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Abstract

Scanning Tunneling Microscopy of Graphene Quantum Dots

by

Juwon Lee

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael F. Crommie, Chair

Quantum confinement of Dirac fermions is an important frontier in graphene research.
In this dissertation, we report on our use of a scanning tunneling microscope (STM) to
investigate electrostatically confined Dirac fermions in graphene quantum dots. We first
describe a technique for patterning embedded gates in backgated graphene/hexagonal boron
nitride (hBN) heterostructures by STM manipulation of defect charges within the hBN sub-
strate. In conjunction with a tunable backgate, this allows us to engineer p-n junctions in
monolayer and bilayer graphene whose geometries can be flexibly designed with nanoscale
precision. Using scanning tunneling spectroscopy (STS), we image and spatially characterize
the behavior of Dirac fermions in the vicinity of p-n junctions and show that circular p-n
junctions in monolayer and bilayer graphene act as gate-tunable quantum dots with unique
energy spectra. For monolayer graphene quantum dots, comparison with theoretical simu-
lations of the massless Dirac equation enables us to identify each experimentally observed
spectroscopic peak as a quantum dot eigenstate with a unique set of quantum numbers. In
bilayer graphene, we demonstrate a gate-tunable evolution of locally gated graphene from
classical dots to quantum dots and achieve control over the number of massive Dirac fermions
contained in a quantum dot by using the STM tip as a top gate. Furthermore, we explore
the electronic properties of quantum double dots and non-circular monolayer graphene p-n
junctions using spatially resolved STS. Our work yields insight into the spatial behavior of
Dirac fermions under the influence of local electrostatic potentials and provides a platform
for further experimental investigation of physics related to p-n junctions in graphene.
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Chapter 1

Introduction

Monolayer and bilayer graphene are two-dimensional allotropes of carbon that have attracted
much attention from researchers due to their unique and applicable electronic properties. In
monolayer graphene, charge carriers behave like massless Dirac fermions with light-like en-
ergy dispersion[1, 2]. This provided a condensed matter analogue to quantum electrodynam-
ics, creating an unprecedented testbed for otherwise inaccesible physics of the ultrarelativistic
regime[3]. In bilayer graphene, quasiparticles behave like massive Dirac fermions with rich
physical properties and additional tunability afforded by the layer degree of freedom. Even
after more than a decade of intense research, numerous aspects of graphene’s electronic
properties remain active areas of study.

Charge localization is an important area of graphene research and is critical for under-
standing graphene’s electronic properties and its incorporation into nanoelectronic devices.
Since its discovery, various techniques have been employed to confine graphene quasipar-
ticles such as etching, deposition of adatoms, and the use of magnetic fields[4–14]. An
alternative method for charge carrier confinement is electrostatic gating. In the case of semi-
conductor heterojunctions, a precursor to graphene as a two-dimensional electronic system,
gate-defined quantum dots produced scientific discoveries and technological applications for
many years. This provides a strong incentive to explore whether electrostatically confined
graphene charge carriers can be used to generate similarly rich physics and applications. In
this dissertation, we report on our use of a scanning tunneling microscope (STM) to fabricate
and study graphene quantum dots defined by gate-induced p-n junctions.

Recently there has been a resurgence of interest in electron-optic phenomena at graphene
p-n junctions such as Veselago lensing[15, 16], whispering gallery modes[17–20], and cloaked
electronic states[21, 22]. These unique phenomena are made possible in graphene by its rare
electronic properties that continue to inspire experimental and theoretical investigations.
Our work contributes to this direction of research by providing a platform for real-space
wavefunction visualization of Dirac fermions within graphene p-n junctions of various ge-
ometries. This ability to obtain spatially resolved spectroscopic information should provide
valuable insight into the distinct anisotropic distribution of Dirac fermions at graphene p-n
junctions.
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1.1 The Electronic Structure of Graphene

Monolayer graphene is a two-dimensional carbon crystal arranged in a triangular lattice
with two-atom basis, as depicted in Figure 1.1. Linear energy-momentum dispersion and
pseudospin chirality define monolayer graphene’s unique electronic structure. Both of these
properties emerge in a basic tight-binding model computation of graphene’s band structure.
The energy-momentum dispersion of graphene obtained from incorporating the first and the
second nearest neighbors in a tight-binding model gives:[1, 2]:

E±(~k) = ±t
√

3 + f(~k)− t′f(~k), (1.1)

where

f(~k) = 2 cos
√

3kya+ 4 cos

√
3

2
kya cos

3

2
kxa, (1.2)

t is the nearest neighbor hopping energy and t′ is the next nearest-neighbor hopping energy.
This produces a band structure with two Dirac cones at K and K′ points [1]. The low-energy
quasiparticle dynamics is determined by the states near the K and K′ points. Expanding
about the K point using k − p perturbation results in the two-dimensional massless Dirac
Hamiltonian[1]:

Ĥ = vF ~̂σ · ~̂p (1.3)

where ~σ are Pauli matrices and vF ≈ 1× 106m/s is a constant known as the Fermi velocity
of graphene [23, 24]. Written more explicitly in matrix form, the Hamiltonian is:

Ĥ = vF

(
0 px − ipy

px + ipy 0

)
= vF |~p|

(
0 e−iφ

eiφ 0

)
, (1.4)

Figure 1.1: Crystal Structure of Monolayer Graphene (a) In graphene carbon atoms are
arranged in a hexagonal honeycomb structure. The crystal structure is a triangular lattice
with two-atom basis. The two points within a unit cell are referred to as sublattice A and
sublattice B. a1 and a2 are the primitive vectors. (b) The first Brillouin zone is a regular
hexagon. K and K’ points are indicated on the diagram. b1 and b2 are the reciprocal primitive
vectors.
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where e±iφ = px±ipy
|~p| . The eigenstates of this Hamiltonian are:

ψe,h(~p) =
1√
2

(
e−iφ/2

±eiφ/2
)
, (1.5)

and the eigenenergies:

E(~p) = ±vF |~p|, (1.6)

where + sign corresponds to electron states and − sign corresponds to hole states. Thus,
graphene quasiparticles have a linear energy-momentum dispersion unlike typical metals and
semiconductors that have parabolic band structures.

Another unique aspect of graphene’s electronic structure is its chirality, which refers
to the projection of pseudospin on momentum[3]. Applying the chirality operator on the
quasiparticle eigenstates we obtain:

~̂σ · ~̂p
|~p|

ψe,h(~p) =
Ĥ

vF |~p|
ψe,h(~p) = ±ψe,h(~p), (1.7)

where + (-) sign corresponds to electron (hole) states as before. This indicates that graphene
electrons always have pseudospin and momentum in parallel direction, while graphene holes
have pseudospin and momentum in anti-parallel directions. The expectation value of the
pseudospin is:

< σ̂ >= ±(cosφ, sinφ). (1.8)

And the group velocity is:
~v = ∇~pE(~p) = ±vF~p/|~p|, (1.9)

where + (-) sign corresponds to electron (hole) states.

1.1.1 Klein Tunneling

The unique band structure of graphene leads to a condensed matter analogue of a phe-
nomenon in quantum electrodynamics known as the Klein paradox[3, 25–28]. Following
an example outlined in [29], we examine a simple special case of graphene quasiparticle
transmission across an electrostatic barrier that captures the fundamental aspects of Klein
tunneling phenomena in graphene. As shown in Figure 1.2, an electrostatic potential V (x)
is applied to graphene, where

V (x) =

{
0, for x < 0

V0, for x > 0
. (1.10)

This electrostatic potential induces a p-n junction in graphene at x = 0 so that graphene
is n-doped for x < 0 and p-doped for x > 0. To simplify computation, we consider the
case when the total energy of a graphene quasiparticle E0 is half of the potential step, i.e.
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E0 = V0/2. Since E = h̄vFkF , kF has the same magnitude on both sides of the p-n junction.
Following the scheme shown in Figure 1.2 (c), the incident, reflected, and transmitted waves
can then be represented as follows:

ψin =
1√
2

(
e−iφ/2

eiφ/2

)
eikxx+ikyy, (1.11)

ψre =
r√
2

(
e−i(π−φ)/2

ei(π−φ)/2

)
e−ikxx+ikyy, (1.12)

ψtr =
t√
2

(
e−i(π−φ)/2

−ei(π−φ)/2
)
e−ikxx+ikyy. (1.13)

The boundary condition at x = 0 implies ψin +ψre = ψtr. Plugging in above expressions for
plane waves:

1√
2

(
e−iφ/2

eiφ/2

)
+

r√
2

(
−iei(φ)/2
ie−i(φ)/2

)
=

t√
2

(
−iei(φ)/2
−ie−i(φ)/2

)
. (1.14)

Matching the components of the spinor and solving the system of two equations we obtain:

r = −sin(φ), t = icos(φ). (1.15)

The probability of transmission is:

Figure 1.2: Particle Transmission across a Graphene P-N Junction (a) An electron is inci-
dent on a graphene p-n junction at angle φ1. A hole is transmitted at angle φ2. (b) The
electrostatic potential V (x) is a step function that jumps to a constant value at x = 0. The
total energy of the particle is indicated by E0. (c) Graphic representation of group velocity
vectors of incident, reflected, and transmitted quasiparticles.
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T = |t|2 = cos2(φ). (1.16)

The result above indicates that when a quasiparticle is normally incident on a p-n junc-
tion (φ = π/2), the probabiliy of transmission becomes T = 1. This complete suppression
of backscattering at normal incidence is referred to as Klein tunneling. A heuristic picture
behind this effect is that the pseudospin of graphene quasiparticles must be conserved in a
scattering process [3], which is a valid assumption for scattering potentials that vary slowly
in the lengthscale of the graphene lattice constant. The perpendicularly incident electron has
pseudospin pointing parallel to its momentum, which is in the same direction as the pseu-
dospin of the forward scattering hole. The backscattering electron, however, has pseudospin
pointing in the opposite direction. Therefore, pseudospin conservation prohibits backscat-
tering and only allows forward scattering. In our toy model, the transmission coefficient is
proportional to the dot product of the incident and transmitted spinors [29]:

< ψin|ψtr >∝ cos(φ). (1.17)

Hence, the transmission amplitude can be thought of as the ’overlap’ of the pseudospin
between the incident wave and the transmitted wave[29].

1.2 The Electronic Structure of Bilayer Graphene

Bilayer graphene consists of two layers of single layer graphene vertically stacked on top of
each other. In this dissertation, we examine Bernal stacked bilayer graphene where a sublat-
tices of the top layer lies directly on top of a sublattice of the bottom layer. Quasiparticles
in bilayer graphene behave like massive Dirac fermions, providing a useful and interesting
comparison to massless Dirac quasiparticles in monolayer graphene[2, 30]. Furthermore, the
additional layer degree of freedom in bilayer graphene makes it possible to use vertical electric
fields to tune its bandgap and modify the chiral properties of its charge carriers[31–35].

The massive Dirac fermions in gapless bilayer graphene are effectively governed by the
following Hamiltonian[3]:

Ĥ =
1

2m∗

(
0 (px − ipy)2

(px + ipy)
2 0

)
=
|~p|2

2m∗

(
0 e−2iφ

e2iφ 0

)
, (1.18)

where e±iφ = px±ipy
|~p| . And the energy eigenstates and eigenvalues of this Hamiltonian are:

ψe,h(~p) =
1√
2

(
e−iφ

±eiφ
)

(1.19)

E(~p) = ± |~p|
2

2m∗
, (1.20)

where + sign corresponds to electron states and − sign corresponds to hole states.
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Expectation value of pseudospin in bilayer graphene is:

< σ̂ >= ±(cos 2φ, sin 2φ). (1.21)

In bilayer graphene, pseudospin is a function of 2φ, in contrast to φ in monolayer graphene.
And group velocity is:

~v = ±~p/m∗, (1.22)

where + (-) sign corresponds to electron (hole) states.
In monolayer graphene, pseudospin conservation prohibited backscattering and led to

unit transmission for normal incidence at p-n junctions. In bilayer graphene, the unique
chiral nature of its massive Dirac fermions produces an opposite effect where transmission
is completely suppressed. Here we show the essential aspects of anti-Klein tunneling by
considering the same problem of particle transmission as we did for monolayer graphene
shown in Figure 1.2, which was derived in Ref.[29]. For bilayer graphene, the incident,
reflected, and transmitted waves can be represented as:

ψin =
1√
2

(
e−iφ

eiφ

)
eikxx+ikyy, (1.23)

ψre =
r√
2

(
e−i(π−φ)

ei(π−φ)

)
e−ikxx+ikyy, (1.24)

ψtr =
t√
2

(
e−i(π−φ)

−ei(π−φ)
)
e−ikxx+ikyy. (1.25)

Imposing the boundary conditions at x = 0:

r = − cos(2φ), t = i sin(2φ). (1.26)

The probability of transmission is:

T = |t|2 = sin2(2φ). (1.27)

Thus, a massive Dirac fermion experiences a complete suppression of transmission at
normal incidence, i.e. T = 0 when φ = π/2. The same heuristic explanation used for Klein
tunneling in monolayer graphene also can be applied here[29]. An incoming electron has
pseudospin parallel to its velocity (Equations 1.21 and 1.22). The forward scattering hole,
however, has a pseudospin pointing in the antiparallel direction as its velocity while the
backscattering electron’s pseudospin is in the same direction as the incident electron. Hence,
pseudospin conservation during this process would then prohibit the incident electron from
forward scattering.
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Figure 1.3: Electron paths in a circular p-n junction for a low angular momentum particle
(a) and high angular momentum particle (b).

1.3 Circular P-N Junctions in Graphene

The unique anisotropic transmission of Dirac quasiparticles at graphene p-n junctions results
in interesting quasi-bound states within circular p-n junctions. In monolayer graphene, Klein
tunneling prevents complete charge carrier trapping and formation of bound states. How-
ever, the coefficient of reflection at monolayer graphene p-n junctions increases as a function
of the angle of incidence. Cheianov et al. theoretically modelled electron transmission across
a smooth p-n junctions and showed that the transmission probability T ∝ e− sin(φ)2 [27]. Then
for electron trajectories like those shown in Fig. 1.3 partial confinement is expected. Indeed,
Matulis et al. [36] have predicted the existence of quasi-bound quantum dot eigenstates with
finite lifetimes in cylindrically symmetry electrostatic step potentials. They predicted that
due to Klein tunneling, low angular momentum states (Fig. 1.3a) should be less well confined,
and therefore have larger linewidths, than higher angular momentum modes (Fig. 1.3b). For
bilayer graphene, however, the opposite trend is expected where higher angular momen-
tum eigenstates are more weakly confined than lower angular momentum electronic states.
Furthermore, gate-tunable bandgap and pseudospin chirality in bilayer graphene provide a
unique confinement mechanism for charge carriers in bilayer graphene quantum dots [37].

1.4 Scanning Tunneling Microscopy

In order to understand the electronic structure of graphene quantum dots, we use scanning
tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). In this section, we
discuss how to physically interpret our STM/STS data.

dI/dVs Spectrum. Differential conductance of STM tunneling current dI/dVs is pro-
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portional to the sample local density of states[38–40]:

dI

dVs
(~r) ∝ LDOS(~r, EF + eVs), (1.28)

where ~r is the location of the STM tip, EF is the sample Fermi level and Vs is the sample bias
defined as the negative of the STM tip bias voltage. Since Vs can be positive or negative,
dI/dVs spectroscopy probes the sample electronic structure for a range of energies above and
below the sample’s Fermi level.

STM Topography. Our STM topographs are performed in constant-current mode
where the tip height is adjusted to maintain a constant tunneling current. A simplified
expression for STM tunneling current is given by:

I(~r, Vs) ∝ e−z/λ
∫ Vs

0

LDOS(~r, EF + eV )dV, (1.29)

where z is the STM tip height and λ is the effective local decay length. Hence, the STM
tunneling current decays exponentially as a function of tip-sample distance, which enables
measurements that are highly sensitive to the surface topography. However, since the expres-
sion for current in Equation 1.29 also depends on sample local density of states (LDOS), a
constant-current STM topograph represents a convolution of surface topography and sample
LDOS.

dI/dVs Map. Our dI/dVs maps are obtained for a specific value of Vs in constant-
current mode. This means that our dI/dVs signal observed in our experimentally measured
dI/dVs maps are proportional to the local density of states with a proportionality factor[18]:

dI

dVs
(~r) ∝ LDOS(~r, EF + eVs)

|
∫ Vs
0

(~r, EF + eV )dV |
. (1.30)

Hence, intensities in dI/dVs maps reveal spatial variations in the sample electronic structure
but are not necessarily directly proportional to LDOS.
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Chapter 2

Engineering Embedded Gates

Electrostatic gating is an important method for tuning electronic properties of conduct-
ing materials. In particular, local electrostatic gates have been extensively used for quan-
tizing charge carriers in two-dimensional electron gas systems (e.g. GaAs 2DEG’s). As
discussed in Section 1.3, gate-induced p-n junctions also provide a platform for charge con-
finement in graphene. Common techniques for fabricating local electrostatic gates involve
some combination of lithography and metal deposition. However, these methods often intro-
duce contamination on the sample surface and prevent access to surface probe instruments
like STM. In this chapter, we present a procedure for in-situ creation of local embedded
gates in graphene/hexagonal boron nitride(hBN) heterostructures using hBN defect charge
manipulation. This novel method is versatile, reversible, and does not introduce surface
contamination.

In Section 2.2, we describe the use of STM to provide microscopic characterization of
charged impurities within hBN. Recently, hexagonal boron nitride (hBN) has surfaced as one
of the most important components in van der Waals heterostructures. It is often used as an
ultra-flat substrate for various two-dimensional materials and also as an encapsulating layer
for protection against contaminants. The reason why hBN is useful for these purposes is that
it is an inert, large-gap insulator that introduces much less charge inhomogeneity than SiO2.
Previous studies have shown, however, that hBN is not entirely free from impurities[41]. In
this Section, we discuss the detection and characterization of these hBN impurities using
STM on graphene/hBN heterostructures. We show that there are both positively and neg-
atively charged defects in hBN at various layer depths from the graphene-hBN interface.
Using scanning tunneling spectroscopy, we are able to provide quantitative characterization
on defect energy levels.

