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MODELING SOCIAL NETWORKS FROM SAMPLED DATA1

By Mark S. Handcock and Krista J. Gile

University of California–Los Angeles and Nuffield College

Network models are widely used to represent relational informa-
tion among interacting units and the structural implications of these
relations. Recently, social network studies have focused a great deal
of attention on random graph models of networks whose nodes rep-
resent individual social actors and whose edges represent a specified
relationship between the actors.

Most inference for social network models assumes that the pres-
ence or absence of all possible links is observed, that the information is
completely reliable, and that there are no measurement (e.g., record-
ing) errors. This is clearly not true in practice, as much network data
is collected though sample surveys. In addition even if a census of
a population is attempted, individuals and links between individuals
are missed (i.e., do not appear in the recorded data).

In this paper we develop the conceptual and computational the-
ory for inference based on sampled network information. We first
review forms of network sampling designs used in practice. We con-
sider inference from the likelihood framework, and develop a typology
of network data that reflects their treatment within this frame. We
then develop inference for social network models based on informa-
tion from adaptive network designs.

We motivate and illustrate these ideas by analyzing the effect of
link-tracing sampling designs on a collaboration network.

1. Introduction. Networks are a useful device to represent “relational
data,” that is, data with properties beyond the attributes of the individuals
(nodes) involved. Relational data arise in many fields and network models
are a natural approach to representing the patterns of the relations between
nodes. Networks can be used to describe such diverse ideas as the behav-
ior of epidemics, the interconnectedness of corporate boards, and networks
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of genetic regulatory interactions. In social network applications, the nodes
in a graph typically represent individuals, and the ties (edges) represent a
specified relationship between individuals. Nodes can also be used to repre-
sent larger social units (groups, families, organizations), objects (airports,
servers, locations) or abstract entities (concepts, texts, tasks, random vari-
ables). We consider here stochastic models for such graphs. These models
attempt to represent the stochastic mechanisms that produce relational ties,
and the complex dependencies thus induced.

Social network data typically consist of a set of n actors and a relational
tie random variable, Yij , measured on each possible ordered pair of actors,
(i, j), i, j = 1, . . . , n, i 6= j. In the most simple cases, Yij is a dichotomous
variable, indicating the presence or absence of some relation of interest,
such as friendship, collaboration, transmission of information or disease, etc.
The data are often represented by an n× n sociomatrix Y , with diagonal
elements, representing self-ties, treated as structural zeros. In the case of
binary relations, the data can also be thought of as a graph in which the
nodes are actors and the edge set is {(i, j) :Yij = 1}. For many networks the
relations are undirected in the sense that Yij = Yji, i, j = 1, . . . , n.

In the application in this paper we consider a network formed from the
collaborative working relations between n= 36 partners in a New England
law firm [Lazega (2001)]. We focus on the undirected relation where a tie
is said to exist between two partners if and only if both indicate that they
collaborate with the other. The scientific objective is to explain the observed
structural pattern of collaborative ties as a function of nodal and relational
attributes. The relational data is supplemented by four actor attributes:
seniority (the rank number of chronological entry into the firm divided by
36), practice (there are two possible values, litigation = 0 and corporate
law = 1), gender (3 of the 36 lawyers are female) and office (there are three
different offices in three different cities each of different size).

For large or hard-to-find populations of actors it is difficult to obtain
information on all actors and all relational ties. As a result, various survey
sampling strategies and methods are applied. Some of these methods make
use of network information revealed by earlier stages of sampling to guide
later sampling. These adaptive designs allow for more efficient sampling than
conventional sampling designs. We consider such designs in Section 2.

Most of the work presented here considers the network over the set of
actors to be the realization of a stochastic process. We seek to model that
process. An alternative is to view the network as a fixed structure about
which we wish to make inference based on partial observation.

In this paper we develop a theoretical framework for inference from net-
work data that are partially-observed due to sampling. This work extends
the fundamental work of Thompson and Frank (2000). For purposes of pre-
sentation, we focus on the relational data itself and suppress reference to
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covariates of the nodes. This more general situation is dealt with in
Handcock and Gile (2007).

In Section 2 we present a conceptual framework for network sampling.
We extend this framework in Section 3 to focus on inference from sampled
network data. We first consider the limitations of design-based inference in
this setting, then focus on likelihood-based inference. Section 4 presents the
rich Exponential Family Random Graph Model (ERGM) family of models
that has been applied to complete network data. Section 5 presents a study
of the effect of sampling from a known complete network of law firm collab-
orations. Finally, in Section 6, we discuss the overall ramifications for the
modeling of social networks with sampled data and note some extensions.

2. Network sampling design. In this section we consider the conceptual
and computational theory of network sampling.

There is a substantial literature on network sampling designs. Our devel-
opment here follows Thompson and Seber (1996) and Thompson and Frank
(2000). Let Y denote the set of possible networks on the n actors. Note that
in most network samples, the unit of sampling is the actor or node, while
the unit of analysis is typically the dyad. Let D be the n×n random binary
matrix indicating if the corresponding element of Y was sampled or not. The
value of the i, jth element is 0 if the (i, j) ordered pair was not sampled and
1 if the element was sampled. Denote the sample space of D by D. We shall
refer to the probability distribution of D as the sampling design. The sam-
pling design is often related to the structure of the graph and a parameter
ψ ∈Ψ, so we posit a model for it. Specifically, let P (D = d|Y = y;ψ) denote
the probability of selecting sample d given a network y and parameter ψ.

