard rule ∂
z

1

z
= 2πδ2(z) is not totally

straightforward in this context. It is based on cutting out a disk of radius ǫ around the singularity,

computing, and then taking ǫ → 0. But recall that the unintegrated TT operator is defined only

up to potentially divergent derivative terms, and we should thus worry about such contributions

at the boundary of the disk. A complete treatment of perturbation theory would need to confront

this.
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we compute the on-shell bulk action as a functional of the metric on the boundary, and

then obtain correlators by taking functional derivatives,

〈Ti1j1(x1) . . . Tinjn(xn)〉 = (4π)n
δnS[h]

δhi1j1(x1) . . . δhinjn(xn)
. (5.1)

This prescription has the important virtue that diffeomorphism invariance of the action

implies that these correlators obey the correct conservation laws / Ward identities.

We consider metrics of the form

ds2 =
dy2 + dzdz

y2
+ ǫg

(1)
ij (y, z, z)dxidxj + ǫ2g

(2)
ij (y, z, z)dxidxj + . . . , (5.2)

and perturbatively solve the Einstein equations subject to the boundary condition

g
(1)
ij (y = 1, z, z) = hij(z, z) . (5.3)

We are placing the boundary at y = 1; there is no loss of generality in this choice in the

sense that any fixed y surface can be brought to y = 1 by a coordinate transformation that

preserves the background metric.

5.1. Two-point function

We read off the two-point function via

Tij(x) =
1

4π

∫

d2x′

√

g(0)(x′)〈Tij(x)T
kl(x′)〉hkl(x

′) , (5.4)

where as usual

Tij =
1

4G
(Kij −Kgij + gij) . (5.5)

The Einstein equations are Eµν = Rµν − 1
2Rgµν = gµν = 0. Eyµ are constraint equations,

and once imposed at y = 1 they are automatically obeyed for all y by virtue of the

“dynamical” equations Eij = 0.

To compute the two-point functions we need only consider the Einstein equations to

first order in ǫ. The dynamical equations Eij = 0 are

y∂2
yg

(1)
ij + 3∂yg

(1)
ij = 0 , (5.6)

so that we have

g
(1)
ij (y, z, z) =

(

1

y2
− 1

)

f
(1)
ij (z, z) + hij(z, z) . (5.7)

To compute 〈TzzTzz〉 we set hzz = hzz = 0. The constraint equation Eyy gives

Eyy|y=1 = −4(f
(1)
zz − 1

2
∂2
zhzz) = 0 ⇒ f

(1)
zz =

1

2
∂2
zhzz . (5.8)
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The remaining constraint equations are

Eyz|y=1 = −y(−2∂zf
(1)
zz + 2∂zhzz + ∂2

z∂zhzz)ǫ = 0

Eyz|y=1 = y(2∂zf
(1)
zz − ∂3

zhzz)ǫ = 0 ,
(5.9)

yielding

f
(1)
zz = hzz +

1

2
∂z∂zhzz

f (1)
zz (z) =

3

2π

∫

d2z′
1

(z − z′)4
hzz(z

′, z′) .
(5.10)

Using Tzz = 1
4Gf

(1)
zz ǫ we read off the correlator from (5.4) as

〈Tzz(z)Tzz(z
′)〉 = c/2

(z − z′)4
(5.11)

where c = 3/2G is the Brown-Henneaux central charge. On the other hand, since f
(1)
zz

and f
(1)
zz are both local functions of hzz the corresponding correlators 〈Tzz(z)Tzz(z

′)〉 and
〈Tzz(z)Tzz(z

′)〉 vanish up to contact terms.

Recalling the analysis in section 4 we see that this computation is sufficient to fix all

the two-point functions, and in particular we find that besides the result (5.11) and the

corresponding result for 〈TzzTzz〉 all other two-point functions vanish up to contact terms,

a result which is easily verified by repeating the previous computation for the other cases.

So at this order the two-point functions are precisely those of a CFT and show no sign

of the λ deformation. We note that the commutator part of this result follow from the

symplectic structure computed in [19].

As we discussed in the introduction, this makes perfect sense when we recall that our

classical analysis just gives the contribution to correlators proportional to c. Since λ ∼ 1/c,

the correction terms appearing in (4.9) are of order c0, and hence correspond to one-loop

effects in the bulk. In order for a classical computation to exhibit λ dependence, we need

to turn to the three-point functions.

5.2. Three-point functions

We follow the same strategy to compute three-point functions. The intermediate

algebra is a bit messy and unilluminating so we do not show all details.