In Section 2.3, we show that the charge state of hBN impurities can be manipulated via
STM. We show that when a voltage pulse is applied to a scanning tunneling microscope tip
near the graphene surface, electric-field-induced tunneling allows microscopic control over
the charge state of hBN defects. dI/dVs maps before and after STM tip voltage pulses
reveal that defect charges can be added, removed, and flipped in polarity.

In Section 2.4, we demonstrate our technique for fabricating local embedded gates in
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graphene/hBN heterostructures by local accumulation of hBN defect charges. We accom-
plish this by exploiting our control over the charge state of hBN defects in conjunction with
a backgate electric field. This allows us to engineer local electrostatic gates on graphene of
variable polarity, shape, and magnitude. Using scanning tunneling spectroscopy, we confirm
that our embedded gates locally dope the overlaid graphene. This technique for local gate
fabrication does not introduce additional contamination nor prevent surface probe charac-
terization of graphene, creating many potential applications in the field of van der Waals
heterostructures.

Sections 2.1, 2.2, and 2.3 are adapted from the following published paper with permission
from co-authors: D. Wong et al., ”Characterization and manipulation of individual defects in
insulating hexagonal boron nitride using scanning tunneling microscopy,” Nature Nanotech.
10, 949953 (2015). Copyright 2015 Macmillan Publishers Limited.

2.1 Introduction

Hexagonal boron nitride (hBN) is an essential component in many new and technologically
promising devices that incorporate two-dimensional materials[42–44] and so it is crucial to
understand the nature of intrinsic defects in hBN layers. Previous cathodoluminescence
and elemental analysis of high-purity single-crystal hBN synthesized at high pressure and
temperature indicated the existence of residual impurities and defects[41, 44]. Optoelectronic
experiments have revealed that these defects give rise to photoactive states within the hBN
bandgap[45, 46]. So far, however, these studies have been limited to spatially averaged defect
behavior, and the investigation of individual defects at the nanoscale remains an outstanding
challenge. In this chapter, we provide microscopic characterization and manipulation of
individual hBN defects using STM.

2.2 Defects in Hexagonal Boron Nitride

Figure 2.1 represents our experimental setup where a graphene/hBN heterostructure is placed
on SiO2/silicon wafer (the silicon is heavily doped in order to act as a backgate). The
graphene is grounded with a gold contact and its surface is accessible to an STM tip with
a bias voltage −Vs. Here we follow the convention where Vs, the sample bias, is defined as
the negative of the STM tip voltage. A backgate voltage Vg is applied to the heavily doped
silicon and can be used to tune the Fermi level of the entire graphene flake.

Figure 2.2(a) is a typical scanning tunneling microscopy (STM) topographic image of
our graphene/hBN heterostructures, where a 7 nm moiré pattern can be seen on top of
long-range height fluctuations spanning tens of nanometers, similar to previous imaging of
graphene on BN[47, 48]. Localized shallow dips and a protrusion are also visible (∆z <
0.1Å). More revealing, however, are the differential conductance (dI/dVs) maps shown in
Fig. 2.2(b). Striking new features are visible in these data. We observe randomly distributed
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Figure 2.1: Schematic diagram of scanning tunneling microscopy on a backgate
graphene/hBN heterostructure.

bright (high dI/dVs) and dark (low dI/dVs) circular dots (∼20 nm in diameter) that have
varying degrees of intensity. Another common feature, as seen at the right edge of the
map in Fig. 2.2(b), is a sharp ring structure with an interior that does not obscure the moiré
pattern. Close-up topographic studies of these defects reveal unblemished atomically resolved
graphene honeycomb structure with occasional slight dips or a protrusion with |∆z| < 0.1Å.
Maps obtained at numerous locations with many tips across different devices replicate these
observations.

Figure 2.2: STM topography and corresponding dI/dVs map for a graphene/hBN device.
(a) STM topographic image of a clean graphene/hBN area. (b) A dI/dVs map (I = 0.4nA,
Vs = 0.25V ) acquired simultaneously with a exhibits various new features: bright dots, a
dark dot and a ring.

Figure 2.3a,b presents higher-resolution dI/dVs maps of representative bright and dark
dot defects. These maps show clearly that the graphene moiré pattern is not obscured by
the defects. To determine the effect of these defects on the electronic structure of graphene,
we performed dI/dVs spectroscopy at varying distances from the dot centers (each spectrum
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Figure 2.3: dI/dVs maps and spatially dependent dI/dVsspectroscopy determining the defect
charge state. (a,b) dI/dVs maps (I = 0.4 nA, Vs = 0.3 V, Vg = 5 V) for bright- and dark-dot
defects. (c) dI/dVs spectroscopy (initial tunneling parameters: I = 0.4 nA, Vs = 0.5 V, Vg
= 20 V) measured on graphene at different lateral distances from the center of the bright
dot in (a). (d), Same as in (c), but for the dark dot in (b). Distance-dependent dI/dVs
spectroscopy reveals that (a) and (b) represent positively and negatively charged defects in
hBN, respectively.

was started with the same tunnel current I and sample bias Vs). These data are plotted
in Fig. 2.3c,d for the bright and dark dots, respectively. The spectra are characteristic of
undamaged graphene[49], but show an electron/hole asymmetry that is dependent on the
tip position relative to the center of a defect. In Fig. 2.3 c, for example, we see that
dI/dVs (Vs > 0) increases as the tip approaches the bright-dot center. Figure 2.3d shows the
opposite trend, as seen by the decrease in dI/dVs (Vs > 0) as the STM tip approaches the
dark-dot center. These basic trends were seen for all bright and dark dot defects, regardless
of the intensity and tipheight configuration (Supplementary Section 4 of Ref [50]). These
observations can be understood by recalling that dI/dVs reflects the graphene local density
of states (LDOS). The distance-dependent enhancement of dI/dVs above the Dirac point
(Vs ≈ −0.17 V) as the tip nears a bright dot in Fig. 2.3c can therefore be interpreted as
arising from the attraction of negatively charged Dirac fermions to the dot center. We thus
conclude that the bright dot in Fig. 2.3a reflects a positively charged defect in BN [14, 51].
Similarly, the dis- tance-dependent reduction of dI/dVs above the Dirac point in Fig. 2.3d
arises from the repulsion of negatively charged Dirac fer- mions from the defect. We thus
conclude that the dark dots are negatively charge[14, 51].

We now focus on the ring defects, as displayed at the right edge of Fig. 2.2b. We find
that the ring radius depends on the values of Vs and backgate voltage Vg. Figure2.4 shows
that the ring radius changes from 2 nm (Fig. 2.4a) to 11 nm (Fig. 2.4b) as Vg is changed from
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Figure 2.4: dI/dVs maps of ring defect enable energy-level characterization. (a,b) dI/dVs
maps (I = 0.4 nA, Vs = 0.3 V) of the same ring defect at backgate voltages of Vg = 17
V and 9 V, respectively. (c) Ring radius R for different Vs and Vg. The ring radius was
extracted from dI/dVs maps taken at the same location as in (a) and (b). (d,e) Schematic
model (energies not to scale) for ring formation due to charge transfer between graphene
and a defect in the top layer of hBN. When the distance r between the tip and the defect
is larger than the ring radius R (d), the defect level is filled and negatively charged. When
r < R (e), local gating from the tip lowers the local electron density so that the Fermi level
is below the defect level, neutralizing the defect. For negative tip potentials and n-doped
graphene, R increases as reduced Vg shifts the unperturbed defect level closer to the Fermi
energy.

Vg = 17 V to 9 V (with constant Vs = 0.3 V). Figure 2.4c shows the dependence of the ring
radius on Vg for various Vs values (denoted by distinct symbols). These data were obtained
by measuring the ring radius from dI/dVs maps taken at the same location as Fig. 2.4a,b,
but with different Vs and Vg configurations. Although the precise ring radius depends on the
sharpness of the STM tip[52], the qualitative behavior shown in Fig. 2.4c is typical of the
vast majority of ring defects observed here. In general, for fixed Vs , the ring radius increases
with decreasing Vg until a critical backgate voltage (Vc = 6±1V) is reached, whereupon the
ring vanishes.

We now discuss the origin of the dot and ring defects observed in our dI/dVs maps.
Three general scenarios are possible: (1) adsorbates bound to the surface of graphene; (2)
adsorbates trapped at the interface between the graphene and hBN; and (3) intrinsic defects
within the insulating hBN substrate. Our data imply that (3) is the correct scenario, for
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the following reasons. First we rule out scenario (1) because weakly bound adsorbates
would have a higher height profile than the topographically small features observed[51, 53]
(Supplementary Section 3 of Ref [50]) and would also probably get swept away by the STM tip
when it is brought close enough to observe the graphene honeycomb structure[14]. Strongly
bound adsorbates in scenario (1) would also probably have taller height profiles as seen for
other graphene adsorbates (Supplementary Section 3 of Ref [50]) and should disrupt the
graphene honeycomb lattice[54] (which was not observed). Also, strongly bound adsorbates
should lead to changes in the graphene spectroscopy due to the formation of localized bonding
states[54], which are not seen. Scenario (2) can be ruled out because an adsorbate trapped
beneath graphene would cause a bump in graphene at least an order of magnitude larger
than the |∆z| < 0.1Å feature observed here. We would also expect a trapped adsorbate to
locally delaminate the graphene from the hBN substrate, thus disrupting the moiré pattern,
which is not seen.

Scenario (3) — intrinsic charged hBN defects — is thus the most likely explanation for
the defects observed here. Polycrystalline hBN has been shown to host several varieties of
charged defects, as seen from electron paramagnetic resonance [55] and luminescence experi-
ments[56, 57], as well as theoretical investigations[58]. In those studies the most abundantly
reported defects were nitrogen vacancies, which were shown to act as donors, and carbon
impur- ities substituted at nitrogen sites, which were shown to act as acceptors. Secondary
ion mass spectroscopy studies of high-purity single-crystal BN synthesized at high pressure
and temperature have also identified oxygen and carbon impurities[41]. A comparison be-
tween optoelectronic experiments[45, 46] on new, high-purity single- crystal hBN and recent
theoretical work[59] shows that the nature of the defects in the new, high-purity hBN crystals
is consistent with observations of carbon impurities and nitrogen vacancies in previous poly-
crystalline studies (although the influence of oxygen impurities remains ambiguous). Such
defects, when ionized, could induce the bright and dark dots observed in graphene/BN via a
graphene screening response[60] (Figs 2.2 and 2.3). The fact that these defects are embedded
in the hBN explains why the dots have such a small topographic deflection, as well as why
the graphene lattice and moiré pattern are not disrupted, and also why no new states arise
in the graphene spectroscopy[53, 54]. Variations in the intensity of bright and dark defects
are explained by hBN defects lying at different depths relative to the top graphene layer.

It is possible to extract quantitative information regarding the electronic configuration
of hBN defects from the STM dI/dVs signal measured from the graphene capping layer.
This can be achieved for the ring defects by analysing the gate (Vg) and bias (Vs) dependent
ring radius, shown in Fig. 2.4c. Similar rings have been observed in other systems and have
been attributed to the charging of an adsorbate or defect [52, 53, 61, 62]. Because the
ring in Fig. 2.4 is highly responsive to the presence of the STM tip and displays no charge
hysteresis, we expect that it lies in the topmost hBN layer and is strongly coupled to the
graphene electronic structure. The STM tip is capacitively coupled to the graphene directly
above the defect through the equation |e|δn = C(r)Vtip , where δn is the local change in
graphene electron density, C(r) is a capacitance (per area) that increases with decreasing
lateral tipdefect distance r, Vtip is the tip electrostatic potential (Vtip = Vs + constant, see
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Supplementary Section 6 of Ref [50]), and |e| is the charge of an electron. For the dI/dVs
maps in Fig. 2.4, Vtip < 0, so the electrostatic gating from the tip lowers the electron density
of the (n-doped) graphene directly beneath the tip. Figure 2.4d schematically depicts the
local electronic structure of the graphene immediately above the defect when r is large and
Vg is set such that the defect level is filled and carries negative charge. As the tip approaches
the defect, C(r) increases and thus δn becomes more negative. Eventually, the defect level
crosses the Fermi level (and switches to a neutral state) when the tip is at a distance R
away from the defect, thus causing a perturbation in the tunnel current that leads to the
observation of a ring of radius R. Figure 2.4e shows the case (r < R) where the defect is
in a neutral charge state through interaction with the tip. The energy level of the defect
can be found by tuning Vg such that the Fermi level matches the defect level in the absence
of the tip. This will cause the radius of the charging ring to diverge. As seen in Fig. 2.4c,
this occurs for the observed ring defects when Vg = 6±1V, thus resulting in a defect level
30±10 meV above the graphene Dirac point energy (because the Dirac point energy can
be measured with respect to the Fermi level), which is expected to be 4 eV below the
hBN conduction band-edge[63]. Interestingly, this is similar to a previously observed carbon
substitution defect level [56], suggesting that the ring defect arises from a carbon impurity.

2.3 Scanning Tunneling Microscope Manipulation of

Defect Charge in Hexagonal Boron Nitride

Figure 2.5(a) presents a dI/dVs map exhibiting numerous charged defects. To manipulate
the charge state of the observed hBN defects, the STM tip was positioned 1 nm over the
center point of this area and a bias of Vs = 5 V was applied for 10 s. After applying this
voltage pulse, a dI/dVs map was acquired over the same region at low bias, as shown in
Fig. 2.5(b). Figure 2.5(c) shows the same region after similar application of a second pulse.
Inspection of Fig 2.5(b,c) shows that the hBN defect configurations are significantly altered
by application of such voltage pulses. The defects are seen to reversibly switch between
charged and neutral states, as well as between states having opposite charge. To highlight
this behavior, we denote changes to defect states (compared to the preceding image) with
colored arrows. A red arrow signifies the disappearance of a charged defect, a blue arrow
represents the appearance of a charged defect, and a green arrow indicates where a defect has
changed the sign of its charge. We find that defects that disappear after a tip pulse always
reappear in the same location after subsequent tip pulses. Additionally, dark dots tend to
switch into metastable neutral states (that is, disappear) at a higher rate than bright dots.
Ring defects, as well as the darkest and brightest dots, remain unchanged by tip pulses.
Similar manipulation has been performed previously to switch the charge state of defects in
semiconductors[64] as well as adatoms on top of ultrathin insulating films[65].

This tip-induced manipulation of hBN defects can be explained by electric-field-induced
emission of charge carriers from hBN defect states. By tilting the local potential landscape,



CHAPTER 2. ENGINEERING EMBEDDED GATES 16

Figure 2.5: Manipulating defects in
hBN with an STM tip. Tip pulses
with Vs= 5 V and ∆t= 10 s are used
to toggle the charge states of the dot
defects. (a) dI/dVs map (I = 0.4
nA, Vs = 0.25 V) of graphene/hBN
reveals various dots and rings. (b)
dI/dVs map of the same region after
a tip pulse is applied at the center
of the region in a. (c) dI/dVs map
of the same region after another tip
pulse. Red arrows mark the disap-
pearance of dots relative to the pre-
vious image, blue arrows mark the
appearance of dots, and green arrows
mark dot defects that have changed
the sign of their charge.

the STM tip causes charge carriers to tunnel through the ionization barrier between different
defects, charging some while neutralizing others. This accounts for the disappearance and
reappearance of the dots in the same location, which cannot be described by defect migration
through the hBN lattice. In addition, the observation of a higher rate of switching for the
dark dots (acceptors) than bright dots (donors) suggests it is more energetically favorable
for neutral acceptors to emit holes than for neutral donors to emit electrons (and the same
for the reverse processes). Hence, the acceptor states are probably closer to the valence band
than the donor states are to the conduction band. Because the rings, as well as the darkest
and brightest dots, never change under tip pulses, we surmise that they are in the top layers
of hBN and in direct electrical contact with the graphene. Their charge states thus depend
only on graphene's local chemical potential and show no hysteresis or metastability with
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the electric field (for example, the ring defects smoothly and reversibly alter their charge in
response to the passage of the STM tip and always return to the same charge state). The
defects that switch into new metastable charge states (that is, exhibit hysteresis) must thus
be in lower hBN layers, out of direct contact with the graphene.

2.4 Local Electrostatic Gates in Graphene/hBN

Heterostructures

This section was adapted from the following published paper with permission from co-
authors: J. Velasco Jr. et al. ”Nanoscale Control of Rewriteable Doping Patterns in Pristine
Graphene/Boron Nitride Heterostructures,” Nano Lett. 16, 16201625 (2016). Copyright
2016 American Chemical Society.

Having established that individual defects in hBN can be ionized by STM tip volt-
age pulses, we now employ the gate electric field to produce net charge exchange between
graphene and the insulating substrate. We applied tip voltage pulses to a graphene/hBN
device using the experimental setup sketched in Figure 3.1(a). Figure 2.6(a) shows dI/dVs
spectra obtained with Ṽg = 0 V after applying Vs = 5 V tip voltage pulses while holding Vg
at different values (the dI/dVs spectra were obtained at the same location the tip pulses were
applied). The red trace shows the reference spectrum measured before application of any
tip pulses. Here we observe an ∼ 130 mV gaplike feature at the Fermi energy[48, 49] that is
known to arise due to phonon-mediated inelastic tunneling[49]. To the right of this inelastic
tunneling feature is a dip (black arrow) that marks the DP. Because the DP lies to the right
of the Fermi energy (Vs = 0 V), we see that this region of the surface has residual p-doping
(∼ 5 × 1011cm2) at zero gate voltage. The yellow, green, and blue traces show the dI/dVs
spectra measured after applying tip pulses lasting 30s with the gate voltage set respectively
to Ṽg = 10, 20, and 30 V (the height of the tip in each case was approximately 1.5 nm away
from the surface). As shown by the black arrows, the DP shifts down in energy as each tip
pulse is delivered with a more negative gate voltage. The sample is seen to locally change
from p-type doping to n-type doping after the first pulse and then to become more heavily
n-doped after each pulse. This behavior is consistent with the local hBN charge landscape
becoming increasingly positively charged after tip pulses performed at increasingly negative
gate voltages. Reversing the polarity of the gate field, while leaving everything else the same,
results in local graphene doping with the exact opposite polarity[66].