Under many sampling designs the set of sampled dyads is determined
by the set of sampled nodes. Let S represent a binary random n-vector
indicating a subset of the nodes, where the ith element is 1 if the ith node
is part of the set, and is 0 otherwise. We often consider situations where D
is determined by some S which is itself a result of a sample design denoted
by P (S|Y,ψ). For example, consider an undirected network where the set of
observed dyads are those that are incident on at least one of the sampled
nodes. In this case D = S ◦ 1 + 1 ◦ S − S ◦ S, where 1 is the binary n-vector
of 1s. A primary example of this is where people are sampled and surveyed
to determine all their edges.

We introduce further notation to allow us to refer to the observed and
unobserved portions of the relational structures. Denote the observed part of
the complete graph Y by Yobs = {Yij :Dij = 1} and the unobserved part by
Ymis = {Yij :Dij = 0}. The full observed data is then {Yobs,D}, in contrast
to the complete data: {Yobs, Ymis,D}. We will write the complete graph Y =
{Yobs, Ymis}. In addition, we make the convention that undefined numbers
act as identity elements in addition and multiplication. So a number x plus
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or multiplied by an undefined number y is x, and hence Y = Yobs+Ymis. For
a given network y ∈ Y, denote the corresponding data as {yobs, d} and the
other elements by their lower-case versions y = yobs + ymis. Finally denote
Y(yobs) = {v :yobs + v ∈ Y}, that is the set of possible unobserved elements
which together with yobs result in valid network. The set yobs + Y(yobs) is
then the restriction of Y to yobs.

A sampling design is conventional if it does not use information collected
during the survey to direct subsequent sampling of individuals (e.g., net-
work census and ego-centric designs). Specifically, a design is conventional
if P (D = d|Y = y;ψ) = P (D = d|ψ) ∀y ∈ Y. A simple example of a con-
ventional sampling design for networks is an ego-centric design, consist-
ing of a simple random sampling of a subset of the actors, followed by
complete observation of the dyads originating from those actors. A com-
plete census of the network is another. More complex examples include de-
signs using probability sampling of pairs and auxiliary variables. Alterna-
tively, we call a sampling design adaptive if it uses information collected
during the survey to direct subsequent sampling, but the sampling design
depends only on the observed data. Specifically, a design is adaptive if:
P (D = d|Y = y;ψ) = P (D = d|Yobs = yobs, ψ) ∀y ∈ yobs + Y(yobs). Hence a
design can be adaptive for a given yobs (rather than all possible observed
data), although most common such designs are adaptive for all possible data
observed under them. Conventional designs can be considered to be special
cases of adaptive designs.

Note that adaptive sampling designs satisfy

P (D = d|Yobs, Ymis, ψ) = P (D = d|Yobs, ψ),(2.1)

a condition called “missing at random” by Rubin (1976) in the context of
missing data. Note that this is a bit misleading—it does not say that the
propensity to be observed is unrelated to the unobserved portions of the
network, but that this relationship can be explained by the data that are
observed. The observed part of the data are often vital to equality (2.1).
Hence adaptive designs are essentially those for which the unobserved dyads
are missing at random.

Denote by [a] the vector-valued function that is 1 if the corresponding
element of the vector a is logically true, and 0 otherwise. Let a× b be the
elementwise product of the column vector a and the column vector b and
a · b be the scalar product

∑

j ajbj . Let a ◦ b be the outer product matrix
with ijth element aibj . If y is a matrix and b a vector let y · b be the column
vector with ith element

∑

j yjibj .

2.1. Some adaptive designs for undirected networks. We now consider
several examples of adaptive designs for undirected networks.
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2.1.1. Example: Ego-centric design. Consider a simple ego-centric de-

sign:

1. Select individuals at random, each with probability ψ.
2. Observe all dyads involving the selected individuals (i.e., dyads with at

least one of the selected individuals as one of the pair of actors).

The sampling design can be determined for this case. First note that

P (Dij = 1|Y,ψ) = 1− (1− ψ)2 ∀i 6= j.

This, however, does not give the joint distribution of D. Let S be the binary
n-vector where 1 and 0 indicate that the corresponding individual has been
selected, or not, respectively. Within this design, S is determined by D (i.e.,
S = [D1 = (n− 1)1]). Then P (S = s|Y,ψ) = ψ1·s(1− ψ)n−1·s, s ∈ {0,1}n. If
the ith element of S is 1 then all elements in the ith row and column of D
are 1. Dij = 0 if and only if both the ith and j th elements of S are both 0.
Hence the probability distribution of D is

P (D = d|Y,ψ) = ψ1·s(1−ψ)n−1·s

for

d= 1 ◦ s+ s ◦ 1− s ◦ s, s ∈ {0,1}n.

Note that the distribution does not depend on Y , and is therefore conven-
tional.

2.1.2. Example: One-wave link-tracing design. We refer to any sample
in which subsequent nodes are enrolled based on their observed relations
with other sampled nodes as a link-tracing design. Consider the one-wave
link-tracing design specified as follows:

1. Select individuals at random, each with probability ψ.
2. Observe all dyads involving the selected individuals.
3. Identify all individuals reported to have at least one relation with the

initial sample, and select them with probability 1.
4. Observe all dyads involving the newly selected individuals.

