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Importance, size and mobility of forest-going 
populations for malaria elimination in Lao People’s 

Democratic Republic 
 

François Rerolle 
 

Abstract 

Malaria is a parasite infection transmitted by mosquitoes that infected 229 million cases and 

resulted in 409,000 deaths worldwide in 2019. In the Greater Mekong Sub-region (GMS), 

resistance to primary malaria treatments has emerged and is threatening to set back recent control 

successes. As countries ambition to eliminate malaria by 2030, infections clusters in forest-going 

populations that are increasingly targeted for prevention and treatment efforts by national control 

programs across the GMS. Yet, as pointed out by a recent review of the literature on forest-

goers, a more detailed characterization of forest-going population is needed to accelerate malaria 

elimination in the GMS. 

 

In chapter 1, we evaluated the association between deforestation and malaria incidence in 

northern and southern Lao PDR. Our approach leveraged surveillance records collected by the 

national program and high-resolution forest data to characterize the importance of forest-going 

population on malaria transmission in the GMS. Our results highlighted the challenges to 

transition from Plasmodium falciparum to Plasmodium vivax elimination and suggest programs 

may benefit from monitoring areas of on-going deforestation using remotely sensed data. 

 

In chapter 2, three population-based surveys and one rolling survey among forest-goers from a 

randomized controlled trial in southern Lao PDR were combined to estimate the size of forest-
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going populations. Population size estimates (PSEs) were produced at three different time points 

and the capture-recapture methodology was used to estimate the total number of forest-goers in 

the study area over the study period. This study highlighted an important seasonality in malaria 

risk behaviors among forest-goers and illustrates population size estimation methods that can be 

replicated to support national control programs in the GMS. 

 

In chapter 3, GPS logging devices were leveraged to measure and describe fine-scale mobility 

patterns of forest-goers recruited in a focal test and treat (FTAT) active case detection 

intervention conducted in southern Lao PDR. Combining clustering analyses and machine 

learning regressions, our results assessed the diversity within forest-going trips but did not 

translate into a clear segmentation of forest-goers’ role in malaria transmission in the GMS. 

 

Taken together, this work characterizes the importance, size and mobility of forest-going 

populations in Lao PDR. These results are key for national control programs across the GMS to 

assess and meet their 2030 malaria elimination goals. 

  



  

 vii 

Table of contents 

INTRODUCTION ........................................................................................................................................ 1 

CHAPTER 1: SPATIO-TEMPORAL ASSOCIATIONS BETWEEN DEFORESTATION 

AND MALARIA INCIDENCE IN LAO PDR. .................................................................................... 4 

1.1. ABSTRACT ....................................................................................................................... 5 

1.2. INTRODUCTION ................................................................................................................ 6 

1.3. RESULTS ........................................................................................................................ 10 

1.4. DISCUSSION ................................................................................................................... 24 

1.5. MATERIALS AND METHODS ............................................................................................ 29 

1.6. APPENDIX 1 ................................................................................................................... 42 

CHAPTER 2: POPULATION SIZE ESTIMATION OF SEASONAL FOREST-GOING 

POPULATIONS IN SOUTHERN LAO PDR .................................................................................... 72 

2.1. ABSTRACT ..................................................................................................................... 73 

2.2. INTRODUCTION .............................................................................................................. 74 

2.3. METHODS ...................................................................................................................... 76 

2.4. RESULTS ........................................................................................................................ 84 

2.5. DISCUSSION ................................................................................................................... 92 

2.6. APPENDIX 2 ................................................................................................................... 96 

CHAPTER 3: CHARACTERIZING MOBILITY PATTERNS OF FOREST GOERS 

IN SOUTHERN LAO PDR USING GPS LOGGERS ................................................................... 116 

3.1. ABSTRACT ................................................................................................................... 117 



  

 viii 

3.2. INTRODUCTION ............................................................................................................ 119 

3.3. METHODS .................................................................................................................... 121 

3.4. RESULTS ...................................................................................................................... 131 

3.5. DISCUSSION ................................................................................................................. 143 

3.6. APPENDIX 3 ................................................................................................................. 147 

REFERENCES .......................................................................................................................................... 151 

  



  

 ix 

List of figures 

Figure 1.1 - Average tree crown cover (%) in 2016 and percent area that experienced forest 

loss between 2011 and 2016 within a 10 km radius in northern and southern Lao PDR. ............ 11 

Figure 1.2 - Malaria incidence and test positivity over time ....................................................... 14 

Figure 1.3 - Associations between malaria incidence and a 0.1% increase in the area that 

experienced deforestation within 1, 10 or 30 km  of a village in the previous 1 to 5 years in 

Lao PDR........................................................................................................................................ 17 

Figure 1.4 - Associations between malaria incidence and a 0.1% increase in the area that 

experienced deforestation within 1, 10 or 30 km of a village in the previous 1 to 5 years in 

southern Lao PDR, differentiated by malaria species ................................................................... 20 

Figure 1.5 - Associations between malaria incidence and a 0.1% increase in the area that 

experienced deforestation within 30 km of a village in the previous 1 to 5 years and within 

areas with tree crown cover density above 0%, 68% and 87% in Lao PDR.. .............................. 23 

Figure 1.6 - Map of study's districts. ............................................................................................ 30 

Figure 1.7 - Forest data methods .................................................................................................. 35 

Figure 1.8 - Conceptual model for our analysis ........................................................................... 41 

Figure 1.9 - Treatment-seeking modeling plots. .......................................................................... 46 

Figure 1.10 - Residual temporal autocorrelation when malaria incidence in previous 1 and 2 

months are included or not. ........................................................................................................... 49 

Figure 1.11 - Relationships between malaria incidence and the environmental covariates in 

the multivariable model described in equation 1.2. No uncertainty bands ................................... 51 

Figure 1.12 - Relationships between malaria incidence and the temporal trend in the 

multivariable model described in equation 1.2 ............................................................................. 53 



  

 x 

Figure 1.13 - Adjusted relationship between deforestation and malaria incidence. .................... 57 

Figure 1.14 - Distribution of average tree crown cover density within 1, 10 and 30 km of 

villages. ......................................................................................................................................... 60 

Figure 1.15 - Distribution of percent area within 1, 10 and 30 km of villages that 

experienced forest loss between 2011 and 2016. .......................................................................... 61 

Figure 1.16 - Distribution and time series of environmental covariates at study's villages. ........ 62 

Figure 1.17 - Additional figures from malaria registries: malaria infections. ............................. 63 

Figure 1.18 - Distributions of socio-economomical variables of all patients recorded in the 

malaria registries. .......................................................................................................................... 64 

Figure 1.19 - Additional figures from malaria registries: matched vs unmatched SES 

variables. ....................................................................................................................................... 65 

Figure 1.20 - Distribution of travel time (in hours) from surveyed households to closest 

health facilities. ............................................................................................................................. 66 

Figure 1.21 - Relationships between malaria incidence and the environmental covariates in 

the multivariable model described in equation 1.2 ....................................................................... 67 

Figure 1.22 - Raw scatterplot between monthly village malaria incidence rate and the percent 

area within 30 km of villages that experienced forest loss in the previous 1, 3 and 5 years ........ 68 

Figure 1.23 - Time series of deforestation, forest cover and malaria incidence, averaged over 

study's villages and for varying buffer radius around villages (1, 10 and 30 km). ....................... 69 

Figure 1.24 - Time series of deforestation and forest cover for a few randomly sampled 

study's villages.. ............................................................................................................................ 70 

Figure 1.25 - Adjusted relationship between deforestation and species-specific malaria 

incidence in southern Lao PDR. ................................................................................................... 71 



  

 xi 

Figure 2.1 - Study timeline and study area. ................................................................................. 77 

Figure 2.2 - Demographics of FTAT HRP. ................................................................................. 86 

Figure 2.3 - Seasonality of FTAT HRP. ...................................................................................... 87 

Figure 2.4 - Turnover of FTAT HRP. .......................................................................................... 88 

Figure 2.5 - Venn Diagram of the capture history data ............................................................... 90 

Figure 2.6 - Precipitation time series. ........................................................................................ 100 

Figure 2.7 - FTAT HRP enrollment. .......................................................................................... 101 

Figure 2.8 - Diagnostic test for heterogeneity ............................................................................ 113 

Figure 3.1 – Study timeline and study area ................................................................................ 122 

Figure 3.2 - Trajectories for GPS loggers collected during the first cycle in Moonlapamok 

district for PNs and forest-goers ................................................................................................. 127 

Figure 3.3 - Time series plot of when GPS loggers were on and collected GPS coordinates. .. 134 

Figure 3.4  - Plot of how the ICC for mobility patterns variables in Table 3.1 vary with the 

number of clusters selected. ........................................................................................................ 136 

Figure 3.5 - Bi-plots of the clustering structure in the feature space. ........................................ 137 

Figure 3.6 - SHAP importance plot. .......................................................................................... 141 

Figure 3.7 - SHAP dependence plot for the two main continuous predictors of high-risk 

trips. ............................................................................................................................................ 142 

Figure 3.8 - Venn diagram for the raw probability of engaging in high-risk forest trips 

among the 8 strata of forest-goers defined by the three main predictors identified in the 

regression analysis ...................................................................................................................... 142 

Figure 3.9 - Dendogram from the hierarchical clustering algorithm. ........................................ 150 

  



  

 xii 

List of tables 

Table 1.1 - IRR between malaria incidence and a 0.1% increase in the area that experienced 

deforestation within 1, 10 or 30 km of a village in the previous 1 to 5 years in northern and 

southern Lao PDR. ........................................................................................................................ 16 

Table 1.2 - IRR between malaria incidence and a 0.1% increase in the area that experienced 

deforestation within 1, 10 or 30 km of a village in the previous 1 to 5 years in southern Lao 

PDR, differentiated by malaria species. ........................................................................................ 19 

Table 1.3 - IRR between malaria incidence and a 0.1% increase in the area that experienced 

deforestation within 30 km of a village in the previous 1 to 5 years and within areas with tree 

crown cover density above 0%, 68% and 87% in Lao PDR.. ....................................................... 22 

Table 1.4 - Data used to parameterize the transition matrix with the travel speed between 

any 2 adjacent pixels of the map. .................................................................................................. 43 

Table 1.5 - IRR associated with a 0.1% increase in forest loss. Sensitivity analysis: village 

population unadjusted for probability of seeking treatment. ........................................................ 47 

Table 1.6 - IRR [95% CI] associated with a 1% increase in average tree crown density. ........... 55 

Table 1.7 - AIC fit of univariate models when including each of the seven monthly climatic 

variation one at a time as unique covariate in equation 1.2 .......................................................... 59 

Table 2.1 - HRP eligibility criteria. .............................................................................................. 81 

Table 2.2 - Results for the population-based household survey method for population size 

estimation of HRP individuals. ..................................................................................................... 89 

Table 2.3 - Capture-recapture PSE results using log-linear models and assuming closed 

population. .................................................................................................................................... 91 

Table 2.4 - Identification of HRP individuals in baseline survey. ............................................... 96 



  

 xiii 

Table 2.5 - Identification of HRP individuals in MTAT survey. ................................................. 96 

Table 2.6 - Identification of HRP individuals in endline survey. ................................................ 96 

Table 2.7 - Capture-recapture Mt PSE using 2, 3 or 4 of the survey lists available. ................... 97 

Table 2.8 - Capture-recapture PSE for various models considered. ............................................ 97 

Table 2.9 - Capture-recapture PSE for Mt models with additional interaction terms between 

surveys. ......................................................................................................................................... 98 

Table 2.10 - Meta-analysis to estimate proportion of population older than 15. ......................... 99 

Table 2.11 - Results for the population-based survey method for population size estimation 

of HRP individuals. Sensitivity Analyses. .................................................................................. 103 

Table 2.12 - Parametrization for the expected number of individuals with certain capture 

histories for various three source capture-recapture models ....................................................... 112 

Table 2.13 - Results for the population-based survey method for population size estimation 

of agriculture-related HRP individuals. ...................................................................................... 115 

Table 2.14 - Results for the population-based survey method for population size estimation 

of forest-related HRP individuals. .............................................................................................. 115 

Table 3.1 - Mobility patterns variables computed for each of the outdoor trips ........................ 128 

Table 3.2 - Comparison between forest-goers that carried a GPS logger and those that did 

not in terms of their answers to FTAT variables. ....................................................................... 132 

Table 3.3 - GPS logger self-reported utilization from retrieval questionnaire. .......................... 135 

Table 3.4 - Distribution of input mobility patterns parameters for each cluster ........................ 139 

 

 
 



  

    1 

Introduction 

Malaria situation in the GMS 

Malaria is a parasitic disease transmitted by Anopheles mosquitoes. Worldwide, there were 229 

million malaria cases leading to 409,000 deaths in 2019 with most of the burden concentrated in 

Africa (94%)1. In the Greater Mekong Subregion (GMS) - Cambodia, Lao People’s Democratic 

Republic (Lao PDR), Myanmar, Thailand, Vietnam and China’s Yunnan Province – the reported 

number of malaria cases reached historical lows in 2019 with 239,000 cases, representing a 97% 

reduction from 20001. Much of this progress has been attributed to heightened funding and better 

access to testing and treatments2. 

 

In 2019, the GMS concentrates only 0.1% of all malaria cases but is known as the epicenter of 

antimalarial drug resistance and remains a key region for the world fight against malaria1,2. 

Resistance to chloroquine, sulphadoxine-pyrimethane and mefloquine all emerged in the GMS3, 

spreading to Africa in the 70s and eventually causing catastrophic surges in malaria mortality 

and morbidity4. In 2006, Plasmodium Falciparum (Pf ) malaria parasites resistant to artemisinin-

based combination therapies (ACTs), the current most effective treatment, were discovered along 

the Thai-Cambodia border5,6, then emerging throughout the GMS7, notably in Southern Lao, the 

Thai-Myanmar border regions8 and Cambodia9. 

 

Elimination of Pf malaria is increasingly accepted as a necessary strategy to face the challenges 

of artemisinin resistance10,11 and national governments across the GMS have adopted the 
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ambitious goal of elimination of Pf  by 2025 and Plasmodium Vivax (Pv) and all human malaria 

species by 20301,7,12. 

 

Forest malaria in the GMS 

The most efficient and widespread vectors of malaria parasites in the GMS, Anopheles dirus and 

Anopheles minimus, are forest mosquitoes13,14, and the malaria ecosystem in the GMS has been 

labelled as “forest malaria”15. An. dirus for instance needs shade and humidity for breeding, and 

therefore thrives in forested areas. In addition, An. dirus and An. minimus are highly 

anthropophilic, exophagic and early bitters, leading to residual outdoor transmission16. Forest 

malaria has been extensively described in different countries of southeast Asia where many 

studies have reported forest activity as a strong risk factor for malaria17–22. 

 

As countries of the GMS work towards elimination, malaria clusters in forest-going populations 

that are increasingly targeted for prevention and treatment efforts by national control programs 

across the GMS23,24. Forest-goers are forest-fringe inhabitants who live in rural communities 

close to the forest and make frequent overnight trips to the forest to hunt or collect wood25. In 

addition to their increased exposure in the forest, forest-goers are at higher risk for malaria26 

because of poor adherence to protective measures against mosquitoes such as insecticide-treated 

bed nets (ITNs) or long-lasting insecticidal hammocks (LLIHs)24,27 and delayed and inadequate 

access to treatment23. 
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Objectives and significance of the dissertation 

The overall objectives of this dissertations are to provide a more detailed characterization of 

forest-going population which, as pointed out by a recent review of the literature on forest-

goers28, is much needed to tailor interventions and accelerate malaria elimination in the GMS. 

 

In chapter 1, we confirmed and characterized the importance of forest-going population on 

malaria transmission in the GMS by evaluating the association between deforestation and 

malaria incidence in northern and southern Lao PDR, two distinct environment with varying 

levels of endemicity and species composition. In chapter 2, we leveraged village and forest-

based survey data from a randomized controlled trial in southern Lao PDR to estimate the size of 

forest-going populations. In chapter 3, we used GPS logging devices to measure and characterize 

fine-scale mobility patterns of forest-goers in southern Lao PDR. 

 

In combination, this dissertation characterizes the importance, size and mobility of forest-going 

populations for malaria elimination in Lao PDR. These results are key for national control 

programs across the GMS to assess and meet their 2030 malaria elimination goals. 
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Chapter 1: Spatio-temporal associations between 
deforestation and malaria incidence in Lao PDR. 

 
François Rerolle, Emily Dantzer, Andrew A. Lover, John M. Marshall, 

Bouasy Hongvanthong, Hugh Sturrock, Adam Bennett 
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1.1. Abstract 

As countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria control 

and elimination efforts on reducing forest-related transmission, greater understanding of the 

relationship between deforestation and malaria incidence will be essential for programs to assess 

and meet their 2030 elimination goals. Leveraging village-level health facility surveillance data 

and forest cover data in a spatio-temporal modeling framework, we found evidence that 

deforestation is associated with short-term increases, but long-term decreases in confirmed 

malaria case incidence in Lao People's Democratic Republic (Lao PDR). We identified strong 

associations with deforestation measured within 30 km of villages but not with deforestation in 

the near (10 km) and immediate (1 km) vicinity. Results appear driven by deforestation in 

densely forested areas and were more pronounced for infections with Plasmodium falciparum (P. 

falciparum) than for Plasmodium vivax (P. vivax). These findings highlight the influence of 

forest activities on malaria transmission in the GMS. 
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1.2. Introduction 

Engaging in forest activities, such as logging, hunting or spending the night in the forest, is 

considered a primary risk factor for malaria infection in the Greater Mekong Sub-region 

(GMS)17–22 with recent outbreaks attributed to deforestation activities29. This is most likely the 

result of increased human exposure to the forest dwelling Anopheles dirus and Anopheles 

minimus, the most efficient and widespread malaria vectors in the GMS13,14. However, 

deforestation may also alter this “forest malaria”15 ecosystem and eventually reduce malaria 

incidence, as is generally accepted to be the case in Southeast Asia30. Several previous studies 

have assessed the relationship between deforestation and malaria, but the majority focused 

outside of the GMS, most notably in the Amazonian forest31–35 where the evidence has been met 

with conflicting interpretations36. As national malaria programs across the GMS target forest-

going populations for prevention and treatment efforts23,24, improved understanding of the 

relationship between deforestation and malaria is critical for programs to assess and meet 

national 2030 malaria elimination goals7,12. 

 

In the Amazon, the “frontier malaria” hypothesis37 posits that malaria temporarily increases 

following deforestation efforts to open a human settlement area in the forest. Subsequently, after 

approximately 6-8 years, settlements become more urbanized and isolated from the surrounding 

forest, and less suitable for malaria vectors, resulting in reduced malaria transmission38. Recent 

work has challenged this hypothesis, however, and found that some older settlements were also 

likely to have high malaria incidence39, highlighting the importance of assessing the relationship 

between deforestation and malaria at different spatio-temporal scales40. 
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A recent review of the literature on deforestation and malaria in the Amazon36 recommended the 

integration of multiple socio-economic, demographic and ecological mechanisms to disentangle 

the relationship between deforestation and malaria. The complexity of land-use changes driving 

deforestation such as urbanization, agriculture, irrigation or resource mining can alter the 

environment in different ways. For example, deforestation in the Amazon has been shown to 

increase mosquitoes' larval habitat41 through the creation of areas with abundant sunlight and 

pooling water, resulting in increased human biting activity42. Alternatively, immigration and 

rapid population movements, stirring human-vector interactions, are other mechanisms affecting 

malaria transmission in frontier areas43. A modeling study44 showed that the temporal pattern of 

increased incidence followed by a decrease can vary depending on ecological and socio-

economic parameters in frontiers areas. 

 

The importance of addressing complex confounding structures influencing the relationship 

between deforestation and malaria was also highlighted by Bauhoff et al.45. Variables such as 

temperature46,47, precipitation48,49 or seasonality50 are known environmental predictors of 

malaria, although the spatio-temporal scale of those effects often varies across different areas51. 

Furthermore, remote areas may experience higher malaria rates because of poor access to public 

health services, but also have denser forest cover or lower deforestation rates52. Finally, forest-

going populations in the GMS are also at higher risk for malaria26 due to poor adherence to 

protective measures against mosquitoes such as insecticide-treated bed nets (ITNs) or long-

lasting insecticidal hammocks (LLIHs)24,27 and inadequate access to treatment23. 

 



  

    8 

Bauhoff et al.45 identified only 10 empirical studies that assessed the relationship between 

deforestation and malaria with appropriate adjustments for confounding. Of these, seven reported 

a positive association31,32,35,53–56, two did not find any associations45,57, and one disputed study 

found a negative association33,34,58. Most recently, a study found deforestation to increase malaria 

risk and malaria to decrease deforestation activities in the Amazon, using an instrumental 

variable analysis to disentangle any reverse causality loop59. However, only half of the above-

mentioned studies used high-resolution forest data, with most studies using spatially aggregated 

data and exploring only a limited range of spatial and temporal scales. Only three of these studies 

were conducted in Southeast Asia54–56, and none in the GMS. Importantly, all three found that 

malaria increases after deforestation, but all had limitations. The two studies in Indonesia54,55 

used coarsely aggregated forest data and potentially biased self-reported malaria data. The third 

study, in Malaysia56, focused on a specific and geographically confined malaria parasite, 

Plasmodium knowlesi, whose primary host is the long-tailed macaque and whose presence in the 

GMS, where P. falciparum and P. vivax dominate, is limited. 

 

In this analysis, we examined the relationship between deforestation and malaria incidence by 

combining high-resolution forest coverage data60 and monthly malaria incidence data from 2013 

to 2016 from two separate regions in the GMS: northern Lao People's Democratic Republic 

(PDR) with very low malaria transmission and southern Lao PDR where P. falciparum and P. 

vivax are seasonal. By conducting the analysis at the village level, we were able to explore a 

wide range of spatial scales (1, 10 and 30 km around villages) that might be relevant in 

characterizing the relationship between deforestation and malaria. In addition, we leveraged the 

longitudinal nature of both the incidence data collected and the forest data produced from annual 
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remote sensing imagery60 to explore the most relevant temporal scales. Finally, we considered 

alternative definitions of deforestation, restricted to areas with at least certain levels of forest 

cover, to investigate the type of deforestation driving the relationship with malaria. 