We were able to gain insight into the spatially varying dopant landscape that results from
a tip pulse by performing dI/dVs imaging of the area beneath the STM tip both before and
after a tip pulse. All maps exhibited a 7 nm moiré pattern, indicating a clean graphene/hBN
interface. Figure 2.6(b) shows a dI/dVs map of a patch of graphene right before performing
a tip pulse. It contains a number of point-like defects due to charge centers in the hBN
layer[50] but otherwise exhibits a smooth charge landscape. We next brought the STM tip
to the top right corner of this region and applied a tip voltage pulse while holding the gate
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Figure 2.6: Nanoscale doping patterns in graphene controlled with an STM tip voltage pulse.
(a) The dI/dVs spectroscopy of a pristine surface before a tip pulse (red) and after a tip
pulse (Vs =5V,30s) for Vg =10V (yellow), 20 V (green), and 30 V (blue). Initial tunneling
parameters: I = 0.4 nA, Vs = 0.5 V, V Ṽg = 0. The curves are vertically offset for clarity. (b)
dI/dVs map of pristine graphene/hBN (I = 0.4 nA, Vs = 0.25 V, Ṽg = 5 V). (c) The dI/dVs
map of the same region after a tip pulse was applied in the corner of the map (location
denoted by cross hair), while holding Vg = 20 V (I = 0.4 nA, Vs = 0.25 V, Ṽg = 10 V). (d)
The dI/dVs map of the same region after another tip pulse was applied in the same location,
while holding Vg = 0 V (I = 0.4 nA, Vs = 0.25 V, Ṽg = 5 V). All data were acquired from a
device with a 44 µm width and 39 µm source-drain separation.

voltage at Vg = 20 V. Figure 2.6(c) shows a dI/dVs map of the same region after applying the
tip pulse. The most striking feature in the dI/dVs map after the tip pulse is the emergence of
a red disk region in the upper right quadrant of the map, which also exhibits a darkened halo
around the perimeter. Although only one quadrant is shown, the new red region exhibits
rough circular symmetry. The altered charge landscape is stable at T = 5 K long after the
pulse has been applied, but it can be erased by application of an identical tip pulse with
the gate voltage held at Ṽg = 0V. Figure 2.6(d) shows a dI/dVs image of the same graphene
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patch after application of such an “eraser” pulse. The altered red disk is now completely
gone and the graphene is returned to its pristine state.

The new charge-doping landscape induced by the tip pulse can be explained by a combi-
nation of field-induced defect ionization and charge diffusion within the hBN insulator. The
strong electric field of the tip pulse penetrates through the gated graphene into the insulator
region, causing a strong potential gradient around hBN defects and resulting in enhanced
defect field emission. When the gate is on during a tip pulse, the gate electric field causes
released electrons to drift either into the graphene electrode (Vg < 0, resulting in a positive
space charge layer in the hBN) or away from the graphene electrode (Vg > 0, resulting in a
negative space charge layer in the hBN). Pulses applied with Vg = 0V allow charge to freely
diffuse and recover the initial state of graphene. The net result is that both p-type and
n-type doping profiles can be written and erased in pristine graphene/hBN with a spatial
resolution determined by the potential gradient surrounding an STM tip. For example, the
red region in Figure 2.6(c) is n-doped graphene while the blue region surrounding it is p-
doped graphene, and the boundary between these two regions defines a rewritable nanoscale
p-n junction.
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Chapter 3

Monolayer Graphene Quantum Dots

In this chapter, we provide experimental and theoretical investigation of monolayer graphene
quantum dots defined by circular p-n junctions. Using scanning tunneling microscopy, we
fabricate gate-tunable quantum dots in graphene/hBN heterostructure and characterize their
electronic structures. Theoretical calculations of massless Dirac fermions in circular p-n
junctions are presented to support our experimental findings.

In Section 3.2, we use the technique for creating local embedded gates described in Sec-
tion 2.4 to create gate-tunable circular p-n junctions in monolayer graphene. We then provide
spectroscopic evidence that these circular p-n junctions confine graphene charge carriers to
form discrete quantum dot energy levels. Spatially resolved scanning tunneling spectroscopy
reveals quasi-bound eigenstates within circular p-n junctions and Friedel-like interference
patterns outside. We then compare our experimental observations with theoretical simu-
lations of the massless Dirac Hamiltonian in two-dimensional harmonic oscillator potential,
which allows us to identify and associate each observed peak in our experimental data with a
unique set of radial and angular quantum numbers. Finally, we create a circular p-n junction
of opposite polarity to show that by changing the polarity of the local gate, we can create
electron graphene quantum dots as well as hole quantum dots.

In Section 3.3, we explore the origin of the confinement potential in our graphene quantum
dots. In our theoretical simulation of the massless Dirac equation presented in Section 3.2, we
approximate the confinement potential as a quadratic function. We explain how the potential
strength was extracted from experimental data and show that a harmonic oscillator potential
is a reasonable approximation for our experiment. Furthermore, we solve a simplified Poisson
equation to show that the experimentally observed local potential can be plausibly attributed
to the collective effect of many charged hBN defects.

In Section 3.4, we discuss the competing effect of the STM tip acting as a floating top
gate with the local embedded bottom gate within hBN. We show that the effect of the STM
tip work function can be made negligible by tuning the strength of the embedded bottom
gate potential.

Content from the following paper has been included in this chapter with permission from
co-authors: Lee, J. et al. Imaging electrostatically confined Dirac fermions in graphene
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quantum dots. Nature Physics 12, 10321036 (2016). Copyright 2016 Macmillan Publishers
Limited.

3.1 Introduction

Quantum confinement of charge carriers in conducting materials is important for the control
and application of orbital and spin properties of electrons. Since the discovery of graphene,
many different methods have been used to localize graphene’s charge carriers, including litho-
graphic techniques for mechanically carving graphene[4–7], chemical deposition of graphene
islands[8–10], utilization of band-bending in graphene edges[11], unfolding C60 molecules [12],
magnetic fields with charge inhonogeneity[13], and deposition and accumulation of adatoms
on pristine graphene[14]. Yet another method for electron confinement in graphene is by
using local electrostatic gating to induce circular p-n junctions in graphene, as discussed in
Section 1.3. A recent tunnelling spectroscopy experiment[17] revealed signatures of electron
confinement induced by the electrostatic potential created by a charged STM tip. However,
since the confining potential moves with the STM tip, this method allows neither spatial
imaging of the resulting confined modes nor patterning control of the confinement potential.
Another recent experiment[19] showed spectroscopic signatures of electrostatic charge con-
finement in graphene grown on copper. However, this method also does not provide flexible
control of quantum dot geometry. In this chapter, we employ the technique described in
Chapter 2 to create local embedded gates that allows us to fabricate stationary graphene
quantum dots and spatially map their electronic structures.

3.2 Electronic Structure of a Circular Graphene P-N

Junction

Here we employ the previously described patterning technique that allows the creation of
stationary circular p–n junctions in a graphene layer on top of hexagonal boron nitride.
Figure 3.1(a) illustrates how stationary circular graphene pn junctions are created. We start
with a graphene/hBN heterostructure resting on a SiO2/Si substrate. The doped Si substrate
acts as a global backgate while the hBN layer provides a tunable local embedded gate after
being treated by a voltage pulse from an STM tip[66]. To create this embedded gate the STM
tip is first retracted approximately 2 nm above the graphene surface and a voltage pulse of Vs
= 5 V is then applied to the STM tip while simultaneously holding the backgate voltage to Ṽg
= 40 V. The voltage pulse ionizes defects in the hBN region directly underneath the tip [50]
and the released charge migrates through the hBN to the graphene[66]. This leads to a local
space-charge build-up in the hBN that effectively screens the backgate and functions as a
negatively charged local embedded gate[66] (using the opposite polarity gate voltage during
this process leads to an opposite polarity space charge). Adjusting Vg afterwards allows
us to tune the overall doping level so that the graphene is n-doped globally, but p-doped
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inside a circle centered below the location where the tip pulse occurred (it is also possible to
control the charge carrier density profile as well as create opposite polarity p-n junctions by
changing the Vg applied during the tip pulse). As shown schematically in Figure 3.1(b), the
STM tip can then be moved to different locations to probe the electronic structure of the
resulting stationary circular p–n junction.

Figure 3.1: Creating and imaging a circu-
lar graphene p-n junction. (a) Schematic
diagram showing the fabrication of a lo-
cal embedded gate in a graphene/hBN het-
erostructure. A square voltage pulse is ap-
plied to the STM tip (held a few nanometers
from the graphene surface) while the back-
gate voltage Vg is fixed at a nonzero value.
Vs is defined as the negative of the tip bias.
This technique creates a circular p-n junc-
tion in the graphene in response to trapped
space charge in the insulating hBN. (b)
The STM tip spatially probes Dirac fermion
wavefunctions in the presence of the p-n
junction. (c) A representative experimen-
tal charge density map for one quadrant of
a circular graphene p-n junction. A dI/dVs
spectrum is measured at each pixel to de-
termine the Dirac point energy ED(x, y),
which is then converted to a local charge
carrier density n(x, y). The black dashed
line marks the approximate location of the
p-n junction boundary at Vg=40V.

To confirm that this procedure results in a circular p-n junction, we measured STM
differential conductance (dI/dVs)as a function of sample bias (Vs) on a grid of points
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covering the graphene area near a tip pulse. The Dirac point energy, ED, was identi-
fied at every pixel, allowing us to map the charge carrier density, n, through the relation
n(x, y) = (sgn(ED)ED

2)/(π(h̄vF )2), where vF = 1.1×106 m/s is the graphene Fermi velocity
and h̄ is the reduced Planck constant. Figure 3.1(c) shows the resulting n(x, y) for a tip
pulse centered in the top right corner (the carrier density n can be adjusted by changing
Vg). The interior blue region exhibits positive charge density (p-type) whereas the red region
outside has negative charge density (n-type).

To spatially map the local electronic properties of such circular p–n junctions, we exam-
ined a rectangular sector near a p–n junction, as indicated in Figure 3.2(a). Figure 3.2(b)
shows a topographic image of the clean graphene surface in this region. A 2.8 nm moiré
pattern (corresponding to a 5◦ rotation angle between graphene and hBN) is visible[47, 48]
and the region is seen to be free of adsorbates. A dI/dVs map of the same region (Fig. 3.2(c))
reflects changes in the local density of states (LDOS) caused by the spatially varying charge
density distribution. Since the p–n junction center is stationary, we are able to move the
STM tip to different locations inside and outside the p–n junction to spatially resolve the
resulting electronic states. Figure 3.2(dg) shows d2I/dV 2

s (Vg, Vs) plots at four different lo-
cations, as denoted in Fig. 3.2(c). We plot the derivative of dI/dVs with respect to Vs to
accentuate the most salient features, which are quasi-periodic resonances that disperse to
lower energies with increasing Vg. The energies of the observed resonances are seen to evolve
as ε ∝

√
|Vg − VCNP |+constant, where VCNP is the local charge neutrality point, as expected

for the relativistic band structure of graphene. We see that the energy spacing between ob-
served resonances (∆ε) decreases as we move away from the p–n junction center until the
resonances disappear outside. For example, ∆ε is 29 ± 2mV at the center, 16 ± 2mV at 50
nm from the center, and 13±2mV at 100 nm from the center (for Vg =32V). A similar trend
is also observed for p–n junctions that are n-doped in the center and p-doped outside.

We have imaged these electronic states both inside and outside of circular p–n junctions.
The dI/dVs maps in Fig. 3.3(a,b) show eigenstate distributions mapped at two different
energies within the same section of a circular p–n junction (similar to the boxed region of
Figure 3.2(a), but with opposite heterojunction polarity). Circular quantum interference
patterns resulting from confined Dirac fermions are clearly observed within the junction
boundary, as well as scattering states exterior to the boundary. The junction boundary is
demarcated by a dark band (low dI/dVs) in the middle of each dI/dVs map (and further
marked by a dashed line). Comparing the overall spatial locations of the nodes and anti-
nodes, the two eigenstate distributions in Fig. 3.3(a,b) are clearly different (for example,
one has a node at the origin, whereas the other exhibits a central anti-node). Fig. 3.4(a)
shows a more complete mapping of the energy-dependent eigenstates (within a p–n junction
of the same polarity as Fig. 3.2(a)) along a line extending from the center (left edge) to a
point outside of the p–n junction (right edge) at a gate voltage of Vg = 32 V. The data
are plotted as d2I/dV 2

s (r, Vs) (where r is the radial distance from the center) to accentuate
the striking oscillatory features. The energy level structure and interior nodal patterns are
clearly evident.

Our observations can be explained by considering the behavior of massless Dirac fermions
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Figure 3.2: Gate-tunable electronic structure of a circular graphene p-n junction. (a)
Schematic diagram of a circular p-n junction formed in graphene. The white rectangle
indicates the measurement region. (b) STM topographic image of the region sketched in (a).
(c) dI/dVs map of the same region as shown in (b). Dashed lines are placed near the p-n
junction boundary in (b) and (c) to serve as guides to the eye. (Vs= 0.25 V, I = 0.5 nA, Vg
= 30 V, Va.c.=6 mV root-mean squared a.c. modulation added to Vs.) (dg) d2I/dV 2

s (Vg, Vs)
plots measured at different distances from the center, as indicated in (c) (initial tunneling
parameters: Vs= 0.1 V, I = 1.5 nA, 1 mV a.c. modulation). The grey scale bar in (d) also
applies to (eg). The observed resonances vary in energy roughly according to the expected
graphene dispersion ε ∝

√
|Vg − VCNP |. The energy spacing between resonances is larger at

the center(d) than is seen further out (e,f), and the resonances disappear altogether beyond
the p-n junction boundary (g).

in response to a circular electrostatic potential. Due to Klein tunneling, a graphene p–n
junction perfectly transmits quasiparticles at normal incidence to the boundary, but reflects
them at larger angles of incidence[3, 27, 28]. In a potential well with circular symmetry,
electrons with high angular momenta are obliquely incident on the barrier and are internally
reflected, thus leading to particle confinement and the formation of quasi-bound quantum
dot states[17, 36, 67–70]. As angular momentum is increased, electrons are repelled from
the center of the potential by the centrifugal barrier, leading to an increase in the number
of dI/dVs resonances that should be observable in spectroscopy measured away from the
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Figure 3.3: dI/dVs images of quantum interference throughout a circular graphene p-n
junction. (a) dI/dVs map measured for a p-n junction sector similar to 3.1, but having
opposite heterojunction polarity (Vs = 25 mV, I = 0.5 nA, Vg = 23 V, 1 mV a.c. modulation).
(b) dI/dVs map at the same location as (a), but for a different energy, shows a different spatial
pattern (Vs = 22 mV, I = 0.4 nA, Vg = 22 V, 1 mV a.c. modulation). The dark bands
(low dI/dVs) marked by the dashed lines in the middle of (a) and (b) represent the classical
turning points of the potential.

center[71]. This is consistent with our observation that the apparent energy spacing between
resonances (∆ε) at the center (Fig. 3.2(d)) is approximately double the apparent energy
spacing at a point 100 nm away from the center (Fig. 3.2(f)). Scattered quasiparticles (with
nonzero angular momenta) external to the potential boundary contribute to Friedel-like
oscillations that radiate outwards, as seen in Fig. 3.3. A circular graphene p–n junction
with an n-doped interior thus acts as a quantum dot for electron-like carriers and a quantum
antidot for hole-like carriers (as in Fig. 3.3), whereas the reverse is true for p–n junctions of
opposite polarity (as in Figs 3.2and 3.4).

This qualitative picture can be confirmed by comparing the experimental results to a
model based on the two-dimensional massless Dirac Hamiltonian,

Ĥ = −ih̄vF~σ · 5r + U(~r), (3.1)

where where U(~r) is a scalar potential and ~σ = (σx,σy) are the pseudospin Pauli matrices.
Since we are interested in the low-energy eigenstates of the confinement potential, we use a
parabolic model U(~r) = -κr2 (that is, the lowest order approximation). The curvature of the
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Figure 3.4: Spatially resolving energy levels inside a circular graphene p-n junction. (a)
d2I/dV 2

s measured as a function of Vs and the radial distance r from the center of a circular
p-n junction having the same polarity as Fig. 3.2. The measurement was performed at a
fixed gate voltage (initial tunneling parameters: Vg = 32 V, Vs = 0.1 V, I = 1.5 nA, 1 mV
a.c. modulation). (b) Theoretically simulated ∂LDOS/∂ε as a function of energy and radial
distance for a potential U(r) = −κr2 (potential shown as dashed line). (c) Experimental
dI/dVs radial line scans at different Vs values for fixed Vg=32V. (d) Radial dependence
of the theoretical probability density |ψn,m|2 for quantum dot eigenstates. Each curve is
labeled by radial and azimuthal quantum numbers (n, m). Each set of theoretical curves has
been vertically displaced by a quantity proportional to Vs for the correspondingly colored
experimental curve in (c) to ensure that the black dashed line denotes the classical turning
points.

potential, κ=6×103meV/nm2, was extracted from measurements of the spatially dependent
Dirac point energy (see Section 3.3). We solved the Dirac equation to obtain the eigenstates
for Dirac fermions in this confinement potential.

