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Toward a Global Data Infrastructure

Nitesh Mor, Ben Zhang, John Kolb, Douglas S. Chan, Nikhil Goyal, Nicholas Sun,
Ken Lutz, Eric Allman, John Wawrzynek, Edward Lee, John Kubiatowicz

University of California, Berkeley

Abstract

The Internet of Things (IoT) represents a new class
of applications that can benefit from cloud infras-
tructure. However, directly connecting smart devices
to the cloud has a number of disadvantages and is
unlikely to keep up with either the growing speed of
the IoT or the diverse needs of IoT applications.

We explore these disadvantages and argue that
fundamental properties of the IoT prevent the cur-
rent approach from scaling. What is missing is a
well-architected system extending functionality of
the cloud and providing seamless interplay among
the heterogeneous components in the IoT space.
We argue that raising the level of abstraction to a
data-centric design—focused around the distribution,
preservation and protection of information—better
matches the IoT. We present early work on such a
distributed platform, called the Global Data Plane
(GDP), and discuss how it addresses the problems
with the cloud-centric architecture.

1 Introduction

The market has seen an explosion in the number of
smart devices. These latest devices offer rich inter-
activity by connecting to computing platforms and
services.16 Fueled by the growth of Internet con-
nectivity and the augmentation of everyday things,
this shift is commonly referred to as the Internet of
Things (IoT).8

On the “thing” side, we have seen a dizzying array
of embedded platforms, from low-power microcon-
trollers to powerful computing units. They could

be categorized into the following three types. First,
low-power microcontrollers interface with sensors
and actuators directly. Many of them come equipped
with wireless radios to communicate but they are
mainly targeted to run on batteries for years; there-
fore the computing power and the radio range are
usually quite limited. The second category, smart-
phone devices, are mobile and moderately power-
ful, and can be used as sensing devices as well as
gateways to connect other low-power devices to the
Internet.2 The third category consists of stationary
but powerful mini PCs (Mac Mini, Intel NUC, Rasp-
berry Pi, BeagleBone Black, etc.) that act as gateway
devices for other low-power sensors.5

On the “Internet” side, the IoT industry has ben-
efited tremendously from the economic model of
the cloud as the central interconnection hub, com-
putation resource and storage backend. With little
investment in the infrastructure, even novice users
can start collecting sensor data and stream it back
to the cloud.7 Riding on the popularity of the cloud,
many of today’s industrial1, 3 and academic15, 22 IoT
solutions arise by connecting embedded platforms
to the cloud.

At first glance, connecting devices to the cloud
seems to be a natural architecture for IoT applica-
tions. However, several significant problems are
revealed upon closer inspection, including issues
with privacy, security, scalability, latency, bandwidth,
availability and control over durability. While these
problems are not new to typical web applications,
they are exacerbated in the IoT space because of
the fundamental differences between IoT and web
services (see Sec. 2).



Our analysis suggests a need for a new layer of
abstraction for the IoT—one that more naturally fits
the requirements of IoT applications while exploit-
ing the underlying computing platforms that enable
the IoT (like the cloud, the Fog10 and gateways22).
Our proposed abstraction is centered around data. It
is focused on the transport, replication, preservation,
and integrity of streams of data while enabling trans-
parent optimization for locality and quality of ser-
vice. We call the resulting infrastructure the Global
Data Plane (GDP). Its foundation is the concept of a
single-writer append-only log coupled with location-
independent routing, overlay multicast and higher
level interfaces such as common access APIs (see
Sec. 3).

In this article, we analyze the shortcomings of the
existing architecture by explaining the fundamen-
tal differences between IoT applications and web
services. We propose the design of a data-centric
system, called the Global Data Plane (GDP), in or-
der to address the issues in current IoT application
development. Since this is an ongoing effort, we
focus mainly on the design experience with GDP
thus far.

2 Pitfalls with Today’s Approach to IoT

Before discussing shortcomings of the current ap-
proach for IoT, we need to understand the applica-
tion trends. IoT applications fall into two general
categories:

Ambient data collection and analytics: These ap-
plications involve sensors installed in buildings,12 in
cities,4 and on humans themselves.2 Normally, data
is not immediately inspected and the collected data
is later processed for analytics. The magnitude of
data collection is constantly growing and many re-
searchers have predicted a new big-data problem.23

One thing to note is that the collection of this sensor
data may present privacy implications for personal
health, operational security, etc.