We first consider 〈Tzz(x1)Tzz(x2)Tzz(x3)〉. We proceed by activating hzz and hzz and

extracting the contribution to Tzz proportional to the cross term hzzhzz. Using Tzz =

− 1
8G

∂yg
(2)
zz ǫ

2 we find

Tzz(x1) = − 1

4G
f
(1)
zz (x1)f

(1)
zz (x1) + local , (5.12)

16



where the f (1) are given by the same linearized computation as appeared in the two-point

function computation,

f
(1)
zz (z1) =

3

2π

∫

d2z2
1

(z1 − z2)4
hzz(z2, z2)

f (1)
zz (z1) =

3

2π

∫

d2z3
1

(z1 − z3)4
hzz(z3, z3) .

(5.13)

Recalling that in our two-point function computation we had Tzz = 1
4G

f
(1)
zz ǫ (along with

the corresponding result for Tzz) we see that (5.12) implies

〈Tzz(x1)Tzz(x2)Tzz(x3)〉 = −4G〈Tzz(x1)Tzz(x2)〉〈〈Tzz(x1)Tzz(x3)〉

= −πλc2

4

1

(z1 − z2)4(z1 − z3)4
,

(5.14)

in agreement with the O(λ) CFT result written in (4.10). This agreement is not a

surprise, as it follows from the fact that our computations respects the trace condition

T i
i = −4πλTT , but it is a good computational check.

Next we consider 〈Tzz(x1)Tzz(x2)Tzz(x3)〉. We turn on hzz and study the response of

Tzz at second order. We find

∂zTzz(x1) = − 1

8G
f
(1)
zz (x1)∂

2
z∂zhzz(x1) + local , (5.15)

which we solve as

Tzz(x1) = − 3

4π2G

∫

d2z2d
2z3

hzz(x2)hzz(x3)

(z1 − z2)3(z2 − z3)5
. (5.16)

This yields

〈Tzz(x1)Tzz(x2)Tzz(x3)〉 = − 3

G

1

(z1 − z2)3
1

(z2 − z3)5
+ (x2 ↔ x3) , (5.17)

which agrees with (4.11) upon using λ = 4G/π and c = 3/2G.

We can now argue that all three-point functions will match at this order. Given any

correlator involving an insertion of Tzz, we compute it by evaluating 〈Tzz〉 in the presence

of sources for the other operators; by sources we mean variations of the boundary metric.

Since there is no source for the Tzz whose value we are computing, we can use the Einstein

equations for a flat metric to replace Tzz → −πλTT , and then use known results for the λ0

correlators. Such correlators therefore match those in the deformed CFT, since the same

logic applies there. This just leaves the correlator in (5.17), which we found to match, along

with 〈TzzTzzTzz〉. But there is no order λ correction to this correlator at the classical level,

and so we just have the undeformed CFT result, which matches the CFT at this order.
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6. Including matter in the bulk

What makes the TT deformation on the CFT side especially interesting is its univer-

sality: it can be applied to any 2D QFT. However, on the bulk side our discussion has so

far been limited to solutions of pure gravity with a negative cosmological constant. The

obvious question is whether the appealing dictionary relating the two sides can be extended

to the case where nontrivial matter fields appear on the bulk side. We first give general

arguments that the correspondence must be modified when we consider bulk solutions in

the presence of classical matter fields that deform the geometry.

To start with, the Einstein equations written in (3.5) in the presence of matter are

Eµ
ν = −4Gtµν , (6.1)

where tµν is the matter stress tensor. We are supposed to solve (6.1), along with the matter

field equations, subject to Dirichlet boundary conditions on a cutoff surface. The natural

Dirichlet problem is to hold the metric fixed at the boundary, here taken to be a flat metric,

and to demand that matter fields are constant on the boundary. More precisely, we demand

that the matter fields on the boundary are invariant under coordinate transformations of

the boundary. These conditions ensure that the boundary stress tensor, defined exactly as

before according to (3.6), is covariantly conserved. This is because covariant conservation

follows from diffeomorphism invariance: δS = 4π
∫√

gT ijδgij vanishes under δξgij = ∇(iξj)
provided the matter data on the boundary obeys δξΦ = 0, and then conservation follows

upon integration by parts.

As we have noted, the basic equation defining the TT deformation in CFT is the

trace relation T i
i = −4πλTT , and we saw that in the bulk this followed from the Einstein

equation Eρ
ρ , valid in the absence of matter. In the presence of matter we have Eρ

ρ = −4Gtρρ
which leads to

T i
i = −16GTT − tρρ . (6.2)

In general, under our boundary conditions there is no reason why tρρ should vanish; for

instance a scalar field that varies only in the radial direction will generically yield tρρ 6= 0.

Therefore, we find that imposing Dirichlet boundary conditions yields a stress tensor that

does not respect the defining equation governing the TT deformation.

