Lawrence Berkeley National Laboratory
Recent Work

Title

THEORY OF n-N SCATTERING IN THE STRIP APPROXIMATION TO THE MANDELSTAM
REPRESENTATION

Permalink

https://escholarship.org/uc/item/32c2s069

Authors

Singh, Virendra
Udgaonkar, B.M.

Publication Date
1961-02-09

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/32c2s069
https://escholarship.org
http://www.cdlib.org/

Btz
UCRL-9561

UNIVERSITY OF
CALIFORNIA

Ernest O [ quwrence
Radiation
Laborator

ﬂ

-

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545 - -
_ Y

BERKELEY, CALIFORNIA




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



: sty et -~
?.&q-*.;}f' b
; Mi)"f,"}!-. : '
E Pl
W%\?"%fé i . e AR S P S

Fa

UCRL-9561

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

THEORY OF 7w-N SCATTERING IN THE STRIP APPROXIMATION
TO THE MANDELSTAM REPRESENTATION

Virendra Singh and B. M. Udgaonkar

February 9, 1961

o



3. UCRL-9561
THEORY OF n~N SCATTERING IN THE STRIP APPROXIMATION
TO THE MANDELSTAM REPRESENTATION
Virendra Singh and B, M. Udgaonkar
Lawrence Radiation Laboratory
University of California
Berkeley, California

February 9, 1961

ABSTRACT
The strip approximation to the Mandelstam representation is applied

vto the xn<N problem, and the basic equationé given. The asymptotic behavior
of the invariant amplitudes in the phyéical regions is discussed in terms of
the unitarity condition on partialawave‘amplitudes, the constancy of high-
energy scattering cross sections, and the Pomeranchuk theorem, and it is
shown to imply that no subtractions should be necessary except in the J = l/é
 wave of the n-N channel and the J = O wave of the =« + x - N + N channel.
This obviates the difficulties encountered by earlier workers when they

subtracted higher waves.
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TO THE MANDEISQAM REPRESENTATION

X ¥

Virendra Singh and B, M. Udgaonkar

Lawrence Radiation Laboratory
University of California

Berkeley, California

February 9, 1961

I. INTRODUCTION ,

In the preceding peper Chew and Frautschi (CF)1 have discussed the
pion~-pion scattering problem in the Mandelstam representation,2 taking into
account the regions of the double-spectral functions (hereafter abbreviated
as dsf's) nearest the physical regions. The purpose of this paper is to
initiate a similar program for the pion-nucleon problem.

In the next section we describe the kinematics and the location of
the singularities of the invariant amplitudes for the problem in terms of
the Mandelstam diagram. The notation for the dsf's in the different regions
is also fixed. The unitarity condition on the elements of the scattering
matrix is then used in Section III to put limits on the possible asymptotic
high-energy behaviors of the invariasnt amplitudes in all three channels. The
implications of the constancy of high-energy pion-nucleon cross sections and

of the Pomeranchuk theorem have also been analyzed in this section. This

Work.done under the auspices of the U..S. Atomic Energy Commission.

J._
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knowledge of asymptotic behaviof iS'used.in Seétion IV to argue that the only
independent subtractions that can be carried out aré the subtraction of the

J = l/? part of the amplitude in the =n<N channel and of the J = O.part in
the 1t + ®* > N + N channel. We are thus spared the necessity of making
subtraétions of the J = 3/2 part in the =N channel.and of the J = 1 part

in the x + x > N + N channel, which have given rise to difficulties in
previous work using partial-wave dispersion relations,f.5 We then give the
subtracted dispersion relatiohs. In Section V we give expressions for the
double~spectral functions in the strip épproximation. These expressions,
together with the subtracted dispersion relations given in Section IV and the
already known partial-wave dispersion relations, are the basic equations for
the =n-N problem in this approach. Solution of these equations will be

considered in a subsequent communication.
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II. THE MANDELSTAM DIAGRAM
The present approach is best described in terms of the Mandelstam

diagram. We shall use the uswal invariant variables s, s, t defined by

8 = ~(Pl + Pe)?
5 = (P, + Pu)g L | (2.1)
t = =-(Pl + P5)2

/

where Pl’ P5 are the four«momenté of the ﬁiOns, and P2, Ph of the
nucleons, all in-going (Fig. 1). They satisfy
s+’s’+t='am2+2u2=.‘=>: . ' (2.2)

We shall use these variables slso as labels for the channels for which they
are the squares of the energy in the barycentric system.

