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Controllability of structural brain networks
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John D. Medaglia2, Jean M. Vettel4,5, Michael B. Miller4, Scott T. Grafton4 & Danielle S. Bassett2,6

Cognitive function is driven by dynamic interactions between large-scale neural circuits or

networks, enabling behaviour. However, fundamental principles constraining these dynamic

network processes have remained elusive. Here we use tools from control and network

theories to offer a mechanistic explanation for how the brain moves between cognitive states

drawn from the network organization of white matter microstructure. Our results suggest that

densely connected areas, particularly in the default mode system, facilitate the movement of

the brain to many easily reachable states. Weakly connected areas, particularly in cognitive

control systems, facilitate the movement of the brain to difficult-to-reach states. Areas

located on the boundary between network communities, particularly in attentional control

systems, facilitate the integration or segregation of diverse cognitive systems. Our results

suggest that structural network differences between cognitive circuits dictate their distinct

roles in controlling trajectories of brain network function.
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N
eural systems alter their dynamics to meet task demands,
enabling humans to perform the myriad complex
cognitive functions necessary for everyday living. These

capabilities are referred to as cognitive control1–3, and these
include the ability to link multiple sources of information to solve
problems, selective retrieval of information from memory,
inhibition of inappropriate behavioural responses and active
selection and maintenance of behaviourally relevant information
online4. While traditional cognitive theories of control have
implicated competitive dynamics in frontal cortices, fresh
evidence from functional neuroimaging points to an account in
which control functions rely on transitory changes in patterns of
cooperation and competition between distributed neural systems,
including regions in attention, default mode, frontoparietal and
cingulo-opercular networks4.

Conceptually, cognitive control is analogous to mathematical
notions of control used in engineering, where the state of a
complex system can be modulated by energetic input. Networked
systems—like the brain—are particularly interesting systems to
control because of the role of the underlying architecture, which
predisposes certain components to specific control actions.
In the brain, neuronal ensembles or regions (nodes) are
interlinked by anatomical wires (edges) in a complex architecture
that has an impact on neural function5, development6, disease7

and rehabilitation8. It is plausible that the brain could
regulate cognitive function by a transient network-level control
process akin to those engineered in technological, social and
cyberphysical systems. Yet, an exact understanding of the
relationship between mathematical measures of controllability
and notions of cognitive control from neuroscience remains
elusive.

Here we capitalize on recent theoretical advances in network
control theory to investigate how structural features of a brain
network determine temporal features of cognitive dynamics
(Fig. 1). We define a trajectory of a neural system to be the
temporal path that the system traverses through diverse states,
where a state is defined as the magnitude of neurophysiological
activity across brain regions at a single time point. Controllability
of a network refers to the possibility to manipulate network
components to drive the system along a desired trajectory: that is
a set of states culminating in a target state, chosen for its
functional utility. We postulate that network controllability might
be a mechanism of cognitive control: particular nodes (brain
regions) at critical locations within the anatomical network act as
drivers that move the system (brain) into specific modes of action
(cognitive functions).

We exploit the network control theory to address two
questions about how the large-scale circuitry of the human brain
constrains its dynamics. First, is the human brain theoretically
controllable? Growing evidence from brain computer interfaces9

and neuromodulation10 suggests that changes in regional activity
(as measured using functional magnetic resonance imaging
(fMRI) or electroencephalography) can alter the dynamics of
brain function. We therefore hypothesize that the brain is
theoretically controllable in the sense defined mathematically with
the network control theory (see Methods). However, since many
such dynamic processes have an impact on distributed neural
circuits rather than single brain regions alone, we conjecture that
the brain is difficult to control via localized interventions. Second,
which areas of the brain are most influential in driving changes in
brain state trajectories? We aim to directly test for a relationship
between conceptual notions of cognitive control and the
mathematical notions of network control in the context of
known cognitive systems11.

To address these questions, we build structural brain networks
from diffusion spectrum imaging (DSI) data acquired in triplicate

from eight healthy human adults. We perform diffusion
tractography to estimate the number of streamlines linking
N¼ 234 large-scale cortical and subcortical regions extracted
from the Lausanne atlas12. We summarize these estimates in a
weighted adjacency matrix whose entries reflect the number of
streamlines connecting different regions. Finally, we perform a
systematic study of the controllability of the dynamical network
defined by the weighted adjacency matrix. This construction
enables us to examine different controllability measures in
individual participants and to demonstrate that structural
network differences between cognitive circuits dictate their
distinct roles in controlling trajectories of brain network function.

Results
Global controllability. We first sought to address the question:
‘Is the human brain theoretically controllable?’. Theoretical
controllability is the first question that one asks of a system in the
field of network control theory, as it provides a basic intuition for
the ability of interventions to alter system states. In the context of
the brain, this question amounts to asking: can the brain be
moved into an arbitrary target state (for example, active memory
retrieval versus mathematical calculations, or more generally
health versus disease) by changing the activity of a single brain
region? To answer this question, we evaluated the global
controllability: the smallest eigenvalues of the controllability
Gramian for each brain region as a control node. These values
were consistently greater than 0, indicating that the system is
theoretically controllable through a single region, but remained
small (mean 2.5� 10� 23, standard deviation (STD) 4.8� 10� 23)
with respect to the largest eigenvalues (always greater or equal to
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Figure 1 | Conceptual schematic. From weighted brain networks

(a), we estimate control points (b) whose large-scale regional activity

can move the brain into new trajectories that traverse diverse cognitive

functions (c). In c, we show the original state of the system (state 0),

as well as four possible states (indicated by the blue circles) that are

equidistant from state 0 in the state space (indicated by the black circular

line), and which can be reached by trajectories that are more or less

energetically costly (indicated by the height of the purple bars).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9414

2 NATURE COMMUNICATIONS | 6:8414 | DOI: 10.1038/ncomms9414 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


1), indicating that in practice the system is extremely hard to
control through a single region.