Figure 3.4(b) shows the results of our calculations in a plot of ∂LDOS/∂ε, the energy
derivative of the LDOS, which corresponds to the experimental quantity d2I/dV 2

s . The
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resulting eigenstate distribution (Fig. 3.4(b)) closely resembles the experimental eigenstate
distribution (Fig 3.4(a)). Both have a characteristic parabolic envelope due to the con-
finement potential, as well as a complex set of interior nodal patterns. The characteristic
energy spacing seen experimentally is in good agreement with the characteristic energy scale
ε*=(h̄2vF

2κ)1/3 ≈ 15 meV that arises from the theoretical model. Further insight into the
nature of the observed resonances can be gained by directly comparing constant-energy ex-
perimental dI/dVs line-cuts (Fig. 3.4(c)) to the modulus square of the simulated quantum
dot wavefunctions (Fig. 3.4(d)). Here it is useful to label the confined states by a radial quan-
tum number n = 0, 1, 2,. . . and an azimuthal quantum number m = ±(1/2), ±(3/2),. . . ,
that is, HΨn,m = εn,mΨn,m. To understand the experimentally observed behavior, we note
two important properties of the eigenstates Ψn,m. First, although each probability distribu-
tion |Ψn,m|2 features n+1 maxima, most of the weight is concentrated in the first maximum.
The position of this maximum is pushed further from the center for larger values of |m|
(Fig. 3.4(d)). Second, for massless Dirac fermions confined by a quadratic potential, we
observe a near-perfect energy alignment of the states Ψn,m, Ψn−1,m+2, . . . at low quantum
numbers, indicating an approximate degeneracy. This degeneracy explains why different res-
onances originating from different Ψn,m states form the horizontal rows seen in Fig. 3.4(a,b)
(which are not perfectly horizontal because the degeneracy is not perfect). Combining these
two observations, we are able to attribute each experimental dI/dVs peak in Fig. 3.4(c) to
a different Ψn,m state, wherein each eigenstate contributes most of its spectral weight to a
single energy and radial position.

In addition to providing insight into the spatial and spectral distribution of the Ψn,m

states, our simulations also explain other key aspects of the experimental data. In particular,
the resonances in our simulation have finite widths, originating from Klein tunneling of
confined states into the Dirac continuum. The widths of these resonances lie within the range
4meV to 10meV for both the experimental data and the theoretical simulation. Furthermore,
our simulation also explains the striking observation that the apparent energy spacing for
the resonances close to the center is nearly twice as large as the spacing away from the center
(see Fig. 3.2(d)). This occurs because only the lowest angular momentum states, m=±1/2,
have appreciable wavefunction density at the origin, whereas for all other m values the Ψn,m

states contribute predominantly to off-centered measurements.

3.2.1 Electronic Structure of a Quantum Dot with Opposite
Polarity

Figures 3.2 and 3.4 contain STS measurements on a circular p-n junction that is p-doped
on the inside and n-doped outside. In these structures, holes are confined to the quantum
dot and electrons are scattered. Figures 3.5 and 3.6 show STS measurements obtained for a
circular p-n junctions of opposite polarity created by an STM tip-pulse applied at a negative
backgate voltage Ṽg = -40V. Because the confinement potential polarity is flipped, the same
confinement mechanism now traps electrons, forming quasibound electronic states inside the
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quantum dot while scattering holes.

Figure 3.5: Gate-tunable STS measurements of a circular p-n junction with opposite polarity.
(a-d) dI/dVs(Vs, Vg) for a p-n junction that is n-doped at the center and p-doped outside. (e-
f) d2I/dV 2

s (Vs, Vg) obtained by numerically differentiating (a-d). Initial tunneling parameters
for all dI/dVs spectra: Vs=-0.1V, I=1.5nA, Va.c.=1mV.

In Figure 3.5(a-d), dI/dVs(Vs, Vg) was obtained at four different distances from the center
of a quantum dot. Fig. 3.5(e-h) shows d2I/dV 2

s (Vs, Vg) obtained by numerically differentiat-
ing Fig. 3.5(a-d). The most salient oscillatory features correspond to quantum dot resonances
whose energies vary as a function of backgate voltage like ε ∝ −

√
|Vg − VCNP |+constant,

where VCNP is the local charge neutrality point. This behavior is consistent with that of an
electronic state in graphene’s linear band structure.

Figure 3.6(a) shows spatially resolved STS plotted as dI/dVs(Vs, r). Figure 3.6(b), which
is analogous to Figure 3.4(a) is a numerically differentiated plot of Figure 3.6(a). Fig-
ure 3.6(b) has very similar features as Figure 3.4(a) except reflected across the horizontal
axis, consistent with our expectation for a quantum dot with opposite polarity. There are,
however, some differences between the two plots. In Figure 3.6(b), the internal nodal struc-
ture is not as prominent while the Friedel-like oscillations on the outside of the quantum dot
are more visible. This might be because of the disruptive effect of the tip work function on
the quantum dot confinement potential (see Section 3.3).
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Figure 3.6: Spatially resolved energy level spectrum of p-n junction with opposite polarity.
(a) dI/dVs(Vs, r) for a p-n junction that is n-doped at the center and p-doped outside. (b)
d2I/dV 2

s (Vs, r) obtained by numerically differentiating (a). Initial tunneling parameters for
all dI/dVs spectra: Vs=-0.1V, I=1.5nA, Va.c.= 1mV.

3.3 Quantum Dot Confinement Potential

3.3.1 Estimating the Curvature of the Quadratic Potential

We modeled our p-n junction using the 2D massless Dirac Hamiltonian with a quadratic
potential, Ĥ = −ih̄vF~σ · 5r + κr2. We chose κ= 6×10−3meV/nm2, and the resulting theo-
retical simulation (Fig. 3.4(b)) is in good agreement with the experimental data (Fig. 3.4(a)).
We estimated the value for κ through scanning tunneling spectroscopy (STS) measurements
of the Dirac point, with the assumption that the potential varies slowly enough that the
Thomas-Fermi approximation is valid. At each point r away from the center we performed
a dI/dVs measurement at fixed Vg such that ED is outside of the inelastic tunneling gap (to
do this we needed to use a value of Vg that is different from the value Vg = 32 V used for
the data presented in Fig. 3.4(a)). We then extracted ED through a parabolic fit, converted
ED to charge carrier density through n(r) = ED

2(r)/π(h̄vF )2, and rigidly shifted the entire
n(r) curve by a uniform constant to match the data at Vg = 32 V (i.e. the gate voltage
in Fig. 3.4(a)). The resulting shifted n(r) is plotted in Fig. 3.7(a), and the equivalent ED
is plotted as the blue curve in Fig. 3.7(b). A similar procedure was used to construct the
n(x, y) plot in Fig. 3.1(c) (with the ED measurement performed at Vg = 50 V, and then
n(x, y) shifted to match the gate voltage held during the tip pulse). Although the data in
Figs 3.2 and 3.4(a) are obtained from the same p-n junction, the data in Fig. 3.3 is from a
different but similarly prepared p-n junction.

The blue curve in Fig. 3.7(b) is an approximate representation of the potential felt by
Dirac quasiparticles in the p-n junction of Figs 3.2 and 3.4. We extract κ by fitting the blue
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Figure 3.7: Circular electrostatic potential. (a) Charge carrier density for the p-n junction
in Fig. 3.5 and Fig. 3.4. (b) Dirac point energy (blue curve) corresponds to (a). The Dirac
point energy is fit with a quadratic polynomial with curvature κ = 0.006 meV/nm2 (red
curve). This value of κ is used to generate the theoretical simulation in Fig. 3.4b. The green
curve is a shifted power law fit to the experimental blue curve. The inset is ∂ LDOS/∂ε
calculated for the non-parabolic potential represented by the green curve (which is also the
dashed line in the inset).

curve in Fig. 3.7(b) with an even quadratic polynomial (red curve). This procedure results
in ED(r) = (−6.33× 10−6eV/nm)r2 + (1.05× 10−1 eV), yielding κ = 6± 1× 10−3 meV/nm2

(corresponding to characteristic energy ε∗ = (h̄2vF
2κ)1/3 ≈ 15 meV and characteristic length

r∗ = (h̄vF/κ)(1/3) ≈ 50 nm).
Although the potential in Fig. 3.7(b) (blue curve) deviates from the parabolic fit (red

curve), this does not appear to significantly affect the agreement between the experimen-
tal and theoretical eigenstate distributions in Figs 3.4(a,b). In order to understand how
deviations from a parabolic potential affect our results, we simulated ∂LDOS/∂ε for a non-
parabolic potential U(r) whose carrier density is given by a generic shifted power law func-
tion:

n(r) = n∞ −
n0

(1 + (r/d)2)γ
. (3.2)

Here n∞ = 6 ×1012 cm−2, n0 = 6.9 ×1012 cm−2, and d = 400 nm are phenomenological
parameters determined by fitting to the experimental potential. For simplicity, we chose
γ = 3

2
(which happens to be the power law for the perfect screening of charge spatially

separated from graphene (insert citation here)). In the Thomas-Fermi approximation, the
potential is given by

U(r) = sgn(n(r))h̄vF
√
π|n(r)|. (3.3)

The above equations for U(r) and n(r) fit the experimental potential quite nicely over the
entire spatial range of the measurement (see green curve in Fig. 3.7(b) for fit). The resulting



CHAPTER 3. MONOLAYER GRAPHENE QUANTUM DOTS 31

∂LDOS/∂ε calculated for this potential (inset in Fig. 3.7(b)) is qualitatively and quanti-
tatively similar to ∂LDOS/∂ε calculated for the parabolic potential (Fig. 3.4). Thus, the
simple parabolic potential model is sufficient to explain our experimental results.

3.3.2 Simulation of Quantum Dot Potential

In Figure 3.4 of Section 3.2, comparison of experimental data to theoretical simulation al-
lowed identification of observed nodes with specific quantum numbers. In simulating the
Dirac Hamiltonian, we used the two-dimensional harmonic oscillator, the simplest and most
commonly used approximation for a potential well. However, we showed in Section 3.3 that
our experimentally inferred quantum dot potential deviates from the harmonic oscillator
potential at large radial distance r. We then concluded that the quantum dot electronic
structure is robust enough to remain unaffected by the curvature of the confinement poten-
tial ny computing the solution to the Dirac equation for another potential that better fits
our experiment:

n(r) = n∞ −
n0

(1 + (r/d)2)γ
. (3.4)

This potential is physically equivalent to a potential generated by a 1.1 ×104 electrons
positioned at a point 400 nm below the graphene. However, this is physically unrealistic. The
thickness of hBN substrate supporting the graphene is less than 200nm, so it is impossible
in the experiment to have a point charge so far away from the surface. Furthermore, it
is unlikely that so many electrons are concentrated in a small spatial volume. Hence, this
potential clearly does not accurately represent the actual charge distribution.

A natural question arises: what is the charge distribution within the hBN that produces
the quantum dot potential observed in the experiment? Unfortunately, we do not have
the ability to detect charged defects more than a few layers away from the surface using
STM [50] so that direct experimental mapping of charge distribution is impossible. And
depending on the parameters of the STM-tip doping process, the charge distribution may
vary. In this section, we take a step toward understanding the actual charge distribution
by studying a simulation of the Poisson equation for randomly distributed charges within
a cylindrical volume of hBN, which induces a confinement potential qualitatively similar to
our experiment.

Figure 3.8(a) is a schematic describing the parameters used in our simulation. Point
charges are randomly distributed (by a computer program) inside a cylindrical region below
the graphene defined by radius ρ and height h. To compute the potential, we use the method
of images assuming perfect screening by graphene [72]. The charge density produced by a
point charge then becomes:

n(r) = n∞ −
d

π(d2 + r2)3/2
, (3.5)

where n(r) is the surface charge density at radial distance r from the point charge located d
below the graphene and n∞ is the global charge density induced by the backgate. We then
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Figure 3.8: Theoretical simulation of potential induced in graphene by a randomly scattered
point charges in hBN. (a) Diagram showing charged defects in hBN randomly distributed
within a cylindrical region of radius ρ and height h. (b) Comparison of theoretically simulated
curve (225 point charges randomly distributed within a cylindrical region of radius ρ=133
nm and height h=100nm). (c) Ensemble average of 10,000 potentials like (b) generated by
randomly distributed point charges.

use Thomas-Fermi approximation and compute the electrochemical potential from charge
density:

U(r) = sgn[n(r)]h̄vF
√
π|n(r)|. (3.6)

The blue curve in Figure 3.8(b) shows the potential profile for 225 point charges dis-
tributed within a cylindrical region of ρ = 133 nm and h = 100 nm. The blue curve
resembles the red curve, which is the experimentally observed quantum dot potential. A
notable qualitative difference between the theoretical simulation and the experiment is that
the theoretically simulated curve is not monotonic, or ’bumpy,’ near the center. This dif-
ference may arise from the fact that the actual charge distribution will not be random due
to Coulomb repulsion of electrons, which would prevent spatial clustering of charges and
result in a more uniform charge distribution than our randomly distributed point charges.
Also, the assumption of perfect screening will not be valid for point charges positioned very
close to the graphene surface, but this is not accounted for in our simple simulation. Fig-
ure 3.8(c) shows an ensemble average of 10,000 potentials induced by randomly distributed
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charges such as the one shown in Figure 3.8(b). Mathematically, this type of ensemble
average will converge to the potential of a uniformly charged cylinder. The blue curve in
Figure 3.8(c) is now monotonic and more closely resembles the experiment. In the actual
experiment, electrostatic fields arise from discrete point charges (See Section 2.2), so the
ensemble average does not represent an accurate physical picture but makes it plausible that
the confinement potential in our experiment is caused by some local distribution of substrate
charges. Furthermore, we can make quantitative comparison of our theoretical simulation
to the experiment by examining defect densities. The cylindrical region in our theoretical
model has charge density ρ = 1016 cm−3. This number is consistent with defect density
observed in our STM measurements (dI/dVs maps show defect density σ = 1010cm−2, which
corresponds to volume density ρ = 1017cm−3 assuming that hBN defects up to 5 layers from
the surface are detectable via STS). A secondary ion mass spectrometry experiment reports
defect density ρ = 1018cm−3 [41].

3.4 The STM Tip as a Floating Top Gate

We have thus far limited our discussion of electrostatic gating on graphene to the embedded
substrate gates fabricated by applying voltage pulse to an STM tip. However, another source
of electrostatic gating in our experiment is the STM tip, which acts as a floating top gate
on the graphene[53]. In this section, we discuss the competing effects of these two gates and
provide justification for why we can safely disregard the effect of the STM tip in certain
circumstances.

Our STM tips were fabricated by etching a plantinum iridium wire and calibrated by
spectroscopic detection of the Au(111) Shockley surface state. Due to the work function
difference between the graphene and the STM tip, the graphene tends to be locally p-doped
in a small region below the STM tip [17, 53]. In conjunction with the back gate, this local
top gating by the STM tip can produce quasibound quantum dot states [17]. Figure 3.9(a)
shows dI/dVs(Vs, Vg) plot measured on pristine graphene without any embedded gate and
Figure 3.9(d) is a numerically differentiated plot of Figure 3.9(a). Resonances that vary
in energy as a function of the backgate like ε ∝

√
|Vg − VCNP | is observed, indicating the

presence of bound hole states.
Because our STM tip tends to be negatively charged [53], when the embedded gate is

also negative, the STM tip gating increases the strength of the confinement potential. On
the other hand, when the embedded gate is positive, then the STM tip gating opposes and
interferes with the confinement potential generated by the embedded gate. In this section,
we examine the latter case to explore the relative strengths of each type of gate.

On the same location of the graphene with the same STM tip that was used to obtain
Figure 3.9(a,d), we created a positive local embedded gate by applying a voltage pulse to the
STM tip while holding the backgate at Ṽg = −20V . Figure 3.9(b,e) shows dI/dVs(Vs, Vg) and
d2I/dV 2

s (Vs, Vg) at the center of the STM tip pulse. Compared to Figure 3.9(a,d), resonances
on the hole side of the Dirac point have become fainter while new resonances appear on the
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Figure 3.9: Effect of
tip gating on quantum
dot confinement poten-
tial. (a) dI/dVs(Vs, Vg)
plot of graphene without
any tip doping. (b-c)
dI/dVs(Vs, Vg) measured
after the graphene was
locally n-doped with an
STM tip pulse at Ṽg =-20V
for (b) and Ṽg =-40V
for (c). For both (b)
and (c), tip pulses were
applied at hlift=1.68nm,
Vs=5V, and ∆t=1 min.
(d-f) d2I/dV 2

s (Vg, Vs) plots
generated by numerical dif-
ferentiation of (a-c). Initial
tunneling parameters for all
dI/dVs spectra: Vs=-0.1V,
I=1.5nA, Va.c. = 1mV.

electron side of the Dirac point that vary as a function of Vg like ε ∝ −
√
|Vg − VCNP |. This

emergence of new electronic resonances indicates confined quantum dot electronic states
induced by the embedded gate. We can further understand the interplay of the STM tip
gate and the embedded gate by changing the tip doping parameter Ṽg.

Figure 3.9(c,f) shows the dI/dVs(Vs, Vg) and d2I/dV 2
s (Vs, Vg) plots obtained on the loca-

tion of the graphene with the same STM tip, but after erasing the previously fabricated em-
bedded gate and creating a new embedded gate with an STM tip pulse at Ṽg = −40V . This
would create a stronger embedded gate than the one created with Ṽg = −20V . Compared
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to Figure 3.9(b,e), the electronic resonances have become more prominent while confined
hole states have become barely visible. Thus, we can conclude that it is possible to make
the embedded gate the dominant contributor to the electrostatic potential over the STM tip
gate.
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Chapter 4

Coupled Quantum Dots in Monolayer
Graphene

In this chapter, we present our STM investigation of coupled graphene quantum dots. By
tuning the tunnel barrier height and the separation distance between quantum dots, we
demonstrate control over inter-dot coupling strength. Spatially resolved STS on coupled
quantum dot systems provide insight into the transition from weak coupling to strong cou-
pling between graphene quantum dots.