 

To date, no prior studies have quantified the relationship between deforestation and malaria 

incidence in the GMS. Understanding this relationship is especially important in the GMS, where 

forest-going activities are a main source of income generation61 and malaria clusters in forest-

going populations7,24. To assess the relationship between deforestation and malaria incidence, we 

modeled the monthly village-level malaria incidence in two regions of Lao PDR using health 

facility surveillance data and evaluated the most relevant spatio-temporal scale.  
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1.3. Results 

1.3.1. Forest and environmental data 

Figure 1.1 shows the average tree crown cover within 10 km for the year 2016 and the percent 

area within 10 km that experienced forest loss between 2011 and 2016 in two regions of southern 

and northern Lao PDR. Overall, the forest cover was denser in the north than in the south and 

deforestation over this period was higher in the north than in the south. Figures 1.14 and 1.15 in 

the appendix show the distribution of forest and deforestation variables as the temporal scales 

and spatial scales around study villages were varied. For example, the cumulative percent area 

within 30km of a village that experienced forest loss between 2011 and 2016 ranged from 0 to 

10% in the north, whereas it rarely exceeded 2.5% in the south. Deforestation rate in 2015 within 

10 km of a village was of about 1% in the south and 2.5% in the north. The average tree crown 

cover increased with increasing buffer radius around villages (1, 10 and 30 km). However, the 

relationship with the percent area that experienced forest loss was less clear because both the 

area that experienced forest loss (numerator) and the area around villages (denominator) 

increased. Figures 1.23 and 1.24 in the appendix show the raw time series of forest cover and 

percent area with forest loss. 

 

The 284 villages in the north were overall less populated (mean 2015 population size: 498, IQR: 

[241; 548]) than the 207 villages in the south (2015 mean: 1095, IQR: [584; 1384]), but with 

some highly populated outliers. As expected, altitude differed substantially between villages of 

the mountainous northern region (mean: 557m, IQR: [378; 679]) and the lowlands of the south 

(mean: 120m, IQR: [98; 130]). Although both regions exhibited similar seasonal trends in 

precipitation and temperature, with a rainy season spanning from April to October, villages in the 
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south experienced higher monthly precipitation and temperature than in the north over the study 

period (Fig. 1.16 in appendix). 

 

 
 

Figure 1.1 - Average tree crown cover (%) in 2016 (left) and percent area that experienced forest loss between 
2011 and 2016 (right) within a 10 km radius in northern (top) and southern (bottom) Lao PDR. See Methods for 
details on forest and deforestation metrics. Upper right indent maps northern and southern (Champasak province) 
Lao PDR regions. 
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(a) Average tree crown cover (%) within 10 km in
2016 in northern Lao PDR.

0 5 10 15 20 25

(b) Percent area within 10 km with forest loss be-
tween 2011 and 2016 in northern Lao PDR.

0 20 40 60 80 100

(c) Average tree crown cover (%) within 10 km in
2016 in southern Lao PDR.

0 5 10 15 20 25

(d) Percent area within 10 km with forest loss be-
tween 2011 and 2016 in southern Lao PDR.
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1.3.2. Treatment-seeking data 

For villages with an estimated travel time of 0 hours to the closest health facility (same 300m2 

pixel), the predicted probability of seeking treatment for fever was 0.87 (95% CI: [0.79; 0.92]) in 

the north and 0.78 (95% CI: [0.63; 0.89]) in the south. A 1 hour increase in travel time to the 

closest health facility was associated with a similar 0.79 (95% CI: [0.55; 1.13]) reduction in the 

odds of seeking treatment in the north and 0.76 (95% CI: [0.43; 1.34]) in the south, almost 

reaching statistical significance when pooling data from both regions: 0.77 (95% CI: [0.56; 

1.04]). See detailed results in Appendix 1 – S1.2. 

 

1.3.3. Malaria case data 

1.3.3.1. Malaria infections 

63,040 patient records were abstracted from the malaria registries of all public health facilities in 

4 southern districts between October 2013 and October 2016 and 1,754 from all health facilities 

in 4 northern districts between January 2013 and December 2016. 

 

In the south, 91.2% of the patients in the registries were tested for malaria, of which 78.1% were 

tested by RDT and 26.2% by microscopy. Overall test positivity was 33.2% for any infection, 

16.4% for P. falciparum and 18.2% for P. vivax. Monthly incidence peaked to about 6 cases per 

1000 people in the 2014 rainy season, eventually decreasing to below 1 case per 1000 in 2016. 

Incidence and test positivity were similar between P. falciparum and P. vivax in the south (Fig. 

1.2). 
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In the north, 92.1% of the patients in the registries were tested for malaria, of which 96.3% were 

tested by RDT and 9.6% by microscopy. Overall test positivity was 23.8% for any infection, 

2.8% for P. falciparum and 22.5% for P. vivax. Monthly malaria incidence in the north was very 

low, never exceeding 0.3 per 1000 people. Most infections in the north were P. vivax cases with 

only a few seasonal P. falciparum cases (Fig. 1.2). 

 

In the appendix, Figure 1.17 shows the number of patients and cases recorded per month in 

health facility malaria registries as well as how the smoothed test positivity rates varied over 

time. 

 

1.3.3.2. Socio-demographics 

Age, gender and occupation of patients seeking treatment at health facilities were also recorded 

in the malaria registries. On average, patients in the south were older than patients in the north 

with mean age of 28 years and 23 years respectively. In the north, about half of the patients were 

male (53.1%), while most patients in the south were male (71.1%). Finally, the vast majority 

(68.2%) of patients in the south were farmers, whereas only 8% of patients in the north were 

farmers. Most patients in the north reported being unemployed (41.7%) or a student (31.2%) 

(Fig. 1.18 in the appendix). 

 

1.3.3.3. Geo-referencing 

Overall, 88.1% of malaria records were matched to one of the 491 villages in study districts. The 

remaining (11.7% in the south and 17.3% in the north) were removed from the analysis because 

of ambiguous village names, local nicknames for small villages and dissolving and grouping of 
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villages over time. Test positivity in the south was similar in matched (33.1%) and unmatched 

(34.2%) records but higher in matched (26.5%) than unmatched (10.5%) records in the north. No 

substantial difference was found in the distribution of socio-demographic variables available in 

malaria registries between matched and unmatched records (Fig. 1.19 in the appendix). Fewer 

than 0.3% of matched malaria records were missing dates and also removed from the analysis. 

 

 
 

Figure 1.2 - Malaria incidence (per 1000) and test positivity (%) over time. Upper left boxed indent zooms in 
malaria incidence in the North to better show the temporal variation (See y axis for scale). 
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1.3.4. Spatio-temporal analysis 

1.3.4.1. Deforestation 

Table 1.1 and Figure 1.3 show the adjusted incidence rate ratio (IRR) associated with 

deforestation, measured by a 0.1% increase in the percent area that experienced forest loss, in the 

previous 1 to 5 years within 1, 10 and 30 km of villages. Models controlled for various 

environmental factors and accounted for the probability of seeking treatment and the spatio-

temporal structure of the data. 

 

Deforestation within 1 or 10 km of a village was not associated with malaria incidence rate in 

either the south or the north, regardless of the temporal lag. However, in the south, deforestation 

within 30 km of a village in the previous 1 and 2 years was associated with higher malaria 

incidence rates (e.g. 1-year lag, IRR = 1.16, 95% CI: [1.10; 1.22]). In the north, where incidence 

was much lower, the results were not as clear, but a similar trend was observed with wide 

confidence intervals compatible with a short-term increased risk. On the other hand, 

deforestation within 30 km of a village in the previous 3, 4 or 5 years was associated with 

approximately a 5% lower malaria incidence rate both in the south (e.g. 5-year lag, IRR = 0.94, 

95% CI: [0.91; 0.97]) and in the north (e.g. 5-year lag, IRR = 0.96, 95% CI: [0.93; 0.98]). 

 

These results suggest deforestation around villages, but not in the near vicinity (1 or 10 km), is 

associated with higher risk of malaria in the first two years and lower risk of malaria beyond. 

There was stronger evidence of associations with deforestation in the south than in the north. 
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The IRR effect estimates in Table 1.1 assume a linear relationship between deforestation and 

malaria. Figure 1.13 in the appendix shows a few of these relationships when such linearity isn't 

assumed in the models. The functional forms reveal that they can be reasonably well summarized 

linearly, especially in the south. In the north, the functional forms highlight potential non-

linearities for long term temporal lags but come with wide confidence intervals at extreme levels 

of deforestation. 

 

Table 1.1 - IRR between malaria incidence and a 0.1% increase in the area that experienced deforestation within 1, 
10 or 30 km (left-right) of a village in the previous 1 to 5 years (top-down) in northern and southern Lao PDR. 
Adjusted for the probability of seeking treatment, the spatio-temporal structure of the data, the environmental 
covariates selected in the model and forest cover within 30 km in the year before the deforestation temporal scale 
considered as well as for malaria incidence in the previous 1 and 2 year. See Methods for details. 

 
 South North 

Time lag Buffer radius Buffer radius 
 1 km 10 km 30 km 1 km 10 km 30 km 
 

Previous 1 
year 

 
1 

[0.99; 1.01] 

 
1.01 

[0.99; 1.04] 

 
1.16 

[1.10; 1.22] 

 
1 

[1; 1.01] 

 
1.03 

[0.99; 1.06] 

 
1.01 

[0.94; 1.08] 
 

Previous 2 
years 

 
1 

[0.99; 1.01] 

 
1 

[0.98; 1.01] 

 
1.08 

[1.04; 1.13] 

 
1 

[1; 1.01] 

 
1.01 

[0.99; 1.04] 

 
0.99 

[0.95; 1.03] 
 

Previous 3 
years 

 
0.99 

[0.99; 1] 

 
0.98 

[0.97; 1] 

 
0.93 

[0.90; 0.97] 

 
1 

[1; 1.01] 

 
1.01 

[0.99; 1.02] 

 
0.96 

[0.94; 0.99] 
 

Previous 4 
years 

 
0.99 

[0.99; 1] 

 
0.98 

[0.97; 0.99] 

 
0.94 

[0.92; 0.97] 

 
1 

[1; 1.01] 

 
1 

[0.99; 1.02] 

 
0.97 

[0.94; 0.99] 
 

Previous 5 
years 

 
0.99 

[0.99; 1] 

 
0.97 

[0.96; 0.99] 

 
0.94 

[0.91; 0.97] 

 
1 

[1; 1.01] 

 
1 

[0.99; 1.02] 

 
0.96 

[0.93; 0.98] 
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Figure 1.3 - Associations between malaria incidence and a 0.1% increase in the area that experienced deforestation 
within 1, 10 or 30 km (left-right) of a village in the previous 1 to 5 years (top-down) in Lao PDR. Adjusted for the 
probability of seeking treatment, the spatio-temporal structure of the data, the environmental covariates selected in 
the model and forest cover within 30 km in the year before the deforestation temporal scale considered as well as 
for malaria incidence in the previous 1 and 2 year. See Methods for details. 
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1.3.4.2. P. falciparum and P. vivax 

In addition to different overall levels of transmission in the north and south, the relative species 

composition also differs by region. In the north, P. vivax is more prevalent with only a few 

sporadic and seasonal P. falciparum infections, whereas P. falciparum and P. vivax are co-

endemic in the south (Fig. 1.2). We used the co-endemicity and the larger amount of malaria 

case data collected in the south to assess the relationship between deforestation and malaria for 

both species separately. 

 

Table 1.2 and Figure 1.4 show that the pattern of adjusted spatio-temporal associations identified 

in Table 1.1 is primarily driven by P. falciparum, with no associations for deforestation in the 

near vicinity of villages (1 or 10 km) but a short-term increase (e.g. 1-year lag, IRR = 1.27, 95% 

CI: [1.18; 1.36]) and long-term decrease (e.g. 5-year lag, IRR = 0.83, 95% CI: [0.80; 0.87]) in P. 

falciparum malaria incidence for deforestation within 30 km of villages. 

 

On the other hand, all the associations were attenuated for P. vivax infections. In the previous 2 

years and within 30 km of villages, deforestation is still associated with a higher incidence of P. 

vivax (e.g. 1-year lag, IRR = 1.07, 95% CI: [1.01; 1.13]) but less so than for P. falciparum. 

However, regardless of the temporal lag or spatial scale, deforestation was no longer associated 

with lower P. vivax malaria risks. 

 

Figure 1.25 in the appendix plots the species-specific relationships when not assuming linearity 

in the models. 
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Table 1.2 - IRR between malaria incidence and a 0.1% increase in the area that experienced deforestation within 1, 
10 or 30 km (left-right) of a village in the previous 1 to 5 years (top-down) in southern Lao PDR, differentiated by 
malaria species. Adjusted for the probability of seeking treatment, the spatio-temporal structure of the data, the 
environmental covariates selected in the model and forest cover within 30 km in the year before the deforestation 
temporal scale considered as well as for malaria incidence in the previous 1 and 2 year. See Methods for details. 

 
 P. falciparum P. vivax 

Time lag Buffer radius Buffer radius 
 1 km 10 km 30 km 1 km 10 km 30 km 
 

Previous 1 
year 

 
1 

[0.99; 1.02] 

 
1.04 

[1.01; 1.07] 

 
1.27 

[1.18; 1.36] 

 
1 

[0.99; 1.01] 

 
1 

[0.97; 1.02] 

 
1.07 

[1.01; 1.13] 
 

Previous 2 
years 

 
1 

[0.99; 1.01] 

 
1.01 

[0.99; 1.03] 

 
1.15 

[1.08; 1.22] 

 
1 

[0.99; 1.01] 

 
1 

[0.98; 1.01] 

 
1.06 

[1.01; 1.11] 
 

Previous 3 
years 

 
0.99 

[0.98; 1] 

 
0.99 

[0.97; 1.01] 

 
0.85 

[0.80; 0.90] 

 
1 

[0.99; 1.01] 

 
0.99 

[0.98; 1.01] 

 
1.02 

[0.97; 1.06] 
 

Previous 4 
years 

 
0.99 

[0.98; 1] 

 
0.98 

[0.96; 0.99] 

 
0.85 

[0.81; 0.88] 

 
1 

[0.99; 1] 

 
0.99 

[0.98; 1.01] 

 
1.01 

[0.98; 1.04] 
 

Previous 5 
years 

 
0.99 

[0.98; 1] 

 
0.97 

[0.95; 0.98] 

 
0.83 

[0.80; 0.87] 

 
1 

[1; 1.01] 

 
0.99 

[0.98; 1] 

 
1.01 

[0.98; 1.04] 
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Figure 1.4 - Associations between malaria incidence and a 0.1% increase in the area that experienced deforestation 
within 1, 10 or 30 km (left-right) of a village in the previous 1 to 5 years (top-down) in southern Lao PDR, 
differentiated by malaria species. Adjusted for the probability of seeking treatment, the spatio-temporal structure of 
the data, the environmental covariates selected in the model and forest cover within 30 km in the year before the 
deforestation temporal scale considered as well as for malaria incidence in the previous 1 and 2 year. See Methods 
for details. 
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1.3.4.3. Alternative definitions of deforestation and interaction with 

forest cover 

In previous models, our definition of deforestation did not distinguish between forest losses in 

densely forested areas and less forested areas. To explore potential interactions between 

deforestation and baseline forest cover, Table 1.3 and Figure 1.5 show how the adjusted IRR 

estimates vary as we consider deforestation in more densely forested pixels only (tree crown 

cover over 68% and 87% - see Methods for rationale on thresholds). We conducted this 

secondary analysis only for the non-null relationships previously identified, i.e. when 

considering a 30 km buffer radius around villages. 

 

The associations with deforestation became more pronounced as we restricted forest losses to 

more forested areas: the adjusted IRR for deforestation in the previous 1 year, within 30 km of 

southern villages, increased from 1.16 (95% CI: [1.10; 1.22]) to 1.28 (95% CI: [1; 1.64]) when 

considering deforestation in areas with more than 0% and 87% tree crown cover respectively. On 

the other hand, the adjusted IRR for deforestation in the previous 5 years, within 30 km of 

southern villages, decreased from 0.94 (95% CI: [0.91; 0.97]) to 0.83 (95% CI: [0.76; 0.90]) 

when considering deforestation in areas with more than 0% and 87% tree crown cover 

respectively. A similar trend was observed in the north, although statistical significance wasn't 

reached as frequently as in the south. 

 

These evidence strengthen our previous results and suggest that deforestation in deep and dense 

forests is more closely associated with malaria incidence in villages than deforestation in less 

forested areas. 
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Table 1.3 - IRR between malaria incidence and a 0.1% increase in the area that experienced deforestation within 
30 km of a village in the previous 1 to 5 years (top-down) and within areas with tree crown cover density above 0%, 
68% and 87% (left-right) in Lao PDR. Adjusted for the probability of seeking treatment, the spatio-temporal 
structure of the data, the environmental covariates selected in the model and forest cover within 30 km in the year 
before the deforestation temporal scale considered as well as for malaria incidence in the previous 1 and 2 years. 
See Methods for details. 

 
 South North 
 

Time lag 
Deforestation within areas 

with tree crown cover density above 
Deforestation within areas 

with tree crown cover density above 
 0% 68% 87% 0% 68% 87% 
 

Previous 1 
year 

 
1.16 

[1.10; 1.22] 

 
1.32 

[1.14; 1.53] 

 
1.28 

[1; 1.64] 

 
1.01 

[0.94; 1.08] 

 
1.04 

[0.96; 1.14] 

 
1.34 

[0.99; 1.81] 
 

Previous 2 
years 

 
1.08 

[1.04; 1.13] 

 
1.18 

[1.08; 1.28] 

 
1.35 

[1.15; 1.59] 

 
0.99 

[0.95; 1.09] 

 
0.98 

[0.96; 1.03] 

 
0.94 

[0.80; 1.11] 
 

Previous 3 
years 

 
0.93 

[0.90; 0.97] 

 
0.93 

[0.89; 0.97] 

 
0.89 

[0.81; 0.99] 

 
0.96 

[0.94; 0.99] 

 
0.96 

[0.92; 0.99] 

 
0.86 

[0.76; 0.98] 
 

Previous 4 
years 

 
0.94 

[0.92; 0.97] 

 
0.94 

[0.91; 0.97] 

 
0.87 

[0.80; 0.94] 

 
0.97 

[0.94; 0.99] 

 
0.96 

[0.93; 0.99] 

 
0.87 

[0.78; 0.96] 
 

Previous 5 
years 

 
0.94 

[0.91; 0.97] 

 
0.93 

[0.90; 0.97] 

 
0.83 

[0.76; 0.90] 

 
0.96 

[0.93; 0.98] 

 
0.95 

[0.92; 0.98] 

 
0.83 

[0.75; 0.92] 
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Figure 1.5 - Associations between malaria incidence and a 0.1% increase in the area that experienced deforestation 
within 30 km of a village in the previous 1 to 5 years (top-down) and within areas with tree crown cover density 
above 0%, 68% and 87% (left-right) in Lao PDR. Adjusted for the probability of seeking treatment, the spatio-
temporal structure of the data, the environmental covariates selected in the model and forest cover within 30 km in 
the year before the deforestation temporal scale considered as well as for malaria incidence in the previous 1 and 2 
years. See Methods for details. 
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1.4. Discussion 

Based on a large dataset of health facility surveillance records in two regions of Lao PDR, we 

found evidence that deforestation around villages is associated with higher malaria incidence 

over the short-term but lower incidence over the long-term (e.g, in the south, within 30 km of 

villages: IRR = 1.16 [1.10; 1.22] for deforestation in the previous year and IRR = 0.93 [0.90; 

0.97] for deforestation in the previous 3 years). Our evaluation of alternative spatial scales 

identified strong associations for deforestation within a 30 km radius around villages but not for 

deforestation in the near (10 km) and immediate (1 km) vicinity. Our results incorporated 

correction for the probability of seeking treatment, modeled as a function of distance to the 

closest health facility, as well as adjustment for several environmental covariates. Results appear 

driven by deforestation in densely forested areas and the patterns exhibited are clearer for 

infections with P. falciparum than for P. vivax. 

 

The wide availability and longitudinal nature of malaria surveillance records collected routinely 

by the national program enabled exploration of the relationship between deforestation and 

malaria incidence over multiple spatio-temporal scales and across different levels of forest 

density. The spatio-temporal variability highlighted here provides insights into the causal 

mechanisms driving local-scale malaria incidence in the GMS. This approach not only quantified 

the deforestation-malaria incidence association in the GMS, but also strengthened the evidence 

for the key influence of forest-going populations on malaria transmission in the GMS. 

 

This study's results echo the frontier malaria hypothesis from the Amazon region, which posits 

an increase in malaria incidence in the first few years following deforestation and a decrease 
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over the long term. However, we found an earlier inflexion point, 1-3 years after deforestation 

compared to 6-8 years in the Amazon38, most likely because of very different underlying human 

processes. Indeed, the frontier malaria hypothesis considers non-indigenous human settlements 

sprouting deeper and deeper in the forest whereas forest-going populations in the GMS are 

primarily members of established forest-fringe communities who regularly tour the forest 

overnight to hunt and collect wood25. Industrial and agricultural projects or lucrative forest-based 

activities also attract mobile and migrant populations (MMPs)23 in remote forested areas of the 

GMS but not on the same scale as the politically and economically driven unique colonization of 

the Amazon38. 

 

Our results are also consistent with the three previous multivariable empirical studies54–56 that 

assessed the effect of deforestation on malaria in Southeast Asia. Our study builds on these 

findings by using higher resolution forest data and exploring additional spatio-temporal scales. 