Let S0 denote the indicator vector for the initial sample and S1 the in-
dicator for the added individuals not in the initial sample. Then the whole
sample of individuals is S = S0+S1. As in the undirected ego-centric design,
D = 1 ◦ S + S ◦ 1− S ◦ S. Note that S1 = [Y S0 × (1− S0) > 0] is derivable
from S0 and Y . Hence

P (D = d|Y,ψ) =
∑

s0: s0+[Y s0×(1−s0)>0]=s

ψ1·s0(1−ψ)n−1·s0

for

d= 1 ◦ s+ s ◦ 1− s ◦ s, s ∈ {0,1}n.
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2.1.3. Example: Multi-wave link-tracing design. Consider a multi-wave

link-tracing design in which the complete set of partners of the kth wave
are enrolled, that is, the link-tracing process described above is carried out
k times. If k is fixed in advance this is called k-wave link-tracing.

Let S0 denote the indicator for the initial sample, S1 the indicator for
the added individuals in the first wave not in the initial sample, . . . , Sk the
indicator for the added individuals in wave k not in the prior samples. Then
the whole sample of individuals is S = S0+S1+ · · ·+Sk. As in the ego-centric
design D = 1 ◦ S+S ◦ 1−S ◦ S. Note that Sm = [Y Sm−1 × (1−

∑m−1
t=0 St)>

0], m= 1, . . . , k is derivable from S0 and Y. Then

P (D = d|Y,ψ) =
∑

s0:s0+s1+···+sk=s

ψ1·s0(1−ψ)n−1·s0

for d= 1◦ s+ s ◦1− s ◦ s, s ∈ {0,1}n. Here Sm = [Y Sm−1× (1−
∑m−1

t=0 St)>

0] = [YobsSm−1 × (1 −
∑m−1

t=0 St) > 0], m = 1, . . . , k so that the individuals
selected in the successive waves only depend on the observed part of the
graph, and not on the unobserved portions of the graph. Clearly, this is also
true for one-wave link-tracing as a simple case of k-wave link-tracing. Note
that it may be possible that Sm = ∅ for some m < k, so that subsequent
waves do not increase the sample size (i.e., Sk =∅). A variant of the k-wave
link-tracing design is the saturated link-tracing design, in which sampling
continues until wave m, such that Sm = ∅. We interpret k as the bound
on the number of waves sampled imposed by the sampling design. Since
saturated link-tracing does not restrict the number of waves sampled, we
represent it by setting k =∞.

2.2. Some adaptive designs for directed networks. We can also consider
variants of these adaptive designs for directed networks.

2.2.1. Example: Ego-centric design. Consider a simple ego-centric de-

sign:

1. Select individuals at random, each with probability ψ.
2. Observe all directed dyads originating at the selected individuals.

As before, the sampling design can be determined for this case. Since a
directed dyad is observed only if its tail node is sampled,

P (Dij = 1|Y,ψ) = ψ ∀i 6= j

and D = S0 ◦ 1. Hence the probability distribution of D is

P (D = d|Y,ψ) = ψ1·s(1−ψ)n−1·s

for d = s ◦ 1, s ∈ {0,1}n and the distribution does not depend on Y . As in
the undirected case, this design is therefore conventional.
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2.2.2. Example: One-wave link-tracing design. Consider a one-wave link-
tracing design on a directed network specified as follows:

1. Select individuals at random, each with probability ψ.
2. Observe all directed dyads originating at the selected individuals.
3. Identify all individuals receiving an arc from a member of the initial

sample, and select them with probability 1.
4. Observe all directed dyads originating at the newly selected individuals.

Let S0 denote the indicator vector for the initial sample and S1 the in-
dicator for the added individuals not in the initial sample. Then the whole
sample of individuals is S = S0 + S1. As in the ego-centric design D = S ◦ 1
and

P (D = d|Y,ψ) =
∑

s0: s0+[Y s0×(1−s0)>0]=s

ψ1·s0(1−ψ)n−1·s0

for d= s ◦ 1, s ∈ {0,1}n.

2.2.3. Example: Multi-wave link-tracing design. Consider a directed ver-
sion of the multi-wave link-tracing design in which the complete set of
out-partners of the kth wave are enrolled. The whole sample of individ-
uals is S = S0 + S1 + · · · + Sk. And Sm = [Y · Sm−1 × (1−

∑m−1
t=0 St) > 0],

m= 1, . . . , k is derivable from S0 and Y. Then

P (D = d|Y,ψ) =
∑

s0:s0+s1+···+sk=s

ψ1·s0(1−ψ)n−1·s0

for d= s ◦ 1, s ∈ {0,1}n, where we note that Sm = [Y · Sm−1×(1−
∑m−1

t=0 St)>

0] = [Yobs · Sm−1 × (1−
∑m−1

t=0 St)> 0], m= 1, . . . , k so that the individuals
selected in successive waves of depend only on the previously observed part
of the graph, and not on the unobserved portions. The saturated link-tracing
design is represented by k =∞.

3. Inferential frameworks. In this section we consider two frameworks
for inference based on sampled data. In the design-based framework y repre-
sents the fixed population and interest focuses on characterizing y based on
partial observation. The random variation considered is due to the sampling
design alone. A key advantage of this approach is that it does not require
a model for the data themselves, although a model may also be used to
guide design-based inference [Särndal, Swensson and Wretman (1992)]. Un-
der the model-based framework, Y is stochastic and is a realization from a
stochastic process depending on a parameter η. Here interest focuses on η
which characterizes the mechanism that produced the complete network Y .
We find severe limitations of the design-based framework for data from link-
tracing samples, and focus on likelihood inference within the model-based
framework.
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3.1. Design-based inference for the network. In the design-based frame,
the unobserved data values, or some functions thereof, are analogous to
the parameters of interest in likelihood inference. The population of data
values is treated as fixed, and all uncertainty in the estimates is due to the
sampling design, which is typically assumed to be fully known (not just up
to the parameter ψ).