The minute nature of the values of global controllability
motivates a more thorough examination of their reliability. In the
Supplementary Methods, we show that values of the smallest
eigenvalues of the Gramian are not reproducible across scanning
sessions (see Supplementary Methods, where the P values for
global controllability are consistently greater than 0.05). However,
we do observe that the approximate order of these eigenvalues is
reproducible and varies monotonically over spatial scales of the
regional parcellation (Supplementary Methods). Together, these
results indicate that, while the brain is consistently theoretically
controllable through a single region, individual differences in
global controllability cannot be accurately measured using these
techniques.

Regional controllability. We next sought to address the question:
‘which areas of the brain are most influential in constraining
or facilitating changes in brain state trajectories?’ To address
this question, we employed three diagnostics of regional
controllability: the average, modal and boundary controllability.
Each of these diagnostics captures a different control goal13.
Average controllability identifies brain areas that, on average,
can steer the system into different states with little effort (that is,
input energy). Here we define a state to be the vector of
neurophysiological activity magnitudes across brain regions at a
single time point. Loosely speaking, regions with high average
controllability can move the brain to many easily reachable states.
If control energy can be likened to cognitive effort and if brain
states can be likened to cognitive functions, then these areas may
be important in allowing the brain to move smoothly between
many cognitive functions that require little cognitive effort.
Modal controllability identifies brain areas that can push the brain
into difficult-to-reach states (states that a require substantial
input energy). From a cognitive perspective, these areas may be
important in switching the brain between functions that require
significant cognitive effort. Boundary controllability identifies
brain areas that lie at the boundaries between network
communities, controlling the integration of cognitive systems.
From a cognitive perspective, these areas may be important in
gating, synchronizing or otherwise manipulating information
across different cognitive processes, such as audition and
language, or vision and motor. For mathematical definitions of
these diagnostics, see Methods.

Average controllability. Average controllability identifies brain
areas that can steer the system into many different states, or
patterns of neurophysiological activity magnitudes across brain
regions. The average controllability is greatest in precuneus,
posterior cingulate, superior frontal, paracentral, precentral and
subcortical structures (Fig. 2a). Strikingly similar to the structural
‘core’ of the human cerebral cortex12, these regions are ‘hubs’,
having high network degree defined as the average weight of
edges emanating from that region. Indeed, the average
controllability is strongly correlated with weighted degree (also
known as node strength; Pearson correlation r¼ 0.91,
P¼ 8� 10� 92; Fig. 2b). In addition to being structural hubs,
we note that these regions also form the anterior and posterior
medial portions of the default mode system (which we explicitly
test in the following section).

Modal controllability. Modal controllability identifies brain areas
that can steer the system into difficult-to-reach states. The modal
controllability is greatest in postcentral, supramarginal, inferior
parietal, pars orbitalis, medial orbitofrontal and rostral middle

frontal cortices (Fig. 2c). Areas with high modal controllability
are not hubs of the network but instead have low degree. The
modal controllability is strongly anticorrelated with weighted
degree (Pearson correlation r¼ � 0.99, P¼ 2� 10� 213; Fig. 2d),
consistent with the notion that difficult-to-reach states require the
control of sparsely connected areas.
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Figure 2 | Brain network control properties. (a) Average controllability

quantifies control to many easily reached states. Here we show

controllability values, averaged across three scanning sessions and eight

persons, and ranked for all 234 brain regions plotted on a surface

visualization. Warmer colours indicate larger values of average

controllability. (b) Scatter plot of weighted degree (ranked for all 234 brain

regions), averaged across three scanning sessions and eight persons,

versus average controllability (Pearson correlation r¼0.91, P¼8� 10� 92).

(c) Modal controllability quantifies control to difficult-to-reach states. Here

we show modal controllability values, averaged across three scanning

sessions and eight persons, and ranked for all 234 brain regions plotted on a

surface visualization. (d) Scatter plot of weighted degree (ranked for all 234

brain regions), averaged across three scanning sessions and eight persons,

versus modal controllability (r¼ �0.99, P¼ 2� 10� 213). (e) Boundary

controllability quantifies control to decouple or integrate network modules.

Here we show boundary controllability values, averaged across three

scanning sessions and eight persons, and ranked for all 234 brain regions

plotted on a surface visualization. (f) Scatter plot of weighted degree

(ranked for all 234 brain regions), averaged across three scanning sessions

and eight persons, versus boundary controllability (r¼0.13, P¼0.03).

In a,c,e, warmer colours indicate larger controllability values, which have

been averaged over both replicates (three scanning sessions) and eight

subjects. These results are reliable over a range of atlas resolutions and are

consistent with findings using a network composed of only cortical circuitry

(see Supplementary Methods). Note that nodes are sorted in an ascending

order of the weighted degree.
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Boundary controllability. Boundary controllability identifies
brain areas that can steer the system into states where different
cognitive systems are either coupled or decoupled. This control
goal complements but differs from those of average and modal
controllability. The boundary controllability is greatest in rostral
middle frontal, lateral orbitofrontal, frontal pole, medial orbito-
frontal, superior frontal and anterior cingulate cortices (Fig. 2e).
In contrast to areas with high average or modal controllability,
areas with high boundary controllability are neither hubs nor
non-hubs. The boundary controllability of all brain regions is not
strongly correlated or anticorrelated with weighted degree
(Pearson correlation r¼ 0.13, P¼ 0.03; Fig. 2f).

Reliability of controllability diagnostics. With any new
technique, it is critical to evaluate the reliability of the estimated
diagnostics. The regional controllability diagnostics that we
report and utilize here are highly reliable across multiple scanning
sessions (see Supplementary Methods), indicating their potential
use in explaining individual differences in cortical function.
Moreover, the anatomical distribution of controllability diag-
nostics is consistent across five parcellation schemes segregating
the brain into 83, 129, 234, 463 and 1,015 regions of interest (see
Supplementary Methods), suggesting that these measures are
robust quantifications of brain dynamics.