Using biennial village census data from Indonesia between 2003 and 2008 and district-

aggregated remote sensing forest data, Garg55 reported a 2 to 10.4% increase in the probability of 

a malaria outbreak in each village of districts that lost 1000 hectares of their forest cover in the 

same year. Using data from a 1996 cross-sectional household survey conducted in a quasi-

experimental setting around a protected area in Indonesia, Pattanayak et al.54 found a positive 

association between disturbed forest (vs undisturbed) and malaria in children under 5, again 

using no temporal lag. Our analysis plan was largely inspired by Fornace et al.56, which used 

similar high-resolution forest data60 and 2008-2012 incidence data from Sabah, Malaysia. They 

reported a 2.22 (95% CI: [1.53; 2.93]) increase in the P. knowlesi incidence rate for villages 

where more than 14% (< 8%, being the reference) of the surrounding area (within 2 km) 
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experienced forest loss in the previous 5 years. On the other hand, our analysis explored wider 

spatial scales, bypassed any coarse categorization of forest and deforestation variables, corrected 

incidence for treatment-seeking probability, and most importantly focused on P. falciparum and 

P. vivax, the dominant malaria parasites in the GMS. 

 

Engaging in forest activities, such as logging, hunting or spending the night in the forest, has 

been reported as a major risk factor by many studies in the region17–22. As countries of the GMS 

work towards malaria elimination, the literature stresses the key role of forest-going 

populations23,28,62–64, although research programs highlight the challenges of accessing them65,66 

as well as their diversity28,62. To our knowledge, no previous study has leveraged geo-spatial 

statistical analyses to characterize the importance of forest-going populations in the GMS. Our 

results suggest that deforestation in dense forests (Table 1.3) around villages, particularly areas 

further from the village (Table 1.1), is a driver of malaria in Lao PDR. We argue that this is 

indicative of the existence of a key high-risk group linking the deforestation patterns identified to 

malaria in the villages, namely a forest-going population. Deforestation captured by remote 

sensing in this setting likely reflects locations and times of heightened activity in the forest areas 

near villages, and therefore greater human-vector contact. We suspect longer and deeper trips 

into the forest result in increased exposure to mosquitoes, putting forest-goers at higher risk. 

 

We conducted this study in northern and southern Lao PDR, where the malaria species 

composition differs, and assessed species-specific relationships in the south where P. falciparum 

and P. vivax are co-endemic. Our results highlight the challenges ahead of national programs 

with P. vivax elimination after successful P. falciparum elimination, as increasingly mentioned 
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in the literature67,68. This study identified a clear pattern of spatio-temporal associations between 

P. falciparum and deforestation, but these were not apparent for P. vivax (Table 1.2). The 

increase in P. vivax incidence in the first 2 years following deforestation was identified as well 

but the associations were smaller than for P. falciparum. Importantly, deforestation was never 

associated with lower risks of P. vivax. A recent study in the Amazon59 reported a similar 

attenuation of the effects of deforestation on P. vivax compared to P. falciparum, most likely 

because of P. vivax parasites' ability to relapse months or even years after infection, which 

decouples the association between transmission and incidence data. These species-specific 

differences may also explain why the pattern of spatio-temporal associations between malaria 

and deforestation were markedly clearer in the south than in the north where P. vivax dominates. 

 

Our results did have some inherent limitations based upon routine health facility surveillance 

data. First, reliability of such records varies across and within countries of the GMS and may 

depend on malaria incidence level. This could lead to unmeasured residual confounding, further 

exacerbated by the lack of available data on malaria control activities in the region. Another 

challenge with these data is obtaining an accurate denominator for incidence, as not everyone 

attends a public health center when febrile. We addressed this issue by modeling the probability 

of seeking treatment as a function of travel time to the closest health facility using data from two 

cross-sectional surveys. Last, the village-level geo-referencing of malaria registries ignores the 

possibility that patients may become infected elsewhere. Unfortunately, these surveillance 

records did not include information about patients' forest-going trips. Research to track and 

analyze micro-scale movements of forest-goers is needed to understand how they interact with 

the forest and where are the foci of infection. 
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The forest data we used has also been criticized, in particular for not distinguishing tropical 

forests from agroforestry69,70 or man-made from natural causes of deforestation. The lack of 

temporal resolution for the forest gain variable (2000-2017 aggregate) as well as the assumption 

that forest loss happens all in 1 year are additional limitations of these data. Finally, our relative 

measure of deforestation, key to consistently compare the effects across different spatial scales, 

also implies that a 0.1% of the area that experienced forest loss within 30 km of a village is a 

much larger area (~ 280 hectares) than within 1 km (~ 0.3 hectare) and should be interpreted 

cautiously. 

 

In conclusion, this study assessed the relationship between deforestation and malaria in Lao 

PDR. Our approach leveraged surveillance records collected by the national malaria program and 

high-resolution forest data and rigorously explored the spatio-temporal pattern of associations. 

As countries of the GMS work towards malaria elimination, our results highlight the challenges 

to transition from P. falciparum to P. vivax elimination, confirm and characterize the importance 

of high-risk populations engaging in forest activities and suggest malaria programs may benefit 

from monitoring areas of on-going deforestation using remotely sensed data.   
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1.5. Materials and methods 

1.5.1. Study site and population 

Lao PDR has seen a 92% reduction in cases between 2000 (280,000) and 2010 (23,000)61. Much 

of this progress has been attributed to heightened funding and better testing and treatments2. 

 

This study was conducted in eight districts (Fig. 1.6) to leverage the ecological and 

epidemiological diversity of Lao PDR. Four districts (Moonlapamok, Pathoomphone, 

Sanasomboon and Sukhuma) are situated in the southern province of Champasak where both P. 

falciparum and P. vivax are endemic. The four other districts (Et, Paktha, Nambak and Khua) 

each come from one of four northern provinces (Bokeo, Huaphanh, Phongsaly, Luang-Prabhang) 

where P. vivax is endemic but P. falciparum has reached historical lows71. 

 

The four districts in the north were chosen in consultation with district and provincial level 

malaria staff to represent the epidemiology of malaria in the region. They were selected as part 

of a cross-sectional survey designed to assess the prevalence and risk factors for malaria in 

northern Lao PDR72. This region is very mountainous and characterized by a diverse climate, 

low-population density and limited road access73. Land clearing using fires for agriculture is 

customary. 

 

The 4 districts in the south were selected within a larger cluster randomized controlled trial 

(RCT) study designed to assess the effectiveness of high-risk group targeted active case 

detection in southern Lao PDR66, where more than 95% of the country malaria burden is 
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concentrated71. This region is characterized by a moderately hilly and forested terrain and a 

workforce primarily engaged in forest-based and agricultural activities65. 

 

When designing the study, in collaboration with the national control program, we purposefully 

excluded regions where we knew large programmatic activities where being implemented. 

 

 
 
Figure 1.6 - Map of study's districts.   
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1.5.2. Malaria data 

1.5.2.1. Malaria case data 

We conducted a retrospective review of malaria registries recorded at all health centers in the 

study districts between January 2013 and December 2016 in the north and between October 2013 

and October 2016 in the south. The registries included information on every patient that was 

tested (RDT and/or microscopy) for malaria at the health center. Date, species-specific test 

results, demographic variables (age, gender and occupation) and the village of residence of the 

patient were recorded in the registries. With help from local Lao experts, village names were 

matched to a geo-registry of all villages in Lao PDR compiled from the 2005 and 2015 national 

census74 and provided by the Center for Malariology, Parasitology and Entomology (CMPE). 

The geo-registry contains GPS coordinates and population of Lao PDR's villages. Unmatched 

records and records with missing date were removed from the analysis. Finally, these data were 

aggregated to extract the monthly village-level malaria incidence. 

 

1.5.2.2. Treatment-seeking data 

One issue with using passive surveillance data is that not everyone will seek treatment at a public 

health facility for a febrile illness, which can lead to an underestimate of the true incidence, if not 

accounted for. To correct for that, we modeled the probability that an individual in a given 

village of the study's district would seek treatment at a public health facility when febrile. We 

assumed that such probability is essentially driven by the travel time to the closest health facility. 

See Appendix 1 – S1.1 for methods used to calculate travel times to closest health facilities. 
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To model the probability of seeking treatment, we used data from two cross-sectional household 

surveys conducted in the eight districts where registries were collected. In the north, 1,480 

households across 100 villages were surveyed in September-October 201672. In the south, 1,230 

households across 56 villages were surveyed in the baseline assessment of the RCT66 in 

December 2017. In particular, survey respondents were asked whether or not they would seek 

treatment at the closest health facility for a febrile illness and GPS coordinates of their household 

were recorded. 

 

We then used the cross sectional surveys to model the probability of seeking treatment (at a 

public health facility, implicit from now on), q, as a function of travel time to the closest health 

facility, t (Equation 1.1). To account for the correlation structure induced by the stratified 

sampling approach used in the surveys, we modeled the number of successes (febrile patients 

seeking treatment), 𝑆!,#, at the household level and included a random intercept for village in the 

logistic regression. 

 

𝑆!,#	~	𝐵𝑖𝑛(𝜃!,# , 𝑁!,#)	
𝑙𝑜𝑔𝑖𝑡0𝜃!,#1 = 𝛼$ + 𝛼% × 𝜏ℎ,# + 𝛼#											(Eq	1.1) 

 

where 𝑁!,# is the number of febrile individuals in household h of village v and 𝛼#	~	𝒩(0, 𝜎&). 

 

We fit the models separately in the north and in the south and used the region-specific model to 

predict the probability of seeking treatment at all villages of the study districts based on their 

distance to the closest health facility. The population who seek treatment was then calculated by 
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multiplying the village population by the probability of seeking treatment. See Appendix 1 – 

S1.2 for travel times and treatment-seeking probabilities results. 

 

1.5.3. Forest data 

For every 30m pixel in Lao PDR, tree crown cover density for the year 2000 and year of forest 

loss between 2000 and 2017, were obtained from Hansen et al.60. These layers were produced 

using decision tree classifiers on Landsat remote sensing imagery60. Trees are defined as “all 

vegetation taller than 5m in height”60 and forest loss as “the removal or mortality of all tree cover 

in a Landsat pixel”70. For example, as depicted in Fig. 1.7, the Hansen data indicates that the tree 

crown cover in 2000 in pixel 1 is 54%, meaning that 54% of the 30m pixel is covered by 

vegetation taller than 5m. The Hansen data also indicates that forest loss occurred in pixel in 

2013, meaning that all of the tree canopy disappeared in 2013. 

 

1.5.3.1. Deforestation variable 

To define our primary exposure variable, for all villages in the study districts and year of the 

study period, we calculated the percent area within a buffer radius of 1, 10 and 30 km that 

experienced forest loss in the previous 1, 2, 3, 4 and 5 years (Fig. 1.7). These distances were 

chosen to explore a range of spatial scales at which the forest environment may be differentially 

relevant for village-based populations and forest-goers. To explore potential interactions between 

deforestation and forest cover, we computed an alternate exposure variable, restricting to areas 

that both experienced forest loss and had a tree crown cover density above 68% and 87%. Those 

thresholds are limits of the inter-quartile range (IQR) of the distribution of tree crown cover 

density in any 30m pixels within 10 km of study's villages that experienced forest loss between 
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2000 and 2017. This alternate definition captures deforestation activities occurring in areas with 

denser forest cover. 

 

1.5.3.2. Forest cover variable 

We also combined the two Hansen layers to produce annual tree crown cover maps of the study 

districts, assuming no changes prior to the year of forest loss but setting to 0 the pixel tree crown 

cover density afterwards (Fig. 1.7). For all villages in the study districts and year of the study 

period, we calculated the average tree crown cover density within a buffer radius of 1, 10 and 30 

km and for 0, 1, 2 and 3-year lags. This is a secondary exposure, adjusted for in the primary 

analysis. 
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Figure 1.7 – Forest data methods: for every 30m Landsat pixel within a buffer radius r (1, 10 and 30 km) of study's 
villages, the tree crown cover density in 2000 and the year of forest loss were combined to derive the deforestation 
and forest cover variables. The two upper plots highlight the raw data at two example pixels from the lower plot.  
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1.5.4. Environmental covariates 

Village population sizes were needed to estimate monthly malaria incidence. 2005 and 2015 

population estimates for the 491 villages of study districts were obtained from the national 

census74. The annual population growth rate (3.7%) was used to impute population values for 

two villages missing 2005 estimates and for two villages missing 2015 estimates. Then, village-

level population growth rates were used to estimate villages' population per year between 2008-

2016, assuming linear annual growth rate (median = 1.7%, IQR = [0%; 4.5%]). 

 

Altitude, temperature, rainfall and access to health care were considered as potential village-level 

confounders of the relationship between malaria and forest cover factors. Travel time to closest 

health facility, computed for the treatment-seeking model, was used as a proxy for health care 

access and villages' remoteness. Altitude was extracted from SRTM75 1 km resolution layers. 

Monthly average day and night temperature were extracted from MODIS 1 km resolution 

product (MOD11C376). Finally, monthly total rainfall was extracted from CHIRPS77 1 km 

resolution publicly available data. The average and standard deviation of the annual total 

precipitation and the average monthly temperature from the monthly time series was computed 

over the 2008-2012 period, which corresponds to the 5-year time period directly before our 

malaria data (2013-2016). This “long-term” aggregation of the climatic variables is included in 

the model to capture the spatial differences in overall climate between the villages of our study 

area. To account for the seasonal effect of these climatic variables, monthly temperatures and 

precipitation in the previous 1, 2 and 3 months were also extracted, as well as the average 

temperatures and total precipitation over the previous 1, 2 and 3 months (Seven “short-term” 
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variations: in current month, in previous 1, 2 or 3 months and aggregated over current and 

previous 1, 2 or 3 months). See “Details on covariates” below. 

 

Altitude was missing for one village and we used an online elevation finder tool (FreeMapTools) 

for imputation. Temperature was missing for 2.4% of the village-months over the study period, 

most likely because of cloud coverage of the MODIS imagery. Monthly temperature was never 

missing more than two years in a row at villages of the study's districts and we imputed the 

temperature of the same month of the following year (or prior year when needed), adjusting for 

average district-level monthly temperature differences between the two consecutive years. 

Monthly rainfall was not missing at any of the villages. 

 

1.5.5. Statistical analysis 

1.5.5.1. Statistical model 

To model malaria incidence (Equation 1.2), the number of positive cases 𝑌#,' at village v over 

month t was modeled using a generalized additive model (GAM)78. To account for 

overdispersion, a negative binomial distribution was used, including an additional variance 

parameter u. The probability of seeking treatment 𝜃#, estimated from the treatment-seeking 

model, was multiplied by the village population 𝑃𝑜𝑝#,' to derive the population seeking 

treatment, 𝑃𝑜𝑝#,'())*. This was included as an offset term in the incidence model. Spatial 

autocorrelation was accounted for by the bivariate thin plate spline smoothing function on 

coordinates, f(Lat, Long) and village random intercepts were included. A non-linear temporal 

trend was also included with the smoothing function on month, f(t). Finally, the primary 

exposure, deforestation, and potential environmental confounders, including forest cover, were 
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modeled with splines in f(𝑋#,'+ ). Splines add up polynomial basis functions in between knots and 

allow to control for very flexible relationships with covariates and spatio-temporal trends. 

Regularization was used to integrate model selection into the model fitting step by adding an 

extra penalty to each term so that the coefficients for covariates can be penalized to zero, also 

meaning that splines can be kept minimal if the data does not support more flexibility. See 

Figure 1.8 for a graphical visualization of our conceptual model for this analysis. 

 

𝑌#,'	~	𝑁𝑒𝑔𝐵𝑖𝑛(𝐸[𝑌#,'], υ)	
𝑙𝑜𝑔0𝐸[𝑌#,']1 = log	(𝜇#,' × 𝑃𝑜𝑝#,'())*) = log	(𝜇#,') + log	(𝑃𝑜𝑝#,' × 𝜃#,')											(Eq	1.2)	

log	(𝜇#,') =L𝛽+ × 𝑓(𝑋#,'+ )
+

+ 𝑓(𝐿𝑎𝑡, 𝐿𝑜𝑛𝑔) + 𝑓(𝑡) +	𝛽# 

 

with 𝛽#~𝒩(0, 𝜎,). 

 

We ran 15 models separately in the north and the south, each varying the buffer radius (1, 10 and 

30 km) and temporal scale for deforestation (previous 1, 2, 3, 4 and 5 years). The coefficients of 

the linear effect for deforestation were extracted and exponentiated to get the incidence rate ratio 

(IRR) associated with a 0.1% increase in the percent area that experienced forest loss around 

villages. 

 

1.5.5.2. Secondary analyses 

As secondary analyses, we ran the same models, separately by malaria species (P. falciparum 

and P. vivax), leveraging the large amount of data and co-endemicity in the south. We also used 

our alternative definitions for deforestation, restricted to areas that both experienced forest loss 
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and had a tree crown cover density above 68% and 87%, to explore the interaction between 

deforestation and the amount of forest cover. 

 

To further strengthen the robustness of our analysis, we conducted a sensitivity analysis where 

villages’ populations in the surveillance system registries were not adjusted for the probability of 

seeking treatment. See Appendix 1 – S1.3. 

 

1.5.5.3. Details on covariates 

To prevent collinearity in the final model, for each of the three monthly climatic variables 

(precipitation, day and night temperature), we first selected the one of its seven ``short-term'' 

variations (in current month, in previous 1, 2 or 3 months and aggregated over current and 

previous 1, 2 or 3 months) that provided the best AIC fit in an univariate model, solely adjusted 

for the spatio-temporal structure of the data (f(t), f(Lat, Long) and village random intercepts). See 

Appendix 1 – S1.6. 

 

Malaria incidence in the previous 1 and 2 months were included in the model. Results in 

Appendix 1 – S1.4 show this was necessary to fully address temporal autocorrelation and led to a 

better AIC fit. Different shape of the temporal trend f(t) were also explored (up to 25 spline 

knots, auto-regressive, cyclic cubic spline) but none accounted for temporal autocorrelation 

better. 

 

In a preliminary analysis, before including the deforestation variable, we ran our model in 

equation 1.2 with forest cover as the primary exposure. We ran 12 models separately in the north 
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and the south, each varying the buffer radius (1, 10 and 30 km) and temporal scale (0, 1, 2 and 3 

year lag) for the forest cover variable. The coefficients of the linear effect for forest cover were 

extracted and exponentiated to get the incidence rate ratio (IRR) associated with a 1% increase in 

the average tree crown cover density around villages (Table 1.6 in the appendix). The model 

including average tree crown cover density within 30 km of villages with no temporal lag 

provided the smallest AIC value. In the final models with the deforestation variables we 

therefore included the average tree crown cover density within 30 km of villages in the starting 

year of the temporal scale for the deforestation variable considered (e.g. 3 year lag in the model 

with percent area that experienced forest loss in previous 3 years as the deforestation variable) to 

adjust for baseline forest cover.  
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Figure 1.8 - Conceptual model for our analysis showing how the raw input data (blue boxes) were combined via 

intermediate data (white boxes) and models (white diamonds) to produce our estimated outputs (red circle). 
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1.6. Appendix 1 

1.6.1. S1.1: Travel times methods 

To calculate the travel time along a path linking any two points of the map, we defined a 

transition matrix that gives the speed at which one may travel between two adjacents pixels. We 

followed the parameterization suggested by Alegana et al.79 and demonstrated by Sturrock et 

al.80 (see Table 1.4), which first uses Toblers' hiking function to specify the travel speed between 

two points of different altitudes. Intuitively, it is faster to travel downhill than uphill. Second, the 

speed is adjusted based on the type of landcover travelled through: a forested or a flooded area 

for instance slows you down. Last, the network of roads and major rivers may be used to catch a 

bus or a boat and therefore increases the travel speed. Altitude (SRTM 90m75) was aggregated 

and resampled at the land cover (ESA GlobCover 2009 Project81) 300m-resolution and roads and 

waterways from Open Street Map82 were rasterized to calculate the transition matrix all across 

Lao PDR. The raster package in R83 was used. 

 

We then used the Djisktra's algorithm from the R-package igraph84 and the gdistance package85 

to find the fastest route between every village (or every household in the cross-sectional surveys) 

and its closest health facility. Coordinates of health facilities across Lao PDR came from the 

2017 stratification exercise and were provided by CMPE. We authorized travel through non-

study districts but not across international borders. 
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Table 1.4 - Data used to parameterize the transition matrix with the travel speed between any 2 adjacent pixels of 
the map. 

 
Data layer Category Speed (km/h) 
Digital elevation 0° (flat) 5 

5° (uphill) 3.71 
-5° (downhill) 5.27 

Land cover Cropland No adjustment 
Artificial and bare areas No adjustment 
Open deciduous forest 0.8 * hiking speed 
Sparse herbaceous 0.8 * hiking speed 
Closed deciduous forest 0.6 * hiking speed 
Herbaceous 0.6 * hiking speed 
Flooded 0.5 * hiking speed 
Other forest cover 0.4 * hiking speed 
Water 0.2 * hiking speed 

Roads and rivers Motorway/trunk 80 
Primary/secondary 60 
Tertiary/unclassified 10 
Major rivers 5 
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1.6.2. S1.2: Travel times and treatment-seeking results 

Figure 1.9a shows how the travel time to closest health facility varies across Champasak 

province in southern Lao PDR, influenced by both distance and road connectivity. Figure 1.9c 

presents a right-skewed distribution of travel time from study villages to the closest health 

facility. Most villages are within 2 hours of the closest health facility but some are as far as 6 

hours away. The distribution is similar for villages in the northern and southern study districts. 

 

In the southern household survey, 243 individuals reported fever in the past 2 weeks. 225 

(92.6%) of them, from 156 households, answered whether or not they sought treatment and were 

included in the treatment-seeking model. 219 (97.3%) reported seeking treatment and they all 

reported where they did so: 154 (70.3%) of them sought treatment at a public health facility 

(Village malaria worker (VMW), health center, district hospital or provincial hospital) and would 

therefore appear in the malaria registries collected. 

 

In the northern household survey, 378 individuals reported fever in the past 2 weeks. 360 

(95.2%) of them, from 297 households, answered whether or not they sought treatment and were 

included in the treatment-seeking model. 283 (78.6%) reported seeking treatment. Only 40 

(14.1%) of them reported where they did so but all of them sought treatment at a public health 

facility and we therefore upweighted the population that sought treatment at a public health 

facility accordingly. 

