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Abstract 

A basic challenge in decision-making is to know how long 
to search for information, and how to adapt search 
processes as performance, goals, and the nature of the task 
environment vary. We consider human performance on two 
experiments involving a sequence of simple multiple-cue 
decision-making trials, which allow search to be measured, 
and provide feedback on decision accuracy. In both 
experiments, the nature of the trials changes, unannounced, 
several times. Initially minimal search is required, then 
more extensive search is required, and finally only minimal 
search is again required to achieve decision accuracy. We 
find that people, considered both on aggregate, and as 
individuals, are sensitive to all of these changes. We 
discuss the theoretical implications of these findings for 
modeling search and decision-making, and emphasize that 
they show adaptation to an external error signal must be 
accompanied by some sort of internal self-regulation in any 
satisfactory account of people’s behavior. 

Keywords: evidence accumulation, heuristics, decision-
making, learning, self-regulation 

Introduction 
 A problem faced commonly by decision makers is 

determining how much information to incorporate into a 
decision. Some decisions are trivial (e.g., choosing a 
breakfast cereal), but some more important (e.g., choosing 
a mate), and consequently the amount of information or 
evidence examined prior to deciding will vary. One way 
to model this variance is to suggest that people sample 
evidence sequentially and adjust the amount of evidence 
they consider according to a decision threshold. Inherent 
in this conception is that thresholds will vary not just 
between decisions but also between individuals (Lee & 
Cummins, 2004; Vickers, 1979). Newell (2005) suggested 
an ‘adjustable spanner’ (or wrench) to capture this idea; a 
spanner in which the width of the jaws represents the 
amount of evidence a person accumulates before making 
a decision. In this paper we develop this perspective by 
examining how people learn to adjust their evidence 
thresholds in dynamic decision environments.  

Adapting to changing environments 
Some recent studies examining adaptation to changes in 

the statistical structure of decision environments have led 

to rather pessimistic conclusions. Bröder and Schiffer 
(2006) considered environments in which either a 
compensatory strategy (one which weights and integrates 
all cue information) or a noncompensatory strategy (one 
which considers only a subset of the information) was 
optimal with respect to the expected monetary pay-off. 
Participants detected the appropriate strategy in 
whichever environment they encountered initially, but 
when the environment changed (mid-way through the 
experiment) most participants retained the same strategy 
despite its sub-optimality in the new environment. Bröder 
and Schiffer explained these results in terms of the 
application of maladaptive routines: participants used a 
‘top-down’ deliberative mode of thinking in the initial 
phase to work out the appropriate strategy, but then when 
this appeared to work successfully slipped into a more 
‘bottom-up’ routine mode and thus failed to test the 
consequences of applying the strategy on each trial when 
the environment changed.  

In a similar vein, Rieskamp (2006) used decision 
environments in which the lexicographic strategy Take-
the-Best (TTB; Gigerenzer & Goldstein, 1996) was more 
or less adaptive (in terms of expected monetary pay-off) 
than a weighted additive strategy (WADD; e.g., Payne, 
Bettman & Johnson, 1993). In the noncompensatory 
environment TTB led to 83% correct predictions 
compared to WADD’s 60%; and these values were 
reversed in the compensatory environment. Participants 
who transitioned from the non-compensatory environment 
to the compensatory one showed a distinct inertia, 
resisting the change to the more adaptive strategy. Those 
transitioning in the opposite direction showed more of a 
change (the fit of TTB increased relative to WADD in the 
final block of trials) but this was tempered by a less 
pronounced adoption of WADD in the first half of the 
experiment. The inertia effect was predicted and 
explained by the Strategy Selection Learning model of 
Rieskamp and Otto (2006). The model states that 
adaptation will be very slow because a strategy that is 
successful in the initial environment will accrue 
considerable reinforcement, and this reinforcement will 
only gradually diminish in the novel environment on the 
rare occasions when a participant explores the potential of 
the competing strategy. 
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Taken together, these results suggest that when the 
statistical structure of an environment changes 
participants show resistance to adapting the strategies 
they employ (or the level of evidence considered) for 
making their decisions.  