Real-time applications with low-latency require-
ments: These applications could be reactive environ-
ments with humans in the loop. To provide a good
user experience for human in the loop, an upper limit
on latency is about 100 ms.18 These applications
could also be autonomous systems where humans
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Figure 1: Although applications usually view the cloud
as the center of all connected devices (upper diagram),
in reality the cloud is usually on the edge of the Internet
backbone, just like other devices (lower diagram).

are not involved (such as robots taking actions based
on sensors). In this case, a tight control over latency
is important for deterministic applications. Tight la-
tency requirements are often incompatible with the
unpredictable performance of cloud-based analytics
or controllers.

Now given this broad classification, the current
approach of connecting IoT devices directly to the
cloud is incompatible with the evolving world of IoT
application for the following reasons.

2.1 A Wrong Model

First of all, the architectural model of the cloud dif-
fers from reality. Application developers view the
cloud as a component that interconnects smart de-
vices. However, from a networking point of view,
the cloud is on the edge of the network (see Fig. 1).
Therefore, even simple IoT applications, such as au-
tomatically turning on lights when someone enters a
room, will experience unpredictable latencies from
sensing, wireless transmission, gateway processing,
Internet delivery, and cloud processing. This model
is also incompatible with the bandwidth distribution;
typical consumer broadband networks have more
downstream bandwidth than upstream bandwidth.
IoT applications, however, generate data at the edges
of the network, a pattern that could easily saturate
the upstream link’s bandwidth—especially at scale.

2



Global 
Data Plane

File System, SQL, 
Key-value, …

TCP/IP, UDP/IP, …

Home Control, Smart Office, 
Follow-me Display, …

Ethernet, Wi-Fi, 
Bluetooth, 802.15.4, AVB

Application

CAAPI

Log

Connection

Physical

Application

GDP Service Layer

Peer-to-peer Routing

Physical Routing Layer (SDN, TSN/AVB)

CA
AP

Is
 

(re
ad

/w
rit

e)

Pu
b/

su
b

Q
oS

 A
wa

re

* SDN: Software Define Networking 
* TSN: Time-Sensitive Networking

Figure 2: The Global Data Plane (GDP) operates above the network level and offers Common Access APIs (CAAPIs)
to applications rather than raw packet routing. We argue that this abstraction is appropriate for IoT applications both in
the cloud and in distributed infrastructure.

Secondly, the usage model of the Internet differs
from IoT applications. Tens of billions of devices14

generating data will be interconnected in a few years.
Techniques like caching popular items do not help in
reducing the bisection bandwidth requirements for a
centralized cloud solution, especially since most data
acquired by IoT devices can or should be processed
locally and immediately discarded.

2.2 Security and Privacy

Sensors implanted in our surrounding environment
may collect extremely sensitive information. In a
recent talk given by Wadlow,21 he described the IoT
as “hundreds of computers that are aware of me, can
talk about me, and are out of my control.” This is a
strong call for intrinsic security and privacy, echoed
by others as well.13, 20 As a centralized resource out
of users’ control, the cloud presents an ever-present
opportunity to violate privacy, already a luxury,6 and
threatened further by the IoT.

2.3 Quality of Services

Guarantees on latency and availability are hard to
realize. Web users tolerate variable latency and oc-
casional loss of web services. In contrast, the tem-
porary unavailability of sensors or actuators within
IoT applications will directly impact the physical
world. While significant engineering effort has been
put into improving the availability and latency profile
of the cloud (allowing Service Level Agreements),
such efforts are stymied by operator error, software

bugs, DDoS attacks, and normal packet-to-packet
variations from wide-area routing. Further, the Inter-
net connection to peoples’ homes is far from perfect
even in developed world; this situation is worse in
developing countries.

2.4 Durability Management

Some sensor data is ephemeral, while other data
should be durable against global disasters. For
ephemeral data, there is no effective way of verify-
ing the data has been completely destroyed because
the cloud is out of the user’s control. Moreover, the
durability achieved by the cloud is typically done
so without concern for application-specific privacy
or export rules. Note that control over durability is
closely related to control over data in general: mak-
ing sure that users retain the control and ownership
over their data rather than service providers.

