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Single-Particle Tracking Demonstrates that Actin Coordinates the
Movement of the Ebola Virus Matrix Protein
Emmanuel Adu-Gyamfi,† Michelle A. Digman,‡ Enrico Gratton,‡ and Robert V. Stahelin†§{*
†Department of Chemistry & Biochemistry and the Eck Institute for Global Health and §Center for Rare and Neglected Diseases, University of
Notre Dame, Notre Dame, Indiana; ‡Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California at
Irvine, Irvine, California; and {Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South
Bend, Indiana
ABSTRACT The Ebola virus causes severe hemorrhagic fever and has a mortality rate that can be as high as 90%, yet
no vaccines or approved therapeutics, to our knowledge, are available. To replicate and egress the infected host cell the Ebola
virus uses VP40, its major matrix protein to assemble at the inner leaflet of the plasma membrane. The assembly and budding of
VP40 from the plasma membrane of host cells seem still poorly understood. We investigated the assembly and egress of VP40
at the plasma membrane of human cells using single-particle tracking. Our results demonstrate that actin coordinates the
movement and assembly of VP40, a critical step in viral egress. These findings underscore the ability of single-molecule
techniques to investigate the interplay of VP40 and host proteins in viral replication.
Received for publication 11 June 2012 and in final form 21 September 2012.
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The actin cortex below the plasma membrane of mammalian
cells is essential for maintenance of cell shape and for cell
movement. This cortex has also been found to play an essen-
tial role in the replication process of a number of viruses
including West Nile virus (1), respiratory syncytial virus
(2), influenza (3), and vaccinia virus (4). Additionally, actin
has been found to play a central role in the assembly and
budding of HIV-1 (5) whereas Marburg virus has been
shown to use actin-enriched filopodia to exit the host
cell (6). Actin has also been found to be packaged into
Ebola-virus-like particles (VLPs) (7). Ebola virus, which
causes severe hemorrhagic fever, harbors a single-stranded
negative-sense RNA genome encoding seven proteins. Of
these seven proteins, VP40 is the most abundantly expressed
and has been found to play a central role in the budding of
the virus from the plasma membrane (8). Whereas actin has
been found in Ebola VLPs (7), the role of actin in Ebola
VP40 assembly is still seemingly unknown. Here, we have
used Raster image correlation spectroscopy (RICS) (9)
and three-dimensional single-particle tracking (see Fig. S1
in the Supporting Material) (10) to investigate the dynamics
of Ebola VP40 and actin. We report that preassembled VLPs
(pVLPs) of Ebola VP40 require actin for directed movement
and assembly.

Ebola VP40 has been demonstrated to colocalize with
actin and actin is found in VP40 VLPs (7), suggesting an
important role for actin in the replication cycle of the virus.
To confirm the colocalization between VP40 and actin in
HEK293 and CHO-K1 cells, we used confocal microscopy
to examine the distribution of EGFP-VP40 and mCherry-
actin. EGFP-VP40 and mCherry-actin displayed colocaliza-
tion at the plasma membrane of HEK293 and CHO-K1 cells
(see Fig. S2 A), which was markedly reduced in response to
treatment with LAT-A (see Fig. S2 B and Fig. S3 A), an actin
polymerization inhibitor. VP40 plasma membrane localiza-
tion was not disrupted by LAT-A treatment (not unexpected,
as VP40 is a lipid-binding protein (11) where high affinity
for the PM drives its cellular localization (E. Adu-Gyamfi
and R. V. Stahelin, unpublished)). To test whether this
VP40-actin interaction is important to viral egress, we de-
tected EGFP-VP40 with an anti-EGFP antibody used to
measure VLPs formed from cells expressing EGFP-VP40.
This was also performed to assess the effect of pharmaco-
logical treatment on EGFP-VP40-expressing cells with
LAT-A or with the microtubule polymerization inhibitor
nocodazole (see Fig. S3 B). LAT-A treatment led to a signif-
icant reduction in VLP formation whereas nocodazole did
not display detectable effects.