 

Most surveyed households included in the treatment-seeking model were within 2 hours of travel 

time to the closest health facility but some were almost 5 hours away (Fig. 1.20 in the appendix). 
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Figure 1.9b shows the modeled relationship between the probability of seeking treatment (at a 

public health facility, implied from now on) and distance to the closest health facility. For 

villages within the same 300m2 pixel as a health facility (estimated travel time of 0 hour), the 

predicted probability of seeking treatment was 0.87 (95% CI: [0.79; 0.92]) in the north and 0.78 

(95% CI: [0.63; 0.89]) in the south. A 1 hour increase in travel time to the closest health facility 

was associated with a similar 0.79 (95% CI: [0.55; 1.13]) reduction in the odds of seeking 

treatment in the north and 0.76 (95% CI: [0.43; 1.34]) in the south, almost reaching statistical 

significance when pooling data from both regions: 0.77 (95% CI: [0.56; 1.04]). Figure 1.9d 

shows the resulting distribution for the probability of seeking treatment for all villages in study's 

districts. Monthly village-level malaria incidence was adjusted accordingly. 
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Figure 1.9 - Treatment-seeking modeling plots. Note that treatment-seeking at public health facilities is implied all 
along the manuscript. 

  

●●

●●
●● ●

●●
● ●●●● ●● ●● ● ●●

● ●● ●● ●● ●●● ● ●● ●●● ●● ● ●●
● ● ● ●● ●●● ●● ●● ●● ●● ● ●●

●●●●●

● ●● ●●●
●

●● ● ●
●

●●
●●● ●● ● ●● ●

●● ●●
● ●

● ●●●● ● ●●● ●

● ●
●●●● ●● ●●

● ●

●●●

●

●●

●

●

● ●
●

●● ● ●●
●

● ●
●

● ●
●

●
●●

●●
●

●

●
●●

●
●

● ●●
●

● ●● ●
●● ●● ●

● ●

●
● ●● ●●●●

● ●● ●● ●● ● ●●● ● ●
●● ●● ● ●● ●●

●● ●
●

●● ●
● ●●●

● ●
●●●● ●

●
●●● ● ●● ●

●● ●
●●● ●

● ●● ●●●● ●
●

● ●●●
● ●● ●● ● ●● ●●● ●●●● ●●●●●● ●●● ●● ●● ●● ● ●● ● ●● ●● ●

● ●●● ● ●
● ● ● ●● ● ●● ●● ●●● ● ●

● ●●
● ●● ●

●●● ●
● ●●● ● ●●
● ●● ●
● ●●●

● ● ●●
● ●

● ●
● ● ●

● ● ● ●● ●●
● ● ●

●●●

●●●● ● ●
● ● ●

●● ●●
●● ● ●● ●

● ●● ●● ●● ●
● ● ●

●● ●
●● ●● ●● ● ●●●● ●● ● ●

●● ● ● ●●● ●● ●●●● ●● ●●●●●● ●●● ● ●● ●●●● ●
● ●●● ●●● ●

● ●●● ●●● ●●● ●●
●● ● ●● ●●● ● ●●● ● ●● ● ●

●●● ● ●●● ● ● ●
● ●

● ● ●● ● ●●● ●●●● ●● ●● ●● ●● ●●● ● ● ●● ●● ●●●● ●● ● ●● ● ●●● ● ●
●● ●

● ●●● ● ●●●● ● ● ●
● ●●● ● ●●● ● ●● ● ● ●● ●● ●● ●●

●● ●●
● ● ●● ● ● ● ●● ● ●● ●
● ●● ● ●

● ● ●●●●
● ● ●●●● ● ●● ●● ●

● ●● ●
● ●● ● ●

● ●●
● ●●

●● ●

● ●
● ●

●● ●●● ●●
●●

● ●
●●● ●●

●
● ●

0 1 2 3 4 5 6 7 8 9 10 11

(a) Travel time (hours) to closest health facility
(red crosses) in Champasak province, southern
Lao PDR. Black dots represent villages and lines
show main roads that may be used to travel.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5
Travel time to nearest
health facility (hours)

Pr
ed

ic
te

d 
pr

ob
ab

ilit
y 

of
se

ek
in

g 
tre

at
m

en
t

Region
Overall
North
South

(b) Modeled relationship between treatment-
seeking probability and travel time to closest
health facility. Dashed lines represent the 95%
confidence boundaries.

0.00

0.25

0.50

0.75

0 2 4 6
Travel time from villages

to nearest health facility (hours)

D
en

si
ty Region

North
South

(c) Distribution of travel time (in hours) from vil-
lages to closest health facilities.

0

10

20

0.00 0.25 0.50 0.75 1.00
Predicted probability of

seeking treatment

D
en

si
ty Region

North
South

(d) Distribution of the predicted probability of
seeking treatment.



  

    47 

1.6.3. S1.3: Sensitivity Analysis 

We conducted a sensitivity analysis where village population at risk of appearing in the 

surveillance system registries were not adjusted for the probability of seeking treatment. The 

effect estimates and confidence intervals were virtually unchanged, strengthening the robustness 

of our primary analysis (Table 1.5 below). 

 

Table 1.5 - IRR associated with a 0.1% increase in forest loss. Adjusted for the spatio-temporal structure of the 
data, the environmental covariates selected in the model and forest cover within 30 km in the year before the 
deforestation temporal scale considered and malaria incidence in the previous 1 and 2 months. See Methods for 
details. Sensitivity analysis: village population unadjusted for probability of seeking treatment. 

 
 South North 

Time lag Buffer radius Buffer radius 
 1 km 10 km 30 km 1 km 10 km 30 km 
 

Previous 1 
year 

 
1 

[0.99; 1.01] 

 
1.01 

[0.99; 1.04] 

 
1.16 

[1.10; 1.22] 

 
1 

[1; 1.01] 

 
1.03 

[1; 1.07] 

 
1.01 

[0.94; 1.08] 
 

Previous 2 
years 

 
1 

[0.99; 1.01] 

 
1 

[0.98; 1.01] 

 
1.09 

[1.04; 1.13] 

 
1 

[1; 1.01] 

 
1.01 

[0.99; 1.04] 

 
0.98 

[0.94; 1.01] 
 

Previous 3 
years 

 
0.99 

[0.99; 1] 

 
0.98 

[0.97; 1] 

 
0.93 

[0.90; 0.97] 

 
1 

[1; 1.01] 

 
1.01 

[0.99; 1.02] 

 
0.96 

[0.93; 0.99] 
 

Previous 4 
years 

 
0.99 

[0.99; 1] 

 
0.98 

[0.97; 0.99] 

 
0.94 

[0.92; 0.97] 

 
1 

[1; 1.01] 

 
1 

[0.99; 1.02] 

 
0.97 

[0.94; 0.99] 
 

Previous 5 
years 

 
0.99 

[0.99; 1] 

 
0.97 

[0.96; 0.99] 

 
0.94 

[0.91; 0.97] 

 
1 

[1; 1.01] 

 
1.01 

[0.99; 1.02] 

 
0.95 

[0.93; 0.98] 
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1.6.4. S1.4: Inclusion of malaria cases in previous months 

Figure 1.10 shows residual temporal auto-correlation plots in models from equation 1.2, when 

malaria incidence in previous 1 and 2 months are included or not. These plots show that 

including covariates for malaria incidence in the previous 1 and 2 months is necessary to address 

residual temporal autocorrelation and keep each lag-wise individual autocorrelation estimate 

below 5 %. The plots presented here are for the model in the south with a 30 km buffer radius 

and a 1 year temporal lag but similar results were observed across all 15 models both in the north 

and in the south. 

 

The AIC fit also substantially improved from 18667 when no malaria incidence is included to 

18152 when malaria incidence in previous month is included and to 17687 when both malaria in 

the previous 1 and 2 months are included. 
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Figure 1.10 - Residual temporal autocorrelation when malaria incidence in previous 1 and 2 months are included 
or not. 
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1.6.5. S1.5: Additional Results 

1.6.5.1. Environmental covariates 

Figure 1.11 shows the relationship - via their individual contribution 𝛽 × 𝑓(𝑋) in equation 1.2 - 

between malaria incidence and the environmental covariates included in the model (30 km radius 

and 1 year temporal lag). These plots show that relationships differ slightly by region although 

the range covered by the environmental variables also differs by region. We also see the effect of 

regularization, that penalized some covariates to zero, like our long-term precipitation covariates. 

This penalization happened more frequently in the north, where we had much less data. Note that 

95% confidence intervals (see Fig. 1.21 in the appendix) have been hidden for better 

visualization. The larger amount of data in the south also allowed the identification of more 

precise relationships than in the north. 
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Figure 1.11 - Relationships between malaria incidence and the environmental covariates in the multivariable model 
described in equation 1.2 (30 km radius and 1 year temporal lag), additionally adjusted for the probability of 
seeking treatment, the spatio-temporal structure of the data (f(t), f(Lat, Long) and village random intercepts) and 
malaria incidence in the previous 1 and 2 months. See Methods for details. Note that 95% confidence intervals (see 
Fig. 1.21 in the appendix) have been hidden for better visualization. 
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1.6.5.2. Temporal trend 

Figure 1.12 shows the relationship - via its individual contribution 𝛽 × 𝑓(𝑋) in equation 1.2 - 

between malaria incidence and the temporal trend included in the model (30 km radius and 1 

year temporal lag). These plots show that relationships are quite similar in both regions with an 

increase in 2014, followed by a plateau in 2015 and a decrease in 2016. The larger amount of 

data in the south also allowed the identification of a more precise relationship than in the north. 
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Figure 1.12 - Relationships between malaria incidence and the temporal trend in the multivariable model described 
in equation 1.2 (30 km radius and 1 year temporal lag), additionally adjusted for the probability of seeking 
treatment, the spatial structure of the data (f(Lat, Long) and village random intercepts) and malaria incidence in the 
previous 1 and 2 months. See Methods for details. 
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1.6.5.3. Forest cover 

Table 1.6 shows the incidence rate ratio (IRR) associated with forest cover, measured by a 1% 

increase in the average tree crown density, in current and previous 3 years within 1, 10 and 30 

km of villages. 

 

Forest cover within 1 km of a village was not associated with malaria incidence rate in either the 

south or the north, regardless of the temporal lag. However within 10 and 30 km of a village, 

increased forest cover tended to be associated with higher malaria incidence rates both in the 

north and the south (e.g. 30 km buffer, 1-year lag, IRR = 1.09, 95% CI: [1.03; 1.15] in the south; 

IRR = 1.12, 95% CI: [0.99; 1.26] in the north). The associations were higher when considering a 

larger spatial scale (30 km) but were already statistically significant for a 10 km buffer radius in 

the south. None of the associations reached statistical significance in the north, where the sample 

size is small. The temporal scale considered did not affect the associations much. 

 

Statistical significance wasn't necessarily reached for all the associations highlighted, but the 

trends observed suggest forest cover around villages but not in the immediate vicinity (1 km) 

leads to higher risk of malaria both in the north and in the south. 
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Table 1.6 - IRR [95% CI] associated with a 1% increase in average tree crown density. Adjusted for the probability 
of seeking treatment, the spatio-temporal structure of the data, the environmental covariates selected in the model 
and malaria incidence in the previous 1 and 2 months. See Methods for details. 

 
 South North 

Time lag Buffer radius Buffer radius 
 1 km 10 km 30 km 1 km 10 km 30 km 
 

Current year 
 
1 

[0.99; 1.01] 

 
1.07 

[1.04; 1.10] 

 
1.06 

[1; 1.12] 

 
0.99 

[0.97; 1.02] 

 
1.01 

[0.96; 1.05] 

 
1.10 

[0.99; 1.23] 
 

Previous 1 
year1 

 
1 

[0.99; 1.02] 

 
1.07 

[1.05; 1.10] 

 
1.09 

[1.03; 1.15] 

 
1 

[0.97; 1.02] 

 
1.01 

[0.97; 1.06] 

 
1.12 

[0.99; 1.26] 
 

Previous 2 
years 

 
1 

[0.99; 1.02] 

 
1.07 

[1.05; 1.10] 

 
1.09 

[1.03; 1.16] 

 
1 

[0.98; 1.03] 

 
1.02 

[0.97; 1.06] 

 
1.10 

[0.98; 1.25] 
 

Previous 3 
years 

 
1 

[0.99; 1.02] 

 
1.07 

[1.04; 1.10] 

 
1.10 

[1.04; 1.16] 

 
1.01 

[0.98; 1.03] 

 
1.02 

[0.97; 1.07] 

 
1.10 

[0.98; 1.24] 
 

The model including average tree crown cover density within 30 km of villages with no temporal 

lag provided the best AIC. In the final models with the deforestation variables we therefore 

included the average tree crown cover density within 30 km of villages in the starting year of the 

temporal scale for the deforestation variable considered (e.g. 3 year lag in the model with percent 

area that experienced forest loss in previous 3 years as the deforestation variable). 
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1.6.5.4. Deforestation - Non linearities 

The IRR effect estimates in Table 1.1 and Figure 1.3assume a linear relationship between 

deforestation and malaria. Figure 1.13 shows a few of these relationships - via their individual 

contribution 𝛽 × 𝑓(𝑋) in equation 1.2 - when such linearity isn't imposed in the GAM models. 

Although the AIC fit is slightly better when modeling non-linearities, these plots show that the 

linearity assumption is mostly warranted. 
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Figure 1.13 - Adjusted relationship between deforestation and malaria incidence. All models were adjusted for 
environmental covariates and forest cover on top of the probability of seeking treatment, the spatio-temporal 
structure of the data (f(t), f(Lat, Long) and village random intercepts) and malaria incidence in the previous 1 and 2 
months. See Methods for details. Note that scales are different between buffer radius for better visualization. Figure 
1.22 in the appendix shows the raw scatterplot between monthly village malaria incidence rate and deforestation. 
Figures 1.23 and 1.24 in the appendix show the raw time series of malaria incidence, forest cover and percent area 
that experienced forest loss. 
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1.6.6. S1.6: AIC fit of the seven monthly climatic variables 

variations 

To avoid collinearity, we have selected (based on the best AIC fit) the 1 of the 7 variations (In 

current month, in previous 1, 2 or 3 months and aggregated over previous 1, 2 or 3 months) of 

the three monthly climatic variables (Precipitation, Day temperature and Night temperature) to 

be included in the final model. This was done independently for each of the four outcome models 

(South, North, South Pf and South Pv). 

 

For South P. falciparum, the second best fitting AIC day temperature (in current month) was 

selected (rather than in previous month) because of very similar AIC fits and to ensure better 

comparability with the overall South and South P. vivax models. 
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Table 1.7 - AIC fit of univariate models when including each of the seven monthly climatic variation one at a time 
as unique covariate in equation 1.2 solely adjusted for the probability of seeking treatment, the spatio-temporal 
structure of the data (f(t), f(Lat, Long) and village random intercepts). AIC selected are in bold. 

 Outcome model 
 South North South P. falciparum South P. vivax 

Day temperature     
Current month 18546 1671 13226 14575 
Previous month 18556 1702 13224 14590 
2 months ago 18578 1669 13249 14594 
3 months ago 18559 1672 13232 14593 

Over current and previous month 18556 1670 13231 14583 
Over current and previous 2 months 18570 1670 13248 14588 
Over current and previous 3 months 

 
18573 1680 13249 14592 

Night temperature     
Current month 18413 1669 13120 14474 
Previous month 18453 1670 13155 14520 
2 months ago 18547 1673 13231 14576 
3 months ago 18581 1672 13251 14596 

Over current and previous month 18296 1664 13044 14397 
Over current and previous 2 months 18263 1669 13014 14385 
Over current and previous 3 months 

 
18262 1663 13007 14385 

Precipitation     
Current month 18532 1693 13198 14593 
Previous month 18520 1669 13181 14575 
2 months ago 18538 1658 13207 14594 
3 months ago 18579 1664 13243 14596 

Over current and previous month 18570 1672 13239 14595 
Over current and previous 2 months 18543 1670 13187 14580 
Over current and previous 3 months 18555 1674 13212 14591 
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1.6.7. S1.7: Additional figures 

This section presents additional figures mentioned in the text and in the additional results section 

of the appendix. 

 

1.6.7.1. Forest and environmental variables 

 
 
Figure 1.14 - Distribution of average tree crown cover density within 1, 10 and 30 km of villages. 
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Figure 1.15 - Distribution of percent area within 1, 10 and 30 km of villages that experienced forest loss between 
2011 and 2016. Note that the scales are different for every panel for better visualization of the distributions. 
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Figure 1.16 - Distribution and time series of environmental covariates (population, altitude, monthly day 
temperature and monthly total precipitation) at study's villages. 
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1.6.7.2. Malaria registries - Malaria infections 

 
 
Figure 1.17 - Additional figures from malaria registries: malaria infections. 
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1.6.7.3. Malaria registries - SES 

 
 
Figure 1.18 - Distributions of socio-economomical variables of all patients recorded in the malaria registries. 
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1.6.7.4. Malaria registries - Matched vs unmatched 

 
 
Figure 1.19 - Additional figures from malaria registries: matched vs unmatched SES variables. 
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1.6.7.5. Treatment-seeking 

 
 
Figure 1.20 - Distribution of travel time (in hours) from surveyed households to closest health facilities. 
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1.6.7.6. Statistical analysis - Environmental covariates 

 
 
Figure 1.21 - Relationships between malaria incidence and the environmental covariates in the multivariable model 
described in equation 1.2 (30 km radius and 1 year temporal lag), additionally adjusted for the probability of 
seeking treatment, the spatio-temporal structure of the data (f(t), f(Lat, Long) and village random intercepts) and 
malaria incidence in the previous 1 and 2 months. Dashed lines are for 95% confidence intervals. Note that the y 
scale has been trimmed a bit for better visualization. 
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1.6.7.7. Raw association between malaria incidence and deforestation 

 
 
Figure 1.22 - Raw scatterplot between monthly village malaria incidence rate and the percent area within 30 km of 
villages that experienced forest loss in the previous 1, 3 and 5 years. Note that scales are different between regions 
for better visualization. 
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1.6.7.8. Raw time series of malaria incidence, forest cover and 

deforestation 

 
 
Figure 1.23 - Time series of deforestation (percent area that experienced forest loss around villages), forest cover 
(average tree crow cover around villages) and malaria incidence, averaged over study's villages and for varying 
buffer radius around villages (1, 10 and 30 km). 
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Figure 1.24 - Time series of deforestation (percent area that experienced forest loss within 30 km of villages) and 
forest cover (average tree crow cover within 30 km of villages), for a few randomly sampled study's villages. Each 
color represents 1 village. 
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1.6.7.9. Statistical analysis - P. falciparum and P. vivax 

 
 
Figure 1.25 - Adjusted relationship between deforestation and species-specific malaria incidence in southern Lao 
PDR. All models were adjusted for environmental covariates and forest cover on top of the probability of seeking 
treatment, the spatio-temporal structure of the data (f(t), f(Lat, Long) and village random intercepts) and malaria 
incidence in the previous 1 and 2 months. 
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Chapter 2: Population size estimation of seasonal 
forest-going populations in southern Lao PDR 

 
François Rerolle, Jerry O. Jacobson, Paul Wesson, Emily Dantzer, 

Andrew A. Lover, Bouasy Hongvanthong, Jennifer Smith, 
John M. Marshall,Hugh Sturrock, Adam Bennett 
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2.1. Abstract 

Forest-going populations are key to malaria transmission in the Greater Mekong Sub-region 

(GMS) and are therefore targeted for elimination efforts. Estimating the size of this population is 

essential for programs to assess, track and achieve their 2030 elimination goals. 

 

Leveraging data from three cross-sectional household surveys and one survey among forest-

goers, the size of this high-risk population in a southern province of Lao PDR between 

December 2017 and November 2018 was estimated by two methods: population-based 

household surveys and capture-recapture. 

 

During the first month of the dry season, the first month of the rainy season, and the last month 

of the rainy season, respectively, 16.2% [14.7; 17.7], 9.3% [7.2; 11.3], and 5.3% [4.4; 6.1] of the 

adult population were estimated to have engaged in forest-going activities. The capture-recapture 

method estimated a total population size of 18,426 [16,529; 20,669] forest-goers, meaning 61.0% 

[54.2; 67.9] of the adult population had engaged in forest-going activities over the 12-month 

study period. 

 

This study demonstrates two methods for population size estimation to inform malaria research 

and programming. The seasonality and turnover within this forest-going population provide 

unique opportunities and challenges for control programs across the GMS as they work towards 

malaria elimination. 

  



  

    74 

2.2. Introduction 

Malaria transmission in the Greater Mekong Sub-region (GMS) is commonly described as 

“forest malaria”15, and is attributed to the dominance of forest-dwelling malaria vectors such as 

Anopheles dirus and Anopheles minimus13,14. Activities that result in contact with these vectors in 

the forest, such as logging, hunting or sleeping, and common forest-fringe activities such as 

farming or “slash and burn” agriculture near forest areas20,62,86 are major risk factors for malaria 

in the GMS16,17,22,25,26,29,87–89. As malaria declines in the region, transmission often clusters in 

forest-going populations that are increasingly targeted for prevention and treatment efforts by 

national control programs across the GMS23,24. Yet, the size of this high-risk population (HRP) 

remains unknown and difficult to quantify. 

 

Estimating the size of HRPs is important for several reasons90. Population size estimates (PSE) 

can be used to inform policies and mobilize support for control and elimination programs. They 

are essential to determine the required scale of preventive interventions, to assess intervention 

coverage, parametrize transmission models, and monitor programs.  

 

There are numerous studies as well as international guidelines90 focusing on size estimation of 

HRPs for HIV91–96 but, to our knowledge, none for malaria. In regions where HIV transmission 

clusters in HRPs, the Second Generation Surveillance (SGS) guidelines for HIV97 recommend 

routine PSE98. HRPs for HIV such as sex workers or injecting drug users are considered hard to 

reach populations because of stigma or discrimination and require sophisticated PSE methods. In 

malaria, HRPs may not be as hidden, although there may be concerns about the illegal nature of 

large-scale logging in the GMS99. PSE methods, originating in animal ecology, can also be used 
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for non-stigmatized populations and researchers have noted the need for PSE in malaria 

surveillance where HRPs are key to transmission100. 