3 GDP: A Data-Centric Proposal

In contrast to the existing cloud-centric model, we ar-
gue for the Global Data Plane (GDP), a data-centric
abstraction focused around the distribution, preser-
vation, and protection of information. It supports
the same application model as the cloud, while bet-
ter matching the needs and characteristics of the
IoT by utilizing heterogeneous computing platforms
such as small gateway devices, moderately power-
ful nodes in the environment and the cloud, in a
distributed manner. The key mechanism for data
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storage and communication in GDP is the secure,
single-writer log, which we describe in more detail
later. As shown in Fig. 2, this log interface of the
GDP provides a new “narrow waist” upon which
applications are constructed.

3.1 System Overview

The concept of a log is central to the GDP. As the
name suggests, a log is a time-series append-only
data-structure addressed using a flat 256-bit iden-
tifier, called a GDP-name. Logs are lightweight,
durable, potentially distributed over multiple phys-
ical machines, and don’t have a fixed location but
rather are migrated as necessary to meet the local-
ity, privacy, or QoS needs of applications. Logs
are single-writer but support multiple simultaneous
readers—either through random access (pull-based)
or subscription (push-based).

Clients in the GDP are entities that read from
or write to logs—this includes sensors that gener-
ate data, actuators that consume data, and various
software entities in-between that process data by
reading it from an input log and writing it to an out-
put log (see Fig. 3). Logs are physically stored on
log-servers—these log-servers can be small ubiqui-
tous devices in homes, local servers in an enterprise,
or powerful cloud based servers backed by existing
cloud storage systems. Not only logs, but other en-
tities in the GDP (clients, log-servers, etc) have flat
256-bit GDP-names.

GDP-routers are the routing elements that provide
location-independent routing in this large, 256-bit
address space. Our design is guided by the goal that
a client should be able to operate without a single-
point of trust in log-servers and GDP-routers. We
hope to achieve this using a combination of cryp-
tographic operations, trusted hardware and secure
multi-party computation.

We also have a notion of a Control Plane—a set of
services and applications that provide policy enforce-
ment using mechanisms provided by the GDP. As an
example, GDP makes sure that the logs are durable
by ensuring replication across domains guided by a
control plane replication service. The control plane
and the GDP are closely integrated, yet have well
specified boundaries.

We assume that devices (or a proxy gateway de-

vice) have cryptographic keys for signing and en-
cryption. Signatures are used for verifying the origin,
authenticity and integrity of data flow and control
commands. Encryption is used wherever necessary
to provide data secrecy. We are considering addi-
tional mechanisms for privacy that address concerns
about leakage of information through timing or data
format, such as combining data streams together with
artificial noise.

3.2 Design Decisions

In this section, we elaborate on two key design
choices: (1) log interface, and (2) flat Address space.
We describe the rationale behind them and how they
influence the rest of the system design.

3.2.1 The Log Interface

The majority of sensors and actuators in IoT can
easily be represented by a stream of data, hence a
queue-like interface for storing this streaming data
seems to be the most obvious choice. However, the
life-span of this data is application dependent. A
log interface provides a wide range of options: logs
could potentially be truncated for ephemeral data, or
replicated widely for long lived data.

Properties of a Log: Logs are append-only; al-
ready existing data in a log is read-only and can
be securely replicated and validated through crypto-
graphic hashes and signatures. A record is the unit
of read/write to a log; a log is essentially an ordered
list of records. In addition, each log has immutable
metadata created at the time of log-creation. For
each log, our current design exposes append, read
and subscribe APIs. Logs are single-writer, thus en-
abling serialization of records at client side. This
implies that each sensor has its own log, however,
aggregated logs representing more than one sensor
can be created by reading multiple logs and writing
back to the GDP. A single-writer log is minimal but
complete interface that could be used to build richer
interfaces.

A log is created by a client by issuing a signed
create-request, which contains metadata including
the public signature key of the designated writer. The
create-request gets routed through a series of control
plane services, the control plane checks whether the
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client is authorized to create a new log or not, allo-
cates resources for this newly created log, sets up
replication, etc.

Write access control is performed by the log-
servers by validating signature on append opera-
tions against the designated writer’s public signature
key, while read access control is implemented by
encrypting the payload and selectively sharing the
decryption key. Since signatures remain with data, a
malfunctioning or malicious log server is unable to
fabricate data. More details on this are in Sec. 3.3.1.