Learning to adapt: exploitation vs. exploration 
One of the great discoveries of modern cognitive and 

biological psychology is that learning is driven by the 
process of error correction or gradient descent. Credit for 
this insight is usually given to Widrow and Hoff (1960) 
although it was discovered independently by researchers 
in several fields (see Newell, Lagnado, & Shanks, 2007, 
Chapter 11). The basic notion is that learning occurs via 
the process of trying to minimize the error between an 
actual outcome and the predicted outcome of a learning 
episode (e.g., Rescorla & Wagner, 1972; Young & 
Wasserman, 2005). This assumption of ‘supervised 
learning’ is built into many models of learning in decision 
problems (Yechiam & Busemeyer, 2005). However, 
error-correction is not the only way in which organisms 
learn about their environment. Reinforcement learning 
contrasts with strictly supervised learning by balancing 
the exploitation of error-minimization with the 
exploration of behaviors that can improve the current 
‘state’ of the organism (Young & Wasserman, 2005).  

In the context of the studies described above, this 
exploitation-exploration balance is analogous to the trade-
off between accuracy and the effort expended in making a 
decision. When accuracy is the sole concern, the amount 
of effort expended is not a factor in determining behavior; 
however if there is a pressure of cost, or time, or cognitive 
resources then effort is also considered. The question of 
exactly how the cost and benefits of accuracy and effort 
are traded-off against one another has been subject to 
considerable research, but there is still no consensus on 
how people learn to adapt their strategy or information 
acquisition to the environment (Beach & Mitchell, 1978; 
Bröder & Newell, 2008; Payne et al., 1993; Rieskamp, 
2006; Rieskamp & Otto, 2006).  

In the studies of Rieskamp (2006) and Bröder and 
Schiffer (2006) participants were, arguably, able to rely 
on both error-correction and reinforcement mechanisms to 
facilitate the transition to more optimal strategies when 
environmental conditions changed. Error-correction 
learning was feasible because participants were provided 
with corrective feedback on each trial, and crucially, the 
accuracy of the different strategies changed in the two 
environments. This means that the ‘teaching signal’ 
necessary for supervised learning to occur was present 
(Young & Wasserman, 2005). Reinforcement learning 
could have occurred if participants had been willing to 
engage in sufficient exploration of the environment to 
discover that an alternative strategy was optimal. The 
failure to engage in this exploration was explained by 
Bröder and Schiffer in terms of routinization effects and 

in terms of ‘over-learning’, or a too-high expectancy of a 
strategy’s success in Rieskamp’s (2006) SSL model.  

Can people learn to adapt a threshold? 
Our aim was to examine the relative roles of error-

correction and reinforcement learning in decision making. 
We designed a situation in which there were two changes 
in the statistical structure of the environment during the 
course of the experiment. In an initial block, participants 
learned in an environment in which the predictions of a 
noncompensatory strategy (TTB) and a compensatory 
strategy RAT (for ‘rational’) were identical. Under the 
assumption that correct inferences based on less 
information provide greater reinforcement than correct 
inferences based on more information, one predicts that 
information search will be reduced when the accuracy of 
strategies is equated (Rieskamp & Otto, 2006). This 
should lead to the adoption of TTB-like behavior, or 
lower evidence thresholds. In the second block, the 
environment changed so that the RAT strategy now led to 
more correct predictions than TTB. Thus participants 
could rely on error-correction learning to adapt their 
thresholds upwards. In concrete terms, if participants 
persisted with a low-threshold in block 2 this would lead 
to a high number of incorrect responses. These responses 
should act as a signal to participants to change their 
behavior. In block 3 the environment changed again, back 
to one in which RAT and TTB made identical predictions. 
Of crucial interest here was whether participants would 
accumulate less evidence, or whether they would continue 
with a higher threshold. Note that because the accuracy of 
both strategies was identical in block 3 there is no 
‘teaching signal’ to indicate that a higher threshold is no 
longer necessary. Thus, if a participant continues to use a 
high threshold in block 3 she will maintain the same level 
of accuracy as she experienced by the end of block 2. In 
order to learn to adapt the threshold in block 3 a 
participant must engage in some exploration of alternative 
levels of evidence. 

Previous research examining behavior in dynamic 
environments has tended to focus only on situations in 
which the accuracy of strategies change and in which 
optimality of a strategy is measured in terms of the 
expected monetary pay-off. Our study differs from these 
in that our environment has an initial change signaled by 
accuracy, but then a second change which can only be 
learned via exploration and subsequent reinforcement of 
successful behaviors. In addition, participants did not earn 
money for correct predictions in our experiment. They 
were motivated to score highly (the best performing 
participant was awarded with $15) but the principal 
motivator was time. In Experiment 1 there was the simple 
time cost for obtaining information about each cue and in 
Experiment 2 this cost was exacerbated by introducing a 
time delay between accessing the cue and being provided 
with the cue value. Thus ‘optimality’ was defined in terms 
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of the opportunity costs related to the time taken to obtain 
evidence. 