Inference typically focuses on identifying design-unbiased estimators for
quantities of interest measured on the complete network. In an undirected
network analysis setting, for example, we can consider estimating τ =

∑

i<j yij ,

the number of edges in the network. Note that y is a partially-observed ma-
trix of constants in this setting. Then τ̂ is design-unbiased for τ if

ED[τ̂ |ψ,y] = τ,

where the expectation is taken over realizations of the sampling process.
Specifically,

ED[τ̂(Yobs,D)|ψ,y] =
∑

d∈D

τ̂(yobs(d), d)P (D = d|ψ,y),

where τ̂(yobs(d), d) is the estimator expressed as a function of the observed
network information. Similarly, the variance of the estimator is computed
with respect to the variation induced by the sampling procedure

VD[τ̂(Yobs,D)|ψ,y] =
∑

d∈D

(τ̂(yobs(d), d)− τ)2P (D = d|ψ,y).

The Horvitz–Thompson estimator is a classic tool of design-based in-
ference, and is based on inverse-probability weighting the sample. In our
example, it is

τ̂(Yobs,D) =
∑

i<j:Dij=1

yij
πij

,

where the dyadic sampling probability πij = P (Dij = 1|ψ,y) is the probabil-
ity of observing dyad (i, j).

Consider an estimator of τ based on relations observed through the ego-
centric design of Section 2.1.1. Then

πij = 1− (1− ψ)2 ∀i, j.

The classic Horvitz–Thompson estimator τ̂ of τ then weights each observa-
tion by the inverse of its sampling probability

τ̂ =
∑

i<j:Dij=1

yij
πij

=
1

1− (1− ψ)2

∑

i<j:Dij=1

yij.
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Then

V(τ̂) =
∑

i<j

∑

k<l

{[1− (1− ψ)2]−2πij,kl − 1}yijykl,

where πij,kl = P (S0i + S0j > 0, S0k + S0l > 0) or

πij,kl =







πij, i= k, j = l,
πijπkl, i /∈ {k, l} and j /∈ {k, l},

ψ3 − 3ψ2, otherwise.

Among the many available estimators for the variance of the Horvitz–Thompson
estimator is the Horvitz–Thompson variance estimator:

V̂(τ̂ ) =
∑

i<j:Dij=1

∑

k<l:Dkl=1

1

πij,kl
{[1− (1−ψ)2]−2πij,kl − 1}yijykl.

Note the importance of the unit sampling probabilities in these estima-
tors. This is a hallmark of design-based inference: inference relies on full
knowledge of the sampling procedure in order to make unbiased inference
without making assumptions about the distribution of the unobserved data.
This typically requires knowledge of the sampling probability of each unit
in the sample. This procedure is complicated in the network context, in that
we require the sampling probabilities of the units of analysis, dyads, which
are different from the units of sampling, nodes. In fact, for even single-wave
link-tracing samples, the dyadic sampling probabilities are not observable.

To see this, define the nodal neighborhood of a dyad (i, j), N(i, j), where
k ∈N(i, j) ⇐⇒ {S0k = 1=⇒Dij = 1}. Then πij = P (∃k :S0k = 1, k ∈N(i, j)).

For the one-wave link-tracing design of Section 2.1.2, N(i, j) = {k} :yik =
1 or yjk = 1 or k ∈ {i, j}. Then if the initial sample S0 is drawn according

to the design in Section 2.1.2, πij = 1− (1−ψ)‖N(i,j)‖. Suppose S0i = 1, and
S0j = 0. Then dyad (i, j) is observed, but ‖N(i, j)‖ is unknown because it
is unknown which k satisfy yjk = 1. The link-tracing sampling structures
for which nodal and dyadic sampling probabilities are observable are sum-
marized in Table 1. For directed networks, we assume sampled nodes pro-
vide information on their out-arcs only, so that D is not symmetric and
Dij = 1 ⇐⇒ Si = 1.

Of the designs considered here, dyadic sampling probabilities are observ-
able only for ego-centric samples, and never for link-tracing designs. Nodal
sampling probabilities are also observable for ego-centric sampling, as well
as for one-wave and saturated link-tracing designs in undirected networks.
Overall, this table presents strong limitations to the applicability of design-
based methods requiring the knowledge of sampling probabilities to link-
tracing designs. Note that this limitation is not specific to dyad-based net-
work statistics. Estimation of triad-based network statistics such as a triad
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Table 1

Observable sampling probabilities under various sampling schemes for directed and

undirected networks. Nodal and dyadic sampling probabilities are considered separately.

“X” indicates observable sampling probabilities, while a blank indicates unobservable

sampling probabilities

Nodal probabilities πi Dyadic probabilities πij
Sampling
scheme Undirected Directed Undirected Directed

Ego-centric X X X X
One-wave X
k-wave, 1< k <∞

saturated X

census would be subject to similar limitations. A Horvitz–Thompson style
estimator would rely on a weighted sum of observed triads, weighted accord-
ing to sampling probabilities. Sampling probabilities for triads would be even
more complex, as they would typically require sampling of two of the three
nodes involved in an undirected case, and at least two of the three nodes
in an directed case, depending on the triad census. Both of these sampling
probabilities would not be possible to compute for link-tracing samples in
which the degrees or in-degrees of some involved nodes are unobserved.