The physical regions of the three channels are bounded by the curves

Ld

The boundary curves for the regions in which the double spectral functions

2,4 The Mandelstam diagram (Fig. 2)

are nonzero were calculated by Mandelstam.
shows, in terms of s, E, 1t as triangular coordinates, the physical
regions of the three channels.of the four-line diagram of Fig. 1, as well
as the regions where the double spectral functions fail to vanish.

According to Cutkosky,5 the dsf can be expressed as a sum of

contributions of all possible four-vertex diagrams. The only diagrams

1

*
15( )(s, t) in the strip

) 6 (%)
contributing to the dsf's A 3 (s, t), and B
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region R, of Fig. 2 are the ones shown in Fig. 3a and 3b. They are the

1
diagrams in which there are only two particles in the intermediate state iﬁ
the s direction, while an arbitrary number of particles is exchanged in the

t direction. These diagrams in fact contribute to the entire region bounded
by the curve ClC'l with asymptotes s = (m + u)2 and t = 16 p2. But
although they give the dsf exactly in the strip region Rl’ they give only
the "elastic" (in the s channel) part thereof outside the strip, where there
are also contributions from further Cutkosky diagrams which have at least
three particles in each direction in the intermediate state. We have at
present no way of calculating these latter diagrams, and hence we shall
neglect them here. The "strip appréximation" of Chew and Frautschil consists
in calculating the part of the dsf given by the Cutkosky diagrams shown in
Fig., 3, and further assuming that the scattering amplitudes in the physical
regions are dominated by the adjacent strips of the dsf's. Henceforth all
our statements and equations giving relationships between absorptive parts

)

and the dsf's will be in the "strip approximation,” unless a statement is

made to the contrary.

v ~ ' (%) (%) .
We denote the parts of the dsf's A (s, t), B15 (s, t) given

13
by the Cu - (B g (%)
y the Cutkosky diagrams of Fig. 3a and 3b by « (s, t) and B, (s, t),

1
respectively. Similarly, the parts of the dsf's A, (s, t), B, . 2)(s, t)
pectively. Similarly, the parts o e dsf's 5 (8, t), Bz s, t

1
given by the diagram of Fig. 30.(which are the exact dsf;s asmfar as thé

) (%) (£)
strip R, is concerned) will be denoted by o,  ‘(t, s), B, (t, s)

2 2

. _ ()= (%)= .
respectively. The a,'  ‘(s, s), 63 (s, s) are also defined in a similar

3
manner. These strip functions o and B have been indicated in Fig. 2
alongside the corresponding strips where they are the exact dsf's. In

labeling the arguments of the strip functions o and B we adcpt the
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convention that the first variable increases in a direction perpendicular to
the strip while the second increases parallel to it.

We will make a few remarks about certain qualitative features of n-N
scattering which may be expected to follow from the strip approximation.
First, as we have already seen, the contribution to the dsf in strip R2
comes from Fig. 3¢, in which arbitrary inelastic processes are allowed to
give rise to the intermediate state in the s channel, but only two pioné are
exchanged. The inelastic character (for the s channel) of the strip function
in R2 may be éxpected to introduce a substantial imagihary part inte those
phase shifts of =-N scattering which are doginated by the 2n=~exchange

process, namely the high-angular-momentum phase shifts for s > (m + 2u)2,v

It is well known that the phase shifts start becoming complex at s = (m + 2u)2

because of opening ub of inelastic channels, but it is usually assumed that
the imaginary parts are small up to considerably higher energies. The effect
we are discussing should make the imaginary part of d-, f-, ¢+, and
higher phase shifts comparable to the real part very scon after they start

- showing up at all. This fact will have to be taken’into gccount in the
phase-shift analysis of =n=N scattering above approx 300 Mev.