In addition, a variety of basic control plane ser-
vices could be used for making a log more functional.
A replication service could set up multiple replicas
of a log based on higher level policy decisions, such
as level of durability, geographic span, etc. on a per
log basis. A directory service could be used to asso-
ciate human-readable names to 256-bit GDP-names
on an organization level, or at a user level.

Benefits of a Log Interface: A log interface
makes dumb sensors and actuators significantly more
functional. Low-power sensors usually only generate
data, but can not answer any queries. If data values
are written to a log by such sensors, the log can be
used as a proxy that supports a much richer set of
queries, especially for historical data. A subscription
to such a log provides latest sensor values in almost
real time, thus virtualizing the sensor in some sense.

Actuators, on the other hand, usually need to main-
tain some kind of access control—by physical isola-
tion, some authentication method, or a combination
of both. Instead, if an actuator were to subscribe
to an actuation log to read the actuation commands,
access control can be implemented at the log level.
This makes actuator design simpler and avoids the
pitfalls of ad-hoc authentication mechanisms hastily
put together by hardware vendors.

Representing sensors and actuators with logs sep-
arates policy decisions from mechanisms, enabling
cleaner application designs. Applications can be
built on top of GDP by interconnecting globally ad-
dressable log streams, rather than by addressing de-
vices or services via IP addresses. Further, there is
no need to expose the physical devices with poten-
tially questionable standards of software security to
the entire world, while still being able to connect
things together. The “narrow waist” provided by
such globally addressable logs avoids stove-piped

solutions and provides for a heterogeneous hardware
infrastructure.

Common Access APIs (CAAPIs): Although a
log abstraction shelters developers from low-level
machine and communication primitives, many ap-
plications are likely to need more common APIs or
data structures. In fact, logs are sufficient to imple-
ment any convenient, mutable data storage repository.
Thus, Fig. 2 shows a Common Access API (CAAPI)
layer on top of the GDP. A CAAPI can present a
key-value store, file system or database interface.
Since logs serve as the ground truth, the benefit of
consistency, durability, scalability and availability
are carried over to CAAPIs for free.

3.2.2 Flat Address Space

As mentioned earlier, we use 256-bit long flat ad-
dresses for naming things in the GDP. This is true
not only for logs, clients, log-servers, but also for
control plane services and applications. In particular,
logs are named with a 256-bit identifier which may
be derived from a cryptographic hash of the owner’s
public key and meta-data.

This large address space allows us to employ
location-independent routing that can better match
the goals of flexible placement, controllable replica-
tion and mobility to optimize for latency, QoS, pri-
vacy and durability. Following a variety of placement
and replication policies, GDP places logs within the
infrastructure and advertises the location of these
logs to the underlying routing layer.

GDP-routers take the burden of performing and
optimizing this location-independent routing through
an overlay network that uses a combination of Dis-
tributed Hash Table (DHT) technology and selective
routing. DHT addresses the challenges of scalability
with the sacrifice of an increased number of overlay
hops. Important routes can be optimized by push-
ing routing entries into an underlying routing layer.
Fig. 2 shows this layering.

Based on the interaction between GDP-routers and
control-plane, logs could be migrated and routing
topology altered dynamically. In addition, multicast
trees can be built on top of the overlay network9, 25

to efficiently serve multiple subscribers.
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Figure 3: An IoT application uses GDP to combine heterogeneous data-streams from local environmental sensors and
from a cloud source to actuate a device. Instead of direct communication with devices, the application uses the “narrow
waist” (logs) provided by the GDP. Even though a log is represented as a single data-stream to an application, internally
it can be distributed and replicated over multiple physical log servers to achieve locality and durability.

3.3 Challenges

In this section, we describe the major challenges
that we faced in the design of GDP, and that are of
concern to a general IoT framework.

3.3.1 Security and Privacy

As we have outlined in Sec. 2.2, data security and
privacy is more important than ever, given the per-
vasive nature of devices and actuators. In the GDP,
we design our security and privacy mechanisms and
policies by focusing on the “narrow waist” provided
by the logs.

Logs are stored on potentially untrusted log-
servers. Hence it is important that we do not rely on
a single log-server to provide data-integrity. An ad-
versarial log-server could try to tamper with existing
data in the logs it stores, or may not perform appro-
priate checks on access-control and accept writes
from unauthorized writers, or maliciously re-order
append operations received from a legitimate writer.