To elaborate on this, we can generalize the previous energy computation to include

matter fields. This can be done quite explicitly if we assume a static rotationally symmetric

configuration for the metric and matter fields. The bulk metric can be found explicitly in

terms of the matter stress tensor; this is essentially the content of Birkhoff’s theorem in

this context. Defining the radial coordinate via gφφ = r2, we find

E =
π

2G
r2

(

1−
√

1− 8GM(r)

r2

)

(6.3)
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where

M(r) = E0 +

∫

∞

r

r′ttt(r
′)dr′ . (6.4)

It is evident that there is no simple correspondence with the CFT result (2.21); in particular

λ cannot be related in any simple way to the radial coordinate r. We also note that the

computation of the propagation speed of perturbations will not match, since this agreement

was based on the trace relation agreeing between the two sides. Rather than pursue this

avenue further, we instead turn to a discussion of free scalar fields propagating on a pure

gravity background.

7. Scalar correlators

Our goal here to see what must be done on the QFT side of the duality in order

to reproduce the simplest matter correlation function in the bulk, namely the two-point

function of a free scalar.

7.1. Two-point function of bulk free scalar

The scalar two-point function is computed as usual except that we impose Dirichlet

boundary conditions on a surface at finite y = y0, where the metric is ds2 = (dy2 +

dxidxi)/y2. The on-shell action is

S =
1

2

∫

d3x
√
g
(

(∂φ)2 +m2φ2
)

=
1

2

∫

d2x
1

y0
φ∂yφ .

(7.1)

The wave equation has plane wave solutions

φp(y, x) =
yKν(py)

y0Kν(py0)
φ(p)eipix

i

, ν = 2h− 1 , p =
√
pipi . (7.2)

We assume a generic mass so that ν is typically not an integer. The action is then

S =
1

2

∫

d2p

(2π)2
1

y0

∂y
(

yKν(py)
)

|y0

y0Kν(py0)
φ(p)φ(−p) , (7.3)

corresponding to the two-point function

〈φ(p)φ(p′)〉 = 1

y0

∂y
(

yKν(py)
)

|y0

y0Kν(py0)
(2π)2δ(2)(p+ p′) . (7.4)
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We recall that the Bessel function has an expansion for small argument of the form

Kν(x) = x−ν
∞
∑

k=0

akx
2k + xν

∞
∑

k=0

bkx
2k . (7.5)

The correlator then has the structure

〈φ(p)φ(p′)〉 =
[

(p2)νg1(p
2) + (p2)2νg2(p

2) + . . .
]

(2π)2δ(2)(p+ p′) , (7.6)

where the functions gk(p
2) (which are easily worked out) are analytic at the origin. We

suppressed the dependence on y0, since we can in any case set y0 = 1 by a coordinate

transformation that preserves the metric. The leading piece as p → 0 is (p2)ν , which is

the result in the undeformed CFT.

We can also examine the short distance behavior. Recall that Kν(x) ∼
√

π
2xe

−x(1 +
a
x
+ . . .) as x → ∞. This yields 〈φ(p)φ(−p)〉 ∼ 1/p, corresponding to a 1/x short distance

behavior. Quantum corrections to this result are expected to be important.

7.2. Scalar two-point function in CFT with double trace perturbations

In AdS/CFT the dual to a free scalar of mass m in the bulk is a “generalized free

field”: a scalar operator O of dimension 2h set by m2 = 4h(h − 1) whose correlation

functions factorize into products of two-point functions. In a CFT, the two point function

is 〈O(x)O(y)〉 ∼ |x− y|−4h.

We would now like to reproduce the bulk two-point function computed on a cutoff

surface in the bulk. As noted by [7], this can be accomplished by adding double trace

interactions to the action. We essentially reproduce their work below.

It is convenient to work in momentum space and normalize our scalar operator in the

original CFT such that

〈O(p)O(p′)〉 = (p2)ν(2π)2δ(2)(p+ p′) . (7.7)

We then include a general double trace term in the action

SO2 =

∫

d2q

(2π)2
1

2
f(q2)O(q)O(−q) . (7.8)

The two-point function in the deformed theory is easily computed by thinking of (2.4) as

an interaction and using the assumed factorization of correlators. Summing the geometric

series gives

〈O(p)O(p′)〉 = (p2)ν(2π)2δ(2)(p+ p′)− (p2)2νf(p2)(2π)2δ(2)(p+ p′) + . . .

=
(p2)ν

1 + (p2)νf(p2)
(2π)2δ(2)(p+ p′) .

(7.9)
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Comparing with (7.6) we can choose f(p2) to get agreement, but the needed function is

necessarily non-analytic at the origin,

f(p2) = (p2)−νf1(p
2) + f2(p

2) + (p2)νf3(p
2) + . . . (7.10)

where the fk(p
2) are analytic. Note that they are also of order 1; i.e., they are not

suppressed by powers of c. This gives another argument that such effects cannot be

reproduced by the T T̄ deformation alone.