Secondly, we noticé that diagram 3c has a w-n scattering part. We
may therefore expect substantial direct contributions of the m-m interaction
to the forward amplitude in the n-N scattering, and therefore to the total
eross section, again in the région above about 300 Mev, where strip R2 is
assumed to dominate. This direct contribution will, howe#er, vanish in the
low-energy elastic region. Fihally, if the concentration of the dsf's in

the strips is responsible for the characteristic features of high-energy

diffraction scattering in the forward direction, as discussed in CF, we
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would expect the backward peak in xn-N scattering, if it exists at all, to be
mugh broader than the forward peak. In fact; since the nearest singularity
(pole) in the backward direction is about four times as distant as the mean
distance of Ra from the forward direction (Fig. 2), we may expect the
backward peak to be about four times as broad (measured in terms of t or

s ) as the forward peak. The present experimental data, while definitely
indicating & broad backward maximum in x -p scattering at- 2Bev/c, T peed to
be extended to more backward directions and also to higher energies in order

to confirm this point.
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. III. ASYMPTOTIC BEHAVIOR OF AMPLITUDES IN THE PHYSICAL REGION
~We now study some of the restrictions imposed by the: unitarity
condition on the asymptotiec behaviors of our invariant amplitudes. It is:
most convenient to do so in terms of partial wave amplitudes, since the
unitarity condition assumes a very'simplé form in ‘terms of these.

A. Unitarity Limitations in the s Channel (x + N = x + N)

- In this channel we have the following §artialawave expansions for

the invariant amplitudes:

o 2] 50 - i) o0 s
_ 8:r(fl(i) - fa(i)) ; (3.1p)

s =* 0 '
% - T fl(i) * Eow fe(i) | | (3
sy B e (), p (i)) ; - (3.20)

where

f (i)(s, cos ©)

1]

z f (i)(s) P', (cos ) - = f (#)(S)P'z_l(cos e),

1 2=0 £,+ 2+1 0= _z,-
| | (3.3)
fg(i)(s, cos ©) = gf [f 2,- (& )(s) - f£’+(i)(s)]P'z(C°S e) , (3.4)
d (%)
- + e1 83’ sin & (£)
e (B Lt . (3.5)
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One then readily sees that
() (1) () 1 1
A ﬁ 8x i! fz’+ f£+1,- Pﬂ+l + PZ ,  (3.6)
(2) & ( (%) (i))(
B > f + f P! - P! .
s > YF_ yi 2,+ £+1,~ ’ \ £4+1 £
(3.7)
Now we note
Pz | « HErL rr g a1, (3.8)
where the equality holds for z = % 1, and owing to unitarity,
(%) 1
f e, < & - (3.9)

| ' ' + +)
Equations (3.8) and (3.9) enable us to put upper bounds on A(') B(_) .

)

Thus, in the forward direction,

2®) (s, e-0) s:me,, z <f2,+(¢) i fM’_(i))u2 . 1)

I-kR
< %6{—"- z (Ae+1)2~%k3’15<5
£=0

(+ 8 o (E) (%)
B )(s, 8=0) . :'oo \/fm ? (f£?+ + f£+l’_ )£ + 1)

< ____.i.z(gq.‘l) ~__.--l-~k R~ ~ constant.
. s z ) "/S
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Here R 1is the range of interaction, assumed constant. Thus we get,9 in

the forward direction,

(s, 620) = o(s)
(3.10)
B(i)(s, e=0) = 0(1) .
Similarly in the backward direction (& = n) we get
A(i)(s; B=n) = O(sl/é)
(3.11)
B(i)(s, e=nt) = O(sl/é) .
Incidentaliy, we noté'that for Ois 6 £ n,
A(i)(s, cos ®) = 0(s)
- (3.12)
+
B(")(s, cos 8) = O(sl/é) .

It is of interest, from the point of view of the discussion in thenext
section, to put more stringent conditions than Eq. (3.12) on the asymptotic
(<) o S

behavior of A 7, némely

P ) I | (3.12a)

The argument proceeds as follows--one has

re a07)(s, 1) l=‘ —%4 [ ds’ AS(-)(S', £5

! 1
A 87 - q = ° ' ‘
5 Sv s' - X + s «:Ek?(l - cos ©)
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~ 5 [ as! As(-)(s', t) L - 1

s =+ © s' - s s' + %-(l + cos ©)

~ s fns ,

if AS(‘)(s, t) ~ 0(s) . This, however, is impossible, since R A(')
is bounded by s (Eq. 3.12). Hence As(~) must go as o(s), and then

R4 A(-) also goes as o(s) , thus giving (3.12a).