We propose to solve data-integrity and write
access-control challenges by using signatures in our
single-writer log model; a writer signs each append
operation with a signature key and performs record-
ordering on the client side by including a hash-
pointer to the previous record in the signed content.
The public signature key for the writer is included
at the time of creation in the create-request, which
itself is signed. All that a log-server has to do is

to perform a signature-validation against this well-
specified public key for any new append operation
it receives. Any accidental or malicious behavior
by a log-server results in invalid signatures or a bro-
ken chain of hash-pointers, and can be detected by a
reader.

Globally addressable logs are a significant privacy
concern if any unauthorized reader could read data
at will. We envision encryption to be the mechanism
for providing data secrecy. GDP does not assume
any structure on the data being written to a log, en-
abling applications to encrypt data before handing it
to GDP. This enforces the minimum trust philosophy
by putting trust in cryptographic constructs rather
than potentially buggy software running on untrusted
servers. Read access-control is managed by the ap-
plication by appropriate sharing of the decryption
keys.

A secondary concern is exposing encrypted data
to adversaries who may analyze timing or data size
at will. To address these concerns, we propose a
collaboration between policy (at the control plane)
and routing (within the GDP) to help mitigate this
problem by controlling the placement of data logs
and path of updates.

3.3.2 Key-management

Since security and privacy in the GDP relies upon
encryption, key management will be of paramount
importance. Although still a work in progress, we
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propose a basic key management scheme as follows.
Each user maintains an encrypted wallet and an

unencrypted public-key registry, both backed by logs.
The user-supplied root key is used to decrypt the
wallet, which contains the secret keys necessary to
sign requests and secret or symmetric keys necessary
to decrypt log entries.

Granting read access amounts to sending a bit-
string over a tamper-proof channel (a log) to a re-
mote entity; this bit string is the necessary decryption
key that is in turn encrypted using the public key of
the remote entity. As a very simple example: Alice
wants to share a log L with a set of users. Alice
creates the log L including the name of an ”access
control log” A in L’s metadata. Alice then encrypts
the contents of L with a symmetric key K and ap-
pends versions of K to A, each encrypted using the
public key of the users who should have access.

This scheme works for simple and static data shar-
ing scenarios. Slightly complicated but efficient hi-
erarchical key management schemes can be created
based on application requirements. In the extreme
case, a compute service in a trusted environment
could be designated as the only reader, with that
service managing read access control lists in more
traditional ways.

4 Related Work

Other efforts exist to address the challenges of IoT.
Cisco’s Fog Computing10 provides computing re-
sources closer to the edge of the network. We believe
that our arguments strengthen the need for fog-like
computing platforms and our proposed GDP archi-
tecture can leverage such resources. Also relevant
are systems such as EdgeComputing from Akamai,11

and Cloudlet.19 In these architectures, the role of
servers is to be intelligent gateways or proxies for
data flowing into and from the cloud. Support for
an entirely decentralized data storage and delivery
platform is apparently absent.

Our data-centric design hails from Oceanstore17

and shares a number of goals with Named Data
Networking (NDN),24 but our focus on the IoT ap-
plication space leads to a number of important de-
sign differences. Among other things, push based
communication—such as from sensors to logs and
from logs to consumers—represents a communi-

cation style utilized extensively in the IoT space
and deemphasized in NDN. A few of our design
decisions are similar to Bolt:15 single-writer time-
series data, chunking for performance, efficient data
sharing, policy-driven storage and data confidential-
ity/integrity. However, Bolt takes the cloud approach
where the pitfalls in Sec. 2 are unavoidable.

5 Conclusions

A prototype version of the GDP has been depolyed
within our own environment and has been running
on a few servers since early 2015, however it is
still a work in progress. Our design for the GDP
is not yet bullet-proof and our initial implementation
has not withstood the test of wide-scale deployment.
Nonetheless, we believe that the core concepts of
GDP overcome the pitfalls mentioned in Sec. 2 in
the following way: the single-writer, append-only
log models sensor data more accurately; integrity
and authentication by design provides better privacy
and security; the distributed nature with peer-to-peer
technology makes scalability possible; explicit sepa-
ration of policy from mechanism enables better con-
trol on level of durability for end users; and finally,
latency, bandwidth and QoS guarantees are enabled
by the integration of the cloud and the local infras-
tructure.
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