To test whether the VP40 and actin are engaged
in synchronized movement, we performed time-lapse
imaging in both the green and red channels. We observed
that the pVLPs move with actin fibers extending from the
plasma membrane (see Movie S1 in the Supporting
Material). The movement was rapid, and caused smaller
particles to merge into larger filamentous forms. To further
demonstrate that the motion of actin and VP40 spatially
overlapped, we used RICS to obtain correlation maps
of EGFP-VP40 and mCherry-actin (Fig. 1). The spatial
cross-correlation map indicated significant overlap of
VP40 and actin movement (Fig. 2, A–C) at the plasma
membrane (Fig. 1 and see Fig. S6), but not in the cytosol
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FIGURE 1 EGFP-VP40 and mCherry-actin

RICS analysis at the membrane. (A) HEK293

cells expressing EGFP-VP40 and mCherry-

actin were imaged for 100 frames at 256 � 256

pixels. (White scale bar ¼ 2 mm.) (B) Average

intensity image of EGFP-VP40 across the 100

collected frames. (Pink box) Used to select

a region of interest to yield the (C) average

EGFP-VP40 intensity image. (D) Average inten-

sity image of mCherry-actin taken for 100

frames at 256 � 256 pixels was used to select

the same region of interest as in panel B (pink

box) to yield the (E) average intensity image of

the mCherry-actin signal in this region. (F)

The two-dimensional spatial cross-correlation

analysis of panels C and E demonstrates sig-

nificant cross-correlation of VP40 and actin

signals.
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(see Fig. S5 and Fig. S7). In contrast, EGFP-VP40 and
mCherry-a-tubulin (see Fig. S8, Fig. S9, and Fig. S10)
displayed no significant spatial cross-correlation at the
plasma membrane (Fig. S11) or other regions of the cell
(see Fig. S12), supporting the VLP egress data where inhi-
bition of microtubule polymerization did not influence
viral egress.

To test whether the motion of the pVLPs is directed by
actin, we applied the three-dimensional orbital tracking
method first introduced by Levi et. al. (10). Tracking of
isolated particles (Fig. 3 A) in five different cells allowed
determination of the pVLPs trajectories (Fig. 3 D), which
suggested that the VP40 particles undergo a directed
motion. To verify this, we plotted the mean-square dis-
placement (MSD) curves for the pVLPs (Fig. 3 C), which
confirmed the trajectory was characteristic of directed
motion. Analysis of the intensity profile of the dynamic
VP40 particles suggested that the intensity of the particle
FIGURE 2 Three-dimensional RICS correlationmaps of VP40 and ac

(B) mCherry-actin (Fig. 1 and see Fig. S6 in the Supporting Material) R

is observed for EGFP-VP40 and mCherry-actin at the plasma memb
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changes with respect to time. Bleaching is expected if the
molecule is exposed to the laser beam for an extended
period of time; however, an increase in intensities was
observed along the trajectory of the green channel due to
addition of VP40 molecules. This suggests that the move-
ment of the particles along actin fibers promote multi-
merization and maturation of the pVLPs. When actin
polymerization was inhibited in four different cells with
LAT-B, the rapid movement (see Fig. S13) and the directed
trajectories of the pVLPs were lost (Fig. 3, E and F). This
was reflected in a change from directed motion to move-
ment indicative of random then constrained diffusion
(Fig. 3, E and F).

Taken together, our findings demonstrate that the move-
ment of the pVLPs is driven by actin. Analysis of the pVLPs
trajectories also suggests that the motion of pVLPs on actin
enables further addition of VP40 molecules. These find-
ings raise important questions regarding contemporary
tin cross-correlate at the plasmamembrane. (A) EGFP-VP40 and

ICS autocorrelation functions. (C) Appreciable cross-correlation

rane.



FIGURE 3 Actin directs the

movement of VP40 particles.

HEK293 cells transfected with

EGFP-VP40 were imaged with an

electronic zoom of 2000 mV, cor-

responding to 72 nm/pixel in

both X and Y. (A) An isolated

and representative VP40 particle

(highlighted by white box, inset)

was tracked as described in the

Supporting Material. (B) Intensity

profile of the pVLP in A demon-

strates increases in EGFP-VP40

intensity along the trajectory. (C)

MSD of the pVLP, which follows

a ballistic motion with a velocity

of 0.067 5 0.01 mm2 s�1. (D) The

three-dimensional trajectory of

the particle shown in panels A–C.

(E) MSD curve of VP40 particles

yields random then constrained

diffusion after LAT-B treatment

with a mean velocity of 0.017 5

0.006 mm2 s�1 (p < 0.001). (F)

Three-dimensional trajectory of

the same particle shown in panel

E displays a random then con-

strained diffusion.
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understanding of Ebola assembly and egress. VP40 lacks a
consensus actin-binding motif, suggesting an adaptor pro-
tein such as an actin motor protein may function in this
process. For instance, Myo10 has been found to be essential
to Marburg virus release (6); however, Marburg VP40-
Myo10 direct interactions were not observed, suggesting
other cellular adaptor proteins may function in this process.
Given the pathogenic nature of the Ebola virus and the
necessity of VP40 to the assembly and egress of the virus
(8), the VP40-actin coordination represents, to us, a novel
target for therapeutic development.
SUPPORTING MATERIAL

Materials and Methods, thirteen figures, and one movie are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)01064-8.
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