The above non-analyticity implies non-locality in position space. This may be disap-

pointing in comparison with the T T̄ deformation, but is expected from e.g. the known

failures of boundary-correlator micro-locality and strong subadditivty of entropy [23] that

arise when the bulk is subjected to a strict radial cutoff. This particular non-locality was

found previously in both [6] and [7].

7.3. Effect of TT deformation

We now consider the first order correction to the scalar two-point function due to the

TT deformation. Here it is easier to proceed in position space. Using the CFT result, as

fixed by the OPE,

〈O(x1)O(x2)Tzz(x)Tzz(x)〉 = h2

(

(x1 − x2)
2

(x− x1)2(x− x2)2

)2

〈O(x1)O(x2)〉 , (7.11)

the first order correction to the two-point function is

〈O(x1)O(x2)Tzz(z)Tzz(z)〉λ = λh2〈O(x1)O(x2)〉0(x1 − x2)
4

∫

d2x

[(x− x1)2(x− x2)2]2
.

(7.12)

Introducing a Feynman parameter the integral is

I =

∫

d2x

[(x− x1)2(x− x2)2]2
= 6

∫ 1

0

dαα(1− α)

∫

d2x

[x2 + (x1 − x2)2α(1− α)]4
. (7.13)

The integral is UV divergent and so we apply dimensional regularization: d2x → ddx,

yielding

I = πd/2Γ(4− d

2
)
Γ(d2 − 2)2

Γ(d− 4)
(x1 − x2)

d−8

= −16π

ǫ

1

(x1 − x2)6
+

4π

(x1 − x2)6
(2 ln[π(x1 − x2)

2]− 5 + 2γ) +O(ǫ) .

(7.14)

where we wrote d = 2− ǫ and expanded, and wrote γ as the Euler constant. So we have

〈O(x1)O(x2)Tzz(z)Tzz(z)〉λ

= λh2〈O(x1)O(x2)〉0
(

−16π

ǫ

1

(x1 − x2)2
+

4π

(x1 − x2)2
(2 ln[πµ(x1 − x2)

2]− 5 + 2γ)

)

.

(7.15)
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The divergence indicates that O mixes with ∇2O under renormalization, so we define a

renormalized operator as OR = O − Aλ
ǫ ∇2O, with the numerical coefficient A chosen to

cancel the pole. The structure of the renormalized correlator is then

〈OR(x1)OR(x2)〉 = 〈O(x1)O(x2)〉0
(

1 +
C1λ

(x1 − x2)2
+

C2λ ln[µ(x1 − x2)]

(x1 − x2)2

)

. (7.16)

In bulk language, this result corresponds to a one-loop correction due to a graviton

loop, since λ ∼ G. We also note the appearance ln(x1 − x2), whereas we saw above that

the tree level correlator contains only power law terms for generic mass.

8. Conclusion

In this work we have further explored the cutoff AdS / TT deformed CFT duality.

Some of the basic features of the deformed CFT, namely the trace relation T i
i = −4πλTT

and the flow equation for energy eigenvalues, can be readily identified as components of

the Einstein equations for pure AdS3 gravity. A powerful fact is that these results on the

QFT side are universal, applying to any deformed CFT and any energy eigenvalue of such

a theory (at least any eigenvalue that evolves smoothly from the original CFT).

However, typical QFT states map not to pure gravity configurations in the bulk but

rather to solutions with nontrivial matter fields present. The presence of matter fields

requires one to modify the CFT beyond just deforming it by TT . In particular, the full

deformation must be manifestly non-local in position space in order to reproduce the

momentum-space non-analyticity noted below (7.10). This may be disappointing, but was

nevertheless to be expected from e.g the well known failures of boundary-correlator micro-

locality and strong subadditivity of entropy [23] known to occur when the bulk dual is

subjected to a strict radial cutoff and is precisely what was argued in [6] and [7].

We also considered stress tensor correlation functions, focussing on two and three point

functions computed to leading nontrivial order in the deformation parameter λ. Here we

found agreement, provided one compares results at the same order in 1/c perturbation

theory, taking into account that λ ∼ 1/c. An obvious task for the future is to extend this

statement to all correlators computed at the classical level in the bulk. The deformed CFT

also makes definite predictions for bulk correlators at loop level, and verifying these would

be interesting, as it involves the novel question of quantum gravity effects in a space with

a boundary at a finite location. One could also consider mixed correlators involving both

the stress tensor and scalar operators, and the associated question of what new operators

need to be added to the QFT to match bulk results.

Finally, we should note that in [1] the authors have discussed defining a deformed

CFT via an alternate Hubbard-Stratanovich type construction, and it would be useful to

understand how correlators computed in that theory are related to those studied here.
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