In summary, our aim was to examine the role of error-
correction and reinforcement learning in an environment 
with time-costs. Prior research suggests caution in 
predicting changes in behavior as a result of changes in 
the environment. We did not provide any indication to 
participants that the environment would change, nor did 
any surface features of the experimental task change 
across the blocks. Thus, any observed threshold changes 
can only arise from participants’ balance between 
exploitation and exploration of the environment (cf. 
Bröder & Schiffer, 2006). 

Method 
Participants 
Fifty-nine undergraduate students (Experiment 1 N=30; 
Experiment 2, N=29) from the University of New South 
Wales participated in return for course credit.  

Stimuli 
The experimental environment was created by selecting 
pairs of objects from the German cities environment used 
by Gigerenzer and Goldstein (1996). Each object was 
described by nine binary cues and had an associated 
criterion value. The cues and criterion were re-described 
according to a cover story about the search for an energy-
efficient fuel source, as described in the Procedure section 
below.  

The sequence of trials was designed in terms of 3 
consecutive blocks 50, 100 and 50 trials. For blocks 1 and 
3 TTB and RAT made an identical number of correct 
predictions. In block 2 this was only the case for 50% of 
trials; on the remaining 50% TTB and RAT made 
opposite predictions with RAT making the correct 
prediction in each case, making it the more successful 
(accurate) strategy. Participants were given no indication 
of the block structure used to design the trial sequence. 

Procedure and Design 
The experimental task involved making decisions about 
which of two objects had a higher criterion value for 200 
trials. The task was framed as a search for an energy 
efficient fuel source. On each trial participants were 
presented with two samples (A and B) and a selection of 
nine tests which they could ‘run’ in order to investigate 
the samples; the tests included “Does the sample contain 
Actinium?”, “Was the seismic analysis positive?” 
Clicking on a “RUN TEST” button revealed the answer to 
each question as either YES or NO. 

Each test had a ‘success rate’ which was a veridical 
indication of the validity of each test as predictor of 
whether the sample was richer in the new energy efficient 
fuel. The success rate for each test was presented on 

screen and was described to participants as follows: “if a 
test has a success of 75% this means that if there were 
100 trials in which one sample had a positive result (YES) 
for that test and the other sample had a negative result 
(NO) for that test, then the sample with the positive result 
would be the correct choice (be richer in the energy 
source) on 75 of those 100 cases, whereas for the 
remaining 25 cases the other sample would have been 
richer in the energy source” (cf. Rieskamp & Otto, 2006). 
The success rates for the nine tests were: 99, 91, 87, 78, 
77, 75, 71, 56 and 51%, as per the cue validities in the 
German cities environment. 

Participants had to run at least one test per trial but 
were free to choose as many as they liked after that, 
before making their decision. Following each decision 
feedback was provided, and a record of how many correct 
decisions had been made was shown on the screen 
throughout the experiment. The only difference between 
Experiment 1 and 2 was that in Experiment 2 there was a 
time cost to running each test. Specifically, participants 
had to wait for 3 seconds for the result of each test to be 
displayed on the screen. During this time a message with 
the words “Computer now running test” appeared on the 
screen.  

Results 
Figure 1 shows the results for one participant in 

Experiment 1, and is presented to help make clear the 
structure of the experimental design, and the focus of our 
analysis. The solid line in Figure 1 shows the pattern of 
change, expressed as a running weighted average over a 
small window of trials, in the proportion of extra cues 
searched. This measure is described in detail below, but 
basically measures the extent of search on a normalized 
scale, where TTB-consistent search corresponds to the 
value 0, and RAT-consistent search corresponds to the 
value 1. The gray dividing lines show the conceptual 
division of the trial sequence into three blocks, with 
blocks 1 and 3 having trials where RAT and TTB make 
the same predictions, but block 2 having trials where RAT 
outperforms TTB. Those trials on which the participant 
made a decision error are shown by crosses. 

As Figure 1 shows, the sample participant started by 
using many tests (i.e., searching many cues), but quickly 
adapted to search fewer as block 1 progressed. After 
making a single error after the change of block at trial 50, 
she began running more tests, to a level consistent with 
the RAT approach. After trial 150, however, she seems to 
again reduce her search slightly but consistently, and use 
fewer tests. Importantly, she did this without having made 
any errors in the trials around the change from block 2 to 
block 3. It is these patterns of change in search behavior 
across the three blocks, at both the group and individual 
participant level, which are the focus of our analysis. 
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Figure 1: Performance of a sample participant from Experiment 1, showing a weighted running average of the proportion of 

extra cues searched over the 200 trials. The 3 blocks, differing in the predictive performance of the RAT and TTB heuristics, 
is shown by the gray lines. Those four trials on which the participant made an error are indicated by crosses. 

