Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Preparation by pulsed vacuum arc deposition and characterization of DLC/MoS2 nanocomposite thin films

Permalink

https://escholarship.org/uc/item/32b0x7d9

Authors

Delplancke-Ogletree, M.P. Monteiro, O.R.

Publication Date

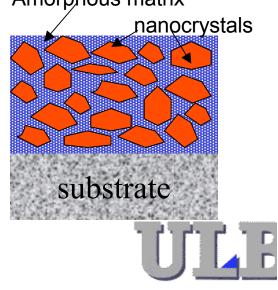
2001-03-01

Preparation by pulsed vacuum arc deposition and characterization of DLC/MoS₂ nanocomposite thin films

M.P. Delplancke-Ogletree^{*}, O.R. Monteiro^{**} ^{*}Université Libre de Bruxelles, Industrial Chemistry Department ^{**} Lawrence Berkeley National Laboratory

Outline

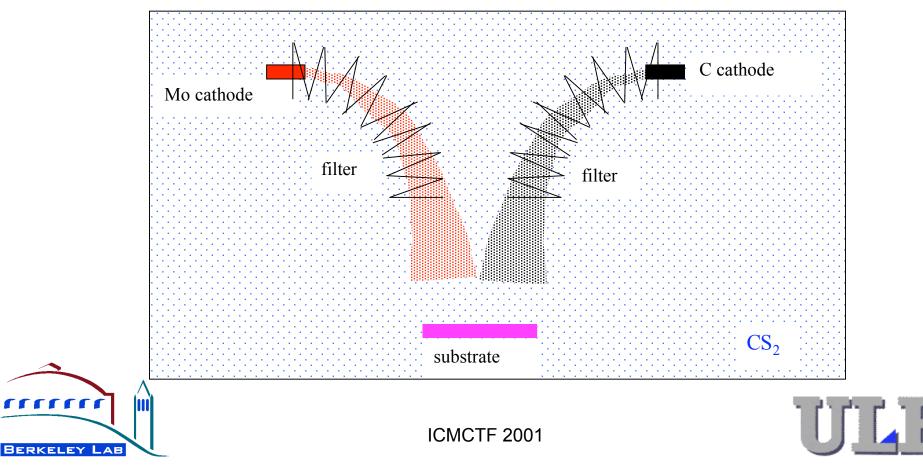
- Why DLC + MoS₂ nanocomposites
- Set-ups
- Thermodynamics
- C + Mo + CS₂: bonding
- Mo + S:
 - Bonding and structure
 - Ball-on-disk tests under air and dry nitrogen
- Mo + S + C:
 - Bonding and structure
 - Ball-on-disk tests under air and dry nitrogen
- Comparison with other systems and conclusions



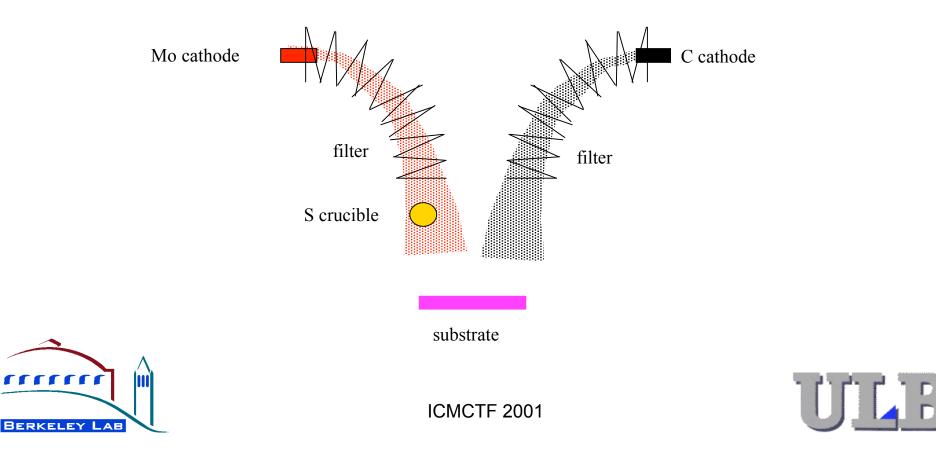
Why DLC + MoS₂ nanocomposites

- Lubrication performances of non-hydrogenated DLC are limited in absence of moisture but good hardness and thoughness
- $MoS_2 = good lubricant under dry conditions or under vacuum but low hardness, and oxydation in presence of O₂ or H₂O Amorphous matrix$

=> idea: incorporate clusters of MoS₂ in a matrix of DLC to get a film with good performances under wet and dry conditions.



Set-up: gaseous source of Sulfur


• Gaz source for $S = CS_2$

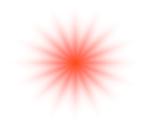
Set-up : solid source of Sulfur

• Evaporation of solid sulfur in a crucible



Thermodynamics

CompoundEnthalpy of formation (at 298 K)MoS ² solid-276.010 k		



In absence of S source

- C pulse 4 ms at 270A, Mo pulse 6 ms at 100A
- => formation of molybdenum carbide

ULF

Films prepared with CS₂

- C pulse 4 ms at 270A, Mo pulse 6 ms at 100A
 1 Pa of CS₂
- => very low incorporation of sulfur
 - difficulty to control the Mo/C and S/C ratios
 -sensitivity to contamination

Mo + S synthesis: bonding

- sulfur is incorporated exclusively if Mo is present
- a bias on the substrate reduces the incorporation of sulfur in the film. Two factors:
 - preferential sputtering of sulfur under Moⁿ⁺ ion bombardment
 - the bias attracts the Moⁿ⁺ ions but as the ionization of sulfur is low, the bias is not attracting the sulfur
- the structure is not well ordered: wide peaks in XPS



MoS₂ synthesis: mechanical properties

- Ball-on-disk tests in dry N_2 , AI_2O_3 ball
 - life time increased by a factor of 4 in comparison with air tests
 - failure by delamination and intensive cracking
- => very brittle films
- => not satisfactory as lubricants even under dry N₂

Mo + S + C: bonding

- S bonded mainly to Mo.
- No real proof of C-S bonds even in presence of an excess of S
- possible S-S bonds in presence of an excess of S
- in presence of an excess of Mo formation of MoO₃ at the surface and tendency to form Mo-C bonds in the bulk
- reduction of S incorporation in presence of bias

Mo + S + C: mechanical properties

- Ball-on-disk tests with stainless steel and alumina balls in air
- Ball-on -disk tests with alumina balls in dry N₂
- => best resistance to abrasion in air and dry N₂ for low concentration of MoS₂ (doping).
- => at low concentration of MoS₂ (doping), better resistance to abrasion with a steel ball than with Al₂O₃ ball
- => performances are lower in air than pure DLC films
- => films with high MoS₂ concentration are brittle and don 't support the load: extensive cracking and delamination

NO improvement of the tribological performances of DLC by the addition of MoS_2 in the deposition conditions investigated here.

Comparison with other systems and conclusions

- The MoS₂ / DLC system has been compared with W doped DLC and Ti doped DLC films prepared in similar conditions:
- => W and Ti additions reduce the intrinsic compressive stress of the hard DLC films and made them thougher.

=> addition of MoS₂ does not improve the performances of doped DLC films, it increases the brittleness: could be related to the bonding in the films.