In Section 4.2, we fabricate two quantum dots separated by 400 nm and present distance-
dependent dI/dVs spectroscopy and dI/dVs maps at various backgate voltages. Our experi-
mental data suggest that in this regime, the two quantum dots act as independent artificial
nuclei that interact with each other via Klein tunneling.

In Section 4.3, we fabricate two quantum dots separated by 300 nm and present distance-
dependent dI/dVs spectroscopy and dI/dVs maps at various backgate voltages. Our spec-
troscopic measurements indicate that in this regime, the wavefunctions of two quantum dots
begin to merge, representing the transition from weakly coupled to strongly coupled quantum
double dots.

In Section 4.4, we fabricate two quantum dots separated by 200 nm and present distance-
dependent dI/dVs spectroscopy and dI/dVs maps at various backgate voltages. In this
regime, the two quantum dots are strongly coupled, producing new features in dI/dVs spectra
and maps.

In Section 4.5, we fabricate arrays of four quantum dots and visualize their electronic
structure. Our results open the door to an exciting direction for future studies and applica-
tions of graphene quantum dot systems.

4.1 Introduction

Quantum double dot systems make possible rich new physics and applications unavailable
to single quantum dots such as accurate lifetime measurements[73], Pauli blockade phe-
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nomenon[74], and quantum computing[75]. In graphene, however, coupled quantum dot
systems defined by p-n junctions remain largely unexplored. And unlike semiconductor
quantum dots, interactions between graphene quantum dots are governed by the physics
of Klein tunneling, which should produce novel properties. In this chapter, we take a step
towards understanding systems of coupled quantum dots in graphene by fabricating multiple
quantum dots and spatially mapping the resulting distribution of Dirac fermions. Spatially
resolved STS provides information about inter-dot tunnel coupling in quantum double dots
and indicates transition from weak bonding to strong bonding[73]. By adjusting inter-dot
distance and backgate voltage, we demonstrate the ability to tune the interaction between
graphene quantum dots.

4.2 Quantum Double Dots with Weak Coupling

We applied voltage pulses to an STM tip at two locations separated by a distance of 400 nm
(Ṽg =-40V, hlift=1.8nm, Vs=5V, ∆t=1 minute). We then obtained dI/dVs spectra at various
locations along a line connecting the locations of the two STM tip voltage pulses. Figs 4.1d-i
show these spectra plotted as d2I/dV 2

s (d, Vs) for nine different values of Vg. The features in
dI/dVs spectra evolve gradually as Vg is varied. These plots are approximately symmetric
about the center (d =200 nm), as is expected from our symmetric measurement scheme. The
middle region around d =200nm shows oscillatory features begin to appear at Vg = -5V and
grow in size and complexity as Vg is decreased. Around Vg=-20V, however, they begin to fade
until only faint oscillations are visible at Vg=-22V. The middle region is always enveloped
by dark lines on both left and right. At Vg=-5V, there are no conspicuous features near
d =0nm and d =400nm. As Vg is decreased, oscillatory features appear (between Vg=-6.5V
and Vg=-20V), until they also become largely undetectable at Vg=-22V.

Figure 4.2 shows 400nm by 400nm dI/dVs maps obtained on a region of graphene where
two voltage pulses were applied 400 nm apart from each other, as depicted in the measure-
ment scheme in Fig. 4.1c (Figure 4.2 was prepared in a similar way as Figure 4.1 but on a
different region of graphene with a different STM tip). Circular interference patterns ap-
pear on the upper right and lower left. As Vg is increased, the number of nodes within the
circular structures increases. There are also interference patterns between the two circular
structures. For lower value of Vg (-12V and -10V), these appear as extensions of the circular
structures and do not interact much with each other. But for higher values of Vg (-7V and
-5V), they begin to overlap and evolve into checker-like interference patterns.

We applied two voltage pulses separated by 400 nm with parameters Ṽg=40V, dlift=1.9nm,
Vs=5V, and ∆t=1 min. Then dI/dVs spectra were obtained along an axis going through
the positions of two voltage pulses, as schematically represented in Fig. 4.3c. d2I/dV 2

s (d, Vs)
plots are shown in Figs 4.3d-f for three values of Vg. Two complex nodal patterns appear in
d2I/dV 2

s (d, Vs) and, as Vg is increased, the nodal patterns shift down in Vs and the energy
spacing between nodes becomes larger.

dI/dVs maps were obtained at various values of Vs and Vg on a region of graphene where
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Figure 4.1: Electronic Structure of Electron Quantum Dots in Graphene Separated by 400
nm. (a-c) Schematic indicating locations of the quantum dots. The two quantum dots were
fabricated by locally n-doping graphene with an STM tip pulse at Ṽg =-40V, hlift=1.8nm,
Vs=5V, ∆t=1 minute. Distance d is defined as shown in (c), where d=0 denotes the center
of one quantum dot and d=400 nm is the center of the other quantum dot. As Vg increases,
the quantum dot becomes larger. d-l, d2I/dV 2

s (d, Vs) at various backgate voltages Vg. Initial
tunneling parameters for all dI/dVs spectra: Vs=-0.1V, I=1.5nA, Va.c.=1mV.

two voltage pulses were performed 400 nm apart from each other while the backgate was
sustained at Ṽg=40V. Same values of Ṽg and separation distance were used in Fig. 4.3 as in
Fig. 4.4, but the procedure was performed on a different region of graphene with a different
STM tip. The interference patterns appear very similar to the dI/dVs maps in Fig. 4.2.
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Figure 4.2: Interference Patterns
of Electron Quantum Dots in
Graphene Separated by 400 nm.
(a-d) dI/dVs maps acquired at
various backgate voltages for
sample bias Vs=-15mV. The two
quantum dots were fabricated
with STM tip pulses at Ṽg =-
40V, hlift=1.9nm, Vs=5V, ∆t=1
minute. (e-h) dI/dVs maps ac-
quired at various backgate volt-
ages for sample bias Vs=15mV.
As Vg increases, the quantum dot
size increases. Tunneling param-
eters for all dI/dVs maps: I=50
pA, Va.c.=2 mV.

There are two circular patterns that expand in size and number of internal nodes as Vg is
decreased. The wave patterns outside of the circular structures are decoupled for large values
of Vg (18V, 21V), but they interact and form checker patterns for small values of Vg (13V,
15V).

We now provide interpretation of our spectroscopic measurements on graphene where



CHAPTER 4. COUPLED QUANTUM DOTS IN MONOLAYER GRAPHENE 40

Figure 4.3: Electronic structure of Hole Quantum Dots in Graphene Separated by 400 nm.
(a-c) Schematic indicating the location of the quantum dots. The two quantum dots were
fabricated by locally p-doping graphene with an STM tip pulse at Ṽg =40V , dlift=1.9nm,
Vs=5V, ∆t=1 min. As Vg increases, the quantum dots become smaller. Distance d is defined
as shown in (c). (d-f) d2I/dV 2

s (d, Vs) at various backgate voltages Vg. Initial tunneling
parameters for all dI/dVs spectra: Vs=-0.1V, I=1.0nA, Va.c.=2mV.

two STM tip voltage pulses were applied 400 nm away from each other. Comparison of
these data with our experimental observations for single, circular p-n junctions explored in
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Figure 4.4: Interference Pat-
terns of Hole Quantum Dots
in Graphene Separated by 400
nm. (a-d) dI/dVs maps acquired
at various backgate voltages for
sample bias Vs=-15mV. The two
quantum dots were fabricated
with STM tip pulses at Ṽg =40V,
hlift=1.9nm, Vs =5V, ∆t=1
minute. (e-h) dI/dVs maps ac-
quired at various backgate volt-
ages for sample bias Vg=15mV.
As Vg increases, the quantum dot
size decreases. Tunneling param-
eters for all dI/dVs maps: I=50
pA, Va.c.= 2mV.

Chapter 3 suggests that these systems consist of two separate quantum dots interacting with
each other via Klein tunneling.

First, our spectroscopic measurements indicate that the internal electronic structures of
these circular p-n junctions remain largely unaffected by the presence of another dot 400 nm
away. This is evident in d2I/dV 2

s (d, Vs) plots (Figs 4.1 and 4.3), where the nodal structure
at two pulse locations are similar to those observed for single quantum dots in Chapter 3. As
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indicated in the plots, the dark envelopes represent the Dirac point that separates p-doped
regions from n-doped regions. N-doped (p-doped) region in Fig. 4.1 (Fig. 4.3) represents
the inside of an electron (hole) quantum dot and the n-doped (n-doped) region represents
the region between the quantum dots. Our interpretation is further supported by dI/dVs
maps (Figs 4.2 and 4.4), where the circular symmetry of these internal interference patterns
remain largely intact despite the presence of the other quantum dot.

Second, our experimental data suggest the possibility of inter-dot interaction via Klein
tunneling. In Fig. 4.1, Friedel-like oscillations are observed in the inter-dot region for
Vg =20V and 22V. These can be interpreted as scattering states discussed in Section 3.2.
Below Vg =17V, however, Friedel-like oscillations begin to interfere with each other, forming
intricate and well-defined nodal patterns. This indicates that at these values of Vg, each
quantum dot falls within the spatial extent of the other quantum dot’s scattering states. At
this point, the two quantum dots may begin to interact via these inter-dot states within the
tunnel barrier whose properties are determined by Klein tunneling-related physics. Inter-
estingly, these inter-dot states are not visible in d2I/dV 2

s (d, Vs) plots of p-doped quantum
double dots (Fig. 4.3). In p-doped quantum dots, the Friedel oscillations always appear
suppressed, which may be an effect of the STM tip work function (See Chapter 3). In
dI/dVs maps (Fig. 4.4), however, both polarities exhibit oscillatory interference patterns in
the inter-dot regions.

4.3 Quantum Double Dots with Intermediate

Coupling

We used our STM tip voltage pulse technique at two positions on graphene 300 nm apart
from each other while holding the backgate at Ṽg=-40V. Then we measured dI/dVs along
an axis going through the two tip pulse positions according to the measurement scheme in
Fig. 4.7c, then we plotted them as d2I/dV 2

s (d, Vs) in Figs 4.7d-l for nine different values of
Vg. The voltage pulses were performed at d=0 nm and d= 300 nm. An nodal structures at
these positions appear faintly at Vg = -5V, and as Vg is decreased, these structures become
more prominent until they become undetectable around Vg = -22V. Interference patterns
appear in the region between the tip pulse positions as well in this range of Vg.

dI/dVs maps were obtained on a region of graphene where tip pulses were applied 300 nm
apart from each other with Ṽg=-40V, as shown in Fig. 4.6. For lower values of Vg (-5V and
-3V), the two circular structures appear more or less separated from each other. For higher
values of Vg (-1V and 1V), however, the two circular structures begin to merge. In these
maps, there is a bright Cassini oval-shaped band enveloping the two circular structures.

STM voltage tip pulses were applied twice at positions 300 nm apart from each other
while the backgate was held at Ṽg=-40V. Afterwards, dI/dVs spectra were measured at
various positions as sketched in Fig. 4.7c. Figs. 4.7d-i are d2I/dV 2

s (d, Vs) plots obtained at
six different values of Vg. Two nodal structures appear at the locations of voltage pulses.
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Figure 4.5: Electronic structure of Electron Quantum Dots in Graphene Separated by 300
nm. (a-c) Schematic indicating the location of the quantum dots. The two quantum dots
were fabricated by locally n-doping graphene with STM tip pulses at Ṽg =-40V, hlift=1.9nm,
Vs=5V, ∆t=1 min. Distance d is defined as shown in (c), where d=0 nm is at the center of
one quantum dot and the other quantum dot is located at d=300nm. (d-l) d2I/dV 2

s (d, Vs) at
various backgate voltages Vg. Initial tunneling parameters for all dI/dVs spectra: Vs=-0.1V,
I=1.0nA, Va.c.= 2mV.

And at low values of Vg, the two structures appear to merge and interact with each other.
Similar procedure was performed on a different graphene area (two voltage pulses 300

nm apart from each other at Ṽg=-40V) and 400 nm by 400 nm dI/dVs maps were obtained,
as shown in Fig. 4.8. At a high value of Vg (17V), two circular structures appear to be sepa-
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Figure 4.6: Interference Patterns
of Electron Quantum Dots in
Graphene Separated by 300 nm.
(a-d) dI/dVs maps acquired at
various backgate voltages for
sample bias Vs=-15mV. The two
quantum dots were fabricated
with STM tip pulses at Ṽg =-
40V, hlift=1.9nm, Vs=5V, ∆t=1
min. e-h, dI/dVs maps acquired
at various backgate voltages for
sample bias Vs=15mV. As Vg
increases, the quantum dot size
increases. Tunneling parame-
ters for all dI/dVsmaps : I =
1.0nA, Va.c. = 2mV .

rate, though interference patterns emanating from these structures overlap to form checker
patterns. At lower values of Vg, the two circular structures are merged together and en-
veloped by Cassini oval-shaped bands. At lower values of Vg, the internal structure of the
two structures gradually lose their circular symmetry.

Our experimental data on graphene where two pulses separated by 300 nm can be un-
derstood as two interacting p-doped (n-doped) quantum dots whose wavefunctions begin to
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Figure 4.7: Electronic structure of Hole Quantum Dots in Graphene Separated by 300 nm.
(a-c) Schematic indicating the location of the quantum dots. The two quantum dots were
fabricated by locally p-doping graphene with STM tip pulses at Ṽg =40V, hlift=1.9nm,
Vs=5V, ∆t=1 min. Distance d is defined as shown in (c), where d=0 nm is at the center of
one quantum dot and the other quantum dot is located at d=300nm. (d-l) d2I/dV 2

s (d, Vs) at
various backgate voltages Vg. Initial tunneling parameters for all dI/dVs spectra: Vs=-0.1V,
I=1nA, Va.c.= 2mV.

overlap and merge at lower (higher) values of the backgate voltage. At large (small) values
of Vg in Figs 4.8e,j and Figs 4.7f-i (Figs 4.6c-d, g-h, and Figs 4.5h-l) the data look similar
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Figure 4.8: Interference Patterns of
Hole Quantum Dots in Graphene Sep-
arated by 300 nm. (a-d) dI/dVs maps
acquired at various backgate volt-
ages for sample bias Vs=-15mV. The
two quantum dots were fabricated
with STM tip pulses at Ṽg =40V,
hlift=1.9nm, Vs=5V, ∆t=1 min. (e-
h) dI/dVs maps acquired at vari-
ous backgate voltages for sample bias
Vs=15mV. As Vg increases, the quan-
tum dot size decreases. Tunneling pa-
rameters for all dI/dVs maps: I=50
pA, Va.c.= 2mV.

to that of two distinct, interacting quantum dots like those in Section 4.2. As the backgate
is lowered (raised), however, the inter-dot tunnel barrier is gradually reduced, turning into
a small dip (bump) in d2I/dV 2

s (d, Vs) plots and disappearing in dI/dVs maps. When this
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occurs, the wavefunctions from two quantum dots begin to have significant overlaps. As
the gate is lowered (raised), the wavefunction overlap becomes increasingly more significant
and the interference patterns in each pulse location gradually lose their circular symmetry,
as evident in Fig. 4.8 (Fig. 4.6). Here, the confined states are distinguished from scatter-
ing states by a bright band that separates nodal internal interference patterns with Cassini
oval-shaped outside oscillations, which can be interpreted as Friedel-like external oscillations.
The fact that the wavefunctions begin to form one combined internal structure suggests that
a transition from weakly coupled quantum double dots to strongly coupled quantum double
dots is occurring in this regime.

4.4 Quantum Double Dots with Strong Coupling

STM tip voltage pulses were applied with Ṽg=-40V at two locations separated by 200 nm, as
shown in Fig. 4.9b. Afterwards, dI/dVs spectra were performed at various distance along an
axis starting from one of the pulse locations and passing through the other pulse position.
These spectra are plotted as d2I/dV 2

s (d, Vs) for six values of Vg as shown in Figs 4.9c-h. For
large values of Vg (-25V and -27V), there are two wells separated by a small bump. For
larger values of Vg, the internal structure becomes more visible. There are fading parallel
lines to the right of the envelope that encloses the nodal structure.

dI/dVs maps were obtained on a region that was pulsed with Ṽg=-40V at two locations
separated by 200 nm, as shown in Fig. 4.10. The locations of the dots within the scan
window is sketched in Fig. 4.9b. The maps show complex interference patterns inside Cassini
oval-shaped regions. Outside, there are concentric, fading waves radiating away from these
envelopes. Although the internal interference pattern may appear somewhat random, they
consistently show two foci as well as straight vertical features in the middle.

We performed two STM tip voltage pulses with Ṽg=40V separated by 200 nm. We
then obtained dI/dVs spectra along an axis passing through both pulse locations for various
Vg. The results are plotted as d2I/dV 2

s (d, Vs) in Fig. 4.11d-k. For large values of Vg (30V
and 32V), the interference patterns near pulse locations resemble the patterns for single
quantum dots (with round lobes). For smaller values of Vg (18V to 26V), however, the
internal structure evolves into patterns that appear more like parallel lines with kinks as
opposed to a nodal structure.

The same voltage pulse procedure was performed on another area of graphene (two
pulses with Ṽg=40V separated by 200 nm) and dI/dVs maps were obtained, as shown in
Fig. 4.12. Similar to the dI/dVs maps in Fig. 4.10, there is an internal structure that
shows nodal interference patterns and outside structure consisting of concentric Cassini ovals.
Furthermore, the internal structure clearly display two foci as well as vertical lines in the
middle, as was observe in Fig. 4.10.