 
First, however, Figure 2 displays the accuracy achieved 

in the three blocks of both experiments. The figure 
indicates that participants were highly accurate 
throughout, but experienced a slight decrease in accuracy 
in block 2 when the environment changed to one in which 
RAT was the better performing strategy. This pattern was 
revealed by a quadratic trend for Block; the trend was 
confirmed by a repeated measures ANOVA which 
significant in Experiment 2 F (1, 28) = 12.10, p = .002 but 
not in Experiment 1 F (1, 29) = 2.19, p = .149. 

 

 
Figure 2: The proportion of correct predictions in each 

block of Experiments 1 and 2. 
 

Figure 3 shows that the slight decrease in accuracy in 
block 2 was accompanied by an increase in the number of 
cues acquired (i.e. the number of tests participants chose 
to ‘run’ on the samples). The figure shows that 
participants tended to ‘widen the jaws’ or increase 
evidence accumulation from block 1 to block 2. This 
increase is perhaps not surprising given that the RAT 

block 2. More surprising is the decrease in evidence 
accumulation observed in block 3. Here, participants learn 
to ‘narrow the jaws’ again even though the accuracy of 
the TTB and RAT strategies is identical in block 3. The 
differences in cue acquisition are small but the pattern in 
both experiments led to significant quadratic trends, F(1, 
29) = 30.58, p < .001 and F(1, 28) = 35.41, p < .001 for 
Experiments 1 and 2 respectively, reflecting the upturn 
from block 1 to 2 and then downturn from 2 to 3. 

 
Figure 3: The number of cues acquired in each block of 

Figure 4 shows that this ten ency to decrease evidence 
ac

proportion was also 83% (25/30 participants). 

Experiments 1 and 2. 
 
d

cumulation in block 3 relative to block 2 was present in 
the clear majority of individuals. The figure uses data 
from Experiment 2 and plots the average difference in the 
number of cues acquired in the last 50 trials of block 2 
and the 50 trials of block 3. If participants decrease their 
search this value is positive; if they increase it is negative. 
The figure shows that 24/29 (83%) participants had a 
positive value. In Experiment 1 (not plotted) the 

strategy leads to more correct inferences than TTB in 
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Figure 4: Individual data showing the difference in the 
average number of cues acq red in the last 50 trials of 

A in 
Fi ure 1, examined the number of cues acquired beyond 
th

ui
block 2 and the 50 trials of block 3 (Experiment 2). 

 
 final measure of cue acquisition, anticipated 

g
e single discriminating cue predicted by the TTB 

strategy, as a proportion of how many cues remained. 
This measure is important because on some trials several 
cues need to be examined before a discriminating one is 
found; a fact that is not taken into account when only the 
raw number of cues acquired is considered. To illustrate: 
if the TTB ‘stopping point’ on a given trial was 3 cues 
and a participant acquired 4 of the 6 remaining cues, a 
value of .75 (4/6) would be recorded for the ‘extra cues’ 
measure. Figure 5 shows that the acquisition of extra cues 
follows the now characteristic pattern of an increase from 
block 1 to 2 and a decrease from blocks 2 to 3. The lower 
proportions over-all in Experiment 2 presumably reflect 
the additional opportunity cost of the time manipulation. 
The quadratic trends were highly significant in both 
experiments F(1, 29) = 32.08, p < .001 and F(1, 28) = 
49.51, p < .001, for Experiments 1 and 2 respectively. 

 
Figure 5: The number of extra cues (i.e., those beyond a 

single discriminating cue) acquired, expressed as a 
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p

in search 
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Pa

proportion of the remaining cues in each block of 
Experiments 1 and 2. 

Discussion 
iments, participants 

n when the envi
ategy requiring

erformed more accurately, and subsequently decreased 
accumulation when the environment changed back to one 
favoring a more frugal information search. Importantly, 
although the first change in the environment was signalled 
by a change in the accuracy of competing strategies, the 
second change could only be detected through the 
exploration of alternative levels of evidence, because both 
strategies were matched in terms of accuracy. These 
results contrast with previous failures to induce shifts in 
the strategies people adopt for making decisions in 
dynamic environments (Bröder & Schiffer, 2006; 
Rieskamp, 2006). The contrasting results are perhaps due 
to the different way in which adaptive changes are 
defined in this experiment and previous research. Earlier 
studies defined adaptive changes as a shift in the relative 
fit of a strategy (TTB or WADD) over blocks of trials; 
here a change is defined as shifts in the amount of 
evidence accumulated (trial-by-trial) following changes in 
the environment. It is possible that this latter definition 
increases the likelihood of observing adaptation. 