B. Unitarity Limitations in the t Channel

The partial-wave expansion of the invariant amplitudes in this

channel is given bylo

(£ Bxi , p 1/2 1 m cos 6 ' (+)
A = - pg ( q) 3:(.1 + 2) m P J(cos eB)S-J
- 'j%: Pi(cos 63)S+J(i) ,
(3.13)
1
(+) _ _&ipy/? , U3 , (#)
B = a ( a ) § Y P J(cos GB)S-J ,
(3.14)
where
t = Md o+ @O) = M« D) . (3.15)

The unitarity requirement

|8, | < 2 | (3.6
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combined with Eq. (3.8) then gives us the result that for -1 < cos 63 <1,

28 (4, cos 65) = o(+2) , | S  Gan

B(i)(t, cos 63) o(tl/é) . (3.18)

C. Limitations Imposed by Constancy of High-Energy n-N Cross Sections :

and Pomeranchuk "Theorem

The total cross sections for = -p reactions are given by

3 SRS RN € B RPN € SN 5 R
o &2 = m( + o v .:)>9=O
| - (3.19)
oﬂ-p S — Im<ﬁ(+) + A(a) + m(B(+) + B(-))) ;
- (D2 -1 7 6=0 .
\ - (3.20)

where -
= = energy of pion in the lab system. (3.21)

Now the Pomeranchuk theorem states,ll and this is in agreement with present

experimental data, that at high energies

dP - TP g, (3.22)

vhere ¢ 1is a constant. Hence from Egqs. (3.19) and (3.20) we should have
+ ' |
m /A( ) . B(+) _— o , (3.23)
t\s/Em log S @

In L) B<-)> — o, G
s /2m g=0 B @ ’ : )
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‘

The condition (3.23) implies that at least one amplitude out of A(+) and
B(+) must assume the maximal behavior allowed by the unitarity requirements
(3.10). No such stringent requirement is implied by (3.22) on the

amplitudes A(-) and B(-).
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IV. SUBTRACTIONS

A, Independent Subtractions

Wé can now discuss the number of subtractions to be carried out in
the double spectral representation in order to make it'meanihgful. Some
subtractions must in general be carried out for this purpose, and give rise
to single spectral integrals. These may be called independent subtractions,
since the corresponding subtraction terms are not expressible in terms of
the dsfis. Ovef and above, one may carry out further subtractions if one
so desires, but these will give rise to éingle spectral integrals which are
determined in terms of the dsf's. We shall determine the number of
independent subtractions for our problem on the basis of the asymptotic
behaviors of the amplitudes in the physical regions, discussed in the
preceding section; following an argument due to M. Froissarto12

The essence of the argument is that the subtraction of arbitrarily
high partial waves in one channel is not consistent-with_the unitarity
requirements on the asymptotic behavior in the crossed channels. Thus the
subtraction of the J = 5/2 part in the s channel would introduce a term

of the form

o(s')ds?
s!' - s

into the spectral representation of.the amplitude, which, if independent,
would contradict the maximal tl/é behavior in the t channel allowed by
unitarity (cef. Egs. 3.17, 3.18). Hence the only independent subtraction Qo
that could be tolerated in the s channel is that of the J = l/é part.

If one subtracts out the J = 5/2 part also, one has to remember at every

stage of approximation that it is not independent, but determined by the
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dsf's, otherwise one meets with the difficulty of spurious divergences of the

3

s kind encountered by previous workers.

A similar argument shows that only a J = O part can be subtracted

(+)

out in the t channel, and since only A has a J = 0 part, the only

independent subtraction in the t channel is that of the J = O part of the

Al amplitude.