Not surprisingly, most of the work on design-based estimators for link-
tracing samples has focused on the cases where sampling probabilities are
observable: typically for one-wave or saturated samples used to estimate
population means of nodal covariates. Frank (2005) presents a good overview
and extensive citations to this literature. See also Thompson and Collins
(2002); Snijders (1992). Although examples tend to focus on instances where
sampling probabilities are observable, the limited applicability of classical
design-based methods in estimating structural network features based on
link-tracing samples has not been emphasized in the literature.

In the absence of observable sampling probabilities, design-based infer-
ence requires a mechanism for estimating sampling probabilities. This is
most often necessary in the context of out-of-design missing data, and ad-
dressed with approaches such as propensity scoring [Rosenbaum and Rubin
(1983)], which rely on auxiliary information available for the full sampling
frame to estimate unknown sampling probabilities. Link-tracing differs from
the traditional context of such methods in that the sampling probabilities
are unobserved even when the design is executed faithfully, and in that the
unknown sampling probabilities result directly from the unobserved vari-
able of interest. In particular, estimating unknown sampling probabilities is
equivalent to estimating unobserved relations based on the observed rela-
tions. One approach is to augment the sample with sufficient information
to allow for determination of the sampling probabilities. However in most
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cases, this requires a substantial expansion of the sampling design. There-
fore, in practice we must rely on a model relating the observed portions of
the network structure to the unobserved portions. Lack of reliance on an
assumed outcome model is a great advantage of the design-based frame-
work over the model-based framework. By introducing a model to estimate
sampling probabilities based on the outcome of interest, we reintroduce this
reliance on model form, negating much of the advantage of the design-based
framework. Furthermore, note that the naive use of this approach has an
ad-hoc flavor, while still requiring complex observation weights and variance
estimators.

In the next section, we describe an alternative more flexible likelihood
approach to network inference based on link-tracing samples.

3.2. Likelihood-based inference. Consider a parametric model for the ran-
dom behavior of Y depending on a parameter p-vector η:

Pη(Y = y), η ∈ Ξ.(3.1)

In the model-based framework, if Y is completely observed, inference for η
can be based on the likelihood

L[η|Y = y]∝ Pη(Y = y).

This situation has been considered in detail in Hunter and Handcock (2006)
and the references therein. In the general case, where Y may be only partially
observed, we can consider using the (so-called) face-value likelihood based
solely on Yobs:

L[η|Yobs = yobs]∝
∑

v∈Y(yobs)

Pη(Y = yobs + v).(3.2)

This ignores the additional information about η available in D. Inference
for η and ψ should be based on all the available observed data, including
the sampling design information. This likelihood is any function of η and ψ
proportional to P (D,Yobs|η,ψ):

L[η,ψ|Yobs = yobs,D = dobs]

∝ P (D = dobs, Yobs = yobs|η,ψ)

=
∑

v∈Y(yobs)

P (D = dobs|Y = yobs + v,ψ)Pη(Y = yobs + v).

Thus the correct model is related to the complete data model through the
sampling design as well as the observed nodes and dyads.

In likelihood inference, the sampling parameter ψ is a nuisance parameter,
and modeling the sampling design along with the data structure adds a great
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deal of complexity. It is natural to ask when we might consider the simpler
face-value likelihood, (3.2), which ignores the sampling design.

In the context of missing data, Rubin (1976) introduced the concept of
ignorability to specify when inference based on the face-value likelihood is
efficient. We introduce the term amenability to represent the notion of ig-
norability for network sampling strategies within a likelihood framework.

In many situations where models are used, the parameters η ∈ Ξ and
ψ ∈ Ψ are distinct, in the sense that the joint parameter space of (η,ψ) is
Ψ× Ξ. If the sampling design is adaptive and the parameters η and ψ are
distinct,

L[η,ψ|Yobs = yobs,D = dobs]

∝ P (D = dobs|Yobs = yobs, ψ)
∑

v∈Y(yobs)

Pη(Y = yobs + v)

∝ L[ψ|D = dobs, Yobs = yobs]×L[η|Yobs = yobs].

Thus if the sampling design is adaptive and the structural and sampling
parameters are distinct, then the sampling design is ignorable in the sense
that the resulting likelihoods are proportional. When this condition is satis-
fied likelihood-based inference for η, as proposed here, is unaffected by the
(possibly unknown) sampling design. This leads to the following definition
and result.

Definition. Consider a sampling design governed by parameter ψ ∈Ψ
and a stochastic network model Pη(Y = y) governed by parameter η ∈ Ξ.
We call the sampling design amenable to the model if the sampling design
is adaptive and the parameters ψ and η are distinct.

Result. Consider networks produced by the stochastic network model
Pη(Y = y) governed by parameter η ∈ Ξ which are observed by a sampling
design with parameter ψ ∈ Ψ amenable to the model. Then the likelihood
for η and ψ is

L[η,ψ|Yobs = yobs,D= dobs]∝ L[ψ|D = dobs, Yobs = yobs]×L[η|Yobs = yobs].

Thus likelihood-based inference for η from L[η,ψ|Yobs,D] will be the same
as likelihood-based inference for η based on L[η|Yobs].