The shifts in levels of evidence appear to have been 
driven by a desire to balance accuracy with the time cost 
of obtaining information. In this sense, the shifts 

ehavior moving from block 2 to block 3 show that 
people are self-regulating their decision-making, and are 
not solely adapting on the basis of accuracy. The time 
delay in Experiment 2 had an impact on the overall levels 
of evidence accumulated but did not appear to accentuate 
the differences in evidence accumulated between blocks.  

Many investigations of the adaptive nature of decision 
making pre-suppose that participants have access to a 
repertoire of cognitive strategies (Bröder & Newell, 2008;

yne et al., 1993; Rieskamp & Otto, 2006). Strategies 
are then selected according to the constraints of the 
environment, and presumably the preferences of the 
individual. In many recent studies the ‘selection problem’ 
has been reduced to one between TTB-like strategies and 
WADD- or RAT-like strategies. Our theoretical 
perspective differs from this in arguing that such 
behaviors are extremes in a sequential sampling evidence 
accumulation model (Lee & Cummins, 2004; Newell, 
2005). We believe that the current experiments provide 
further support for this perspective. Note that strict 
adoption of a TTB strategy entails stopping search as 
soon as a single discriminating cue is found (Gigerenzer 
& Goldstein, 1996); such behavior would lead to a value 
of 0 Figure 5. Clearly very few participants adopt this 
strict form of TTB as the average proportion of extra-cues 
considered ranges between approximately 0.4 and 0.75 
even in those environments in which TTB performs well 
(blocks 1 and 3). Similarly, a strict RAT strategy predicts 
the accumulation of all cues on every trial; the values 
displayed in Figure 3 shows that, on average, such 
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behavior was not observed. Thus, shifts in evidence 
accumulation can be interpreted not as transitions 
between discrete strategies, but shifts in a continuum of 
evidence. 

The parsimony of such an explanation relies on an 
adequate model of how people learn to regulate their 
evidence threshold. In addition, preferring such an 
ex

 model that 
us
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m
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planation requires situations in which an evidence 
accumulation model can provide a better account of 
behavior than a strategy selection model. Such work is yet 
to be done, but we can speculate about how successful the 
two approaches might be given the current data sets. The 
SSL model of Rieskamp and Otto (2006) uses a 
reinforcement mechanism to update the expectancy of a 
given strategy. It is able to use both accuracy and ‘effort’ 
signals to update expectancies. For example, in Study 3 of 
Rieskamp and Otto the model was able to capture 
participants’ transition towards TTB in an environment 
where TTB and WADD made approximately the same 
number of correct predictions but information was costly, 
thus favoring a TTB strategy. Nevertheless, SSL predicts 
inertia effects when environments change (the 
environment was constant in Rieskamp and Otto Study 3) 
and thus it might have difficulty capturing the relatively 
fast transition between levels of evidence often seen in 
our data. The ability of the model might depend also on 
how adaptive change is defined (see earlier). 

Another candidate model of threshold regulation is the 
Self Regulating Accumulator model developed by 
Vickers (1979). This is a sequential sampling

es ‘boundaries’, corresponding to levels of evidence, 
which control how much information is gathered before a 
decision is made. It also proposes mechanisms that 
adjusts these boundaries on a trial-to-trial basis, and so 
provides an account of learning and adaptation. Crucially 
for our data, a large part of this adaptation is self-
regulation, based not on external feedback, but on 
controlling the internal level of confidence the model has 
in its decisions. This capability would explain the shift in 
search behavior moving from block 2 to block 3 in our 
experiment, and the way that Vickers (1979) proposed the 
boundaries are adjusted would also potentially predict the 
relatively sudden shift in search behavior we observed. 

In conclusion, we believe our results present clear 
guidance and challenges for understanding how 
information search is regulated in human decisio

aking. While previous research has emphasized 
accuracy as a basis for adaptation, our results suggest this 
alone cannot be sufficient, and some form of internal self-
regulation is also important. Possible theoretical ideas for 
understanding self-regulation include the notion of 
minimal effort and adaptation based on controlling 
internal levels of decision confidence. We plan to pursue 
these ideas to develop models of how people adapt their 
search and decision-making in changing environments 
and circumstances. 
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