 

A major difference between forest-going HRPs for malaria in the GMS and HRPs for HIV is the 

marked seasonality of their high-risk activities. In this region, the monsoon transforms the 

environment and affects HRPs’ forest-going activities. For instance, while the rainy season 

draws populations to rice fields for agriculture, heavy precipitation may also deteriorate roads so 

that traveling to the forest often becomes challenging. Therefore, evaluating the population size 

of forest-going HRPs at different time points is essential to identify the appropriate timing of 

interventions in the GMS. 

 

In this analysis, we estimated the population size of forest-goers in southern Lao People’s 

Democratic Republic (PDR). Population-based surveys from a randomized controlled trial were 

used to produce PSEs at three different time points and capture-recapture methodology - drawing 

on those surveys in addition to a rolling survey of forest-goers - estimated the total number of 

forest-goers in the study area over the study period.  
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2.3. Methods 

2.3.1. Study area 

This study was conducted in Champasak Province, one of the five southernmost provinces in 

Lao PDR, together accounting for 95% of the country’s malaria burden71. As part of a 

randomized controlled trial, surveys were conducted between December 2017 and November 

2018 to assess the effectiveness of active case detection in village-based and forested-based 

settings66. Across four districts, 56 villages in 14 health center catchment areas (HCCA) were 

randomized to one of four arms: no intervention, Focal Test-And-Treat (FTAT), an intervention 

specifically targeting forest-goers, Mass Test-And-Treat (MTAT), where everyone was tested for 

malaria using rapid diagnostics tests (RDTs) and treated if positive or both interventions. The 

study area was selected in consultation with the national malaria program based on malaria 

burden (highest API in 2016). See Figure 2.1 for the study timeline and a map of the study area. 

 

The rainy and dry seasons were defined, respectively, as the June to October and November to 

May periods in consultation with local health ministries and corroborated by actual precipitation 

data77 (see Supplementary Fig. S4.1). 

  



  

    77 

 
 
Figure 2.1 - Study timeline and study area. Top left: Study timeline with 3 cross-sectional surveys conducted in 
December 2017 (Baseline), June-July 2018 (MTAT) and November 2018 (Endline) and a rolling FTAT survey 
between March and November 2018. Bottom: Study area with 7 of 14 health center catchment areas (HCCA) 
randomly assigned to FTAT and 28 of 56 villages randomly assigned to MTAT. The study was conducted in 
Champasak province in southern Lao PDR neighboring Thailand and Cambodia (see upper right indent).  
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2.3.2. Population Size Estimation 

We defined the HRP target population as individuals at increased exposure to malaria vectors 

due to spending the night outdoors for forest or agriculture activities. 

 

In this paper, we report results from two population size estimation methods: population-based 

household surveys and capture-recapture. The first approach estimated the population proportion 

of HRP in the study area from three cross-sectional household surveys conducted at different 

time points during the year. Each proportion was combined with a census count of the total 

population in the area to produce three distinct PSEs. The capture-recapture methodology drew 

on individual information from the household surveys and data collected from an intervention 

among forest-goers conducted over the course of a year to produce another PSE. 

 

These PSEs are complementary but do not estimate the same quantity. The population-based 

household surveys estimates are “snapshots” of the population size, corresponding to the time 

frame when the household surveys were conducted. The capture-recapture estimate represents 

the total population size of HRPs in the study area over the study period, from December 2017 to 

November 2018. These four estimates would be equal only if, every month, the same HRP 

individuals spent at least one night outdoors for forest or agriculture activities. If there is 

seasonality in forest-going, these PSEs should be different. 
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2.3.2.1. Baseline and endline surveys 

For the baseline (December 2017) and endline (November 2018) cross-sectional surveys, simple 

random sampling was used to select 22 and 35 households respectively in each of the 56 study 

villages. Following written consent, all residents and visitors present in the household at the time 

of the visit were invited to participate in the survey. Heads of household were asked to answer 

questions on behalf of absent household members. Primary caretakers answered any questions 

pertaining to their children when they could not answer themselves. If no householder was at 

home at time of visit, the study team tried to revisit three times before randomly selecting a 

replacement household in the village from the household census. The survey was conducted in 

Lao language by local members of the ministry of health and the national research institution 

(Lao Tropical Public Health Institute) after receiving comprehensive training66. The surveys 

questioned participants on demographics, forest-going behaviors, treatment-seeking attitudes and 

malaria knowledge. 

 

2.3.2.2. MTAT survey 

Between June 12th and July 23rd 2018, the MTAT intervention was conducted, targeting every 

household in 28 villages randomly selected from among the 56 villages in the study area. 

Although questions differed slightly, data collection methods for the survey embedded in this 

intervention were the same as in the baseline and endline surveys. The study team attempted to 

visit an absent household three times before marking that household as ‘absent’. The households 

included in baseline, endline and MTAT were sampled independently from one another66.  
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2.3.2.3. FTAT survey 

In the FTAT intervention, conducted continuously between March and November 2018, peer 

navigators (PNs) were employed in intervention HCCAs to conduct test-and-treat activities 

amongst members of their communities presumed to be “forest-goers” because of their activities 

in or near the forest. PNs were themselves forest-goers recruited from the local communities via 

health authorities and trained to conduct continuous surveillance by testing for malaria using 

Rapid Diagnostic Tests (RDTs)66. PNs were instructed to actively target HRP individuals, and to 

enroll, once outside the villages, anyone meeting the FTAT HRP eligibility criteria: aged 15 

years or older and having spent at least one night outside a formal village in the past 30 days. For 

16 HRP individuals interviewed twice in FTAT, we included only data from the first interview. 

 

2.3.3. HRP eligibility criteria 

Participants in the baseline, endline, and MTAT surveys were classified as members of the HRP 

target population if they were aged 15 years or older, were usual residents of the household, and 

met any of the criteria listed in Table 2.1. These criteria were based on responses to survey 

questions and varied slightly by survey due to differences in questionnaires. All participants in 

FTAT were classified as HRP due to the intervention’s eligibility criteria; however, we limited 

the FTAT sample to individuals who reported residing in the study area (56 villages) to ensure 

geographic alignment with the other surveys. 
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Table 2.1 - HRP eligibility criteria. 

 
Baseline and Endline criteria MTAT criteria 

A - During the past month, stayed overnight away 
from home AND reason for the absence was 
working in the rice field, plantation or forest in 
this province or another province  

D - During the past month, stayed overnight away 
from home village AND reason for travel was 
working in a rice field, agricultural or other 
plantation work, forest foraging, collecting small 
wood or timber, or logging 

B - Did not sleep in the household the previous 
night due to working in the rice field, plantation 
or forest in this province or another province 

E - During the past month, stayed overnight 
within 10km of home village AND travel 
destination was forest, forest fringes, rice field, 
other field or plantation 

C - Spent at least 1 night in the forest, forest 
fringe, farms, or rice fields in the past month 

F - Spent at least 1 night in the forest in the past 
month 

 

2.3.4. PSE method 1: population-based household surveys 

First, we estimated the population proportion of HRP in the study area, phrp, as the percentage of 

participants aged 15 years and older in each household survey—baseline, endline and MTAT—

that fulfilled the HRP eligibility criteria. Sampling weights and the clustering structure of the 

respective surveys were specified using the Survey101 R83 package to correctly estimate 

population proportions and standard errors. 

 

Second, we developed a pooled estimate of the population proportion of individuals aged 15 and 

older in households in the study area, p15, by combining, in a meta-analysis using inverse 

variance, the individual estimates from the 3 surveys. 

 

Third, the total household population in the study area, Pop, was obtained by summing the 

population count listed in the household census across the 56 villages. 
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Finally, the population-based survey PSE was calculated for each survey as follows: 

 

𝑃𝑆𝐸 = 𝑝!-. × 𝑝%/ × 𝑃𝑜𝑝								(Eq	2.1) 

 

The delta method102 was used to calculate 95% confidence intervals for each PSE. 

 

The three PSEs obtained from this method pertain to different time periods starting 1 month prior 

to the first day of the household survey until the last day of the survey (see Table 2.2). 

 

Two sensitivity analyses were conducted to strengthen the robustness of our results. First, we 

considered how the differences among criteria may lead to an underestimate of the PSE for the 

MTAT survey. Second, we attempted to adjust for potential selection bias because of absent 

households. See Appendix 2 – S2.5 for details. 

 

2.3.5. PSE method 2: Capture-recapture 

Survey participation represented “capture” in the respective survey. To identify participation of 

the same individual across surveys (i.e., “recapture”), survey records were matched based on age, 

sex, level of education, first initial and home village. Together, these identifying variables were 

unique for 99.5% of participants. The matching algorithm allowed plus or minus 2 years for age 

and 1 level apart for education because rounding age and self-reported education may have 

introduced errors. See Appendix 2 - S2.7 for details. 
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The overlap among the 4 lists of HRP individuals participating in surveys was analyzed using 

log-linear models103–107 by the Rcapture108 R83 package. The models allowed for temporal 

dependence due to the potential seasonality of forest-going activities in two ways. First, we 

estimated a closed population model, where HRP individuals remain in the population all year 

long but where the probability of being captured differs across surveys because of varying 

probability of spending a night outside in a given month (Mt models). Second, we estimated an 

open population model, in which HRP individuals may migrate in and out of the population 

depending on whether or not they spent a night outside in a given month. Both models were 

designed to estimate the same PSE: the total number of HRP individuals in the study area any 

time during the 1-year study period from December 2017 to November 2018. See Appendix 2 – 

S2.8 for details. 

 

Two sensitivity analyses estimated a lower bound of the PSE by either relaxing the matching 

criteria or augmenting the eligibility criteria in FTAT. In a third sensitivity analysis, we 

leveraged the participation of non-HRP individuals in the three household surveys to assess and 

correct for potential matching errors in the record linkage algorithm. See Appendix 2 – S2.6 for 

details.  
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2.4. Results 

2.4.1. Data description 

2.4.1.1. Household-based surveys 

In the baseline, MTAT and endline surveys respectively, 5,723, 18,143 and 7,870 individuals 

across 1,310, 4,489 and 2,081 households, were interviewed. Responses required to construct 

HRP criteria were provided by 99.6%, 97.4%, and 99.9% of baseline, MTAT and endline 

participants, respectively (see Supplementary Tables 2.4, 2.5 and 2.6 in appendix 2). 

 

Of those 47,575 inhabitants living in the study area - Pop in equation (1) -, 63.5% (95% CI: 

[62.9%; 64.2%]) were estimated to be older than 15 years - p15 in equation (1). See Appendix 2 – 

S2.3 for details. 

 

2.4.1.2. FTAT survey 

Among the 2,888 HRP individuals recruited into the FTAT survey, 2,305 (79.8%) came from 

one of the 56 villages in our study area and were included in this study. Supplementary Fig. S4.2 

shows the weekly enrollment. 

 

Figure 2.2 shows the distribution of selected variables from the FTAT survey. Males were more 

represented (67.2%) than females (32.8%) and the average age was 36.4 years. A majority 

(96.6%) of HRP individuals earned their primary income from agricultural work and about 50% 

reported rice farming as their primary activity. The proportion of HRP individuals reporting the 
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collection of wood as the primary reason to visit the forest almost doubled between the rainy 

(20.4%) and dry (37.3%) seasons. 

 

The number of nights typically spent outside each month of the year was reported by FTAT HRP 

individuals and summarized in Figures 2.3 and 2.4. During the rainy season, activities in the rice 

field intensified, with about 60% of HRP individuals spending at least one night outside in any 

given month and about 10 nights per month spent outside on average. During the dry season, few 

HRP individuals reported spending a night in the rice field. In contrast, forest-going was 

characterized by a greater average number of nights and a greater proportion of HRP individuals 

spending a night outside during the rainy season and occurred more regularly throughout the 

year. Across all months, at least 30% of HRP individuals reported spending at least 1 night in the 

forest. These plots also suggest a high level of turnover with many HRP individuals reporting 

spending nights outside in only 1 to 3 months of either the dry or rainy season. 
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Figure 2.2 - Demographics of FTAT HRP. Age, education, income, work activity, reasons to visit the forest of HRP 
individuals enrolled in FTAT survey. 
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Figure 2.3 - Seasonality of FTAT HRP. Top row - Average number of nights spent outside in the forest or rice field 
by FTAT HRP individuals over time. Bottom row - Proportion of FTAT HRP individuals spending at least 1 night in 
month outside in the forest or rice field over time. 
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Figure 2.4 - Turnover of FTAT HRP. Distribution of the number of months in which FTAT HRP individuals 
reported spending at least 1 night outside in the forest or rice field during the rainy (5 months between June and 
October) and dry (7 months between November and May) season. 
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2.4.2. PSE method 1: Population-based household surveys 

Table 2.2 presents the estimated population proportion of HRP and the resulting PSE from each 

of the three cross-sectional household surveys. 

 
Table 2.2 - Results for the population-based household survey method for population size estimation of HRP 
individuals. 

 

 

2.4.3. PSE method 2: Capture-Recapture 

A total of 557, 1,040, 269 and 2,305 HRP individuals from the study area were captured in the 

baseline, MTAT, endline and FTAT surveys, respectively. After matching participants, 3,869 

unique HRP individuals were identified across the four surveys. Figure 2.5 presents a Venn 

Diagram of these capture history data. 

 PSE time period  Rainy/Dry season % HRP [95% CI] PSE [95% CI] 
Baseline 
 
  

Oct 28th – Dec 9th 
2017 

 

First month of 
dry season 

 

16.2 [14.7; 17.7] 
 
  

4,898 [4,445; 5,361] 
 
  

MTAT 
 
  

May 12th – July 23rd 
2018 

 

First month of 
rainy season 

 

9.3 [7.2; 11.3] 
 
  

2,801 [2,180; 3,395] 
 
  

Endline 
 
  

Sep 31st – Nov 19th 
2018 

 

Last month of 
rainy season 

 

5.3 [4.4; 6.1] 
 
  

1,586 [1,328; 1,844] 
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Figure 2.5 - Capture history. Venn Diagram of the capture history data. For instance, 128 HRP individuals were 
captured both in the MTAT and FTAT surveys but not in baseline or endline surveys. 

 

Table 2.3 shows the capture-recapture results from log-linear models fit to our data, assuming a 

closed population. Models that allowed for correlation of the probability of selection across 

surveys (denoted Mb), did not perform well. Their fit to the data, as indicated by the AIC and 

BIC, was poor and their PSEs were barely above 3,869, the total number of unique HRP 

individuals captured. The model allowing for temporal dependence (Mt) yielded the best fit in 

terms of both AIC and BIC. Allowing for heterogeneity (Mh) between individuals in terms of 

their selection probability did not result in a better fit in any parametrization (i.e., Chao, 

Poisson2, Darroch or Gamma 3.5). Additionally, Appendix 2 – S2.9 details a diagnostic test that 

determined it was not necessary to incorporate heterogeneity in the models. 
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Table 2.3 - Capture-recapture PSE results using log-linear models and assuming closed population. 

  
PSE Standard Error Deviance Df AIC BIC 

M0 20,892.7 1,103.9 2,384.2 13 2461.4 2474 
Mt 17,106.6 878.1 23 10 106.3 137.6 
Mh Chao (LB) 21,136.3 1,192.3 2,383.8 12 2,463.1 2,481.9 
Mh Poisson2 22,317.5 3,240.9 2,383.9 12 2,463.2 2,482 
Mh Darroch 24,222.1 6,664.4 2,383.9 12 2,463.1 2,481.9 
Mh Gamma3.5 26,272.7 10,795.7 2,383.8 12 2,463.1 2,481.9 
Mth Chao (LB) 17,476 953.1 21.4 9 106.7 144.3 
Mth Poisson2 19,900 2,782.9 21.7 9 107 144.6 
Mth Darroch 23,693.6 6,493.3 21.6 9 106.9 144.4 
Mth Gamma3.5 28,267.4 11,782.7 21.5 9 106.8 144.4 
Mb 6,052.6 210.2 2,182.4 12 2,261.7 2,280.5 
Mbh 3,998.6 30.7 200.2 11 281.5 306.6 

 

Profile likelihood109 was used to calculate a 95% CI of [15,502; 18,959] for the Mt capture-

recapture PSE of 17,107. Changing our conceptual framework for temporal dependence and 

modeling an open population did not improve the fit to our data (AIC = 108.2) and yielded a 

similar PSE of 17,008 [15,136; 18,880]. In our final Mt model, an additional interaction term 

between baseline and MTAT improved the fit (AIC = 93.0) and led to a final PSE of 18,426 

[16,529; 20,669], representing 61.0% [54.2; 67.9] of the household population aged 15 years or 

older in the study area (using equation 1). See Appendix 2 – S2.2 for additional results.  
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2.5. Discussion 

Based on data from a randomized controlled trial conducted between December 2017 and 

November 2018, we applied two methods to estimate the number of forest-goers in Champasak 

province in southern Lao PDR. Leveraging the different timing of three cross-sectional 

household surveys, forest-going HRPs were found to represent 16.2% [14.7; 17.7], 9.3% [7.2; 

11.3], and 5.3% [4.4; 6.1] of the household population older than 15 years during the first month 

of the dry season, the first month of the rainy season, and the last month of the rainy season, 

respectively. The capture-recapture method estimated a total population size of 18,426 [16,529; 

20,669] forest-goers present at any time over the period, representing 61.0% [54.2; 67.9] of the 

population 15 years or older. 

 

A key finding from this study is that a large majority of adult residents in the study area spent at 

least one night outdoors for forest or agricultural activities over the course of a year. This has 

important implications for malaria control programs, suggesting they may have underestimated 

the size of forest-going populations that are increasingly targeted by prevention and treatment 

efforts23,24. Alternatively, these results call for a more stringent definition of the forest-going 

label to identify higher-risk forest-goers. For instance, in crude analyses, some HRP eligibility 

criteria in Table 2.1 such as criteria A, B, C or F were positively associated with PCR malaria 

whereas no associations were found for criteria D or E. As highlighted in a recent systematic 

review of the qualitative literature on forest-goers in the GMS28, a better characterization of the 

activities that put forest-goers at increased risk for malaria is needed. This is critical to clearly 

identify and count HRPs. 
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Data from the FTAT survey showed that forest-going HRP individuals were much more active 

during the rainy season, especially in the rice fields. In contrast, the household surveys identified 

a greater number of forest-goers during the dry season than the rainy season. Yet, this difference 

may be an artifact of selection bias since twice as many households approached during the rainy 

season (i.e. in the MTAT survey) could not be enrolled due to householders being away, 

compared to the dry season (i.e. in the Baseline survey). Anecdotal evidence from field teams 

suggests that households were often vacant because household members were working in the 

forest or at agriculture sites. That said, sensitivity analyses found that no more than 25% of the 

population had spent a night outside for forest or agricultural activities in a given month during 

either the rainy or dry season. This implies a high turnover among the forest-going HRPs with 

individuals spending a night outside for forest or agriculture activities only in certain months of 

the year. Seasonality and turnover thus appear to be important considerations when designing 

interventions to access and treat these forest-going HRPs. For instance, our results show a drop 

in the number of forest-goers active toward the end of the rainy season which could be leveraged 

by interventions to more effectively target forest-goers both in the forest and in the villages, 

where many may have already returned. 

 

In our statistical models, the closed population assumption was most consistent with the data, 

suggesting there was no change in the HRP population over the one-year study period. The 

seasonality and turnover among forest-going HRPs highlighted in the FTAT data and, 

additionally, by variation across the household-based PSEs, was accommodated in closed 

population models Mt with a capture probability allowed to vary among surveys. Another way to 

account for this temporal dependence was to change our conceptual framework and restrict our 



  

    94 

HRP definition to individuals spending a night outside for forest or agriculture activities in a 

given month of the one-year study period. As the number of HRP individuals can now vary 

between two months, open population models were used. Importantly though, we considered this 

alternative approach to estimate the same PSE, i.e. the total population size of HRPs in the study 

area during the study period. Results from both conceptual frameworks were consistent. 

 

Routinely used in HIV surveillance97, PSEs could strengthen the malaria surveillance arsenal100. 

Population-based surveys, unsuitable to identify hidden and hard-to-reach HRPs in HIV, are 

simple methods frequently used in malaria research that could be leveraged for PSEs of forest-

goers in the GMS and other high-risk subgroups such as cattle-herders in southern Africa110. As 

illustrated here, in the presence of seasonal risk behaviors, PSEs reflecting different periods over 

the malaria season can be obtained by conducting multiple surveys at different time points. A 

cumulative PSE can be obtained by applying capture-recapture to three or more data sources, 

ideally including a longitudinal survey, such as our FTAT survey. Additional sources might 

include surveillance data routinely collected by malaria programs or more targeted data such as 

surveys at known venues where HRP congregate. Equipped with routine PSEs, malaria control 

program could better serve their respective HRP. In the GMS for instance, they could determine 

how many hammock nets to distribute and at which time of the year. 

 

Our results do have limitations. First, the study did not use a standardized definition for forest-

going HRPs across surveys. To address this issue, we combined multiple survey questions to 

identify HRP individuals. Our sensitivity analysis estimated a possible 17% undercount in the 

MTAT survey. Second, asking heads of households to answer question items to assess HRP 
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criteria on behalf of absent household members may have contributed to more complete data, but 

also to misclassification. Our formative work indicated forest and agricultural activities were not 

significantly stigmatized in the study area so this should not have led to a meaningful bias. 

Lastly, individuals could not be matched across surveys on full names so that initials were used, 

potentially leading to matching errors. In a sensitivity analysis, captures of non-HRP individuals 

in household surveys were leveraged to evaluate that such matching errors could have led to no 

more than an 11 % undercount in our capture-recapture PSE. 

 

In conclusion, this study estimated the overall proportion that forest-going HRPs represent in 

southern Lao PDR, highlighted an important seasonality in malaria risk behaviors, and illustrates 

population size estimation methods that can be replicated to support national control programs in 

the GMS to assess and meet the 2030 malaria elimination goals7,12.  
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2.6. Appendix 2 

2.6.1. S2.1: additional tables for population-based 
household survey method 

 
Table 2.4 - Identification of HRP individuals in baseline survey. 

