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Abstract — The global nature of the ITER project along with its projected approximately petabyte-per-day data 
generation presents not only a unique challenge but also an opportunity for the fusion community to rethink, 
optimize, and enhance our scientific discovery process. Recognizing this, collaborative research with computa-
tional scientists was undertaken over the past several years to create a framework for large-scale data movement 
across wide-area networks to enable global near-real-time analysis of fusion data. This would broaden the 
available computational resources for analysis/simulation and increase the number of researchers actively 
participating in experiments.

An official demonstration of this framework for fast, large data transfer and real-time analysis was carried out 
between the KSTAR tokamak in Daejeon, Korea, and Princeton Plasma Physics Laboratory (PPPL) in Princeton, 
New Jersey. Streaming large data transfer, with near-real-time movie creation and analysis of the KSTAR electron 
cyclotron emission imaging data, was performed using the Adaptable Input Output (I/O) System (ADIOS) 
framework, and comparisons were made at PPPL with simulation results from the XGC1 code. These demonstra-
tions were made possible utilizing an optimized network configuration at PPPL, which achieved over 8.8 Gbps 
(88% utilization) in throughput tests from the National Fusion Research Institute to PPPL.

This demonstration showed the feasibility for large-scale data analysis of KSTAR data and provides 
a nascent framework to enable use of globally distributed computational and personnel resources in pursuit 
of scientific knowledge from the ITER experiment.

I. INTRODUCTION

The global nature of the ITER project along with its
projected approximately petabyte-per-day data generation 
presents a not only unique challenge but also an opportu-
nity for the fusion community to rethink, optimize, and 
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such a streaming, federated framework as we describe 
here to enable remote analysis for near-real-time feed-
back could be a tremendous benefit to all involved.

The aims of this paper are twofold. First, we will 
describe the desired features of such a federated analysis 
framework, including both the big picture of the envi-
sioned framework and the components developed to date. 
Second, we will describe work leading to a demonstration 
of the developed components of the framework in stream-
ing data from the KSTAR tokamak at the National Fusion 
Research Institute (NFRI) in Daejon, Korea, to compute 
resources at the Princeton Plasma Physics Laboratory 
(PPPL) in Princeton, New Jersey, for visualization and 
analysis, carried out in 2017.

II. BACKGROUND

In this section we will review a portion of some of
the relevant work done both in and outside of fusion for 
working with remote experiments, touching upon aspects 
that our proposed framework seeks to improve upon. We 
will also briefly describe previous work developing sys-
tems and components of this framework.

II.A. Related Work

Several science areas have grappled with the challenges
of connecting globally distributed experiments, scientists, 
and compute resources. A prominent example is in the field 
of high energy physics with the Large Hadron Collider 
(LHC) experiment, operated by CERN in Switzerland. 
The Production ANd Distributed Analysis system 
(PanDA) framework and the follow-up BigPanDA were 
created as a workflow manager to easily allow all global 
collaborators to submit jobs for analysis/simulation to fed-
erated compute clusters.5 Scientists submit jobs to a PanDA 
server, which automates launching the job on appropriate, 
available compute resources, including the transfer of input 
data and the transfer back of output data. This framework 
works well for batch processing of analysis in scenarios 
where timeliness affects only soft deadlines, such as how 
soon a paper can be published. However, fusion energy 
sciences have an additional desired trait for such 
a framework: Near-real-time analysis can have a direct 
impact on steering fusion experiments, which will have an 
impact on the amount of science discovery and ultimately 
the accomplishment of the goals of ITER.

A remote control room (RCR) concept has been 
successfully used for years to enable a remote team of 
scientists at General Atomics (GA) in San Diego, 

enhance our scientific discovery process. Recognizing this, 
collaborative research1,2 with computational scientists was 
undertaken over the past several years toward building 
a framework for large-scale data movement across wide- 
area networks (WANs) to enable global near-real-time 
analysis of data from remote experimental devices. This 
would broaden the available computational resources for 
analysis/simulation and increase the number of researchers 
actively participating in experiments. Such a framework 
that enables near-real-time analysis can have a direct 
impact on experimental planning or steering of the fusion 
device. Faster, better analysis will lead to better decision 
making, which will accelerate scientific discovery and 
ultimately the achievement of the goals of ITER.