B. Subtracted Expressions for the Absorptive Parts
The subtracted representations for absorptive parts in the s-channel

are nov given by

As(i)(S, s, t) g iﬁ b Im fs}(i) - g - 2 bt Im fP_(—)
) 2
1 (%) (£) 1 1 £
+ = [ at'{a (s, t') + (t', s)} - - (1+ —
= 1 VS 2 T -t 2 UL 2k2>
a,(s) / tr
+ = (1 + =
2 1<_ o2
a‘(s) 1
+ Qﬁ . ——1-2 o [ at {al(i)(s, ') + Ba(i)(t', s)) Ql<l + -—t2>

2k 2k

v e {a5(i)(§', ) aB(i)(s, )

)

| _! a (S) —|.
5 -3 ox>  © ok® o> 1 ok
C 2 e W g e, 3 oy +E=E -8 )‘
H 2 L)
T ? 5 >0 1 o

(4.1)
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(£),. = 1 (£) . (%)
B, (s,s,t)=-E+m bt Im £ +E_mlmIm £
s= p=
oilae e, ) s 0P, o)
;l’ ' 1 b (S) ,]
ML - o+L) + a1+
1;5‘ -t &% O %t 2k 1 ;
b.(s) '
1, 2 () (%) 4!
+ = [ at' {(« (s, t') + « (tt, 8)) Q. (1 + ~—5)
14 2k2 1 2 1 2k2

i_.l

v 2ra 8, P@, 0 F e s, )

[ 1 1 > s b (s) S-8-3' \|
+ Q1 + 2228 ) 1 _ g (1+228280
% i—s_' -3 ok~ O ok° ox> 1 x> j
1% e @@, 0 s 0B, 5)) o (2 + B2
T 52 ) 3 ’ 3 ? 1 2k2 ?
(k.2)
where. “
a (s) = 1 + bn(s - m® +u°)
1 (s - (m - w)?)[s - (m + w2
a(s) = 2m{(s - m)? - ']
2_ (s - (m - 1)21ls = (m + w)?)
. (4.3) |
bl(S) = = al(s) s | ' W
be(s) - hm(s + n° - ue) ,

] [s - (m-w)?ls - (m+ p)°]
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and o
1 x + 1
QO(X) = 3 m( =5 )
(4.%)
x x + 1 ’ '
Ql(x) = "Q-Zn(;—_—-I) -1 .

The expressions for the subtracted representations for the

t-absorptive parts are

(+) - _ lixe (+)o
A, (s, 8, t) = - 5 Imf ()
1Y
2 2
1 ' 1 1 .1 s' +p +q
X | as 5" -8 gt - 3 pq QO( 2pq )

X{al(+)(s', t) + az(+)(t, 8'))

+

]|

L
2

Cra (4) (+), '+ p° 4 g
; [ as (8, (s, t) + B, (t, s ))Ql( 2 2p§ .

(4.5)

At‘-)(s, 5, t) = %f ds* [“1(-)(3" t) o+ O‘2(-)(*" s'))

x{s.l_,s - S,l_ -S-} (4.6)

Bt(i)(S, s, )= 1/ as {Bl(i)(s" )+ Be(i)(t’ =) ]

X {S'l- s * g? l_ 'é‘} . (4.7)

®
L

The partial-wave dispersion relations for the subtracted guantities £

+
£ l(-) in the s channel, and f+(+)o in the t channel, which oeccur
P= ‘ :

2 6,10

above have been given already by Frazer and Fulco, and by Frautschi and

Walecka.6 ’
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V. EXPRESSIONS FOR THE STRIP FUNCTIONS IN TERMS OF ABSORPTIVE PARTS
The contributions to the dsf}s of the C&fkogkyhdiagrams éf the type
éhOWn in Fig. 3» will now be calculated by using the generalized unifarity
condition for each channel, wherein only the lOwésf-ﬁas; tﬁo-partiélé states
are retained in the intermediate~state summation.

A, The Channel ® + N-» x + N

We will describe the =N scattering channel by k , the magnitude
of the barycentric momentum of the pioﬁ,'and e; the_angle through which it

is scattered. ‘Then

{' . ] I . !" 1 ‘ : )
| (K2 + u2)1/'2 . (kz . m2)1/2} o 2
i .

ct
fl

2m2 + 2u2 - 58 = t.

tw
i

|
2, e 2,
- 2k°(1 - cos 6) L - 2k7(1 - z) , and % (5.1)
i
!
i

The generalized unitarity condition applied to this channel gives the strip

(5 B @ @

functions « Bl R 5 0 65 The expressions for ?hese‘were

1

essentially given by Mandel’stam,2 but since they contained a few algebraic

errors, we shall give the correct expressions in our notation.