This result shows for standard designs such as the ego-centric, single wave
and multi-wave sampling designs in Section 2, likelihood-based inference can
be based on the face-value likelihood L[η|Yobs]. This was first noted in the
foundational paper of Thompson and Frank (2000). Explicitly, this is

L[η|Yobs = yobs]∝ P (Yobs = yobs|η) =
∑

v∈Y(yobs)

Pη(Y = yobs + v).
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Hence we can evaluate the likelihood by just enumerating the full data like-
lihood over all possible values for the missing data.

We may also wish to make inference about the design parameter ψ. The
likelihood for ψ based on the observed data is any function of ψ proportional
to P (D,Yobs|ψ). For designs amenable to the model this is

L[ψ|D = dobs, Yobs = yobs]∝ P (D = dobs|Yobs = yobs, ψ)

= P (D = dobs|Y = yobs + v,ψ)

for any choice of v in Y(yobs). Hence it can be computed without reference
to the network model.

4. Exponential family models for networks. The models we consider for
the random behavior of Y rely on a p-vector g(Y ) of statistics and a param-
eter vector η ∈Rp. The canonical exponential family model is

Pη(Y = y) = exp{η · g(y)− κ(η)}, y ∈ Y(4.1)

where exp{κ(η)} =
∑

u∈Y exp{η · g(u)} is the familiar normalizing constant
associated with an exponential family of distributions [Barndorff-Nielsen
(1978); Lehmann (1983)].

The range of network statistics that might be included in the g(y) vec-
tor is vast—see Wasserman and Faust (1994) for the most comprehensive
treatment of these statistics—though we will consider only a few in this ar-
ticle. We allow the vector g(y) to include covariate information about nodes
or edges in the graph in addition to information derived directly from the
matrix y itself.

There has been a great deal of work on models of the form (4.1), to which
we refer as exponential family random graph models or ERGMs for short.
[We avoid the lengthier EFRGM, for “exponential family random graph
models,” both for the sake of brevity and because we consider some models
in this article that should technically be called curved exponential families
Hunter and Handcock (2006).]

The normalizing constant is usually difficult to compute directly for Y
containing large numbers of networks. Inference for this class of models was
considered in the seminal paper by Geyer and Thompson (1992), building on
the methods of Frank and Strauss (1986) and the above cited papers. Until
recently, inference for social network models has relied on
maximum pseudolikelihood estimation [Besag (1974); Frank and Strauss
(1986); Strauss and Ikeda (1990); Geyer and Thompson (1992)].
Geyer and Thompson (1992) proposed a stochastic algorithm to approxi-
mate maximum likelihood estimates for model (4.1), among other models;
this Markov chain Monte Carlo (MCMC) approach forms the basis of the
method described in this article. The development of these methods for social
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network data has been considered by Corander, Dahmström and Dahmström
(1998); Crouch, Wasserman and Trachtenberg (1998); Snijders (2002);
Handcock (2002); Corander, Dahmström and Dahmström (2002);
Hunter and Handcock (2006).

4.1. Likelihood-based inference for ERGM. In this section we consider
likelihood inference for η in the case where Y = Yobs + Ymis is possibly only
partially observed.

As the direct computation of the likelihood is difficult when the number
of networks in Y is large, we can approximate the likelihood by using the
MCMC approach of randomly sampling from the space of possible values of
the missing data and taking the mean. Alternatively, consider the conditional
distribution of Y given Yobs:

Pη(Ymis = v|Yobs = yobs) = exp[η · g(v + yobs)− κ(η|yobs)], v ∈ Y(yobs),

where exp[κ(η|yobs)] =
∑

u∈Y(yobs)
exp[η · g(u+ yobs)]. This formula gives a

simple way to sample from the conditional distribution and hence produce
multiple imputations of the full data. Specifically, the conditional distribu-
tion of Y given Yobs is an ERGM on a constrained space of networks, and
hence one can simulate from it using a variant of the standard MCMC for
ERGM [Hunter and Handcock (2006); Handcock et al. (2003)] that restricts
the proposed networks to the subset of networks that are concordant to the
observed data.

Also note that

L[η|Yobs = yobs]∝ exp[κ(η|yobs)− κ(η)]

which can then be estimated by MCMC samples: the first term by a chain
on the complete data and the second by a chain conditional on yobs. So the
sampled data situation is only slightly more difficult than the complete data
case.

5. Two-wave link-tracing samples from a collaboration network. In this
section we investigate the effect of network sampling on estimation by com-
paring network samples to the situation where we observe the complete net-
work. Specifically, we consider the collaborative working relations between
36 partners in a New England law firm introduced in Section 1. These data
have been studied by many authors including Lazega (2001), Snijders et al.
(2006) and Hunter and Handcock (2006) (whom we follow).

We consider an ERGM (4.1) with two network statistics for the direct
effects of seniority and practice of the form

∑

1≤i,j≤n

yijXi,



MODELING SOCIAL NETWORKS FROM SAMPLED DATA 15

where Xi is the seniority or practice of partner i. We also consider three
dyadic homophily attributes based on practice, gender and office. These
are included as three network statistics indicating matches between the two
partners in the dyad on the given attribute:

∑

1≤i<j≤n

yijI(Xi =Xj),

where I(x) indicates the truth of the condition x and Xi and Xj are the
practice, gender or office attribute of partner i and j, respectively. We also
include statistics that are purely functions of the relations y. These are the
number of edges (essentially the density) and the geometrically weighted
edgewise shared partner statistic (denoted by GWESP), a measure of the
transitivity structure in the network [Snijders et al. (2006)]. The model is
a slightly reparameterized form of Model 2 in Hunter and Handcock (2006)
obtained by replacing the alternating k-triangle term with the GWESP term.
The scale parameter for the GWESP term is fixed at its optimal value
(0.7781). See Hunter and Handcock (2006) for details.