 

    
Missing 

observations 
Measure N n % [95% CI] n (%) 
Usually resident in HH 5,723 5,593 97.3 [96.5; 98.0] 1 (0) 
Age older than 15 among 
usual residents 5,593 3,378 60.2 [59.1; 61.3] 2 (0) 
HRP criteria:     
A 3,378 383 11 [9.7; 12.4] 1 (0) 
B 3,378 138 3.9 [3.0; 4.7] 5 (0.1) 
C  3,378 443 13.1 [11.7; 14.4] 8 (0.2) 
Any of A, B, C 3,378 557 16.2 [14.7; 17.7] 13 (0.4) 

 

Table 2.5 - Identification of HRP individuals in MTAT survey. 

 

 

 

 

 
 

Table 2.6 - Identification of HRP individuals in endline survey. 

 

    
Missing 

observations 
Measure N n % [95% CI] n (%) 
Usually resident in HH 7,870 7,678 97.5 [97.0; 98.1] 1 (0) 
Age older than 15 among 
usual residents 7,678 5,023 65.9 [64.9; 66.8] 0 (0) 
HRP criteria:     
A 5,023 189 3.7 [3.0; 4.5] 0 (0) 
B 5,023 85 1.6 [1.1; 2.0] 0 (0) 
C  5,023 215 4.3 [3.5; 5.0] 1 (0) 
Any of A, B, C 5,023 269 5.3 [4.4; 6.1] 1 (0) 

    
Missing 

observations 
Measure N n % [95% CI] n (%) 
Age older than 15  18,143 11,526 63.5 [62.0; 65.1] 5 (0) 
HRP criteria:     
D 11,526 879 7.8 [6.0; 9.7] 280 (2.4) 
E 11,526 831 7.4 [5.6; 9.2] 277 (2.4) 
F  11,526 284 2.5 [1.5; 3.6] 288 (2.5) 
Any of D, E, F 11,526 1,040 9.3 [7.2; 11.3] 302 (2.6) 
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2.6.2. S2.2: additional tables for capture-recapture method 
 
Table 2.7 - Capture-recapture Mt PSE using 2, 3 or 4 of the survey lists available. 

 
Number of lists Surveys PSE [95% CI] 
4 FTAT, MTAT, baseline, 

endline 
17,107 [15,502; 18,959] 

   
 
3 

FTAT, MTAT, baseline 16,999 [15,241; 19,061] 
FTAT, MTAT, endline 17,247 [15,221; 19,679] 
FTAT, baseline, endline 19,578 [16,459; 23,532] 
MTAT, baseline, endline 12,946 [10,594; 16,089] 

   
 
 
2 

FTAT, MTAT 17,371 [15,012; 20,295] 
FTAT, baseline 21,047 [16,836; 26,886] 
FTAT, endline 16,317 [12,387; 22,256] 
MTAT, baseline 10,344 [8,216; 13,333] 
MTAT, endline 19,983 [12,567; 34,880] 
baseline, endline 21,405 [11,238; 49,131] 

 

Table 2.8 - Capture-recapture PSE for various models considered. 

 
Model PSE [95% CI] AIC 

Closed population M0 20,886 [18,877; 23,223] 2461.44 
Closed population Mt 17,107 [15,502; 18,959] 106.30 

Open population 17,008 [15,136; 18,880] 108.23 
Final model: Closed population Mt  

with baseline-MTAT interaction 
18,426 [16,529; 20,669] 92.97 
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Table 2.9 - Capture-recapture PSE for Mt models with additional interaction terms between surveys. 

  
PSE Standard Error Deviance Df AIC BIC 

Baseline & MTAT  18,425.9 1,050.7 7.7 9 93.0 130.5 
Baseline & 
MTAT; Baseline 
& FTAT  

17,640.5 1,139.2 5.9 8 93.2 137.0 

Baseline & 
MTAT; FTAT & 
MTAT  

19,703.4 1,681.1 6.5 8 93.8 137.6 

No interaction 17,106.6 878.1 23 10 106.3 137.6 
Baseline & 
MTAT; FTAT & 
Endline  

18,788.3 1,160.9 7.0 8 94.2 138.1 

Baseline & 
MTAT; Baseline 
& Endline  

18,361.6 1,058.3 7.5 8 94.8 138.6 

Baseline & 
MTAT; MTAT & 
Endline  

18,354.3 1,071.8 7.6 8 94.9 138.7 

Baseline & FTAT 16,173.5 914.4 18.7 9 104.0 141.6 
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2.6.3. S2.3: additional table for meta-analysis estimating 
p15 

 

Table 2.10 - Meta-analysis to estimate proportion of population older than 15. 

 

 
Survey period 

 
Age older than 15 (%) 

[95% CI] 
Age older than 15 

(SE) 

Baseline Nov 28th – Dec 9th 2017 60.2 [59.1; 61.3] 0.00577 

MTAT June 12th – July 23rd 2018 63.5 [62.0; 65.1] 0.00794 

Endline Oct 31st – Nov 19th 2018 65.9 [64.9; 66.8] 0.00485 

Overall  63.5 [62.9; 64.2] 0.00336 
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2.6.4. S2.4: Additional figures 

 

 
 

Figure 2.6 - Precipitation time series. Average total monthly precipitation (mm) in Champasak, southern Lao PDR. 
Precipitation data from CHIRPS in all 300m2 pixels of Champasak province were averaged for all months of 2017 
and 2018. 
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Figure 2.7 - FTAT HRP enrollment. Enrollment of HRP individuals in FTAT survey over time. 

  

0

50

100

Apr Ju
l

Oct

Time of FTAT interview

N
um

be
r o

f e
lig

ib
le

 fo
re

st
−g

oe
rs

ap
pr

oa
ch

ed
 p

er
 w

ee
k 

by
 P

N



  

    102 

2.6.5. S2.5: Sensitivity analyses for population-based 

household survey PSE 

In a first sensitivity analysis, we considered how the differences among criteria may lead to an 

underestimate of the PSE for the MTAT survey. Indeed, criterion A in the baseline and endline 

surveys maps onto criterion D in the MTAT survey, but the differences between criteria C and F 

and the absence of an equivalent for criteria B in MTAT may result in an undercount of HRP 

individuals in MTAT. Therefore, we calculated the proportion of HRP individuals missed in the 

baseline and endline surveys if only criteria A was to be used, and upweighted the count of HRP 

individuals in MTAT accordingly. 

 

In a second sensitivity analysis, we attempted to adjust for potential selection bias because of 

absent households during surveys. Indeed, if absence was related to forest or agriculture 

activities, as was informally reported by survey teams, our PSE estimates would be biased, 

presumably downwards. In this sensitivity analysis, we replaced absent households by 

households with 25%, 50% or 75% household members qualifying as HRP. Absent and surveyed 

households were taken to be of the same size. This rather conservative sensitivity analysis 

estimates upper bounds for the PSE in each of the three population-based surveys and quantifies 

the possible impact of such selection bias. Adjustment for differences in HRP eligibility criteria 

across surveys, as discussed in the first sensitivity analysis, was also included here. 

 

Table 2.11 presents the results of our sensitivity analyses. In the first sensitivity analysis, we 

estimated that 30% of HRP individuals would be missed if only criterion A was to be used in the 

baseline and endline surveys. As a result, we upweighted the MTAT HRP count (if only criteria 
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D was to be used) to estimate 11.1% [8.6; 13.9] for the population proportion of HRP in MTAT. 

This is slightly higher than the 9.3% [7.2; 11.3] reported in the primary analysis (Table 2.3) but 

not massively different. In the second sensitivity analysis, we estimated an upper bound for each 

of the three population-based PSEs when attempting to adjust for selection bias and replaced 

absent households by households with 25%, 50% or 75% household members qualifying as 

HRP. At baseline, MTAT and endline respectively, 6.2%, 16.3% and 7.4% of surveyed 

households were absent.  

 

Table 2.11 - Results for the population-based survey method for population size estimation of HRP individuals. 
Sensitivity Analyses. 

 

  
Sensitivity analysis 1 

 
Sensitivity analysis 2 

 

 
Primary 
analysis 

Address differences in 
HRP’s eligibility criteria 

among surveys 

Absent households during surveys replaced by 
households where X% of households’ members 

are HRP individuals 
   25%  50%  75%  

 

% HRP 
[95% CI] 

 

% HRP 
[95% CI] 

 

% HRP 
[95% CI] 

 

% HRP 
[95% CI] 

 

% HRP 
[95% CI] 

  

Baseline 
  

16.2 
[14.7; 17.7] 

 

16.2 
[14.7; 17.7] 

 

16.7 
[15.3; 18.2] 

 

18.3 
[16.9; 19.7] 

 

19.8 
[18.4; 21.3] 

  

MTAT 
  

9.3 
[7.2; 11.3] 

 

11.2 
[9.3; 13.0] 

 

13.4 
[11.6; 15.0] 

 

17.5 
[15.9; 19.0] 

 
21.6 

[20.0; 23.1]  

Endline  
5.3 

[4.4; 6.1] 
5.3 

[4.4; 6.1] 
6.8 

[5.9; 7.5] 
8.6 

[7.8; 9.3] 
10.5 

[9.6; 11.2] 
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2.6.6. S2.6: Sensitivity analyses for capture-recapture PSE 

Three sensitivity analyses were conducted to strengthen the robustness of our results. The first 

two sensitivity analyses estimate a lower bound for our PSE by either relaxing the matching 

criteria or augmenting the eligibility criteria in FTAT. In the first one, matches with plus or 

minus 3 years for age and plus or minus 2 ordered education categories apart were additionally 

accepted in our algorithm to relax our matching constraints. In the second one, the eligibility 

criteria for FTAT were augmented to only include individuals who, when asked specifically 

which months of the year they tended to spend a night outside in the forest or in the rice field, 

listed one of the two months prior their FTAT interview (May and June for someone interviewed 

in June for instance). 

 

The third sensitivity analysis attempts to assess and correct for potential matching errors among 

HRP individuals, either because of which identifying variables were selected or how they were 

used in the matching algorithm. Unlike conventional capture-recapture studies, some of our 

traps, namely the three population-based surveys, not only capture HRP but also non-HRP 

individuals. These can be considered captures of individuals living in the study area, regardless 

of their HRP status. Using these captures, the total population in the study area was estimated by 

running the same capture-recapture methodology with the same matching algorithm and the 

same identifying variables on the complete four survey lists. This estimate was compared to the 

actual total population, known from the census count, to infer how biased the capture-recapture 

PSE may be and correct it accordingly. Such correction relies on the reasonable assumption that 

matching errors between two individuals are as likely to happen in the general population as 

among HRP individuals. 
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Results from our first two sensitivity analyses, which can be viewed as tentative to estimate a 

lower bound, yielded PSE = 15,305 [13,886; 16,959] when matches with plus or minus 3 years 

of age and plus or minus 2 ordered education categories apart were allowed and PSE = 16,380 

[14,555; 18,566] when FTAT eligibility criteria was augmented. In the third sensitivity analysis, 

trying to adjust for potential mismatch among HRP individuals because of which identifying 

variables were selected and how they were used in the matching algorithm, the Mt log-linear 

model estimated a total population in the study area of 52,739 [51,655; 53,878] which is close to 

the true 47,575 in the household census count. This discrepancy means that our matching 

algorithm slightly underestimates the true overlap among the four lists of HRP individuals. 

Assuming the degree of mismatching error is the same among the general population as among 

HRP individuals, correcting the estimate by a 1.11 factor would yield a PSE = 16,622 [14,911; 

18,646]. All of these three sensitivity analyses yielded fairly similar PSEs and strengthened the 

robustness of our estimate. 
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2.6.7. S2.7: Details on record matching for population-

based PSEs 

First, each survey sample was restricted to participants who met the same HRP criteria applied in 

the population-based method. Four different lists of HRP individuals were therefore extracted: 

baseline, MTAT, endline and FTAT. 

 

HRP individuals needed to be uniquely identified in a consistent manner across surveys in order 

to ascertain overlap. Age, sex, highest level of education, first name initial and home village 

were extracted as variables collected in all surveys with the potential to uniquely identify HRP 

individuals across surveys. Age was either self-reported or computed from date of birth and was 

rounded to years. Because surveys were conducted at different times, age was standardized 

across surveys using July 1st, 2018 (middle of MTAT) as reference. Education was self-reported 

using 6 categories (none, some primary school, completed primary school, some secondary 

school, completed secondary school, more than secondary school). Ethnicity was not used 

because it was unavailable for participants other than heads of household in the 3 cross-sectional 

surveys. Only the initials of the first and last names were reported in the FTAT survey while the 

complete first name was reported in the 3 cross-sectional surveys. Thus, names could only be 

matched based on the first initial: the initial was extracted from the complete first name after 

removing titles (e.g., “Miss”, “Mister”), which were identified in collaboration with a Lao 

consultant. Overall, the combination of these five identifying variables was unique for 99.5% of 

HRP individuals in all data sources (100% in baseline and endline, 99.5% in MTAT and 98.9% 

in FTAT). 
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HRP individuals from the 4 different lists were matched based on age, sex, level of education, 

first initial and home village. Matches with plus or minus 2 years for age and plus or minus 1 

ordered education categories apart (or missing) were accepted. This flexibility was allowed 

because rounding age may have introduced errors and self-reported education was considered to 

be less reliable and prone to social desirability and recall biases with individuals potentially 

mixing up secondary and primary school or reporting school completion instead of some school 

in two different surveys. For names, records from cross-sectional surveys were matched with 

FTAT participants when the first initial extracted from the cross-sectional survey matched one of 

the initials reported in FTAT. Indeed, the first initial could not be isolated from the last initial in 

the FTAT survey. When a record appeared to match multiple records from another data source, 

perfect matches were favored. In 19% of all matches, ties persisted, and we randomly selected 

one of them.  
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2.6.8. S2.8: Methodological details on capture-recapture 

2.6.8.1. Theory 

The capture-recapture methodology, originating in wildlife ecology, relies on the overlap of 

animals captured on different trap occasions to estimate the unknown total population size. 

Animals captured in the first sample are marked and then released back in the population. In the 

second sample, there will be animals tagged, meaning they were captured in the first sample, and 

untagged animals. This results in a two-source capture-recapture dataset with two samples of 

respective size n1 and n2 comprising m2 recaptures. The Petersen estimator111 equates the 

proportion of tagged animals in the population and in the second sample to estimate the total 

population size of animals 𝑁Q = 𝑛% × 𝑛0 𝑚0⁄ . If more than two samples are collected, the process 

is repeated, uniquely tagging captured individuals on each occasion before releasing them. The 

capture histories for each individual - e.g., 01011 for an animal captured on occasions 2, 4 and 5 

but not on occasions 1 and 3 - are then analyzed to estimate the total population size. 

 

Typically, the simple estimators rely on the key assumptions that 1) the population is closed to 

additions and deletions, 2) all animals are equally likely to be caught on each capture occasion 

and 3) marks are reliable to assess the capture histories. That said, advanced methods such as 

log-linear models103–107, can relax some of those assumptions. 

 

Here, the different surveys serve as traps and HRP individuals are “captured” when they 

participate in a survey. Hence, each of the four surveys represent a different capture occasion. 

Unique identifying variables can be used to track in which surveys individuals were captured. 
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2.6.8.2. Statistical analysis 

The overlap among the 4 lists of HRP individuals was analyzed using log-linear models103–107 

available in the Rcapture108 R package. Ubiquitous in the capture-recapture methodology, log-

linear models leverage the overlap among lists to estimate the capture probability p, i.e the 

probability of being captured in a survey. In the simplest model M0, the population is assumed to 

be closed with no in or out immigration and p is the same for all individuals and all traps, i.e 

surveys here. These stringent assumptions can be relaxed to model an open population or to 

allow heterogeneity in p, with additional parameters to be estimated, depending on the data 

available and assumptions researchers are willing to make. Three main sources of heterogeneity 

are discussed in the literature and available for modeling in the Rcapture108 package. First, 

models Mt allow temporal dependance where the capture probability pt can change between 

capture occasions, i.e surveys here. Second, models Mh allow the capture probability ph to vary 

between individuals of the population. Third, trap dependence can be modeled in Mb where 

individuals’ capture probability pb can depend on their previous capture history. Any 

combination of the 3 sources of heterogeneity can be modeled such as in Mth where temporal 

dependence and individual heterogeneity are allowed but not trap dependence. Last, interaction 

terms can be included in log-linear models112 when capture probabilities are correlated between 

two lists at a population level - referred as list dependency in the epidemiological terminology105. 

The fit to the data, as indicated by the AIC or BIC, should guide model selection. 

 

In our study, trap dependence does not make sense as the probability of being in one survey 

should not depend on whether or not an individual was in a previous survey. In particular, 

surveys’ samples were randomly selected independently from one another. Heterogeneity in 
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gender, age or ethnicity may definitely result in capture probability heterogeneity among HRP 

individuals. Our formative work indicated that spending a night outside in the forest or in the rice 

field was not stigmatized in the region, but some HRP criteria were answered by the head of the 

household, who may not be fully aware of the forest going habits of their household members. In 

addition, our capture instruments, i.e surveys, may not cover the whole spectrum of HRP forest-

going activities equally and may therefore introduce some heterogeneity in the capture 

probabilities. For instance, HRP individuals traveling frequently in and out of the forest or 

through major forest entry points may be more likely to be ascertained in the FTAT survey. 

Surveys’ questions also rely on a local understanding of what “sleeping”, “forest”, “home” or 

“sleeping outside in the forest away from home” mean and may result in different capture 

probabilities among HRP individuals. 

 

The number of HRP individuals captured is expected to fluctuate across different months 

because of the influence of the dry and rainy seasons on livelihoods and forest or agricultural 

activities. In our modeling framework, we can conceptualize this temporal dependence in two 

ways. First, we considered a closed population where HRP individuals remain so all year long 

but where the probability of being captured and identified as a HRP in a survey varies across 

surveys because of varying probability of spending a night outside in a given month (Mt models). 

Second, we considered an open population with HRP individuals migrating in and out of the 

population depending on whether or not they spent a night outside in a given month. Both 

models estimated the same PSE, i.e the total population size of the forest-going HRP in the study 

area during the study period, which covers 1 full year between December 2017 and November 

2018. As noted by Pollock113, one of the founders of the capture-recapture methodology, the 
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distinction between open and closed population may be artificial and mainly resides in their 

aptitude to estimate different parameters. Closed population models focus on estimating capture 

probabilities whereas open population models focus on estimating migration rates.  

 

Baillargeon and Rivest108 provide a nice illustration of the log-linear models fitting process with 

the simplest model for a closed population M0. For a dataset with t capture occasions, 2t -1 

capture histories, 𝜔, are observables. Again, with t =5, 01011 is the capture history for an 

individual captured on occasions 2, 4 and 5 but not on occasions 1 and 3. In M0, which has a 

single capture probability p, the probability for an individual to experience a capture history 𝜔 is  

 

𝑃(𝜔) = 𝑝∑2!(1 − 𝑝)'3∑2! 											(Eq	2.2) 

 

where ∑𝜔4 is the number of times the individual is captured. Therefore, the expected number of 

units in the population with capture history 𝜔 is given by: 

 

𝜇2 = 𝑁	 × 𝑃(𝜔) 
= 𝑁𝑝∑2!(1 − 𝑝)'3∑2! 																																																									(Eq	2.3) 
= exp	(log	(𝑁(1 − 𝑝)') +	L𝜔4 log	(

𝑝
1 − 𝑝)) 

 

The log-linear model therefore fits E[Y] = exp(𝛼 + X𝛽), where Y is the vector of observed 

capture history frequencies and X is a vector defined by ∑𝜔4. Then, the total population size is 

estimated as 𝑁Q = 𝑛 + exp	(𝛼[) where n is the total number of units captured in the data. This is 

because: 
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exp(𝛼) = exp(𝑙𝑜𝑔(𝑁(1 − 𝑝)')) = 	𝑁(1 − 𝑝)' = 𝑁	 × 𝑃(𝜔$) = 𝜇$										(Eq	2.4) 

 

where 𝜔$ is the unobservable capture history of zero captures and 𝜇$ is the expected number of 

units never captured. Estimation is done using maximum likelihood for a Poisson count random 

variable for the number of individuals with a certain capture history. See Rivest and 

Baillargeon112 for more details on other log-linear models. 

 

Finally, Table 2.12 shows how the expected number of individuals with a certain capture history 

is parametrized in log-linear models for closed and open population models104. For simplicity, 

three (instead of four in our context) source models are shown.  

 
Table 2.12 - Parametrization for the expected number of individuals with certain capture histories for various three 
source capture-recapture models. The probability of being captured in a survey is allowed to vary across the 3 
surveys as p1, p2 and p3 but is constant in M0 model. Other parameters include 𝜙", the probability that an 
individual survives from the ith to (i+1)th sample; 𝜒", the probability that an individual is not seen after the ith 
sample;1 𝜓"⁄ , the probability that an individual alive and unmarked in the population at the time of the (i+1)th 
sample was in the population at the time of the ith sample; and 1 𝜆"⁄ , the probability that an individual alive in the 
population at the time of the ith sample but not observed thereafter, is still alive in the population at the time of the 
(i+1)th. Note the substitution 𝜆" = 𝜒" (𝜙"(1 − 𝑝"#$)𝜒"#$)⁄ . 