N

(£)

o (s, t) = X
1 ’ i=1 8n2kw

m

v/ ! 1 (i 4
»‘[ [at' at” K (s5 t, t', t")£,(s; 68, 8NC; L )(s; t', t")

+ [ dst as" Ks(s; t, L-s-8', 5 ~5~s")

3

Wt (s5 6, Do w37, Trs - 50, 2 (s5 51, )
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(%) < { _m - . .
a, (s, 8) = T —— [ at* ds" K«(s; T -8 ~58, t', T -5 - 5")
5 i=1 8x“kW s ” -
. - = Ty o =n __(i) . y Tn .
X\Ei(s, L-s5-8 t',2-8-58 ){Gi‘ts (s; t', 8") + h.c.}| ;
(5.3)
where
' 2 2 2
Ks(s; X5 X5 x3) = X7 Xy % - 2(xl %, t Xy Xy + Xy xl) -
X, %, X ]“I/E
T T o(x) - x,)
(5.4)
and’
Kg(s; X5 X x3) = - x12 + x22 + x32 - 2(xl X + Xy Xg + X5 xl)
X, X, X ~1/2
- ’—kz—é G(xl_ - Xl) y
(5.5)
with
| | 1/2 /2 |2
| v =2)| & |xs —2) ] (5.6)
X = X - |, —— .
1+ 2 1x? 5 e J J ’
and Gi'xp(i)(S; X, y) are bilinear combinations of absorptive partsl3
defined by
v + * : * (- &
Gl;)nu( )(53 X, ¥) = AV)\(+)(S) x) Au(+)(s) Y) + 2 A-X( )(S, x) AP-( )(S, Y):

(5.7)
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o (55 3% 9 = 256,20 806, ) 42450, 3 (s, 3)
= Gfa;xu(+)($5 ¥, X) (5-8)’
G s 1 v = B, 03, ) 428 s, 08 6, 0
(5.9)
G s 1y = A5, 0 8 s, 3+ 2 s, 08 s, )
+ A*L(_)(S; X) AH(&)(S’ Y) ;
(5.10) -
I I W E AR CH S R W CAE RO
| + 25, 03 s, ),
= G’};M(“)(s; v, x) (5.11)
Gh;hu(')(ss.x, y) = B%h(')(s, x) Bu(+)(§, y) + B*K(+)(s, X)‘Bu(')(s, ¥)

1+. B*x(-)(sy'x):B;(-)(s: y) ;
(5712)

and the Zi'si are’kinematical factorSﬁgiQén by

(t' + t" =~ t)(s + u2 - me)
W (n® - ®)2 - s3]

2,(s5 ¢, £', t") = 1 + s ' (5.13)
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(5 &, t, £7) = gy(s; t, 7, t)
(s - mt - W2) (£ - &" +t)

, ot =t - t)(s +° - n°)

) bt i(n® - 4B)% - 53] ’
(5.14)
and .
: Vo oan 2 2 2
zl;‘(s'; t, "b', tﬂ) (t -t ; t )gsa‘ n )(S_+ g _-m ) . (5.15) |
W(m® - u%)° - s sl :

+ 4,
The corresponding expressions for the strip functions Bl"(s, t) and 63 (s, s)
are obtained from Egqs. (5.2) and (5.3) by replacing the kinematical factors

Zi therein by m, defined by

(s + n - 92)(t -t - t")
k[ (n® - u5)% - 8 5]

ml(s; t, t', t") ’ : (5.16)

t - t' + "

me(s; t, t', t") ”

m5(s; t, t", t')

(t -t' - t")(s + m° - u°)

W(n? - 4B)2 - s 5] ’
(5.17)
2 2 2 2 2 1 "
m(s; t, t', t") = S——E- - (s - m )és to - )(t_- £ - t")
~ bm{(m™ - u7)° - s s8]
(5.18)