In addition to reliability across spatial resolutions and multiple
scanning sessions, we next asked whether our results could be
reliably reproduced using different imaging acquisitions and
different subject cohorts. To address this question, we constructed
234-region structural brain networks from diffusion tensor
imaging data acquired on an independent sample of 85 healthy
human adult subjects14,15 (see the Supplementary Methods
for details on demographics, acquisition, preprocessing and
tractography). Consistent with our previous results, these
data display a strong positive correlation between average
controllability and weighted degree (Pearson correlation
coefficient r¼ 0.88, P¼ 2.5� 10� 80; see Fig. 3a), a strong

negative correlation between modal controllability and weighted
degree (r¼ � 0.99, P¼ 1.2� 10� 184; see Fig. 3b), and a weaker
relationship between boundary controllability and weighted
degree (r¼ 0.0084, P¼ 0.90; see Fig. 3c). These data support
the claim that the architecture of structural brain networks
differentially has an impact on the putative role of brain regions
in different control strategies.

Conservation across species. Finally, we asked whether the
relationship between controllability and topology was conserved
in non-human primates. Using a data set drawn from
CoCoMac16 that delineated 2,402 projections between 95
cortical and subcortical areas17, we again observed consistent
results, including a strong positive correlation between
average controllability and weighted degree (Pearson correlation
coefficient r¼ 0.90, P¼ 4.9� 10� 34; see Fig. 3d), a strong
negative correlation between modal controllability and weighted
degree (r¼ � 0.99, P¼ 1.3� 10� 72; see Fig. 3e) and a
nonsignificant correlation between boundary controllability and
weighted degree (r¼ � 0.19, P¼ 0.074; see Fig. 3f). These data
indicate that the role of brain hubs and non-hubs in different
control strategies is conserved across human and non-human
primates.

Regional controllability of cognitive systems. After confirming
reliability and conservation of our findings, we asked the question
‘are control regions differentially located in or between known
cognitive systems?’ Drawing from the literature, we formulate
three specific hypotheses addressing this question. First, on the
basis of the fact that average controllability identifies areas of the
brain that may be important in steering the system into many
easily reachable states, we hypothesize that areas of high average
controllability would map on to areas active in the brain’s base-
line or ‘default’ state (the resting state), from which the brain
smoothly moves to multitudinous task states. In contrast, modal
controllability identifies areas of the brain that may be important
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Figure 3 | Reliability and conservation of brain network control properties. Brain network control properties are reliable across imaging acquisition and

are conserved in non-human primates. Scatter plots of weighted degree (ranked for all 234 brain regions) versus (a,d) average controllability (Pearson

correlation coefficient r¼0.88, P¼ 1.0� 10� 78; r¼0.90, P¼4.9� 10� 34), (b,e) modal controllability (r¼ �0.99, P¼ 3.9�0� 179; r¼ �0.99,

P¼ 1.3� 10� 72) and (c,f) boundary controllability (r¼0.14, P¼0.028; r¼ �0.19, P¼0.074) for (a–c) human diffusion tensor imaging data and

(d–f) macaque tract tracing data. In a–c, controllability values are averaged over 85 subjects.
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in steering the system to difficult-to-reach states. We hypothesize
that areas of high modal controllability would therefore map on
to areas responsible for the brain’s transitions between difficult
tasks, specifically executive areas involved in cognitive control.
Finally, boundary controllability identifies areas of the brain that
can steer the system into states where different cognitive systems
are either decoupled or integrated. Because these areas mathe-
matically sit at the boundaries between network communities or
putative functional modules, we expect that these areas would
map relatively uniformly on all cognitive systems: each system
having a few boundary nodes that might play a role in linking
that system to another. However, we also postulate a particular
enrichment of the attention systems, on the basis of their role in
feature selection, gating, orienting and multitasking, which con-
strain integration across other cognitive systems.

To test these hypotheses, we assigned the 234 regions of the
Lausanne atlas to the following large-scale cortical networks,
which we refer to as ‘cognitive systems’: auditory, visual,
sensorimotor, ventral attention, dorsal attention, default mode,
frontoparietal and cingulo-opercular. This set of cognitive
systems, and the association of regions to these cognitive systems,
has previously been extracted from resting state data using a
network-based clustering approach11 and has been widely applied
to examine the roles of cognitive systems in task-based and
resting-state connectivity18 (see the Supplementary Methods for
regional attributions to systems).

We find that regions of high controllability are differentially
associated with the eight cognitive systems (Fig. 4), suggesting
that different cognitive systems play different control roles. We
define the set of high control hubs as the 30 regions with the
largest controllability values (averaged over all scans), and we
calculate the per cent of hubs present from each of the eight
cognitive systems. To correct for system size, we normalize the
raw percentage of hubs present in a given cognitive system by the
number of regions in a cognitive system. By applying this
normalization, systems composed of a larger number of regions
do not have an increased normalized probability of housing
one of the top 30 control hubs than systems composed of a
smaller number of regions. Consistent with our hypotheses,
30% of average control hubs lie in the default mode system,
32% of modal control hubs lie in the frontoparietal and

cingulo-opercular cognitive control systems and 34% of boundary
control hubs lie in the ventral and dorsal attention systems. Our
results are qualitatively similar if we choose a larger or smaller set
of control hubs, in different imaging acquisition schemes
including diffusion tensor imaging, and in a large independent
subject cohort (see Supplementary Methods).