Our spectroscopic observations on graphene with two STM tip voltage pulses separated
by 200 nm may be understood as a system of strongly coupled quantum dots. As before,
the dark envelopes in d2I/dV 2

s (d, Vs) plots (Figs 4.9 and 4.11) are Dirac points that separate
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Figure 4.9: Electronic structure of Electron Quantum Dots in Graphene Separated by 200
nm. (a-c) Schematic indicating the location of the quantum dots. The two quantum dots
were fabricated by locally n-doping graphene with STM tip pulses at Ṽg =-40V, hlift=1.8nm,
Vs=5V, ∆t=1 min. Distance d is defined as shown in (c), where d=0 nm is at the center of
one quantum dot and the other quantum dot is located at d=200nm. (d-l) d2I/dV 2

s (d, Vs) at
various backgate voltages Vg. Initial tunneling parameters for all dI/dVs spectra: Vs =-0.1V,
I=1.5nA, Va.c.= 1mV.

n-doped and p-doped regions of the graphene. These plots reveal that there is still a small
tunnel barrier between the two dots (as bumps in Fig. 4.9 and dips in Fig. 4.11). Hence,
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Figure 4.10: Interference Patterns of Electron Quantum Dots in Graphene Separated by 200
nm. (a-c) dI/dVs maps of electron quantum dots at various backgate voltages for sample
bias Vs=-15mV. The two quantum dots were fabricated with STM tip pulses at Ṽg =-40V,
hlift=2.0nm, Vs=5V, ∆t=1 min . (d-f) dI/dVs maps acquired at various backgate voltages
for sample bias Vs =15mV. As Vg increases, the quantum dot size increases. Tunneling
parameters for all dI/dVs maps: I=50pA, Va.c. = 2mV.

these systems may be viewed as strongly coupled quantum double dots rather than a single
quantum dot. Further theoretical investigation is necessary in order to understand the new
features in d2I/dV 2

s (d, Vs) and dI/dVs maps that did not occur in previous spectroscopic
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Figure 4.11: Electronic structure of Hole Quantum Dots in Graphene Separated by 200
nm. (a-c) Schematic indicating the location of the quantum dots. The two quantum dots
were fabricated by locally p-doping graphene with STM tip pulses at Ṽg =40V, hlift=2.0nm,
Vs=5V, ∆t=1 min. Distance d is defined as shown in (c). (d-l) d2I/dV 2

s (d, Vs) at various
backgate voltages Vg. Initial tunneling parameters for all dI/dVs spectra: Vs=-0.1V, I=1nA,
Va.c.= 1mV.
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Figure 4.12: Interference Patterns
of Hole Quantum Dots in Graphene
Separated by 200 nm. (a-c) dI/dVs
maps of electron quantum dots at
various backgate voltages for sam-
ple bias Vs=-15mV. The two quan-
tum dots were fabricated with STM
tip pulses at Ṽg =40V, hlift=1.9nm,
Vs=5V, ∆t=1 min. (d-f) dI/dVs
maps acquired at various backgate
voltages for sample bias Vs=15mV.
As Vg increases, the quantum dot
size increases. Tunneling parame-
ters for all dI/dVs maps: I=50pA,
Va.c.= 2mV.

measurements.

4.5 Quantum Dot Array

As shown in Fig. 4.13a, four STM tip voltage pulses were applied in an array. dI/dVs
maps at various Vs and Vg are shown in Figs 4.13b-i. For Vg=-4V in Fig. 4.13b and f,
there are four structures with approximately circular interference patterns. As Vg is lowered,
the interference pattern inside circular structures become simplified and more nodes appear
between the four circles.
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Figure 4.13: Quantum Interference
in an Array of Electron Quantum
Dots. (a) Schematic of an array
of circular p-n junctions created by
four STM tip pulses at Ṽg =-40V,
hlift=1.9nm, Vs=5V, ∆t=1 min. (b-
e) dI/dVs maps of the array of quan-
tum dots at various backgate volt-
ages for sample bias Vs=-15mV. (f-
i) dI/dVs maps acquired at var-
ious backgate voltages for sample
bias Vs=15mV. As Vg increases, the
quantum dot size increases. Tunnel-
ing parameters for all dI/dVs maps:
I=50 pA, Va.c.= 2mV.

Fig. 4.14 shows a region of graphene where an array of four pulses were applied. dI/dVs
at various Vs and Vg are shown in Figs 4.14b-i. dI/dVs maps at Vg=9V reveal interference
patterns with four focal points around the locations of the voltage pulses. As Vg increases,
circular interference patterns around pulse locations become more prominent in dI/dVs maps.
At Vg=18V, the circular peaks around pulse locations appear to be distinct and well separated
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Figure 4.14: Quantum Interference
in an Array of Hole Quantum Dots.
a. Schematic of an array of circular
p-n junctions created by four STM
tip pulses at Ṽg =40V, hlift=1.9nm,
Vs=5V, ∆t=1 min. (b-e) dI/dVs
maps of the array of quantum dots
at various backgate voltages for sam-
ple bias Vs=-15mV. (f-i) dI/dVs maps
acquired at various backgate voltages
for sample bias Vs=15mV. As Vg in-
creases, the quantum dot size de-
creases. Tunneling parameters for all
dI/dVs maps: I=50 pA, Va.c.= 2mV.

from each other.
These experimental data show that it is possible to create more complex systems of

multiple quantum dots by engineering local embedded gates via STM tip voltage pulse
procedure. This provides a platform for exploring many other physical phenomena, such as
the creation of massless Dirac fermions with anisotropic group velocity in the presence of
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periodic potentials[76].
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Chapter 5

Quantum Dots with Non-Circular
Geometry

In this chapter, we report on the use of STM to fabricate and characterize non-circular p-n
junctions in monolayer graphene. By examining elliptical and stadium-shaped graphene p-n
junctions, we probe the role of Klein tunneling in charge carrier confinement and explore the
possibility of quantum chaos.

In Section 5.2, we fabricate non-circular, ellipse-like graphene p-n junctions by performing
STM tip voltage pulses at two locations separated by 100 nm. The electronic structure of
these structures are spatially mapped by STS.

In Section 5.3, we create stadium-shaped graphene p-n junctions by applying STM tip
voltage pulses at three colinear positions with 100 nm separation between adjacent pulses.
The resulting electronic structure is characterized by spatially resolved STS.

5.1 Introduction

About two and a half decades ago, Crommie et al. demonstrated nanoscale confinement of
electrons on metal surface by STM manipulation of adatoms to form a circular ‘quantum
corral’[71]. This pioneering work was followed by other interesting experiments, such as the
observation of quantum mirages in elliptical corrals [77] and the study of electron waves in
stadium-shaped quantum corrals[78]. In particular, stadium-shaped electron resonators have
long attracted much theoretical [79–81] and experimental [4, 82–84] investigation because of
their potential to exhibit quantum chaos. Having examined circular p-n junctions in previous
chapters, we now follow the the path of quantum corral research and investigate elliptical
and stadium-shaped graphene p-n junctions. In this chapter, we present our preliminary
experimental results on these structures, which provide additional insight into the anisotropic
behavior of Klein tunneling.
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5.2 Elliptical Graphene P-N Junctions

We performed STM tip voltage pulse procedure sequentially at two different locations sepa-
rated by a distance of 100 nm while holding the backgate at Ṽg=-40V with tip-pulse param-
eters hlift =1.8nm, Vs=5V, and ∆t=1 min. We then measured dI/dVs spectra at various
distances along an axis passing through the two pulse locations, as depicted in Fig. 5.1c. The
results are plotted as d2I/dV 2

s (d, Vs) for various Vg in Figs 5.1d-i. There is a dark U-shaped
feature that divides the interference patterns into two groups. Inside the U-shaped envelope,
a nodal structure is present. Outside, fainter lines appear parallel to the dark U-shaped
structure.

Similar to Fig. 5.1, STM tip voltage pulses were applied 100 nm apart but while holding
the backgate at Ṽg=40V. The resulting structure was probed by distance-dependent dI/dVs
spectroscopy and plotted in Figs 5.2d-i as d2I/dV 2

s (d, Vs). Intricate nodal patterns appear in
these plots under dome-like shapes. As Vg is increased, the interference pattern shifts down
in Vs until it disappears at Vg = 39V.

Our spectroscopic measurements on graphene with two STM tip voltage pulses sepa-
rated by 100 nm provide information on the electronic structure of ellipse-like graphene p-n
junction. Unlike coupled quantum double dots discussed in Chapter 4, the confinement po-
tential (which shows up as dark envelopes in d2I/dV 2

s (d, Vs) plots) for these structures do not
have tunnel barriers between them. Hence, these structures may be appropriately consid-
ered single quantum dots. d2I/dV 2

s (d, Vs) plots in Figs 5.1 and 5.2 show features similar to
those observed in circular p-n junctions, such as an internal nodal pattern denoting confined
eigenstates and external Friedel-like oscillations. A notable difference in these ellipse-like
structures is that distance-dependent dI/dVs spectra look extremely different for p-doped
structures (Fig. 5.2) than for the n-doped structures (Fig. 5.1). Further investigation is
required to understand the origin of this difference.

5.3 Stadium Graphene P-N Junctions

STM tip voltage pulses were applied sequentially at three colinear positions with 100 nm sepa-
ration between adjacent pulse locations. The tip-pulse parameters were Ṽg =40V, hlift=2nm,
Vs=5V, and ∆t=1 min. As sketched in Fig. 5.3c, dI/dVs spectra were measured along an
axis passing through through the pulse locations. Figs. 5.3d-i show d2I/dV 2

s (d, Vs) plots for
various Vg. A nodal pattern appears inside a dome-like structure in each d2I/dV 2

s (d, Vs) plot.
Notably, there are sharp kinks in the interference structure at the middle of the interference
patterns.

dI/dVs maps were obtained on an area graphene where three colinear STM tip voltage
pulses were applied (same configuration as in Fig. 5.3 but on a different region of graphene
and with a different STM tip), as shown in Fig. 5.4. Each map shows that there are nodal
interference patterns with two foci inside a stadium-like boundary. Notably, there are vertical
lines (both bright and dark) near the middle of the stadium structure that appear more
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Figure 5.1: Electronic Structure of an Electron Quantum Dot in Graphene with Elliptical
Geometry. (a-c) Schematic indicating the location of STM tip pulses. The two quantum
dots were fabricated by locally n-doping graphene with two STM tip pulses separated by
100 nm at Ṽg =-40V, hlift =1.8nm, Vs=5V, ∆t=1 min. Distance d is defined as shown in
(c). (d-i) d2I/dV 2

s (d, Vs) at various backgate voltages Vg. Initial tunneling parameters for
all dI/dVs spectra: Vs=-0.1V, I=1.5nA, Va.c. = 1mV.
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Figure 5.2: Electronic Structure of a Hole Quantum Dot in Graphene with Elliptical Ge-
ometry. (a-c) Schematic indicating the location of STM tip pulses. The two quantum dots
were fabricated by locally p-doping graphene with two STM tip pulses separated by 100 nm
at Ṽg =40V, hlift=2nm, Vs=5V, ∆t=1 min. Distance d is defined as shown in (c). (d-i)
d2I/dV 2

s (d, Vs) at various backgate voltages Vg. Initial tunneling parameters for all dI/dVs
spectra: Vs=-0.1V, I=1nA, Va.c.= 1mV.
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Figure 5.3: Electronic Structure of a Hole Quantum Dot in Graphene with Stadium Geom-
etry. (a-c) Schematic indicating the location of STM tip pulses and geometry of resulting
p-n junction cavity. A hole quantum dot was fabricated by locally p-doping graphene with
three colinear STM tip pulses separated by 100 nm at Ṽg =40V, hlift=2nm, Vs=5V, ∆t=1
min. Distance d is defined as shown in (c), where the three STM pulses were applied at
d=100 nm, 200nm, and 300 nm. (d-i) d2I/dV 2

s (d, Vs) at various backgate voltages Vg. Initial
tunneling parameters for all dI/dVs spectra: Vs =-0.1V, I=1nA, Va.c.= 2mV.

prominently than others in each dI/dVs map. As Vg is increased, the size of the stadium-like
cavity decreases and the number of nodes decreases.

Quantum confinement within resonators that have non-integrable, classically chaotic or-
bits produces quantum scars[4, 79–84]. In graphene, signatures of quantum chaos were
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Figure 5.4: Graphene quantum dot
with stadium geometry. (a-h)
dI/dVs maps on a quantum dot
that was fabricated with three co-
linear STM tip pulses separated by
100 nm at Ṽg =40V, hlift=2.3nm,
Vs=5V, ∆t=1 min. Tunneling pa-
rameters for all dI/dVs maps: I=50
pA, Va.c.= 2mV.

detected in transport measurements[4], but direct visualization of scarred wavefunctions has
not yet been achieved.

d2I/dV 2
s (d, Vs) plots in Fig. 5.3 and dI/dVs maps in Fig. 5.4 provide preliminary exper-

imental attempts towards imaging scarred Dirac fermion wavefunctions. However, there is
no obvious similarity between these interference patterns and those predicted for scarred
Schrodinger electrons predicted in Ref [79]. In the case of stadium-shaped quantum corrals,
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the confinement potential was too ‘leaky’ to observe effects of quantum chaos[78]. In the
case of stadium-shaped graphene p-n junctions, further theoretical and experimental inves-
tigations are required to determine whether Klein tunneling allows enough reflectance to
produce scarred wavefunctions.

We now provide a qualitative explanation for a commonly appearing feature in Fig. 5.4.
Within the stadium-shaped structures shown in these dI/dVs maps, there are bright or
dark vertical lines that appear prominently. This may be understood as a consequence of
the anisotropic transmission coefficient. Due to Klein tunneling, there is minimal reflection
at low angles of incidence on the straight parts of the stadium-shaped p-n junction. This
should produce weak confinement of quasiparticles in the vertical direction, which would
reduce nodes, or horizontal lines, in the middle of the stadium structure and produce the
vertical lines shown in our dI/dVs maps.
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Chapter 6

Bilayer Graphene Quantum Dots

In this chapter we report on our STM fabrication and characterization of bilayer graphene
quantum dots. We first demonstrate that the technique we used for patterning embedded
gates in monolayer graphene/hBN heterostructures in previous chapters can be extended
to bilayer graphene/hBN heterostructures. By detecting Coulomb oscillations in differential
conductance spectroscopy, we demonstrate a gate-tunable evolution of locally gated bilayer
graphene from classical dots to quantum dots. Spatially resolved scanning tunneling spec-
troscopy of quantum double dots in bilayer graphene reveal important information about
the charge carrier confinement mechanism in bilayer graphene quantum dots.

In Section 6.2, we demonstrate that the technique for engineering local embedded gates
for graphene/hBN heterostructures described in Chapter 2 is robust and can be effectively
applied to bilayer graphene/hBN heterostructures. Using STS, we detect shifts in the local
charge neutrality point of the bilayer graphene and confirm that our fabricated hBN gates
locally dope the overlaid bilayer graphene.

In Section 6.3, we perform scanning tunneling spectroscopy on locally gated bilayer
graphene in order to explore its electronic structure and discover sharp, gate-tunable peaks
in dI/dVs spectra. Spatially resolved STS on these structures reveals concentric rings whose
spatial and energy density is determined by the applied backgate. We provide a qualita-
tive explanation of our experimental observations by modeling our system as an asymmetric
double-barrier quantum well. In this framework, the peaks observed in our spectroscopic
measurements are Coulomb staircase resonances.

In Section 6.4, we fabricate and investigate bilayer graphene circular p-n junctions whose
polarity is opposite of the quantum dots discussed in Section 6.3 (Here, n-doped quantum
dots are explored as opposed to p-doped quantum dots). Due to the difference in polarity,
more complicated Coulomb staircase structures are observed in our spatially resolved STS
measurements. This provides additional insight into the confinement mechanism of these
bilayer graphene quantum dots.

In Section 6.5, we provide evidence for four-fold degeneracy in quantum dot energy levels
due to spin and valley symmetries.

In Section 6.6, we fabricate coupled quantum dots separated by 200 nm and provide STS
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characterization of their electronic structures. Complex Coulomb oscillations are observed
in spatially resolved dI/dVs spectra and dI/dVs maps, which provide further information on
the electronic structure of bilayer graphene quantum dots.

In Section 6.7, we present preliminary experimental results on fabricating steeper confine-
ment potentials in bilayer graphene by adjusting STM tip voltage pulse parameters. Bilayer
graphene quantum dots created by this method suggest a unique electronic structure, inviting
future experimental and theoretical investigations.

6.1 Introduction

Bilayer graphene’s charge carriers are massive Dirac fermions with distinct properties in the
vicinity of p-n junctions[2, 3]. As was the case for massless Dirac fermions in monolayer
graphene, several unique phenomena are predicted for bilayer graphene p-n junctions, such
as anti-Klein tunneling[3], common-path interference and Zener tunneling[85], and electron
cloaked states[21]. Previously, transport experiments reported macroscopic characterization
of p-n junction-related phenomena in bilayer graphene[22, 86]. However, microscopic char-
acterization of p-n junctions in bilayer graphene is still largely lacking. In this chapter, we
present our local, spatial characterization of circular p-n junctions in bilayer graphene using
STM.

6.2 Local Doping of Bilayer Graphene using STM

As depicted in Fig. 6.1a, our experimental setup consists of a Bernal stacked bilayer graphene/
hexagonal boron nitride (hBN) heterostructure placed on SiO2/silicon wafer. The circuit is
identical to Figure 2.1 in Section 2.2. The bilayer graphene is electrically grounded and
the STM tip has a bias voltage −Vs, while a backgate voltage Vg is applied to the heavily
doped silicon. To create an embedded gate, the STM tip is placed a few nanometers above
the bilayer graphene and a voltage pulse is applied while the backgate is held at some Ṽg.
Here we use Ṽg to denote the backgate voltage sustained while an STM tip voltage-pulse is
applied above the bilayer graphene/hBN heterostructure. This backgate voltage is different
from the backgate voltage applied during a spectroscopic measurement, which is denoted by
Vg. The end result of this process is a buildup of space charge within the hBN and below
the location of the STM tip voltage pulse, which acts as a local embedded gate below the
bilayer graphene flake, as shown in the inset of Fig. 6.1a.