B. The Channel x +x = N + N

We have the following expressions for s, E,' t in this channel:
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' 2 2
s = -q -p +2pgf
- 2 2
s = -q -p - 2pqt - ' (5.19)
where q = ] [Ny | = I % I is the magnitude of the momentum of the pions,
P = | Py | = | Ep ': 1s the magnitude of the momentum of the nucleons, and

In writing the generalized unitarity condition for this channel we shall
need the S-matrix element for - séattéring. We shall define this with fhe

same normalization as in Chew and'Mandelstam,5 viz.,

(@' a'y Islaa) = Caya,laq)

21(20)> 8" (' + @', - q) - a))

+ 1]
. (@ ap [H e 9.
(a',, Q' a )l/2
10 T 20 %0 %o “ (5.20)
With this normalization, jq -has the partial-wave expansion
| (2 + 2)1/2 18, A
H: 9 T i/ (22 +1) e sin 8, P (q. +q'.) . (5.21)
q p AR AR 1

The generalized“unitafity qondition with only 2ﬁ"intermediéte states then

N

gives,

' . +
(e, 0 = g fa WGt -3 EERE 8T e

(5.22)

and
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Im B(t, ¢) = sa— [ A [ =L B, ) A ¢, (5.29)

21rWt 1-¢
where (see Fig. 4)
' Ay A

= (ﬁl ¢ ﬁl)} g' = (al * a“l)) C" = (q'l'Pl) 2
and

3. - g1 2ae agr | |

d”’q T dq 1 aQ . . -
Ve

These equations hold separately for the T =0 and T =1 amplitudes and

(5 4 @),

lead to the following express51ons for the strip functions a o

ds! d
}ISQSK(t 5, s', s")

a2(i)(t: 5) = 29
2q 2pq

~ﬁWt

(e)

, » | 0
7( A*s(i)(t: S")ng<l)(t’ S') - na(t§ 8, Si: S")B*s(i)(t’ S")j%s(l>(t’ S')

t -—
+ [ 980 d52 ds! 2Ly (45 s, huPt-5', B-t-3")
29 2pq

_ 0
X A*;(i)(t, 5")951)(’6, s') - n(t; s, l:m?-t—g'; Z-t-8"
. 0
x 2%, 3 A (l> (t, E')}

(5.24)

and
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+ 2 ds' ds" .
62( )(t, s) = an f 5 = Kt(t; s, s', s")nﬁ(t; s, s',.s")

t 2q 2pq .

X B%S(i?(t, S“)ﬁs((;)(t, s')

: =t ds" - ' — ; - -
+ [ ds! ds: ¢ (4; s, hug-t-s',bzﬁt-s")na(t; 8, hue-tes',:z-t-s“

2 t
29 2pq (0)
* (& - -
x BE( )(t’ s“)ﬁb l (t, 'S') ]
s (5.25)
where
X + Do 4 g ° 2 2+ 02 4 o2 2
Kt(t; X, ¥, 2) = TP *a + <} +'—Z§4> + z+rtp +4d - 1
: 2pq 2q 2pq

2 2\2/ o o\ |-V
S <l+.L> z+p +q
(5.26)

if the quantity under the square root is positive, and zero otherwise, and

n, s nB are kinematical factors given by /

m[2q?(s“ -8) - s'(s + p? + q?)]
22

n (t; s, s', s")
o , 2 2,2
bp"g” - (s+p +4q°)

5 (5.27)

4po4°[1 +25'/2<1.2]‘a[sé" + (p5 + D) (s +8") .+ (3= + )2 ]
>
4L pq

n(t; s, s*, s")
: . 2 2.2
P - (s+p +q)

(5.28)
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Equations (4.1) through (4.7) for .the abscrptive'pé,rts, the crossing I;elatibné s
and Egs. (5.2) through (5,18)_ana (5.24) through (5.28) for the strip functions,
together with the kno'wn.disper'sion rela‘.l.:ions'for the low partial-wave
absorptive parts, constitute the basic equations fof the gTN problem in

this approach.
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FIGURE LEGENDS
The four-line diagram for the x-N problem.

The Mandelstam.diagram‘for fhé x-N problem.

=

The Cutkowsky diagrams contribﬁting‘to the dsf's in the sfrip

regions Rl(a/b),: Ra(c), and R5(d/é).

The two-particle intermediate_state for the t +' =N + N channel..
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