These results suggest the presence of a controllability-by-
system interaction: certain types of controllability may be utilized
or enabled by different cognitive systems. To directly test for this
interaction, we extract control hubs for each scan, determine their
association with the three hypothesized control systems (default
mode, frontoparietal and cingulo-opercular cognitive control, and
attentional control) and quantify the mean controllability value
for all hubs in each system (Fig. 5). We observe that regions of the
default mode system form strong average controllability hubs but
weaker modal and boundary controllability hubs. Regions of the
cognitive control networks (frontoparietal and cingulo-opercular)
form strong modal controllability hubs and regions of the
attentional control networks (ventral and dorsal) form strong
boundary controllability hubs. To statistically validate this
finding, we perform a repeated measures two-way analysis of
variance with cognitive system and controllability diagnostic as
categorical factors, and with scan replicate as a repeated measure.
The main effect of system is significant (F(9)¼ 42.40, P¼ 0); the
main effect of diagnostic is significant (F(2)¼ 22.25, P¼ 0.0013);
and the interaction between system and diagnostic is also
significant (F(18)¼ 39.81, P¼ 0). These statistics indeed suggest
that structural differences between the default mode, cognitive
control and attentional control systems may facilitate their
distinct roles in controlling trajectories of brain network function.
From a cognitive perspective, these results suggest that (i) default
mode areas may be important in allowing the brain to move
smoothly between many cognitive functions that require little
cognitive effort, (ii) frontoparietal and cingulo-opercular areas
may be important in switching the brain between functions that
require significant cognitive effort and (iii) attention areas may be
important in gating, synchronizing or otherwise manipulating
information across different cognitive processes. Importantly,
these results are robustly observed in different imaging acquisi-
tion schemes including both with diffusion tensor imaging and in
a large independent subject cohort (see Supplementary Methods).
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Figure 4 | Control roles of cognitive systems. Cognitive control hubs are differentially located across cognitive systems. (a) Hubs of average controllability

are preferentially located in the default mode system. (b) Hubs of modal controllability are predominantly located in cognitive control systems, including

both the frontoparietal and cingulo-opercular systems. (c) Hubs of boundary controllability are distributed throughout all systems, with the two

predominant systems being ventral and dorsal attention systems. Control hubs have been identified at the group level as the 30 regions with the highest

controllability values (averaged over three replicates and eight subjects). Raw percentages of control hubs present in each system have been normalized by

the number of regions in the cognitive system. By applying this normalization, systems composed of a larger number of regions have the same chance of

housing one of the top 30 control hubs as systems composed of a smaller number of regions.
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Discussion
The brain is a networked dynamical system that moves
between diverse cognitive states to enable complex behaviours.
Fundamental principles constraining these trajectories have
remained elusive. Here we use network control theory to offer a
mechanistic explanation for how the brain moves between
cognitive states on the basis of white matter microstructure.
Densely connected areas are postulated to facilitate the movement
of the brain to many easily reachable states and are preferentially
located in the default mode system. Weakly connected
areas, predominantly located in cognitive control systems, are
postulated to facilitate the movement of the brain to difficult-
to-reach states. Areas at the boundary between network
communities, predominantly located in attentional control
systems, are postulated to facilitate the integration or segregation
of cognitive systems. This body of work suggests that structural
network differences between the default mode, cognitive control
and attentional control systems dictate their distinct roles in brain
network function.

Network control theory predicts the controllability of large-
scale neural circuitry. The smallest eigenvalues of the controll-
ability Gramian suggest that structural brain network architecture
is controllable, but is not easily controllable. The possibility of
control is consistent with studies demonstrating that (i) lesions to
single brain areas can have an impact on neural activity,
connectivity and human behaviour19 and (ii) subjects can
control regional activity to modulate pain perception20. Yet, the
brain cannot be easily controlled: it is practically impossible to
move the brain to any target state that we might desire with little
control action (see Supplementary Note 1). For example, moving
any diseased state to a healthy state is difficult, even with a
complex combinations of drugs, brain stimulation and cognitive
therapies21. This control difficulty illustrates the complexity of
cognitive function and calls for the development of new tools to
determine which trajectories are amenable to control, informing
targeted therapies including brain stimulation22.

Average controllability is posited to quantify a node’s role in
moving the system to many easily reachable states. We show that
brain regions with high average controllability tend to be highly
connected hubs, located predominantly in anterior and posterior
medial portions of the default mode system. Other portions
of this system may be important in other control strategies. This
suggests that the brain has a baseline resting state organization
that is optimized to allow the brain to move to a large number of
easily reachable states. If we assume that the brain has been
optimized over evolutionary timescales to enable a complex
functional battery23, these results suggest the intriguing
possibility that the large majority of functions performed by the
brain are easily reachable from the default mode state.

Complementing prior work demonstrating that the default
mode is activated during ‘rest’ and largely deactivated during
many task conditions24, our data suggest that the default mode is
a pluripotent ‘ground state’, which can move the brain into many
task-based activation profiles (‘excited states’25). Moreover, the
default mode is the state to which the brain relaxes back after the
task has been performed, readying the brain to move to new task
states, when the cycle will repeat. Importantly, these dynamic
notions of brain function are predicated on the underlying
structure of the white matter pathways facilitating cognitive
processes.

Our observations may be complemented by work highlighting
features of brain network hubs that might contribute to the
dynamic functional role outlined by network control theory. The
so-called rich-club organization of the human connectome26

refers to the fact that many brain network hubs are densely
interconnected to one another27. This organization is evident
across species26,28, changes over development6 and is altered
in disease29,30. The rich club is thought to play important roles
in information integration26, facilitating the functional dynamics
necessary for cognitive functions. The fact that hubs in many
different cognitive systems are linked together potentially
provides a structural substrate for the movement of the brain
between cognitive processes. Supporting this hypothesis, work by
Senden et al.31 uses a spin glass model of neural networks for
simulating stable configurations of cortical activity and shows
that networks with rich-club architecture display functional
dynamics characterized by a larger set of attractors (and hence
greater diversity of the functional repertoire) than that expected
in scale-free networks devoid of rich clubs. Our results provide a
theoretical mechanism for these empirical findings: hub nodes in
the brain tend to have high average controllability, indicating that
they are critical for moving the brain into many easily reachable
states (attractors), thereby facilitating a great diversity of
functional dynamics.