 
 Expected number of individuals with certain capture histories for various models 

Capture 
history 

Closed population 
(M0) 

Closed population with 
temporal dependence (Mt) 

Open population 

111 𝑁 × 𝑝 × 𝑝 × 𝑝 𝑁 × 𝑝! × 𝑝" × 𝑝# 𝑁 × 𝑝! × 𝜙!𝑝" × (1 − 𝜒") 
011 𝑁 × (1 − 𝑝) × 𝑝 × 𝑝 𝑁 × (1 − 𝑝!) × 𝑝" × 𝑝# 𝑁 × (1 − 𝑝!) × 𝜙!𝜓!𝑝" × (1 − 𝜒") 
101 𝑁 × 𝑝 × (1 − 𝑝) × 𝑝 𝑁 × 𝑝! × (1 − 𝑝") × 𝑝# 𝑁 × 𝑝! × 𝜙!(1 − 𝑝") × (1 − 𝜒") 
001 𝑁 × (1 − 𝑝) × (1 − 𝑝) × 𝑝 𝑁 × (1 − 𝑝!) × (1 − 𝑝") × 𝑝# 𝑁 × (1 − 𝑝!) × 𝜙!𝜓!(1 − 𝑝") × 𝜓"(1 − 𝜒") 
110 𝑁 × 𝑝 × 𝑝 × (1 − 𝑝) 𝑁 × 𝑝! × 𝑝" × (1 − 𝑝#) 𝑁 × 𝑝! × 𝜙!𝑝" × 𝜒" 
010 𝑁 × (1 − 𝑝) × 𝑝 × (1 − 𝑝) 𝑁 × (1 − 𝑝!) × 𝑝" × (1 − 𝑝#) 𝑁 × (1 − 𝑝!) × 𝜙!𝜓!𝑝" × 𝜒" 
100 𝑁 × 𝑝 × (1 − 𝑝) × (1 − 𝑝) 𝑁 × 𝑝! × (1 − 𝑝") × (1 − 𝑝#) 𝑁 × 𝑝! × 𝜆!𝜙! ∗ (1 − 𝑝") × 𝜒" 
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2.6.9. S2.9: Diagnostic test for heterogeneity in log-linear 

models 

Figure 2.8 shows a diagnostic test confirming heterogeneity between individuals in terms of their 

capture probability does not need to be included in the model. Work from Lindsey (1986) and 

Rivest (2007) shows that this plot for fi, the number of units captured on i different occasions, 

should be concave upward in the presence of heterogeneity. On the other hand, linearity indicates 

heterogeneity does not need to be accounted for in the model. 

 

 
 
Figure 2.8 - Diagnostic test for heterogeneity: linearity indicates that individual heterogeneity in terms of their 
capture probability is not needed in the models. 
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2.6.10. S2.10: subdividing the PSE by type of risk 

behavior/activity 

Based on individuals’ responses to the criteria in Table 2.1, we split the definition of HRP based 

upon forest-related activities or agriculture-related activities. For instance, in this secondary 

analysis, criterion A was split between the following 2 sub-criteria: 

 

• A_Agriculture: During the past month, stayed overnight away from home AND reason 

for the absence was working in the rice field or plantation in this province or another 

province  

• A_Forest: During the past month, stayed overnight away from home AND reason for the 

absence was working in the forest in this province or another province  

 

Criterion C could not be split between forest and agriculture activities because of how the 

question was framed. In a sensitivity analysis, individuals meeting criterion C were all allocated 

to either the forest sub-category or the agriculture sub-category, producing liberal and 

conservative estimates for the population size of HRP in the two sub-categories. Also note that 

criterion F only pertains to HRP individuals being identified because of their forest activities. 

Last, the FTAT HRP criteria could not be split either because of the eligibility criteria in the 

FTAT intervention. 

 

Table 2.13 and 2.14 show the results from the household survey methods when splitting our 

definition of HRP between those that were identified as HRP because of forest-related activities 

or because of agriculture-related activities. Results from the sensitivity analysis are also reported. 
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Table 2.13 - Results for the population-based survey method for population size estimation of agriculture-related 
HRP individuals. 

 
 Estimate % HRP [95% CI] PSE [95% CI] 
Baseline HRP Agriculture (Conservative) 7.2 [5.9; 8.4] 2,164 [1,794; 2,539] 
Baseline HRP Agriculture (Liberal) 15.6 [14.7; 17.1] 4,702 [4,246; 5,156] 
MTAT HRP Agriculture 6.6 [4.8; 8.5] 2,006 [1,436; 2,568] 
Endline HRP Agriculture (Conservative) 3.8 [3.0; 4.6] 1,147 [910; 1,385] 
Endline HRP Agriculture (Liberal) 5.2 [4.3; 6.1] 1,569 [1,308; 1,821] 

 

Table 2.14 - Results for the population-based survey method for population size estimation of forest-related HRP 
individuals. 

 
 Estimate % HRP [95% CI] PSE [95% CI] 
Baseline HRP Forest (Conservative) 4.9 [4.1; 5.8] 1,496 [1,238; 1,756] 
Baseline HRP Forest (Liberal) 13.8 [12.4; 15.2] 4,168 [3,743; 4,597] 
MTAT HRP Forest 9.0 [7.0; 11.0] 2,727 [2,124; 3,338] 
Endline HRP Forest (Conservative) 0.3 [0.2; 0.5] 100 [50; 152] 
Endline HRP Forest (Liberal) 4.3 [3.5; 5.1] 1,302 [1,058; 1,550] 

 

In conclusion, the wording of surveys questions did not allow for a clear distinction in HRP 

criteria and the range of estimates was too wide to be informative. 
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Chapter 3: Characterizing mobility patterns of forest 

goers in southern Lao PDR using GPS loggers 
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3.1. Abstract 

In the Greater Mekong Sub-region (GMS), engaging in forest activities is a major risk factor for 

malaria. As countries focus their malaria control and elimination efforts on forest-going 

populations, a better understanding of their mobility patterns and risk associated with specific 

types of forest-going trips is essential.  

 

In 2018, we conducted a focal test and treat intervention (FTAT) in Champasak Province, southern 

Lao PDR, and recruited 2,904 forest-goers in our study. A subset of forest-goers were offered to 

carry a “i-Got-U” GPS logger for roughly two months, configured to collect GPS coordinates every 

15 to 30 minutes. The utilization distribution (UD) surface around each GPS trajectory was used 

to extract trips to the forest and forest-fringes. A hierarchical clustering algorithm identified trips 

with shared mobility pattern characteristics in terms of duration, timing of the trip and forest 

penetration further enabling classification of high-risk trips because of an increased exposure to 

dominant malaria vectors in the region. Finally, we used gradient boosting trees to assess which 

of the forest-goers’ socio-demographic and behavioral characteristics predicted the best their 

likelihood to engage in trips at higher-risk for malaria.  

 

A total of 122 forest-goers accepted to carry a GPS logger resulting in the collection of 803 trips 

to the forest or forest-fringes. Six clusters of trips emerged, helping to identify 385 (48%) trips 

with increased exposure to malaria vectors based on high forest penetration and whether the trip 

happened overnight. Age, outdoor sleeping structures and number of children were the best 

predictors of forest-goers’ probability to engage in high-risk trips. The probability to engage in 

high-risk trips remained high (~33%) in all strata of the forest-going population. 
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This study characterized the heterogeneity within the mobility patterns of forest-goers and 

attempted to further segment their role in malaria transmission in southern Lao People’s 

Democratic Republic (PDR). These results are key for national control programs across the region 

to assess and meet their 2030 malaria elimination goals. 
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3.2. Introduction 

The dominant malaria vectors in the Greater Mekong Sub-region (GMS) – Anopheles dirus and 

Anopheles minimus – are forest-dwelling mosquitoes13,14 and malaria transmission in the region 

is often referenced as “forest malaria”15. Forest-going activities, such as wood collection and 

spending the night in the forest, as well as agriculture in the forest fringe areas20,62,86, are major 

risk factors for malaria in the GMS16,17,22,25,26,87–89. Furthermore, recent outbreaks have been 

attributed to deforestation activities29,114. As transmission declines in the region, malaria clusters 

in these key forest-going populations and national control programs in the GMS now 

increasingly focus their prevention and treatment efforts on forest-goers23,24. Yet, much remains 

unknown about forest-goers’ mobility patterns and their actual whereabouts in the surrounding 

forest. 

 

As pointed out in a literature review on malaria and population mobility64, population movement 

is often cited as a barrier to malaria elimination, but there have been very few studies to support 

the evidence. The authors argued that it resulted in an excessive focus on “mobile populations” 

as a risk group and encouraged malaria programs to refocus their efforts on mobility itself. 

Similarly, “forest-going populations”, who often also belong to “mobile populations”23–25, is a 

catch-all term that encompasses a wide range of different risk behaviors28,62, and “going in the 

forest” first needs to be better defined. 

 

Micro-scale movement data of forest-goers is essential to understand their role in the 

transmission of forest malaria in the GMS. Heterogeneity in mobility patterns likely results in 

diverse exposures to mosquito vectors and heterogeneous risks for malaria. For instance, 
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individuals who travel through the forest for days at a time are likely to play a different role in 

malaria transmission than individuals who cross the forest to reach their rice field everyday but 

return home every night. Data on forest-goers’ mobility patterns could also be leveraged to better 

access these population if geographical or temporal bottlenecks can be identified. 

 

The recent advent of portable global positioning system (GPS) logging devices offers 

unprecedented opportunities to collect fine-scale mobility data on these populations and 

characterize their movements in and out of the forest. These GPS loggers can provide high 

resolution data both spatially and temporally and have shown high acceptability in rural 

settings115–117. In previous studies, such devices have successfully been used to assess the 

importance of individual movement data on the transmission of multiple diseases such as 

dengue, schistosomiasis, hookworm or filariasis118–121 but also malaria122–124. 

 

In this analysis, we collected fine-scale movement data from forest-goers recruited in a focal test 

and treat (FTAT) intervention conducted in southern Lao People’s Democratic Republic (PDR). 

To our knowledge, this study is the first to describe the mobility patterns of forest-going 

populations in the GMS using GPS loggers. We conducted a clustering analysis to characterize 

the heterogeneity within these mobility patterns and a regression analysis to attempt to further 

segment forest-going populations in terms of their potential exposure to malaria vectors.  
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3.3. Methods 

3.3.1. Study area 

This study was conducted in Champasak Province, one of the five southernmost provinces in 

Lao PDR, where 95% of the country’s malaria burden concentrates71. The data were collected as 

part of a randomized controlled trial designed to evaluate the effectiveness of forest-based active 

case detection66. Across four districts, seven of 14 health center catchment areas (HCCA) were 

randomly assigned to a Focal Test-And-Treat (FTAT) arm, an intervention specifically targeting 

forest-goers and conducted continuously between March and November 2018. The study area 

was selected in consultation with the national malaria program based on malaria burden (highest 

API in 2016). Figure 3.1 shows the study timeline and a map of the study area. 

 

3.3.2. Data sources 

3.3.2.1. FTAT survey 

Fifteen teams of two peer navigators (PNs) were employed in FTAT HCCAs to conduct test-and-

treat activities amongst members of their communities presumed to be “forest-goers” because of 

their activities in or near the forest. PNs were themselves forest-goers recruited from the local 

communities via health authorities and trained to conduct continuous surveillance by testing for 

malaria using Rapid Diagnostic Tests (RDTs)66. PNs were instructed to actively target forest-

goers in forest fringe areas and to enroll anyone meeting the FTAT eligibility criteria: aged 15 or 

older and having spent at least one night outside a formal village in the past 30 days.  
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Upon recruitment of forest-goers in FTAT, PNs conducted an epidemiological survey covering 

the demographic, behavioral, occupational, malaria knowledge and practice domains. To 

understand the mobility patterns of this population of forest-goers, PNs offered a subset of them, 

conveniently sampled, to carry a GPS logger that would record GPS coordinates as they carry it. 

 

 
 
Figure 3.1 - Top left: Study timeline with a rolling FTAT survey between March and November 2018. Bottom: Study 
area with 7 of 14 health center catchment areas (HCCA) randomly assigned to FTAT. The study was conducted in 
Champasak province in southern Lao PDR neighboring Thailand and Cambodia (see upper right indent). 
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3.3.2.2. GPS data 

In May, 53 GPS loggers (I-gotU 120) were dispatched across the 15 PN teams to be offered to 

interviewed forest-goers and carried for about two months. During that first cycle, loggers were 

configured to collect GPS coordinates every 30 minutes and were retrieved in July/August by the 

PN teams for data downloading. A second cycle of data collection was started in September with 

69 GPS loggers configured to collect GPS coordinates every 15 minutes. Loggers were retrieved 

in November for data downloading. Recruiting PNs teams also carried GPS loggers, configured 

to collect GPS coordinates every 30 minutes over the two cycles. 

 

In order to simplify instructions, the loggers were configured so that they could not be turned off 

by forest-goers or PNs and the logging intervals selected, 15 to 30 minutes, afforded an 

estimated 7 to 12 days of battery life. Loggers could be charged on outlets with regular phone 

chargers, which most forest-goers possessed. Yet, to avoid battery depletion while on forest trips 

or off the grid, external charging devices (VerbatimÒ) and two sets of four individual AA 

lithium batteries were additionally provided to recruited forest-goers. Forest-goers were 

instructed to carry the GPS loggers at all times, to frequently charge them (at least once a week) 

and to meet again after two months for GPS loggers’ retrieval. PNs demonstrated all aspects of 

the GPS loggers’ utilization, including charging, to recruited forest-goers. 

 

3.3.2.3. GPS logger retrieval questionnaire 

After roughly two months, PNs met again with forest-goers to collect the GPS loggers in 

exchange for a $10 monetary incentive. Upon retrieval, a short questionnaire was conducted to 

assess acceptability and feasibility of using GPS loggers to record mobility patterns of forest-
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goers. In particular, the survey asked about forest-goers’ charging practices and logger utilization 

over the two-month study period. 

 

3.3.3. GPS data processing 

3.3.3.1. Data cleaning 

The advertised precision of the I-gotU GPS loggers used in this study is 10m. Yet, the makers 

warn of possible large errors in the GPS coordinates collected, notably when the logger stay 

indoor for long periods of time and cannot connect with the satellites. To remove those erroneous 

GPS points, we used a filtering algorithm that identifies GPS points unusually far away from 

both the previous and next GPS points. See supplemental materials S3.1 in appendix 3 for 

details. 

 

3.3.3.2. Significant locations 

The data collected by a GPS logger is a time series of GPS points forming a trajectory (Figure 

3.2A). If several GPS points cluster together, it indicates a location visited frequently or for long 

periods of time by the HRP carrying the GPS logger (or a location where the GPS logger was left 

behind). Using a method developed by Barraquand and Benhamou125 and implemented in the 

adehabitatLT126 package in R127, we computed the residence time spent within a moving 50m-

radius circle window centered on every GPS point of the trajectory. Then, we used the biased 

random bridge kernel method128 implemented in the adehabitatHR126 R127 package, to estimate 

the utilization distribution (UD) 30m per 30m surface around the trajectory. The UD is a concept 

widely used in animal movement ecology that measures the utilization of space via the intensity 

of the GPS points occurrence on the map. A significant location was defined as a 100m-radius 



  

    125 

circle centered on a local maximum of the UD surface that contains at least one GPS point of the 

trajectory with a residence time above 2h. Simply put, a significant location is a 100m-radius 

circle where the GPS logger stayed for more than 2 hours at least once along the trajectory. 

 

Significant locations were mapped on top of earth terrain layers, using ESRI imagery in the 

leaflet R package, along with the GPS tracks and classified as forest, forest-fringe/rice field or 

village-based locations by visual inspection. Residence time at village-based significant location 

as well as self-reported home village by forest-goers in the FTAT questionnaire were 

additionally used to identify forest goers' house location. Finally, we used PNs' GPS tracks as 

well as their self-reported home village (from employment contracts) to identify significant 

locations related to our study such as follow-up meetings at PNs' house. GPS coordinates of 

forest-goers’ and PNs’ home village were extracted from a list of geo-referenced villages in the 

province provided by the national malaria control program. 

 

3.3.3.3. Outdoor trips 

A trip was defined as a series of consecutive GPS points outside forest-goers' house, between 

two GPS points recorded at forest-goers' house location. Every trip including GPS points that 

formed an outdoor-based significant location (forest or forest-fringe/rice field) qualified as an 

outdoor trip (Figure 3.2B). Trips where a forest-goer tours the forest for hours but never really 

stops in a single location long enough (Figure 3.2C) should also be classified as outdoor trips. To 

identify those other outdoor trips, we first learned the relationship between our classification of 

outdoor vs village-based significant location and the following covariates using a random forest 

algorithm: number of Open Street Map82 buildings or places, total 2015 population and average 
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2018 tree crown cover within 100m and distance to closest village in the province. Tree crown 

cover layers came from Hansen60 and population from WorldPop129. We then used the predicting 

algorithm to classify non-significant location GPS points as outdoor or village-based. Finally, 

outdoor trips were defined as trips that include an outdoor-based significant location or a series 

of consecutive GPS points adding up to more than two hours outdoor. Simply put, an outdoor 

trip is a trip where the forest-goer spent more than two hours consecutively outdoor. Trips 

including a significant location related to our study were discarded as unrepresentative of the 

forest-goers’ routine. 
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Figure 3.2 - Trajectories for GPS loggers collected during the first cycle in Moonlapamok district for PNs and 
HRPs (High-risk populations), i.e forest-goers (2A). Figures 2B and 2B respectively show examples of an outdoor 
trip with an outdoor stop (trip #10 for GPS logger 47 in 2B) and without (trip #22 for GPS logger 47 in 2C). 
Significant stop locations are shown as circles, colored according to their terrain class. Directional arrows were 
added on top of each GPS points in 2B and 2C to represent the movement flow.  
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3.3.4. Cluster analysis 

For each outdoor trip, we computed the mobility pattern characteristics listed in Table 3.1. They 

were selected to translate the GPS trajectories in terms of exposure to the dominant malaria 

vectors in the GMS, An. dirus and An. minimus13,14. Four domains were covered. Two domains, 

forest surroundings and timing of the trips, pertained directly to the ecology of these mosquitoes, 

which thrive in a forested environment and bite during nighttime and around twilight and dawn 

hours (6 pm and 6 am). The two other domains, pace and fragmentation of the trips, reflect the 

possible organization and habits of those trips and can influence vector control options. For 

instance, it may be easier to carry hammocks bed nets over short distances and trips with 

numerous and frequently visited stop locations may offer higher than average mosquito 

protection such as forest huts. 

 

Table 3.1 - Mobility patterns variables computed for each of the outdoor trips and used as features in the clustering 
algorithm (after normalization, standardization and projection onto the principal components). 

 
Domain Forest Pace Fragmentation Timing 
 
 
Variables 

Average 2018 tree 
crown cover  

Duration Number of different 
significant location 

Overnight trip 

Max 2018 tree crown 
cover 

Distance Proportion of trip spent at 
significant location 

Trip around 
twilight and/or 
dawn hours (6 
am and/or 6 
pm) 

Proportion of trip 
where 2018 tree crown 
cover > 50% 

Max speed Population density 

 

Variables in Table 3.1 were standardized by subtracting the mean and dividing by the standard 

deviation and right-skewed variables (pace and population density) were log-transformed. Then, 

we used principal component analysis to project the variables onto the principal components 

(PC) that captured 95% of the variability in the dataset. Then, hierarchical clustering with the 

complete distance method, was applied on the selected PCs to explore the clustering structure of 
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the data. The hierarchical clustering algorithm starts with one observation per “leaf” (=cluster) 

and progressively groups similar observations together one at a time until they are all grouped 

together in a single cluster. An advantage of hierarchical clustering over other clustering 

algorithm such as k-means, is that the number of desired clusters, k, does not need to be set in 

advance. Instead, the resulting dendogram tree represents the clustering structure for all k from 1 

to n, the number of observations. The length of the tree branches quantifies the dissimilarity 

between the leaves and can be used to assess how many clusters should represent the structure of 

the data. The intra-class correlation coefficient (ICC) for input variables in Table 3.1 was also 

computed for different choices of k to evaluate how many clusters would best capture the 

variability in the dataset. 

 

Finally, mobility pattern characteristics in Table 3.1 were summarized for each of the clusters 

identified and plotted to expose the heterogeneity between the clusters, describe their 

distributions across the trips and attempt to label the type of trips identified in each of the 

clusters. 

 

3.3.5. Regression analysis 

Nighttime outdoor trips in clusters with high forest penetration translate in an increased exposure 

to malaria vectors and were classified as “high-risk” trips. Then, we used gradient boosting trees 

to assess which of the forest-goers’ socio-demographics and behavioral characteristics collected 

in the FTAT survey best predicted their likelihood to engage in such high-risk trips for malaria. 

Gradient boosting was selected as one of the most advanced supervised learning algorithms that 

can accommodate missing values and model non-linearities. Importantly, its implementation in 
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the GPboost130 R127 package allows for random effects at forest-goers’ levels to correctly account 

for the correlation structure with multiple outdoor trips per forest-goers. Automated grid search 

and 4-fold cross validation were used to select the best fitting tuning parameters. 

 

Results are presented using SHAP (SHapley Additive exPlanations) values131, an innovative tool 

increasingly used for interpretation of machine learning models. SHAP values attribute for each 

feature and each prediction, importance values. It enables to rank the different features in their 

ability to predict the outcome but also to visualize the adjusted non-linear relationship between 

the predictors and the outcome. 
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3.4. Results 

3.4.1. Data description 

3.4.1.1. FTAT survey 

Over the course of 8 months, 2,904 forest-goers were recruited in FTAT and 122 carried a GPS 

logger. Using their answers in the FTAT survey, Table 3.2 shows how forest-goers recruited in 

the GPS component of the study differed from those that did not carry a GPS logger. Overall, the 

two groups were similar although some differences emerged. Forest-goers that carried a GPS 

logger were older (39.2 vs 36.4 years) and tended to travel in smaller groups (3 vs 4) and for less 

nights (4.1 vs 7.2) than the forest-goers that did not carry a GPS logger. They were also more 

likely to be male (95% vs 65%), to report forest work as their primary activity (46% vs 28%) and 

no sleeping structure in the previous night (51% vs 30%) than the forest-goers that did not carry 

a GPS logger. 
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Table 3.2 - Comparison between forest-goers that carried a GPS logger and those that did not in terms of their 
answers to FTAT variables. 