To observe the effect of STM tip-voltage pulse on the electronic structure of bilayer
graphene, dI/dVs spectra were measured at Vg = 0V on the location of the tip pulse after
the tip pulse procedure was performed at various values of Ṽg, as shown in Fig. 6.1b. Each
spectrum displays a gap-like feature at Vs = 0V, which comes from phonon-assisted inelas-
tic tunneling, as was observed previous scanning tunneling spectroscopy (STS) studies on
graphene [49, 87]. Additionally, there is a smaller dip in the spectra corresponding to the
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Figure 6.1: Local doping of bilayer graphene. (a) Schematic for using a scanning tunneling
microscope (STM) to locally dope a Bernal stacked bilayer graphene/hexagonal boron nitride
(hBN) heterostructure placed on silicon dioxide/silicon wafer. A voltage pulse is applied to an
STM tip positioned a few nanometers above the graphene surface while the silicon backgate
sustains a voltage Ṽg. Inset: STM tip voltage pulse ionizes defects within the hBN, resulting
in a buildup of space charge that acts as a local embedded gate on the graphene. (b) dI/dVs
spectra showing shifts in the graphene’s charge neutrality point (CNP) due to local doping.
Each dI/dVs curve was obtained with the backgate held at Vg = 0V. The gap-like feature
occurring at Vs=0V in every dI/dVs spectrum is a phonon-induced pseudogap characteristic
of STS on graphene. Initial tunneling parameters: Vs= 0.5 V, I=0.5nA, Va.c.=5mV.

charge neutrality point (CNP) of the bilayer graphene. This feature is indicated by black
arrows in Fig. 6.1b. When the CNP is above (below) Vs = 0V, the Fermi level of bilayer
graphene is below (above) the CNP, meaning that the bilayer graphene is locally p-doped
(n-doped). A clear trend in Fig. 6.1b is that a positive (negative) Ṽg results in the shifting of
the CNP to the right (left) with the magnitude of shift determined by the value of Ṽg. These
observations are consistent with previous experiments where the same tip-pulse procedure
was used for monolayer graphene/hBN heterostructures, where positive (negative) backgate
voltages Ṽg produced negative (positive) embedded gates that p-doped (n-doped) the mono-
layer graphene [18, 66]. Furthermore this doping can be removed by applying a tip pulse
at Ṽg=0V, which restores the bilayer graphene to its pristine condition (represented by the
green curve in Fig. 6.1b).
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6.3 Charging Resonances in Scanning Tunneling

Spectroscopy of Bilayer Graphene Quantum Dots

In order to investigate the electronic structure of the tip voltage-pulsed bilayer graphene, we
performed a tip pulse at Ṽg=40V and then measured dI/dVs spectra at the same location
of the tip pulse for a range of backgate voltages Vg. These data are shown in Fig. 6.2a,
where dI/dVs is plotted as a function of Vs and Vg. A dark horizontal band appears around
Vs=0V, which is the phonon-induced pseudogap present in all of our dI/dVs spectra on
bilayer graphene. Another prominent feature in this plot is a set of bright lines, which are
local maxima in dI/dVs spectra that shift in energy as a function of Vg. Four such lines of
similar widths appear near the middle of the plot, as well as numerous lines of smaller widths
on the left. To highlight these features, we took a numerical derivative of Fig. 6.2a to obtain
d2I/dV 2

s (Vs, Vg), (see Fig. 6.2b). In this plot the local maxima can be seen more clearly along
with the phonon-related feature appearing as red and blue horizontal lines around Vs=0V.
Furthermore, Fig. 6.2c shows dI/dVs spectra corresponding to line cuts at several values of
Vg marked by colored dashed lines in Fig. 6.2a. Sharp peaks appear in dI/dVs spectra when
Vg is approximately between Vg = 46V and Vg = 52V, but are absent when Vg is greater or
smaller than those values.

We can further explore the electronic structure of locally doped bilayer graphene by using
spatially resolved STS. Fig. 6.3a and b show dI/dVs maps with two different Vg on the same
area of bilayer graphene that was locally p-doped (the STM tip pulse procedure was used
here with Ṽg=40V as in Fig. 6.2 but on a different location of the sample). Multiple bright
circular rings appear in both dI/dVs maps. As the backgate is lowered from Vg = 44V to
Vg = 42V, the number of rings and the spatial density of resonances both increase. Since
the local doping has approximate circular symmetry, we arbitrarily selected an axis passing
through the center and measured dI/dVs at various distances from the center. Figs 6.3c
and 6.3d show d2I/dV 2

s (Vs, x) plots obtained on the same region and Vg as Figs 6.3a and
6.3b, respectively. As was observed in Fig. 6.2b, red and blue horizontal lines appear near
Vs=0V. Additionally, there are multiple resonances in dI/dVs spectra that shift up together
in energy as function of |x|, forming parabola-like patterns in the d2I/dV 2

s (Vs, x) plots. As
Vg is decreased from Fig. 6.3c to 6.3d, the number of resonances increases while the energy
spacing between the resonances decreases.

Our experimental data can be understood by modelling our system as a double-barrier
quantum well [88]. Due to the unique behavior of massive Dirac fermions in the presence
of an electrostatic potential, circular p-n junctions in bilayer graphene can form quantum
dots with unique energy spectra and confinement strengths [36, 37]. Figs 6.2 d-g illustrates
how a negative local embedded gate in our experiment can produce circular p-n junctions
of variable diameter. When Vg is sufficiently high, the graphene is completely n-doped,
as shown in Fig. 6.2d. As Vg is decreased, however, the graphene becomes less n-doped
until the gated region of graphene turns p-doped. Because our local embedded gate is
approximately circular, this results in a circular p-n junction, as shown in Fig. 6.2e. As
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Figure 6.2: Scanning tunneling spectroscopy (STS) of locally gated bilayer graphene. (a)
dI/dVs(Vs, Vg) plot consisting of dI/dVs spectra measured at the location of bilayer graphene
where an STM tip voltage pulse was applied with Ṽg=40V. The bright lines forming a
fan-like structure are peaks in dI/dVs spectra that shift in energy as a function of Vg.
(b) d2I/dV 2

s (Vs, Vg) produced by numerically differentiating (a) in order to accentuate the
resonances in dI/dVs. (c) dI/dVs spectra corresponding to line cuts at several values of Vg
indicated by colored dashed lines in (a). Each spectrum is offset for clarity. (d-g) Schematics
illustrating how the backgate can be used to tune a circular p-n junction in bilayer graphene.
(g) is a depiction of locally p-doped bilayer graphene. Increasing Vg n-dopes the graphene
globally and gradually reduces the area that is p-doped, as shown in (f) and (e). For
sufficiently large values of Vg, the graphene will be completely n-doped, as shown in (d).
Initial tunneling parameters for all dI/dVs spectra: Vs= 0.5 V, I=0.5nA, Va.c.=5mV.

Vg is decreased further, the p-doped region continues to expand (Fig. 6.2f) and eventually
becomes completely p-doped. Backgate dependence of the diameter is further elucidated by
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Figure 6.3: Spatially resolved STS of locally gated bilayer graphene. (a-b) dI/dVs maps
on locally gated bilayer graphene at two different backgate voltages. (c-d) d2I/dV 2

s (Vs, x)
measured on the same region of graphene as (a-b), where x indicates the distance on an
axis going through the center of the circular p-n junction. Initial tunneling parameters for
dI/dVs spectra: Vs= 0.5 V, I=0.5n, Va.c.=5mV. (e-f) The chemical potential profile of a
locally p-doped bilayer graphene. The charge neutrality point of graphene ECNP is locally
raised relative to the Fermi level of graphene µg, as depicted in (e). The bilayer graphene is
p-doped (n-doped) when ECNP lies above (below) µg. Lowering Vg raises ECNP relative to
the Fermi level, expanding the area of graphene that is p-doped.

Figs 6.3 e-f. Lowering Vg raises the CNP relative to the Fermi level, expanding the area of
the graphene that is locally p-doped. Hence, a double-barrier quantum well is created when
the STM tip is in tunneling position above a circular p-n junction [89], as represented in the
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Figure 6.4: Single electron charging in a bilayer graphene quantum dot. (a-c) Schematics
illustrating how the STM tip can be used to control and detect the charge state of a bilayer
graphene quantum dot. In (a), the STM tip is in tunneling position at a lateral distance R1

from the center of the quantum dot (QD). From (a) to (b), the STM tip approaches the QD
(R1 > R2) while the sample bias Vs remains fixed. Then from (b) to (c), the lateral distance
is held constant but a higher sample bias Vs + δVs is applied to the STM tip. (d-f) Energy
alignments between the STM tip, the QD, and the bilayer graphene at tip positions and
sample biases corresponding to (a-c). When the STM tip is in tunneling position, electron
tunnels from the STM tip to the graphene via quantum dot states within a bias window
of size eVs (e > 0). EC is the charging gap between unoccupied levels (represented by
dashed lines) and occupied levels (represented by solid lines). From (d) to (e), the STM tip
approaches the quantum dot, increasing the gating efficiency of the tip on the QD and raising
its energy levels. In (f), the sample bias is increased, further shifting QD energy levels and
ionizing the QD. This causes the charging energy gap Eadd to fall below the bias window,
resulting in a sudden increase in the number of quantum dot states in the bias window
available for tunneling. (g) is a graph showing how the jump in tunneling conductance from
(e) to (f) produces a peak in a dI/dVs spectrum. (h) A circuit diagram of the system when
the STM tip is tunneling through the QD. The tip (bulk bilayer graphene) is coupled to the
QD with capacitance Ctip (Cbulk) and tunneling resistance Rtip (Rbulk). The silicon backgate
is coupled to the QD (CQD) and the bulk bilayer graphene (Cbulk), but Vg is kept constant
during each dI/dVs spectrum.
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circuit diagram in Fig. 6.4h.
Using this framework, we provide an explanation for the resonances observed in our

dI/dVs spectra and maps. In Fig. 6.4a, the STM tip is positioned on a quantum dot at some
distance R1 from the center of the QD with positive sample bias Vs. The resulting alignment
of electrochemical potentials is depicted in Fig. 6.4d, where unoccupied QD eigenstates
(dashed lines) are separated from occupied QD eigenstates (solid lines) by an addition energy
Eadd[90]. When the lateral distance between the STM tip and the QD is decreased from R1 to
R2, as shown in Fig. 6.4b, the QD energy levels are raised due an increased gating efficiency,
i.e. greater Ctip [53]. From Fig. 6.4b to Fig. 6.4c, the STM bias voltage is increased slightly
from Vs to Vs+δVs while the lateral position is fixed, which further lifts the QD potential [53].
When a shift in QD levels causes the highest occupied QD level to cross the electrochemical
potential of the bilayer graphene µg, as shown in Fig. 6.4f an electron tunnels out of the
QD and the addition energy Eadd flips below the newly emptied QD level, so that Eadd now
lies below the bias window. Since tunneling rate is determined by the number of empty QD
states available within the bias window, this produces a sudden jump in the current and
a peak in the dI/dVs spectrum, as shown in Fig. 6.4g. These sharp resonances occur in
dI/dVs spectra and maps each time a change in the bias voltage Vs or the lateral distance
R produces a shift of Eadd in the QD potential, causing an occupied QD level to cross µg.
These are Coulomb oscillations and the phenomenon of successive charging is known as the
Coulomb staircase [88, 90, 91].

These Coulomb resonances provide information about the electronic structure of bilayer
graphene quantum dots. The energy spacing between charging peaks in dI/dVs spectra is
determined by Eadd = ∆E + EC , where ∆E is the single particle orbital splitting and EC
= e2/C is the charging energy required to add an electron to a quantum dot that has total
capacitance C[90]. Both ∆E and EC should increase when the QD diameter is decreased,
which is consistent with the trend observed in Figs 6.3 where the energy spacing between
Coulomb peaks in dI/dVs spectra is smaller for the larger circular p-n junction. Furthermore,
dI/dVs spectra in Fig. 6.3c show equal energy spacing except between the fourth and the
fifth charging resonances, where the energy spacing is larger than the rest. This suggests
that there is four-fold degeneracy in QD energy levels due to spin and valley symmetries, so
that ∆E makes non-zero contribution only when an electron added to an empty QD orbital.
For the larger dot in Figs 6.3d, however, Coulomb peaks are equally spaced, implying that
∆E does not make significant contribution to the additional energy Eadd. This suggests
that when the circular p-n junction size is increased, locally gated bilayer graphene acts as
a classical dot where single particle orbital spacing is not important. Hence the backgate
allows a tunable evolution of locally gated bilayer graphene from quantum dots to classical
dots.
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Figure 6.5: Electrochemical potential landscape as an electron tunnels through a quantum
dot (QD). In (a), the STM tip is in tunneling position on a quantum dot with sample bias
Vs , which creates a bias window of eVs. The empty, discrete states of the QD are available
for electrons from the STM tip to tunnel into. There is an addition gap of Eadd between the
highest occupied level and the lowest unoccupied level of the QD. When an electron from
the STM tip tunnels into one of the states in the QD, the chemical potential of the QD is
moved up, as shown in (b). The location of the addition gap flips above the newly occupied
QD state. Electrons from the QD can now tunnel in bulk graphene, which brings the QD
chemical potential back to the original configuration, as shown in (c).

6.3.1 Single Electron Tunneling through a Bilayer Graphene
Quantum Dot

While describing the model for single electron charging in the previous section, we claimed
that the tunneling conductance is determined by the number of available QD states within
the bias window. The underlying assumption here is that the tunneling resistance between
the STM tip and the quantum dot is much larger than the resistance between the quantum
dot and the bulk graphene, i.e. Rtip � Rbulk). This asymmetry in tunneling resistance
results in a Coulomb staircase behavior where the magnitude of the tunneling current is
determined by the number of QD states within the bias window in the configurations shown
in Fig. 6.4d-f [88].

When an electron tunnels into the QD from the STM tip, the electrochemical potential
landscape is temporarily altered. Figure 6.5a-c shows how the electrochemical potential
landscape changes as an electron tunnels from the STM tip to the quantum dot, then to the
bulk graphene. In Figure 6.5a, there are empty QD states available for an electron from
the STM tip to tunnel into. When an electron tunnels into an empty QD state, as shown
in Figure 6.5b, the electrochemical potential of the QD is shifted up to where that state
was. Then the electron tunnels out of the quantum dot into the bulk graphene, at which
point the potential alignments go back to the original state, as shown in Figure 6.5c. When
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Rtip � Rbulk, there is relatively very little time spent in the intermediate configuration, which
is why the tunneling conductance is unaffected by the intermediate potential landscape.

6.4 Electron Quantum Dots in Bilayer Graphene

In Section 6.3, we examined a circular p-n junction in bilayer graphene created by a negative
local embedded gate. The confined states for such circular p-n junctions are hole states. Due
to the electron-hole symmetry in bilayer graphene [2], circular p-n junctions of the opposite
polarity should produce confined electronic states. In this section, we investigate electron
quantum dots in bilayer graphene by fabricating positive local embedded gates. We find
evidence that electronic states are confined within n-doped circular p-n junctions. Further-
more, we obtain greater insight into the competition between STM tip-induced confinement
potential and the embedded gate-induced electric fields.

To confine electronic states in bilayer graphene p-n junctions, we created a positive local
embedded gate by applying an STM tip voltage pulse at Ṽg = −80V . Then we obtained
spatially resolved STS through an arbitrary axis going through the center of the pulsed
region, as shown in the measurement scheme sketched in Fig. 6.6. dI/dVs spectra were
measured and plotted as d2I/dV 2

s (d, Vs) for various Vg as shown in Fig. 6.6b-g. Several
interesting features and trends are observed in these data. First, there are red and blue
lines near Vs = 0V arising from phonon-assisted inelastic tunneling [49, 87]. There are also
prominent peaks that increase as a function of distance |d| from the center of the circular
p-n junction. Additionally, there is a set of resonances that disperse in the opposite direction
as a function of |d|, which were not observed in STS of hole quantum dots in Section 6.3.
Furthermore, two trends appear as the backgate is decreased: (1) the energy spacing between
charging resonances decreases and (2) the resonances shift up in energy (Vs).

dI/dVs maps on these n-doped circular p-n junctions were obtained, as shown in Fig. 6.7.
Approximately circular rings can be observed, but unlike in Fig. 6.3, the rings appear to be
organized into two groups, as may be expected from Fig. 6.6.

Most of the features and trends in Fig. 6.6 and 6.6 can be explained by the model used
in Section 6.3. As Vg is increased, the graphene becomes more n-doped, which expands the
size of the internally n-doped circular p-n junction. As the quantum dot size increases, the
addition energy Eadd = ∆E+EC should decrease, which is consistent with the trend observed
in the experiment. Furthermore, increasing the gate should shift down the electrochemical
potential of the quantum dot, requiring higher sample bias Vs to ionize the same states.
Hence, as the gate increases from Fig. 6.6b to Fig. 6.6g, the charging resonances appear to
move up in energy.