The fact that structural hubs, particularly in the default mode
network, play such a striking role in brain network controllability
may further help to explain the growing body of evidence
indicating that disease states can preferentially target hub
areas7,32. In silico studies suggest that lesions to highly
structurally connected areas have a greater impact on ensuing
functional connectivity than lesions to sparsely connected areas33.
Moreover, alterations to default mode hubs are associated
with drastic changes in cognitive function associated with
normative aging34 and neurodegenerative disorders such as
Alzheimer’s disease35. Our results provide a mechanistic
explanation for these findings by suggesting that hubs form the
key control points in brain networks; alterations to hub regions
can therefore have disproportionately high impacts on system
function.

While our results demonstrate that hubs are theoretically
implicated in moving the brain to many easily reachable states,
weakly connected areas are critical for moving the brain to
difficult-to-reach states. We observe that these modal control
points tend to be predominantly located in cognitive control
systems including the frontoparietal and cingulo-opercular
networks. These two systems are characterized by different
functional connectivity patterns at rest11 and are thought to
support distinct functional roles36: task-switching and task-set
maintenance. Our results suggest a fundamental underlying
mechanism of cognitive control: brain regions sparsely
interconnected with the rest of the brain are critically
important for moving the system into difficult-to-reach states.
This theoretical hypothesis is consistent with the increased
engagement of the cognitive control system in highly effortful
tasks37.
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Figure 5 | Differential recruitment of cognitive systems to network

control. Average controllability (AC), modal controllability (MC) and

boundary controllability (BC) hubs are differentially located in default mode

(a) frontoparietal and cingulo-opercular cognitive control (b) and

attentional control (c) systems. Values are averaged over the three

replicates for each of eight subjects; error bars indicate s.d. of the mean

over subjects.
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More generally, the fact that weak connections play a critical
role in system dynamics is one that has traditionally received little
attention. However, recent work demonstrates the relevance
of weak connections for cognitive function and psychiatric
disease. For example, the topology of weak connections in
resting state fMRI has been used to classify healthy volunteers
versus schizophrenia patients38. Moreover, the topology of weak
connections more accurately correlates with intelligent quotients
than the topology of strong connections39,40. These findings
challenge the traditional view that strong connections alone are
critical for brain dynamics. Our results provide a mechanistic
rationale for the importance of weak connections, which are
theoretically critical in enabling a system to move to difficult-to-
reach states, including high-performance states (measured by IQ)
or altered performance states (observed in psychiatric
conditions).

In addition to the two mechanisms that enable trajectories to
many easily reachable states and a few difficult-to-reach states,
networked systems often utilize a third mechanism—boundary
controllability—that enables the segregation or integration of
network modules. Modular structure has been reported in
structural, functional and dynamic brain networks41. In resting
state connectivity studies, these modules have been linked to
known cognitive systems11. Our results suggest that a widely
distributed set of brain areas across all of these systems enables
segregation and integration of putative cognitive modules. We
also observe an enrichment of boundary control hubs in dorsal
and ventral attentional systems, suggesting that attentional
control may be implemented by boundary control strategies
integrating or segregating disparate cognitive systems. Such a
theoretical prediction is supported by evidence that attentional
control integrates different cognitive functions3, and that
disconnection of attentional networks is accompanied by
extensive cognitive deficits42.

Finally, it is important to address methodological considera-
tions. Graph theory has proven to be an extremely productive
framework in which to understand the structure and function
of large-scale brain circuits5 and their implications for
human cognition43; alternative approaches that build on this
framework—such as network control theory—necessarily require
sceptical evaluation to clearly delineate value added. Graph theory
specifically and network science more generally have provided a
toolbox of diagnostics to describe the organization of graphs
or networks. Yet, the relationships between this organization
and the system’s function remain speculative at worst and
correlative at best. Groundbreaking new discoveries will
necessitate a fundamental turn from descriptive statistics
towards mechanistic predictions. What are the mechanisms
by which network structure affects functional dynamics?
Moreover, how could one intervene in a network to push the
system dynamics towards a specific, targeted goal? To address
these questions, we must have a framework that incorporates not
just brain network structure but also models neural dynamics.
Network control theory offers exactly such a framework,
along with a toolbox for selecting control nodes to effect
specific control strategies (for example, average, modal and
boundary). In the context of this study, the advantages are clear:
using graph theory, we can identify regions of high (low) degree,
while using network control theory, we can understand the
functional role of these regions as being critical for guiding
the movement of the brain into many easy-to-reach
(difficult-to-reach) states. More generally, network control
theory offers invaluable theoretically validated tools to
inform explanations of brain function (for example, cognitive
processes and computations), perturbations of brain function
(via non-invasive stimulation paradigms) and predictions of

brain function (for example, in altered or engineered neural
architectures).

Decades of research demonstrate that neural dynamics are
nonlinear. Yet, our approach is built on a linear model of these
dynamics, and it is therefore imperative to delineate its strengths
and weaknesses. First, we note that nonlinear behaviour may be
accurately approximated by linear behaviour in certain scenarios
(see, for example, ref. 44). Indeed, ref. 45 proposes a linearized
model for the nonlinear neural dynamics described in ref. 44, and
ref. 44 shows that predictions of function from structure can be
obtained with both linear and nonlinear models. Second, we note
that the controllability of a linearized model has implications for
the controllability of a nonlinear model: if the linearized system is
controllable, then the nonlinear system is locally controllable46,47.
Third, linear models of a system accurately approximate
nonlinear models in a neighbourhood of the operating point.
For example, in gain scheduling, linear controllers are used to
control a nonlinear system: each controller is designed on the
basis of a linearization of the system around an operating point48,
and an observable parameter is used to switch between
controllers. Gain scheduling has been successful in many
different application areas, including flight and process control,
proving that controllers based on linearized dynamics can be
effectively used for the control of nonlinear dynamics. Thus,
while neural dynamics are inherently nonlinear, the study of
linear models of neural dynamics can offer fundamental insights
into system function.