 
 Mean among HRP that  

FTAT variable 
 

Carried 
a GPS 
logger 

Did not 
carry a GPS 

logger 

p-
value 

 
Number of forest-goers in group 3 4.14 < 0.01 
Age in years 39.2 36.36 0.01 
Number of children 1.79 1.63 0.24 
Nights away from home on trip 4.12 7.36 < 0.01 
Km away from home 6.63 7.58 0.38 
Number of people working/traveling with on trip 2.7 3.62 < 0.01 
Ever spent night in forest in rainy season 0.92 0.9 0.62 
Ever spent night in forest in dry season 0.94 0.89 0.14 
Ethnic minorities 0.07 0.1 0.47 
Married 0.87 0.8 0.11 
Rice farming is main source of income 0.89 0.92 0.24 
Male 0.95 0.65 < 0.01 
Education less than primary school 0.43 0.49 0.3 
Wood collection is primary reason to visit forest in rainy season 0.32 0.34 0.67 
Wood collection is primary reason to visit forest in dry season 0.43 0.48 0.4 
Forest work is primary activity this week 0.46 0.28 < 0.01 
Motorized main mode of transportation 0.69 0.68 0.81 
Relationship to people on trip is family 0.6 0.63 0.55 
No sleeping structure last night 0.51 0.3 < 0.01 

 

3.4.1.2. GPS data 

Two (1.6%) GPS loggers were not returned and data downloading from 5 (4.2%) others failed, 

resulting in a total of 472,751 GPS points collected from 115 (94.2%) GPS loggers. Figure 3.3 

shows time series of when GPS coordinates were collected for each of the loggers. The plot only 

shows a few gaps in the time series indicating that the forest-goers generally kept their GPS 

loggers charged. We can see the clean demarcation between the two cycles of data collection at 

the end of august where the loggers were with the field team for data download and 

configuration. For the first cycle, on the left-hand side of the plot, there are almost no data gaps. 

This motivated us to decrease the logging interval from 30 min to 15 min in the second cycle, 
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which resulted in more gaps. Also note that an additional 15 GPS loggers were purchased and 

handed out in the second cycle. 

 

Data visualization exposed a few GPS points obviously logged incorrectly and our filtering 

algorithm discarded 1,973 (0.4%) data points. Most of the time, these errors occurred while the 

GPS logger was sitting at forest-goers’ house location, most likely beneath some type of roof that 

disabled connection with the GPS satellites. 

 

Plotting the GPS trajectories also highlighted that forest-goers did not always carry their GPS 

logger with them. Indeed, some GPS loggers obviously were left at home for weeks at a time. 

The incentive to give the GPS logger back to the study team after two months may have 

discouraged forest-goers to take the risk to carry them all the time. Importantly, our instructions 

insisted primarily on the importance of accurately recording trips to the forest, forest-fringes and 

rice fields. That is why we decided to focus our analysis on outdoor trips rather than on the 

whole mobility patterns over the two-month study period. In the process, our analysis discarded 

95% of the GPS points to focus on the 21,668 (5%) collected along 803 outdoor trips from 96 

(79%) forest-goers. The out of the bag (OOB) error rate for our terrain classification algorithm 

trained on 1,068 significant locations was 8.6%. 
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Figure 3.3 - Time series plot of when GPS loggers were on and collected GPS coordinates. One row per GPS 
logger. Gaps indicate times when loggers ran out of battery. 
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3.4.1.3. GPS logger retrieval questionnaire 

Table 3.3 summarizes forest-goers’ answers to the retrieval questionnaire conducted when they 

gave the GPS logger back to the study team. The majority (93.3%) of forest-goers respected the 

instructions to charge their GPS logger at least once a week. According to the forest-goers, their 

GPS logger ran out of battery fairly rarely, with 77.5% of them never doing so. Surprisingly, 

61.7% of forest-goers shared their GPS logger with another household member, although that 

happened mostly (80%) for no more than a few days only. Only 39.3% of the forest-goers 

reported carrying their GPS logger every day, which supports our decision to restrict our analysis 

to outdoor trips only. In terms of acceptability, the field team also reported informally that most 

forest-goers accepted to carry a GPS logger when offered, with only a few refusals. 

 

Table 3.3 - GPS logger self-reported utilization from retrieval questionnaire after forest-goers gave back their GPS 
logger. N =120. 

 
Variable Levels % 
GPS logger ran out of 
battery 

Never 77.5 

1-4 times 15.5 
More than 5 times 7 

Charging practice At least once a week 93.3 
Less than once a week 6.7 

Carried GPS Every day 39.3 
Most of the time 58.1 
Rarely 2.6 

Anyone else carried logger Yes 61.7 
Who else Household member 100 
For how long A few hours 24 

A few days 56 

A few weeks 20 
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3.4.2. Cluster analysis 

The first seven PC accounted for 96% of the variability in the data and were therefore extracted 

to summarize the outdoor trips data. The dendogram tree (Figure 3.9 in the appendix), resulting 

from the hierarchical clustering algorithm, is well-balanced and the distribution of large branches 

suggest cutting down the tree with 6 clusters (horizontal red line). To support our decision, we 

also looked at how the ICC for mobility variables in Table 3.1 evolved as the number of selected 

clusters varied. For most of these variables, Figure 3.4 shows an improvement in the ICC all the 

way until 5, 6 clusters but then levels off. Our interpretation of these plots oriented us to select 6 

clusters to summarize the outdoor trips data. 

 

 
 
Figure 3.4  - Plot of how the ICC for mobility patterns variables in Table 3.1 vary with the number of clusters 
selected. Except for the proportion of trips at stops, the number of different stops and max speed whose ICC 
continue to improve beyond 9 clusters, for most variables, the ICC increases up to 5 or 6 clusters and then levels off. 
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Figure 3.5 - Bi-plots of the clustering structure in the feature space. Points are colored by cluster assignment and 
ellipse capturing 50% of the clusters’ points, assuming bivariate normal distribution, are superimposed. Features 
represented were selected for their ability to separate the data and highlight the clustering structure of the data. 
 

Figure 3.5 presents biplots of the resulting clustering structure in the feature space. In 

combination with Table 3.4, where each of the input mobility variables is summarized by 

clusters, we can attempt to label the 6 types of clusters identified. For instance, the darkblue dots 

of cluster 2 corresponds to outdoor trips with high forest penetration and that lasted overnight. 

As a result, we propose to label this cluster as “overnight forest trips”. Doing so similarly with 

the other clusters, we found that the recorded forest-goers’ outdoor trips are best differentiated 

along 3 dimensions (bolded in Table 3.4): forest penetration, duration/distance and whether the 

trip happened overnight. Six clusters of outdoor trips emerged: overnight forest trip, overnight 

non-forest trip, short forest trip, short non-forest trip, day forest trip, day non-forest trip (Table 

3.4). 
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Unsurprisingly, trip duration and trip distance are positively correlated while population density 

and forest cover are negatively associated. Most outdoor trips tend to stop on at least one 

occasion and forest-goers spend on average between 30% and 80% of their trip time at a stop 

location. About two thirds (66%) of the outdoor trips collected were classified as forest trips and 

just over 10% of outdoor trips happened overnight. Overnight trips are also the longest both in 

duration and distance covered. 
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Table 3.4 - Distribution of input mobility patterns parameters for each of the six identified clusters. Along with 
Figure 3.6, these numbers are suggestive of what the best labels would be for the clusters. 

 
Cluster 1 2 3 4 5 6 
Proposed label 
  

Day forest 
trips  

Overnight 
forest trips 

Day non-
forest trips 

Short forest 
trips 

Short non-
forest trips 

Overnight non-
forest trips 

Count (%) 275 (34%) 75 (9%) 183 (23%) 197 (25%) 58 (7%) 15 9 (2%) 
Percent of overnight 
trips (%)  0 100 0 0 0 100 
Percent of twilight/ 
dawn trips (%) 97.1 0.0 71 21.8 46.6 0.0 
Mean average tree 
crown cover along 
trip [IQR] 

62.2 
[49.1; 77.5] 

71.8 
[59.6; 85.9] 

20.2 
[6.2; 31.3] 

63.4 
[52.6; 75.2] 

13.5 
[0; 26.3] 

14.6 
[0.5; 28.5] 

Mean max tree 
crown cover along 
trip [IQR] 

84.7 
[79.3; 93.4] 

90 
[85.6; 95.1] 

38.6 
[22.4; 55.6] 

81.5 
[75.4; 91] 

16.4 
[0; 27.4] 

41.9 
[6.4; 78.7] 

Mean proportion of 
trip with tree crown 
cover above 50% 
[IQR] 

0.7 
[0.5; 0.9]  

0.8 
[0.8; 1]  

0.1 
[0; 0.1]  

0.7 
[0.6; 1]  

0 
[0; 0]  

0 
[0; 0]  

 
Mean trip duration 
(h) [IQR] 

8.8 
[6.7; 10.7] 

67.4 
[36.4; 83.5] 

8 
[4.5; 11.2] 

4.7 
[3.3; 5.2] 

6.8 
[3.9; 10.4] 

55.6 
[30.8; 48] 

 
Mean trip distance 
(km) [IQR] 

6.4 
[3.7; 8.1] 

26.6 
[15.8; 31.7] 

4.9 
[1.9; 5.2] 

2.5 
[1.5; 3.2] 

1.5 
[1; 2] 

15.2 
[3.5; 28] 

 
Mean max speed 
along trip (kmh) [IQR] 

3.6 
[2.2; 3.9] 

6.2 
[3.5; 7.4] 

3.3 
[1.8; 4.1] 

1.8 
[1.1; 2.4] 

1.2 
[0.9; 1.7] 

3.9 
[1.4; 6.7] 

Mean proportion 
of trip at stop 
location [IQR] 

0.5 
[0.2; 0.7] 

0.7 
[0.7; 0.9] 

0.6 
[0.2; 0.9] 

0.3 
[0; 0.6] 

0.8 
[0.7; 1] 

0.8 
[0.7; 1] 

Mean number 
of stop along 
trip [IQR] 

2 
[2; 3] 

3.1 
[2; 3] 

1.7 
[1; 2] 

1.3 
[0; 2] 

1.7 
[2; 2] 

2.3 
[2; 2.5] 

Mean average 
population density 
along trip [IQR] 

0.9 
[0.5; 1.3] 

0.6 
[0.3; 0.8] 

1.3 
[0.7; 1.7] 

1 
[0.6; 1.4] 

3 
[1.1; 4.6] 

2.8 
[1.6; 4.4] 

 
  



  

    140 

3.4.3. Regression analysis 

 
Overnight forest trips as well as forest trips and short forest trips that happened around twilight 

and/or dawn hours (6 pm and/or 6 am) further defined 385 (48%) high-risk trips because of their 

presumed higher exposure to malaria vectors. Figure 3.6 presents the results from the regression 

analysis. Individual-level characteristics of the forest-goers collected in the FTAT survey are 

ranked in terms of their ability to predict forest-goers’ probability to engage in high-risk trips for 

malaria. Because all the features were collected at the individual level, for each feature, there is 

one dot per forest-goer, colored by the feature value. The SHAP value represents the change 

(additive scale) in the forest-goers’ probability to engage in high-risk trips. The more positive the 

SHAP values (right side), the more likely they are to engage in high-risk trips. For instance, 

forest-goers who reported no sleeping structure the night before their FTAT interview (high 

feature value, colored in purple) have positive SHAP values. Therefore, they are more likely to 

engage in high-risk trips. On average, forest-goers’ sleeping structure the night before their 

FTAT interview impacted their probability to engage in high-risk trip by 6.1%. For continuous 

variables, we can draw the whole SHAP dependence plots (Figure 3.7) for more interpretability. 

For instance, forest-goers aged between 30 and 45 years have high positive SHAP values. They 

are therefore more likely to engage in high-risk trips than younger and older forest-goers. On 

average, forest-goers’ age influences their probability to engage in a high-risk trip by 17.4%. For 

some forest-goers, their middle age increased their probability to engage in high-risk trip by 

more than 25%. 

 

Together, these results have identified age, lack of outdoor sleeping structure and number of 

children as the best predictors of high-risk outdoor trips for malaria. Specifically, being 30 to 45 



  

    141 

years old, using no structure when sleeping outside and having more than two children all 

increase the probability for a forest-goers to engage in high-risk trips in terms of their exposure 

to malaria vectors. All the other features impact forest-goers’ probability to engage in high-risk 

trips by less than 5% on average. As a summary, Figure 3.8 presents the probability of engaging 

in high-risk trips among forest-goers in the 8 strata defined by to those three main predictors. 

These predictors, in combination, increase the probability of engaging in high-risk trips up to 

75%. We can also see that the reference probability of engaging in high-risk trips among forest-

goers not aged between 30 and 45 and who reported sleeping in a structure the night before their 

FTAT interview and who have less than 2 children is 33%. The average probability to engage in 

high-risk trips in the seven non-reference strata was 54%, only slightly higher than the 

unstratified average (48%). 

 

 
 
Figure 3.6 - SHAP importance plot. Forest-goers’ individual features are ranked in terms of their ability to predict 
the likelihood of forest-goers to engage in high-risk trips. For each feature, there is one dot per forest-goers, 
colored by the feature value and positioned according to its SHAP value. Larger SHAP values means larger impact 
on the model predictions. Positive SHAP values result in an increased probability to engage in high-risk trips. The 
ranking of features is based on the average absolute SHAP value across all forest-goers. 



  

    142 

 
 
Figure 3.7 - SHAP dependence plot for the two main continuous predictors of high-risk trips. For each feature, 
there is one dot per forest-goers. Larger SHAP values means larger impact on the model predictions. Positive SHAP 
values result in an increased probability to engage in high-risk trips. Super-imposed red lines were modeled using 
loess with 0.9 span. 

 
 
Figure 3.8 - Venn diagram for the raw probability of engaging in high-risk forest trips among the 8 strata of forest-
goers defined by the three main predictors identified in the regression analysis: age between 30 and 45, no sleeping 
structure the night before the FTAT interview and more than two children. Probabilities are expressed in rounded 
percent. For instance, the baseline probability of engaging in high-risk trips among forest-goers not aged between 
30 and 45 and who reported sleeping in a structure the night before their FTAT interview and who have less than 2 
children is 33%.  
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3.5. Discussion 

Using GPS loggers to capture fine-scale mobility patterns of 122 forest-goers in southern Lao 

PDR over two-month periods, we extracted data on 803 trips to the forest, forest-fringes or rice-

fields. A hierarchical clustering algorithm was used to describe the heterogeneity within these 

mobility patterns and highlight six major types of outdoors trips. Then, in a regression analysis 

using gradient boosting trees, forest-goers’ age, lack of outside sleeping structures and number of 

children were identified as the best predictors of their likelihood to engage in trips at higher risk 

for malaria, in terms of an increased exposure to mosquito vectors. Together, they defined strata 

of forest-goers with probability as high as 75% and as low as 33% to engage in such high-risk 

trips. 

 

A key finding from this study is the diversity in forest-goers’ mobility patterns highlighted in the 

cluster analysis. The 803 outdoor trips collected are highly heterogeneous. Some trips lasted no 

more than 3h when other lasted up to a week. Distance covered ranged from 1 to 100km. Most 

trips were day trips only but about 10% were overnight. The average tree crown cover along the 

trip could be above 75% or barely around 5%, even for long trips. Six clusters of outdoor trips 

were identified with major differences in terms of forest penetration, distance covered, duration 

and whether the trip happened overnight. These differences likely translate into different 

exposures to the dominant malaria vectors in the GMS, An. dirus and An. minimus13,14, who 

thrive in a forested environment and bite during the night and around twilight and dawn hours. 

This heterogeneity in forest-goers’ outdoor trips and exposure to the surrounding mosquito 

vectors echoes the result from a recent systematic review of the qualitative literature on forest-
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goers in the GMS28, which calls for a better characterization of the activities that put forest-goers 

at increased risk for malaria. 

 

We attempted to leverage this heterogeneity in mobility patterns to segment the population of 

forest-goers and identify sub-groups at higher risk for malaria because of their increased 

likelihood to engage in high-risk trips. On the one hand, we were able to rank individual level 

characteristics of forest-goers collected in the FTAT survey in terms of their ability to predict 

their probability to engage in high-risk trips. The top three individual predictors, number of 

children, lack of outside sleeping structure and age, would impact, on average, forest-goers’ 

probability to engage in high-risk trips by, respectively, 5%, 7% and 17% on the additive scale 

and together defined strata of forest-goers with probability as high as 75%. In combination 

though, these predictors separated the forest-going population in two subgroups with similar 

probabilities of engaging in such high-risk trips (54% vs 33%). This small difference in risk may 

be valuable for further targeting resources on high-risk forest-goers but also suggests that some 

level of risk is ubiquitous among forest-goers. In particular, we failed to identify a very low-risk 

subgroup and further segmenting this population would imply missing some high-risk forest-

goers. 

 

This study also demonstrated how GPS loggers can be used to measure fine-scale mobility 

patterns of rural and hard to access forest-going populations in the GMS. Thanks to hired PNs, 

we were able to recruit forest-goers in our study and train them on all aspects of the GPS loggers. 

Acceptability among forest-goers was high and our study proved its feasibility with very few 

data gaps thanks to the external charging device and additional batteries that were provided with 
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the GPS loggers. GPS coordinates every 15 to 30 minutes along forest-going trips represent an 

incredibly rich dataset about forest-goers’ mobility patterns and interaction with their 

surrounding environment that could not be collected otherwise via surveys or mobile phone data. 

 

On the other hand, data visualization highlighted that forest-goers did not carry the GPS loggers 

at all times, probably because our instructions insisted too much on the importance of carrying 

them during forest-going trips. As a result, we restricted our analysis to the 5% of GPS points 

that were collected along the 803 outdoor trips. This was a necessary step to ensure high-quality 

input data in our analyses but limits the cost-effectiveness of using such GPS loggers. In 

addition, these data required substantial processing time and simple steps such as directly 

collecting the GPS coordinates of forest-goers’ house and the exact timing when the GPS logger 

was handed out would have significantly improved our experience. 

 

Our study has additional limitations. First, our definition of high-risk trips is subjective and 

based on a simplified version of the malaria ecosystem in the GMS where what matters the most 

is exposure to mosquito vectors. It is not based on malaria diagnoses. Forest-goers recruited in 

FTAT were tested for malaria before being given GPS loggers, but reverse causality would have 

undermined the results from any association analysis and statistical power was low with only six 

forest-goers in the GPS component of our study testing positive for malaria cases by PCR 

(polymerase chain reaction). Second, the small sample size of 96 forest-goers in the regression 

analysis may have lacked enough variation in some individual level features to evaluate their 

association with high-risk trips. For instance, 95% of forest-goers who carried a GPS logger were 

male. Third and related, the forest-goers participating in the GPS logger component of the study 
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happened to be a bit different from those that did not. This may be due to chance or bias in PNs’ 

recruitment of forest-goers. As a consequence, our results may not generalize well to the whole 

2,904 forest goers recruited in FTAT or even the 20,000 forest-goers or so estimated to reside in 

the study area132. 

 

In conclusion, this study illustrated how GPS loggers can be leveraged to measure and characterize 

fine-scale mobility patterns of forest-going populations in southern Lao PDR. The results 

highlighted the diversity within forest-going trips but did not translate into a clear segmentation of 

forest-goers’ role in malaria transmission in the GMS. These results are key for national control 

programs across the region to assess and meet their 2030 malaria elimination goals7,12. 
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3.6. Appendix 3 

3.6.1. S3.1: GPS filtering algorithm 

The advertised precision of the I-gotU GPS loggers used in this study is 10m. Yet, the 

constructor warns of possible large errors in the GPS coordinates collected, notably when the 

logger stayed indoor for long periods of time and cannot connect with the satellites. To remove 

those erroneous GPS points, we used a filtering algorithm that identifies GPS points unusually 

far away from both the previous and next GPS points, themselves being close by. 

 

Our filtering algorithm first identifies suspect GPS points when the average speed leading to 

such point from the previously logged one is above 3 km/h (and time difference > 1 min). These 

suspect points essentially look like suddenly “motorized” departures. Second, the filtering 

algorithm groups with the identified suspect point, all subsequent points that were recorded 

really quickly (time difference < 1 min) afterwards. This is because our standard operating 

procedures documents failed to stress enough that the data logging frequency should not depend 

on the detected speed of the device. See methods. Third, time difference, distance and elevation 

between the GPS points starting and ending the sequence of suspect points were computed. Last, 

the sequence of suspect GPS points (often times comprising only 1 data point) were filtered out 

according to the following decision rules: 
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• (Distance between starting and ending suspect GPS points < 100 m) AND (Time between starting 

and ending suspect GPS points < 30 min) 

OR 

• (Distance between starting and ending suspect GPS points < 100 m) AND (Time between starting 

and ending suspect GPS points < 60 min) AND ((Elevation difference with previous GPS point > 

500 ft) OR (Average speed between previous and current GPS point > 10 km/h)) 

OR 

• (Distance between starting and ending suspect GPS points < 100 m) AND (Time between starting 

and ending suspect GPS points < 90 min) AND ((Elevation difference with previous GPS point > 

1000 ft) OR (Average speed between previous and current GPS point > 25 km/h)) 

OR 

• (Distance between starting and ending suspect GPS points < 3000 m) AND (Time between 

starting and ending suspect GPS points < 180 min) AND ((Elevation difference with previous 

GPS point > 3000 ft) OR (Average speed between previous and current GPS point > 40 km/h)) 

 

The decision rules were designed to filter out unusual sequence of GPS points between otherwise 

very close GPS points (before and after). Bumps in elevation difference were also indicative of a 

temporary dysfunction in the GPS logger and leveraged as such. Unusual speed, even 

considering the possibility of motor transportation were also used to identify erroneous GPS 

points. Importantly, these decision rules were refined in an iterative process by visually 

inspecting the effect of the filtering algorithm on the GPS trajectories. 

 

In addition, our standard operating procedures documents about the configurations of the GPS 

loggers failed to stress enough that we did not want the data logging frequency to depend on the 
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detected speed of the device. As a result, for some GPS loggers correctly logging most of their 

GPS coordinates every 15 to 30 min, the device, when detecting high speed, switched to 

"motorized" mode and collected GPS coordinates every second. When that happened, we 

trimmed the data to keep a GPS points every 3 min in order to reduce the computational time in 

data processing methods described below. 
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3.6.2. S3.2: Additional figures 

 

 
 
Figure 3.9 - Dendogram from the hierarchical clustering algorithm. Starting from the bottom, every data point, i.e 
outdoor trip, is regrouped one a time into “leaves” (=cluster) until they are all in one big and uninformative 
cluster. The length of the “branches” quantifies the dissimilarity between the leaves. The red horizontal line 
represents our subjective decision to cut the tree in 6 clusters. We felt selecting 5 clusters would have failed to cut 
lengthy branches whereas selecting 7 clusters would have started to cut short branches. 
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