As discussed in Hunter and Handcock (2006), this model provides an ad-
equate fit to the data, and we will use it here to assess the effect of sampling
on model fit. A summary of the MLE parameters used is given in the com-

plete data value column of Table 2. Note that we are taking these parameters
as “truth” and considering data produced by sampling from this network.

We construct all possible datasets produced by a two-wave link-tracing
design starting from two randomly chosen nodes (the “seeds”). This adap-
tive design is amenable to the model. As there are 36 partners and the

Table 2

Bias and Root Mean Squared Error (RMSE) of natural parameter MLE

based on two-wave samples as percentages of true parameter values and

efficiency losses

Natural Complete Bias RMSE Efficiency
parameter data value (%) (%) loss (%)

Structural

Edges −6.51 0.2 1.2 1.7
GWESP 0.90 0.8 3.7 5.1

Nodal

Seniority 0.85 0.3 3.1 1.3
Practice 0.41 0.4 5.3 3.5

Homophily

Practice 0.76 0.8 4.3 2.9
Gender 0.70 0.9 4.7 1.7
Office 1.15 0.7 2.9 2.8
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Fig. 1. Schematic depiction of sampled and unobserved arc data when the sampling is

over an undirected network.

sample is deterministic given the seeds, there are
(

36
2

)

= 630 possible data
sets. The number of actors in each dataset varies from just 2 to all 36 de-
pending on the degree of connectedness of the seeds. The data pattern is
shown in Figure 1. Consider a partition of the sampled from the nonsam-
pled and the corresponding 2× 2 blocking of the sociomatrix, with the four
blocks representing dyads from sampled and nonsampled to sampled and
nonsampled. The complete data consists of the full sociomatrix. The first
three blocks contain the observed data, the dyads involving at least one sam-
pled node, and the last block contains the unobserved data, those between
the nonsampled.

For each of these samples we use the methods of Section 4.1 to esti-
mate the parameters. We can then compare them to the MLE for the com-
plete dataset. For these networks, the MLEs are obtained using statnet

[Handcock et al. (2003)], both for the natural parametrization and for the
mean value parameterization [see Handcock (2003)].

The mean value parameters are a function of the natural parameters,
specifically the expected values of the sufficient statistics given the values of
the natural parameters.

There are two isolates, that is nodes with no relations. If these two are se-
lected as the two seeds, only 69 of the 630 dyads are observed, and no edges
are observed. Therefore, the MLE associated with this sample includes (neg-
ative) infinite values, on the boundary of the convex hull. For this reason,
we exclude this sample from our analyses. Practically, this exclusion is rea-
sonable in that it is unlikely any researcher drawing a link-tracing sample
including only two isolated nodes will proceed with analysis of that sample.

One way to assess the effect of the link-tracing design is to compare the
estimates from the sampled data to that of the complete data. As a measure
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of the difference between the estimates in the metric of the model, we use the
Kullback–Leibler divergence from the model implied by the complete data
estimate to that of the sampled data estimate. Recall that the Kullback–
Leibler divergence of a distribution with probability mass function p from
the distribution with probability mass function q is

Eq[log(q)− log(p)].

Let η and ξ be alternative parameters for the model (4.1). The Kullback–
Leibler divergence, KL(ξ, η), of the ERGMwith parameter η from the ERGM
with parameter ξ is

Eξ

[

log

(

Pξ(Y = y)

Pη(Y = y)

)]

=
∑

y∈Y

log

(

Pξ(Y = y)

Pη(Y = y)

)

Pξ(Y = y)

=
∑

y∈Y

(ξ − η) · yPξ(Y = y) + κ(η)− κ(ξ)

= (ξ − η) ·Eξ[g(Y )] + κ(η)− κ(ξ).

If ξ is the complete data MLE then Eξ[g(Y )] = g(Yobs) are the observed
statistics (given in the complete data value column of Table 3). The diver-
gence can be easily computed using the MCMC algorithms of Section 4.1.

Figure 2 plots the Kullback–Leibler divergence of the MLEs based on the
629 samples from the complete data MLE. The Kullback–Leibler divergence
of the two smallest samples, including only 5 nodes (165 dyads), are about
14 and have not been plotted to reduce the vertical scale. The horizontal
axis is the number of observed dyads in the sample. The plot indicates

Table 3

Bias and Root Mean Squared Error (RMSE) of mean value parameter MLE based on

two-wave samples as percentages of true parameter values and efficiencies

Natural Complete Bias RMSE Efficiency
parameter data value (%) (%) loss (%)

Structural

Edges 115.00 0.4 2.0 1.8
GWESP 190.31 0.4 2.8 1.9

Nodal

Seniority 130.19 0.3 1.8 1.4
Practice 129.00 0.2 2.6 3.4

Homophily

Practice 72.00 0.1 2.0 1.7
Gender 99.00 0.5 2.1 1.8
Office 85.00 0.7 2.7 3.0
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Fig. 2. Kullback–Leibler divergence of the MLEs based on the samples compared to the

complete data MLE. As the number of dyads sampled increases, the information content

of the samples approaches that of the complete data. The information loss for the majority

of samples is modest.

how the information in the data about the complete data MLE approaches
that of the complete data as the number of sampled dyads approaches the
full number. The key feature of this figure is the variation in information
content among samples of the same size especially for the smaller sample
sizes. Different seeds lead to samples that tell us different things about the
model even when the numbers of partners surveyed is the same.