Our approach is also built on diffusion imaging data and
associated tractography methods. Important limitations of
current tractography algorithms include (i) the inability to
determine the precise origin/termination of connections,
(ii) difficulty in distinguishing branching from merging or
kissing axons and (iii) inability to distinguish afferents from
efferents49. These limitations motivate ongoing methodological
development50 in combination with post-mortem validation51

and constrain interpretations. Here we have used DSI data52

acquired with 257 directions using a Q5 half-shell acquisition
scheme, and on which we applied a q-space diffeomorphic
reconstruction53 (see Supplementary Methods). The tracking
parameters used here were also used in ref. 54, which shows them
to produce repeatable connectomes within and between
individuals. These parameters were chosen because they are
relatively conservative and accurately produced known fascicles
while minimizing spurious streamlines. This approach provides
significantly more data for tractography than the more common
30-direction diffusion tensor imaging (DTI) acquisition,
particularly in estimates of longer fibres, and fibres located
away from the medial wall. In the future, should accurate
estimates of directionality be available, it will be interesting to
examine the nuances added to the controllability profiles of brain
regions on the basis of the polarity of their connections.

It is important to note that we have taken an explicitly
quantitative approach to controllability that differs from prior
qualitative approaches. In important prior work, Liu and
colleagues adopt a binary notion of controllability55 that is
agnostic to the difficulty of the control task. In contrast, we ask
how difficult the system is to control. In practice, these two
questions can provide very different insights. Although a network
may be generically controllable by any single node55,56, the actual
control input may not be implementable because of actuator
constraints and limitations13. A second important distinction
between the two approaches is that structural controllability56

does not inform the design of realistic control algorithms. In
contrast, we explore three controllability notions leading to the
design of control strategies posited in the literature13 and ask how
they relate to structural features of human brain anatomical
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networks. Our choice to focus on control strategies leads to a
third important distinction between the two approaches. Namely,
that the results presented in ref. 56 are generic in the sense that
they hold for almost every choice of network parameters57 but
they may fail to hold if certain symmetries or constraints are
present (58, Section 15). In contrast, the three control strategies
utilized here depend strongly on the properties of the network
under study and are therefore sensitive to biologically relevant
information.

Finally, we have focused on examining the controllability of
single brain areas and reported salient relationships with
cognitive control systems. However, future work may provide
additional insights by studying controllability of sets of brain
regions and their relationships to cognitive processes defined
more broadly.

In conclusion, a fundamental understanding of the principles
by which the brain transitions between diverse cognitive states
enabling behaviour would necessarily have far-reaching implica-
tions for basic cognitive neuroscience and applications in myriad
clinical domains4. Our results suggest that macroscale structural
design could underlie basic cognitive control processes via the
fundamental mechanism of network controllability. These
findings lay the groundwork for future studies examining
relationships between individual differences in network
controllability diagnostics and behavioural, cognitive, clinical
and genetic variables.

Methods
Human DSI data acquisition and preprocessing. DSIs were acquired for a total
of eight subjects in triplicate (mean age 27±5 years, two female, two left handed)
along with a T1-weighted anatomical scan at each scanning session54. DSI scans
sampled 257 directions using a Q5 half-shell acquisition scheme with a maximum
b-value of 5,000 and an isotropic voxel size of 2.4 mm. We utilized an axial
acquisition with the following parameters: repetition time (TR)¼ 11.4 s, echo time
(TE)¼ 138 ms, 51 slices, field of view (FoV) (231,231,123 mm). All participants
volunteered with informed consent in accordance with the Institutional Review
Board/Human Subjects Committee, University of California, Santa Barbara.

DSI data were reconstructed in DSI Studio (www.dsi-studio.labsolver.org) using
q-space diffeomorphic reconstruction (QSDR)53. QSDR first reconstructs
diffusion-weighted images in native space and computes the quantitative
anisotropy (QA) in each voxel. These QA values are used to warp the brain to a
template QA volume in Montreal Neurological Institute (MNI) space using the
statistical parametric mapping (SPM) nonlinear registration algorithm. Once in
MNI space, spin density functions were again reconstructed with a mean diffusion
distance of 1.25 mm using three fibre orientations per voxel. Fibre tracking was
performed in DSI studio with an angular cutoff of 55�, step size of 1.0 mm,
minimum length of 10 mm, spin density function smoothing of 0.0, maximum
length of 400 mm and a QA threshold determined by DWI signal in the colony-
stimulating factor. Deterministic fibre tracking using a modified FACT algorithm
was performed until 100,000 streamlines were reconstructed for each individual.

Anatomical scans were segmented using FreeSurfer59 and parcellated according
to the Lausanne 2008 atlas included in the connectome mapping toolkit12.
A parcellation scheme including 234 regions was registered to the B0 volume from
each subject’s DSI data. The B0 to MNI voxel mapping produced via QSDR was
used to map region labels from native space to MNI coordinates. To extend region
labels through the grey–white matter interface, the atlas was dilated by 4 mm.
Dilation was accomplished by filling non-labelled voxels with the statistical mode
of their neighbours’ labels. In the event of a tie, one of the modes was arbitrarily
selected. Each streamline was labelled according to its terminal region pair.

Human DTI data acquisition and preprocessing. To complement the main
analysis on DSI data acquired in triplicate from eight healthy human subjects, we
also analysed DTI data from a separate set of 85 healthy human adult subjects14,15:
mean age 34.96, s.d. 49.45; 3 female, 82 males; all right-handed. None of the
subjects were colour blind. Informed written consent was obtained from each
subject before the experimental sessions. All procedures were approved by the
University of California, Santa Barbara Human Subjects Committee.