Based on the data on hole quantum dots in Section 6.3, we would naively expect all
the charging peaks to move down in energy as a function of distance |d|. Indeed there is
a quartet of peaks that decrease in Vs as a function |d|. Additionally, however, there are
numerous, less prominent charging peaks in Fig. 6.6 that increase in Vs as a function of |d|.
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Figure 6.6: Charging resonance spectroscopy of locally n-doped in bilayer graphene (a)
Schematic for spectroscopic measurement on a locally n-doped region of bilayer graphene.
Distance d is defined as the radial distance from the STM tip pulse, as shown in (a). STM tip
pulse was performed at Ṽg =-80V, hlift=1.9nm, Vs=5V, and ∆t=3 min. (b-g) d2I/dV 2

s (d, Vs)
at various backgate voltages Vg. Initial tunneling parameters for all dI/dVs spectra: Vs =-
0.5V, I=0.5nA, Va.c.= 5mV.
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Figure 6.7: Charging rings of electron quantum dots in bilayer graphene (a-c) dI/dVs maps
showing charging rings around electron quantum dots in bilayer graphene. The quantum dot
was fabricated with an STM tip pulse at Ṽg =-80V, hlift=1.9nm, Vs=5V, ∆t=3 min. As Vg
increases, the quantum dot size also increases. Tunneling parameters for dI/dVs maps: I=
130pA, Va.c.=5mV.

While further modeling is necessary to fully understand this complicated behavior of
charging resonances, a consistent picture can be formulated by assuming that there are two
quantum dots in this system: a p-doped quantum dot induced by the STM tip acting as a
negative top gate and an n-doped quantum dot induced by the positive bottom gate. The
STM tip usually acts as a negative gate due to its work function difference with the graphene
[53]. Then the STM tip can potentially create a circular p-n junction with p-doped internal
cavity within a region of the graphene that is n-doped by a wider, positive local embedded
gate, which results in a circular p-n-p junction for a range of Vg. In this picture, the STM
tip acts to create a p-doped quantum dot and the positive embedded gate acts to change the
charge state of the tip-induced quantum dot. This is consistent with the observation that the
quartet of charging resonances in Fig. 6.6 decrease in Vs as |d| increases, which is expected
when a positive gate is acting to charge or discharge a quantum dot. Furthermore, the
bottom set of charging resonances have the opposite distance dependence, which is expected
for a quantum dot that is ionized by a negative gate. Again, this is consistent with the
picture that the bottom set of resonances arise when a negatively charged STM tip ionizes
an n-doped quantum dot induced by the positive embedded gate.

This picture suggests an alternative explanation of the results discussed in Section 6.3. In
Figure 6.4, we explained the charging resonances by assuming that the STM tip acts to ionize
the quantum dot induced by a local embedded gate. However, the same phenomenology is
expected if the roles of the STM tip and the embedded gate are reversed. There was not
a good way to disambiguate between the two perspectives in Section 6.3, but the results
of this section suggests the possibility that the STM tip produces a stronger confinement
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potential than the embedded gates. In this picture, the prominent peaks in Figs 6.2 and 6.3
arise from ionization of an STM tip-induced quantum dot, while the weaker resonances
observed in Fig. 6.2 may be due to ionization of an embedded gate-induced quantum dot.
The physically accurate model may be a mixture of these two perspectives.

6.5 Four-Fold Degeneracy in Bilayer Graphene

Quantum Dots

The data in Figure 6.3c of Section 6.3 suggests that there is four-fold degeneracy in these
bilayer graphene quantum dot orbitals. In this section, we provide a more clear experimental
evidence of four-fold symmetry.

Figure 6.8: Quartets of charging resonances in a bilayer graphene quantum dot. (a)
d2I/dV 2

s (Vg, Vs) obtained at the center of a locally gated bilayer graphene. The bilayer
graphene was locally p-doped by an STM tip pulse at Ṽg =60V, hlift=1.8nm, Vs=5V, and
∆t=1 min. Charging resonances appear in quartets. (b) d2I/dV 2

s (d, Vs) on the same quan-
tum dot, where d is the radial distance from the center of the quantum dot (i.e. the location
of the STM tip pulse). Initial tunneling parameters for all dI/dVs spectra: Vs =-0.5V,
I=0.5nA, Va.c.= 5mV.

Figure 6.8a shows d2I/dV 2
s (Vg, Vs) obtained after an STM tip voltage pulse was applied

at Ṽg = 60V. This creates a negative embedded gate, which confines hole states in a circular
p-n junction. As was observed in Fig. 6.2, there is a band around Vs=0V corresponding to
the phonon pseudogap. However, the charge neutrality point is more visible here (bright line
above the phonon feature) than in Fig. 6.2. Also, there are up to five quadruplets of charging
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resonances in this plot. In Fig. 6.2, only the first quadruplet appeared to be grouped together
while the rest of the resonances were clumped together without clear fourfold grouping
(suggesting that ∆E made negligible contribution to Eadd). Figure 6.8b is a d2I/dV 2

s (d, Vs)
plot on the same circular p-n junction obtained at Vg = 49V that confirms that the resonances
are grouped into quartets. Compared to Fig. 6.3, there are few differences: the resonances
are not as prominent, the resonances do not appear above the phonon gap, the quartet
grouping is more evident, and the charge neutrality point is visible above the phonon gap
for small d.

The differences between dI/dVs spectra obtained for the quantum dot in Figure 6.8 and
for those in Fig. 6.3 or Fig. 6.2 may be because of the STM tip. A different STM tip was used
for this data set. Although our STM tips are always calibrated with the same procedure,
they are never exactly the same. Another possible factor contributing to the difference may
be the shape of the confinement potential. Here Ṽg = 60V was used, while Ṽg = 40V was
used in Fig. 6.3 or Fig. 6.2.

6.6 Coupled Quantum Dots in Bilayer Graphene

6.6.1 P-Doped Quantum Dots

As shown in Figure 4.11b, we performed STM tip voltage pulses with Ṽg = 80V at two
locations separated by 200 nm. The charge density landscape should resemble the sketches
in Figure 4.11a-c. When Vg is large, there are two p-doped regions centered around the
positions of the tip voltage pulses and separated from each other, as shown in Fig. 4.11c.
When Vg is lower, the p-doped regions will merge, as shown in Fig. 4.11a.

In order to explore the resulting electronic structure of these p-n junctions, we measured
dI/dVs spectra through an axis passing through the two locations where STM tip voltage
pulses were applied. The measurement scheme is shown in Fig. 4.11c and d2I/dV 2

s (d, Vs)
plots at four different Vg are shown in Figs 4.11d-g. The red and blue lines near Vs =
0V arise from phonon-assisted inelastic tunneling[49, 87]. Conspicuous peaks appear in
d2I/dV 2

s (d, Vs) plots. And as was observed for circular p-n junctions in bilayer graphene
(Section 6.3), the energy spacing between peaks increase as Vg is increased. While the
resonances had parabola-like shape for circular p-n junctions, the resonances in Figs 4.11d-g
reflect the non-circular geometry of the embedded gates.

Fig. 6.10 shows dI/dVs maps at Vg = 53V for four values of Vs. The locations of the
STM tip pulses and scan window dimensions are sketched in Fig. 4.11b. Sharp elongated
rings appear in dI/dVs maps. As the sample bias is lowered, the number of rings and the
spatial density of rings decrease.

The precise shape and magnitude of the resulting local embedded gates in Figs 4.11 and
6.10 is not known with certainty. In particular, more analysis is necessary to decouple the
effects of the STM tip as the top gate and of the effect of embedded bottom gates. Here we
present several possible scenarios. First, the sharp resonances may indicate single electron
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Figure 6.9: Spatially resolved STS on coupled bilayer graphene quantum dots (p-doped)
(a-c) Measurement scheme for distance-resolved dI/dVs spectra and dI/dVs maps. STM
tip voltage pulses were applied at two locations separated by 200 nm with parameters Ṽg
=80V, hlift=1.9nm, Vs=5V, and ∆t=3min. As Vg increases, the size of circular p-n junctions
decreases. Distance d is defined as shown in (c). (d-g) d2I/dV 2

s (d, Vs) at various backgate
voltages Vg. Initial tunneling parameters for all dI/dVs spectra: Vs =-0.5V, I=0.5nA, Va.c.=
5mV.

charging of a quantum dot produced by the STM tip. As discussed in previous sections, the
STM tip acts as a top gate that usually p-dopes the graphene below, which may create a
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Figure 6.10: dI/dVs maps on coupled bilayer graphene quantum dots (p-doped) (a-d) dI/dVs
maps showing charging rings for various sample biases Vs at a fixed backgate (Vg=53). The
bilayer graphene was p-doped with STM tip pulses at Ṽg =80V, hlift=1.9nm, Vs=5V, and
∆t=3min. Tunneling parameters for dI/dVs maps: I= 100pA, Va.c.=5mV.

p-doped quantum dot. In this scenario, the embedded gates act to change the charge state of
the quantum dot that follows the STM tip. Another possibility is that the embedded gates
produce one bilayer graphene quantum dot defined by a non-circular p-n junction. The p-n
junction shape changes as Vg is varied, but sharp charging resonances are always observed.
This would then indicate that massive Dirac fermion confinement is very robust and occurs
for various different non-circular p-n junction geometries. Finally, the charging resonances
may come from two distinct quantum dots created by two separate circular p-n junctions.
All three explanations are consistent with the trends observations in Figs 4.11 and 6.10. As
Vg is increased, the quantum dots should decrease in size, which would result in greater Eadd
and larger peak-to-peak energy spacing, as observed in Figs 4.11 and 6.10. While further
analysis is necessary to fully disambiguate between these three possibilities, the discussion
in the following section (Sec. 6.6.2) suggests that the first possibility (quantum confinement
occurs due to STM tip gating and embedded gates act to charge and discharge the quantum
dot) is the most likely.
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6.6.2 N-Doped Quantum Dots

Figure 6.11: Spatially resolved STS on coupled bilayer graphene quantum dots (n-doped)
(a-c) Measurement scheme for distance-resolved dI/dVs spectra and dI/dVs maps. STM tip
voltage pulses were applied at two locations separated by 200 nm with parameters Ṽg =-
80V, hlift=1.9nm, Vs=5V, and ∆t=3min. As Vg increases, the size of circular p-n junctions
increases. Distance d is defined as shown in (c). (d-g) d2I/dV 2

s (d, Vs) at various backgate
voltages Vg. Initial tunneling parameters for all dI/dVs spectra: Vs =-0.5V, I=0.5nA, Va.c.=
5mV.

We proceed to examine coupled n-doped quantum dots in bilayer graphene. As shown in
Fig. 6.11b, we performed STM tip pulses at two locations 200 nm apart while holding the
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backgate at Ṽg=-80V, which creates two positive embedded gates in hBN. The response of
the charge carriers in the bilayer graphene is sketched in Figs 6.11a-b, where increasing Vg
expands the region of the graphene that is n-doped.

Figure 6.12: dI/dVs maps on coupled bilayer graphene quantum dots (n-doped) (a-h) dI/dVs
maps showing charging rings observed for various sample biases Vs at a fixed backgate Vg=-
15V. STM tip voltage pulses were applied at Ṽg =-80V, hlift=1.9nm, Vs=5V, and ∆t=3min.
Tunneling parameters for dI/dVs maps: I= 100pA, Va.c.=5mV.

To investigate the elctronic structure of these p-n junctions, we obtained dI/dVs spec-
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tra along an axis going through the locations of the STM tip voltage pulses, as shown in
Fig. 6.11c. Data obtained for four values of Vg are plotted as d2I/dV 2

s (d, Vs) in Figs 6.11d-g.
As always, the plots show a phonon gap [49, 87] around Vs=0V. Numerous charging peaks
also appear. The upper quartet of peaks have larger widths and energy spacing, while the
resonances occurring at lower Vs have narrower linewidths, vary in shape and number as Vg
is changed, and are not limited to appear in quadruplets.

dI/dVs maps were obtained for these bilayer graphene p-n junctions at Vg=-15V for eight
different values of Vs, as shown in Fig. 6.12. The locations and dimensions of the dI/dVs
maps are sketched in Fig. 6.11b. Numerous bright peaks appear in these dI/dVs maps,
and they may be divided into two groups based on their shape and brightness. There is
a set of peaks that appear brighter and follow the contours of the doping landscape (like
two-dimensional dumbbells or Cassini ovals). These non-circular peaks are similar in shape
to the p-n junction boundary sketched in Fig. 6.11a. The other, less prominent set of peaks
do not follow the curvature of the p-n junction boundary in Fig. 6.11a but are concentric
about the centers of STM tip voltage pulses. This is apparent in Figs 6.11a-c or f, where
these resonances form lines that are perpendicular to the dumbbell-shaped envelopes.

We now discuss the origin of peaks observed in Figs 6.11 and 6.12. There are at least
three different types of p-n junctions that can act as quantum dots and produce Coulomb
oscillations observed in our dI/dVs spectra and maps: (1) STM tip-induced, p-doped quan-
tum dot, (2) two distinct n-doped quantum dots induced by two separate positive embedded
gates, and (3) a non-circular, n-doped quantum dot defined by the combined confinement
potential of the embedded gates.

Our experimental data can be consistently explained by positing that the more prominent
peaks appearing in dI/dVs spectra and maps are Coulomb oscillations associated with an
STM tip-induced quantum dot while the weaker resonances are charging rings for the two
n-doped quantum dots induced by embedded gates. As mentioned above, dI/dVs maps in
Fig. 6.12 revealed that weaker resonances are concentric about the locations of the two STM
tip pulses. This suggests that these resonances are charging rings for quantum dots centered
at those two positions. On the other hand, the stronger charging peaks are Cassini oval-
shaped. This is consistent with the picture that a Cassini oval-shaped bottom gate causes
charging and discharging of electrons from the quantum dot that moves with the STM tip.
Furthermore, the stronger peaks have the expected Vs vs |d| behavior of a quantum dot that
is ionized by a positive gate (See discussion in Section 6.4). And the weaker peaks appear
to branch out from the two tip pulse locations and increase in Vs away from those locations.
In Figs 6.11e and f, for instance, V-shaped peaks appear near d =70 nm and d =220 nm.
Again, this behavior is consistent with our model since charging rings induced by a negative
gate should increase in energy Vs as a function of the distance from an ionizing gate, as is
the case here.
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6.7 Increasing Confinement Potential Strength in

Bilayer Graphene Quantum Dots

In Sections 6.6.1 and 6.6.2, we found that the STM tip acts as a top gate on the bilayer
graphene, which plays a significant role in STS characterization bilayer graphene p-n junc-
tions. It is important, then, to be able to decouple the effects of the STM tip top gate
and the embedded bottom gate. In particular, it would be useful to isolate the effect of the
embedded bottom gate and minimize the intrusiveness of the STM tip top gate. In this sec-
tion, we take a step towards this direction by creating an embedded gate whose confinement
potential is significantly stronger than those reported in previous sections.

In order to create an embedded gate with steeper confinement potential, we made several
changes to our STM tip voltage pulse procedure. First, we applied STM tip voltage pulses
multiple times at numerous points scattered throughout the scan window with hlift=1.2nm
and Vs=5V while holding the backgate at Ṽg = -80V. This effectively n-doped the region in
and around the scan area uniformly. When we take dI/dVs spectra near the scan area after
such a procedure at Vg = Ṽg, we obtain the dI/dVs spectrum for neutral bilayer graphene.
This indicates that there is a uniform embedded gate that completely screens the backgate
and is equivalent in magnitude to Ṽg. After creating a uniform background doping using
this method, we fabricated a negative local gate in the center of the scan area by applying
a voltage pulse with hlift =800 pm. This means that the STM tip is much closer to the
surface of the graphene than previously when hlift ≈2 nm was used. We also used a lower
pulse voltage and shorter pulse time (Vs=3.75V, ∆t <1s).

To characterize the resulting electronic structure, we measured dI/dVs spectra as a func-
tion of radial distance d from the location of the last voltage pulse, as shown in Figure 6.13c.
Smooth oscillatory features can be observed in the lower left part of the plot, while checker-
like pattern is visible on the upper right. A white line acts as a boundary between these two
patterns. Figure 6.13d shows dI/dVs spectra obtained with the same measurement scheme
as Figure 6.13c but for a different STM tip voltage pulse. Parameters similar to what was
used for creating embedded gates in previous Sections 6.6.1 and 6.6.2 were used (Ṽg =60V,
hlift=1.8nm, Vs=5V, ∆t=1min) in the absence of any background doping. Similar to Fig-
ure 6.13c, there is a white diagonal line dividing blue and red regions. Unlike Fig. 6.13d,
however, there are four narrow resonances that move up with distance d but other oscillatory
features are absent.

The two embedded gates in Fig. 6.13c and d clearly produces different electronic struc-
tures. The local charge neutrality point approximately follows the white diagonal lines in
these plots. The CNP moves about 100 mV in Fig. 6.13c over a distance of 120 nm while
the CNP moves half as much or less over the same distance in Fig. 6.13d. As illustrated
in Fig. 6.13a and b, measurement of the CNP reveals the confinement potential profile in-
duced by the embedded gate. Hence, it is evident that the confinement potential is much
stronger in Fig. 6.13c than in Fig. 6.13d. The interpretation of the charging resonances in
Fig. 6.13d were discussed in previous sections. The new features observed in Fig. 6.13c have
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Figure 6.13: Effect of confinement potential on the electronic structure of quantum dots
in bilayer graphene (a-b) Schematics showing a deep, sharp confinement potential (a) and
shallow confinement potential (b). (c) d2I/dV 2

s (d, Vs) for a strong confinement potential
created with an STM tip pulse at Ṽg =80V, hlift=800pm, Vs=3.75V, ∆t <1s and background
doping at Ṽg =-80V hlift=1.2nm. Initial tunneling parameters: Vs =-0.1V, I=1nA, Va.c.=
1mV.(d) d2I/dV 2

s (d, Vs) for a shallow confinement potential created with an STM tip pulse at
Ṽg =60V, hlift=1.8nm, Vs=5V, ∆t=1min. Initial tunneling parameters: Vs =-0.1V, I=1nA,
Va.c.= 2mV.

not been discussed so far, and they provide an exciting invitation for future experimental
and theoretical investigations.

Thus, we have demonstrated that by changing parameters of the STM tip voltage pulse
procedure, we are able to create quantum dot confinement potentials of variable strength.
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