For more specific information on the individual estimates, we can com-
pute the bias of the estimates based on the samples as the mean differ-
ence between the parameter estimates from the samples and that of the
complete network. The root mean squared error (RMSE) is the square-
root of the mean of the squared difference between the parameter esti-
mates from each sample and the complete data estimates. The efficiency
loss of the sampled estimate is the ratio of the mean squared error and
the variance of the sampling distribution of the estimate based on the full
data. This standardizes the error in the sampled estimates by the variation
in the complete data estimates.We also complete a similar comparison of
the estimates under the alternative mean value parametrization [Handcock
(2003)].

The properties of the natural parameter estimates are summarized in
Table 2. The bias and root mean squared error are presented in percentages
of the complete data parameter estimates.
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The bias is very small and the RMSE is modest. The efficiency loss is
2%–3% on average. Note that these population-average figures obscure the
variation in loss over individual samples apparent in Figure 2.

Table 3 is the mean value parameterization analog of Table 2. As these are
on the same measurement scale as the statistics they are easier to interpret.
Again we see that the estimates are approximately unbiased and the RMSE
and efficiency losses are small.

6. Discussion. In this paper we give a concise and systematic statistical
framework for dealing with partially observed network data resulting from a
designed sample. The framework includes, but is not restricted to, adaptive
network sampling designs. We present a definition of a network design which
is amenable to a given model and a result on likelihood-based inference under
such designs.

An important simple result of this framework is that sampled networks
are not “biased” but can be representative if analyzed correctly. Many au-
thors have confused the ideas of simple random sampling of the dyads with
representative designs. The results of this paper indicate that simple random
sampling is not necessary for valid inference. In fact, the most commonly
used designs can be easily taken into account. Hence, despite their form,
inference from adaptive network samples is tractable.

It is illustrative to compare our approach to that of Stumpf, Wiuf and May
(2005). These authors highlight the difference between the structure of a net-
work and that of a sub-network induced by Bernoulli sampling of its nodes.
The framework in this paper allows valid inference for the properties of the
network based on its partial observation. This is because we fit a broad
class of models compatible with an arbitrary set of network statistics (e.g.,
ERGM) for the complete network and use a method of inference that does
not rely on equality between the structure of the full and sub-networks. As
illustrated by the work of Stumpf, Wiuf and May (2005), treating the ob-
served portion as if it were the full network may lead to invalid inference
about characteristics of the full network such as the degree distribution.

We have also shown that likelihood-based inference from an adaptive net-
work sample can be conducted using a complete network model. We have
shown that such inference is both principled and practical. The likelihood
framework naturally accommodates standard sampling designs. Note that
in a design-based frame, principled inference would require a great deal of
effort to precisely characterize the sampling designs. The result that link-
tracing designs are adaptive and can be analyzed with complex likelihood
based methods is very valuable in practice as these designs have previously
not been analyzed with general exponential family random graph (or simi-
lar) models. The only prior work appears to be that of Thompson and Frank
(2000) who applied a less complex model class.



20 M. S. HANDCOCK AND K. J. GILE

In our application we show that an adaptive network sampling of a col-
laboration network can lead to effective estimates of the model parameters
in the vast majority of cases. We find that the MLEs from the samples
have only modest bias (compared to the complete data estimate) and an
error that only increases slowly with the number of unobserved dyads. We
also show that the information content of the sample (with respect to the
model), varies greatly even for samples of the same size. For conventional
samples of i.i.d. random variables, the Fisher information is simply propor-
tional to the sample size. In the network setting with dependence terms,
however, the Fisher information will depend on the specific set of nodes and
dyads sampled. For example, the information component corresponding to
the GWESP term in the example will be larger for samples in which more
pairs of nodes joined by edges are sampled, as GWESP applies only to pairs
of nodes joined by edges. If no such dyads were sampled, there would be no
information in the sample about the propensity for nodes joined by edges
to have relations in common.

In practice the sample is a result of a combination of the sampling de-
sign and an out-of-design mechanism. The sampling design is the part of
the observation process under the control of the surveyor. When adaptive
designs are executed faithfully, the unknown dyads are assumed to be in-
tentionally unobserved, or missing by design. Note that the definition of
control may be extended to nonamenable sampling designs, for example by
allowing the design to depend on unknown factors, such as the unrecorded
values of variables used for stratification. The out-of-design mechanism is
the nonintentional nonobservation of network information (e.g., due to the
failure to report links, incomplete measurement of links and attrition from
longitudinal surveys). This is also referred to, in general, as the non-response
mechanism. We consider the joint effect of sampling and missing data in a
companion paper [Handcock and Gile (2007)].
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SUPPLEMENTARY MATERIAL

Supplement: Software used in the simulation study
(DOI: 10.1214/08-AOAS221SUPP; .zip). The code used to perform this
study is written in the R statistical language [R Development Core Team
(2007)] and is based on statnet, an open-source software suite for network
modeling [Handcock et al. (2003)]. We provide the code and documentation
for it with links to the statnet website.

http://dx.doi.org/10.1214/08-AOAS221SUPP
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