All scans were acquired at 3 T with a Siemens Tim Trio MRI scanner with a
12-channel-phased array head coil using an echo-planar diffusion-weighted
technique acquired with iPAT and an acceleration factor of 2. The timing
parameters of the pulse sequence were TE/TR¼ 94/8,400 ms, 30 diffusion
directions with a maximal b-value of 1,000 s mm� 2 and two averages. Two b0
images were acquired. The matrix size was 128� 128 and the slice number was 60.
The field of view was 230� 230 mm2 and the slice thickness 2 mm. Acquisition

time was 9:08 min per DTI scan. In addition to diffusion scans, a three-dimensional
(3D) high-resolution T1-weighted sagittal sequence image of the whole brain was
obtained by a magnetization-prepared rapid acquisition gradient-echo sequence
with the following parameters: TR¼ 15.0 ms; TE¼ 4.2 ms; flip angle¼ 9 degrees,
3D acquisition, FOV¼ 256 mm; slice thickness¼ 0.89 mm, matrix¼ 256� 256.

Following prior work14,15,60, motion artefact and image distortions caused by
eddy currents were corrected by using NIfTI Tools to open each DTI data set and
perform an affine alignment (12 degrees of freedom) of each diffusion-weighted
image to the b0 image via the FLIRT function in FMRIB software library (FSL). In
the current study, we did not correct for echo planar imaging (EPI) distortions. In
this Siemens scanner, the geometric distortion for diffusion imaging from EPI was
found in prior tests to be less than 2 mm (that is, less than a single voxel) and
mainly along the anterior posterior (phase-encoding) direction. Because the
resolution of the diffusion images was larger than the magnitude of the distortion,
no correction was required.

As with the DSI data, anatomical scans were segmented using FreeSurfer59 and
parcellated according to the Lausanne 2008 atlas included in the connectome
mapping toolkit12. A parcellation scheme including 234 regions was registered to
the b0 volume from each subject’s DTI data. Tractography was performed in DSI
studio, and the number of streamlines connecting each pair of regions was used to
weight the edge connecting those regions.

Macaque tract tracing data. To address the question of whether the relationship
between controllability diagnostics and network topology (as measured by
weighted degree) was conserved in non-human primates, we used a data set drawn
from CoCoMac (ref. 16) that delineated 2,402 projections between 95 cortical and
subcortical areas17. These connectivity data were on the basis of three extensive
neuroanatomical compilations that collectively cover large parts of the cerebral
cortex. Although these data may be partially incomplete, particularly for
connections of motor, auditory and somatosensory areas17, they represent an
extensive effort in tract tracing, and therefore have been used extensively in studies
of primate connectivity17. The CoCoMac database contains information on studies
that report the source and target site of tracer injections, thereby specifying the
specific presence or absence of anatomical projections between brain regions.

Network control theory. Our understanding of natural systems is intimately
related to our ability to control them. Network control theory is a branch of
traditional control theory in engineering that addresses the question of how to
control a system whose components are linked in a web of interconnections; here
the term control indicates perturbing a system to reach a desired state. Answering
this question requires (i) knowledge regarding the network connectivity linking
system components and (ii) knowledge regarding how system components act, that
is, their dynamics. In turn, the theory provides predictions regarding the system’s
function. Critically, in contrast to traditional graph theory that provides descriptive
statistics of network structure, network control theory offers mechanistic predictors
of network dynamics. The ability to probe mechanistic predictors of brain function
is the key to move efforts in the human connectome towards an understanding of
human cognition.

Mathematically speaking, we can study the controllability of a network system
by defining a network represented by the graph G ¼ V;Eð Þ, where V and E are the
vertex and edge sets, respectively. Let aij be the weight associated with the edge
i; jð Þ 2 E and define the weighted adjacency matrix of G as A¼ [aij], where aij¼ 0

whenever i; jð Þ=2E. Associate a real value (state) with each node, collect the nodes’
states into a vector (network state) and define the map x : N�0 ! Rn to describe
the evolution (network dynamics) of the network state over time. Given the
network and its dynamics, we can use network control theory to quantitatively
examine how the network structure constrains the types of control that nodes
can exert.

Here we are interested in applying the network control theory to the human brain.
As a quintessentially complex biological system, the human brain offers several
contexts in which to think about the notion of ‘control’: both as a system that
implements control and a system to be controlled. For example, control can be
thought of as (i) the change in regional BOLD activity produced in response to
neurofeedback in real-time fMRI, (ii) the change in regional neural activity elicited by
external stimuli or (iii) the change in regional neural activity provoked by non-
invasive brain stimulation. Each of these mechanisms initially alters the dynamics of
single brain regions but can have consequences for the activity and function of
distributed networks. Importantly, this notion of control is based on a very detailed
mathematical construct and is therefore necessarily quite distinct from the cognitive
neuroscientist’s common notion of ‘cognitive control’ and the distributed sets of brain
regions implicated in its performance2. To minimize obfuscation, we henceforth refer
to these two notions as ‘network control’ and ‘cognitive control’, respectively.

Dynamic model of neural processes. To apply network control theory to the
human brain, we must define a structural brain network and a model for the
dynamics of neural processes. We define both based on prior work in human systems
neuroscience. We define structural brain networks by subdividing the entire brain
into anatomically distinct brain areas (network nodes), over five levels of spatial
resolution from 83 regions to greater than 1,000 regions61. Consistent with prior
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work14,15,60, we connect nodes by the number of white matter streamlines identified
by a commonly used deterministic tractography algorithm (for details on the
tractography implementation, see ref. 54 and Supplementary Methods). This
procedure results in sparse, weighted, undirected structural brain networks for each
subject (N¼ 8) and each scanning session (n¼ 3). Properties of this network include
high clustering, short path length and strong modularity (see Supplementary
Methods), consistent with prior studies of similar network data60. The definition of
structural brain networks on the basis of tractography data in humans follows from
our primary hypothesis that control features of neural dynamics are in part
determined by the structural organization of the brain’s white matter tracts.

To define the dynamics of neural processes, we draw on prior models linking
structural brain networks to resting state functional dynamics44. Although neural
activity evolves through neural circuits as a collection of nonlinear dynamic processes,
these prior studies have demonstrated that a significant amount of variance in neural
dynamics as measured by fMRI can be predicted from simplified linear models. (See
Methodological Considerations for additional discussion on the strengths and
weaknesses of the linear model approach.) On the basis of this literature, we employ a
simplified noise-free linear discrete-time and time-invariant network model:

x tþ 1ð Þ ¼ Ax tð ÞþBKuK tð Þ; ð1Þ
where x : R�0 ! RN describes the state (that is, the magnitude of neurophysiological
activity) of brain regions over time, and A 2 RN�N is a symmetric and weighted
adjacency matrix. In our case, we construct a weighted adjacency matrix whose
elements indicate the number of white matter streamlines connecting two different
brain regions—denoted here as i and j—and we stabilize this matrix by dividing by
the the mean edge weight. While the model employed above is a discrete-time system,
we find that the controllability Gramian is statistically similar to that obtained in a
continuous-time setting (see Supplementary Methods).

More generally, we note that the network control theory framework is agnostic to
the exact type of ‘activity’ that the system produces. However, the model we write
down above is a simplified ‘activity’ dynamics that has previously been used to model
both neural activity45 and regional BOLD activity44. In the context of our work in this
paper, we use these dynamics to model fMRI BOLD magnitudes and their coherence
across brain regions; however, future work may address the utility of this same
construct in understanding different temporal scales of brain dynamics.

The diagonal elements of the matrix A satisfy Aii¼ 0. The input matrix BK
identifies the control points K in the brain, where K ¼ k1; . . . ; kmf g and

BK ¼ ek1 � � � ekm½ �; ð2Þ
and ei denotes the i-th canonical vector of dimension N. The input uK : R�0 ! Rm

denotes the control strategy.

Network controllability. To study the ability of a certain brain region to influence
other regions in arbitrary ways, we adopt the control theoretic notion of
controllability. Controllability of a dynamical system refers to the possibility of
driving the state of a dynamical system to a specific target state by means of
an external control input55. Classic results in the control theory ensure that
controllability of the network (Equation 1) from the set of network nodes K is
equivalent to the controllability Gramian WK being invertible, where

WK ¼
X1

t¼0

AtBKBT
KAt: ð3Þ

We utilize this framework to choose control nodes one at a time, and thus the input
matrix B in fact reduces to a one-dimensional vector.

Besides ensuring controllability, the eigenvalues of the controllability Gramian
are a quantitative measure of the magnitude of the control input that drives a
network to a desired target state62, and the structure of the Gramian itself provides
systematic guidelines for the selection of control areas that can theoretically
optimize cognitive functions. While the magnitude of the control input may not be
the unique feature to take into account when controlling brain dynamics63, it
allows us to better understand the relationship between the structural organization
of the brain and its dynamics, and opens the door to the development of novel
diagnostics and opportunities for intervention. See Supplementary Note 1.

Network controllability diagnostics. We examine three diagnostics of controll-
ability utilized in the network control literature: average controllability, modal
controllability and boundary controllability. See Supplementary Methods for
additional details of these calculations.

Average controllability. Average controllability of a network equals the average
input energy from a set of control nodes and over all possible target states64,65. As a
known result, average input energy is proportional to Trace W � 1

K

� �
, the trace of the

inverse of the controllability Gramian. Instead, we adopt Trace(WK) as a measure
of average controllability for two main reasons: first, Trace W � 1

K

� �
and Trace(WK)

satisfy a relation of inverse proportionality (see Supplementary Methods), so that
the information obtained from the two metrices are correlated with one another
and, second, WK is typically very ill-conditioned (see paragraph ‘Global
Controllability’) even for coarse network resolutions, so that Trace W � 1

K

� �
cannot

be accurately computed even for small brain networks. It should be noted that

Trace(WK) encodes a well-defined control metric, namely the energy of the
network impulse response or, equivalently, the network H2 norm62. Regions with
high average controllability are, on average, most influential in the control of
network dynamics over all different target states.

Modal controllability. Modal controllability refers to the ability of a node to
control each evolutionary mode of a dynamical network66, and can be used to
identify states that are difficult to control from a set of control nodes. Modal
controllability is computed from the eigenvector matrix V¼ [vij] of the network
adjacency matrix A. By extension from the PBH test62, if the entry vij is small, then
the j-th mode is poorly controllable from node i. Following ref. 13, we define
fi ¼

PN
j¼1 ð1� l2

j Að ÞÞv2
ij as a scaled measure of the controllability of all N modes

l1(A),y,lN(A) from the brain region i. Regions with high modal controllability are
able to control all the dynamic modes of the network, and hence to drive the
dynamics towards hard-to-reach configurations.

Boundary controllability. Boundary controllability measures the ability of a set of
control nodes to decouple the trajectories of disjoint brain regions. To evaluate the
boundary controllability of different brain regions, we proceed as follows. First, we
compute a robust partition of the brain network as described in ref. 67, and we
identify the set of N1 boundary nodes. We assign to these boundary nodes the
boundary controllability value of 1. Second, following ref. 13, we determine the two
partitions of the least controllable subnetwork from its Fiedler eigenvector, and we
identify the additional boundary nodes. We assign to these boundary nodes the
boundary controllability value of (N�N1)/N. Finally, we iterate this process until
all nodes have been assigned a boundary controllability value.

Average, modal and boundary controllability each provide a scalar value for
each brain region. To enable direct comparison between controllability diagnostics
and across different subjects, we perform ranking and normalization steps. In
particular, for each of the controllability diagnostics we (i) rank the scalar values for
each subject and (ii) average the ranked values across the subjects. Code is available
on request.
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