A fundamental assumption in this framework is that the 
computational resources on-site at the experiment would 
not be sufficient to complete all of the analysis (including 
modeling and simulation) that scientists desire in the time 
frame that they desire it. This is particularly a challenge with 
the long pulse lengths that will be characteristic of ITER. An 
additional assumption is that having the results of this 
analysis in a timely manner is beneficial and can be used 
to steer the experimental plan. The near-real-time descriptor 
is a reflection of this last assumption and a characteristic 
especially useful for fusion science: If actionable informa-
tion from analysis can be given to fusion scientists during or 
between experiment shots, more informed decisions can be 
made on adjustments to machine operation to accomplish 
experimental goals. We stress here that real-time control of 
experimental fusion devices, while an important part of 
machine operation, is not targeted as part of this remote 
analysis framework since for safety and security reasons, it 
must remain inside the plant.3

Given these two assumptions of limited local compute 
resources and need for fast access to results, the framework 
we envision enables intelligent streaming of large-scale data 
to a number of federated global compute resources to com-
plete the analysis needs of scientific experiments. The term 
“federated” in this context is referring to a collection of 
independent, heterogeneous compute resources being uti-
lized toward the common general goal of accomplishing the 
needed analysis/simulation for a particular fusion experi-
ment. See Ref. 4 for a discussion of principles and use cases 
of federated computing.

With ITER partners devoting substantial financial 
resources to the construction and eventual operation of 
the ITER device, it is in the best interest of all parties 
involved to maximize the compute and human resources 
actively contributing to the operational success of ITER. 
The details of data sharing of ITER data among the 
various ITER partners is still being defined, and using 



California, to control the Experimental Advanced 
Superconducting Tokamak (EAST) in Heifei, China.6 

This has been especially beneficial economically to 
make the most use out of EAST, with this RCR running 
a third shift during the night hours in China, with minimal 
staff on-site at EAST. Aspera, a User Datagram Protocol 
(UDP)–based tool, is used to transfer MDSplus and 
plasma control system files to a Science DMZ (Ref. 7) 
at GA, a set of servers optimized for WAN data transfers 
from remote locations. Local users can then use these 
data to analyze and prepare for the next plasma discharge. 
Because of the 1 Gbps network line from EAST, data 
were downsampled to 1-kHz signals to ensure data trans-
fer would be accomplished within the time between 
pulses. This works well for the typical control room 
type of analysis that happens with scopes of reduced 
data sets, focused on connecting scientists with 
a reduced data set necessary for adjusting input controls 
to the tokamak for the next discharge. Our framework 
could further enhance such RCRs using global compute 
resources to broaden the available analysis to scientists 
making these adjustments for next shots.

In the theme of connecting experimental data with 
external compute resources, work at GA has also been 
carried out to send local experimental data from the 
DIII-D tokamak to the Cooley cluster at Argonne
National Laboratory in Lemont, Illinois, for analysis.8

The example analysis was a spatial Fourier spectrum
and magnetic island structure, calculated for the entire
shot using 90 Mbytes of input data from EFIT results
and coil currents. Sending to the remote compute clus-
ter allowed performing higher-resolution analysis in 5
to 7 min, including remote data sending/receiving,
compared to 30 min when using dedicated local com-
pute resources.

This work is very much in line with the goals of our 
proposed framework to accelerate useful analysis within 
the between-shot period of fusion experiments. Indeed, 
many of the issues involving network performance and 
authentication are issues any framework attempting to 
utilize remote compute resources will have to face. Our 
framework can additionally aid in providing a streaming 
analysis platform such that data never have to touch the 
file system, which can aid in speeding up the end-to-end 
analysis. This will be especially useful for long-pulse 
tokamaks such as ITER, where continually running the 
analysis on streaming data will make results available 
faster than waiting for the shot to end to transfer the data.

As part of the ITER agreement, a remote experimenta-
tion center (REC) in Rokkasho, Japan, will be used for 
remote control and analysis of data sent from the ITER 

experiment in Cadarache, France.9 Much research and work 
have gone into demonstrating fast data transfer, creating data 
analysis and shot planning tools for scientists, and remote 
control room setup. For example, data transfer between 
Scotland and Japan at the level needed to keep up with the 
projected data generation during initial ITER operation was 
demonstrated using the Massively Multi-Connection File 
Transfer Protocol10 (MMCFTP). Most of the work for the 
REC is focused on setting up a RCR environment such that 
scientists can contribute to experimental control, similar to 
the GA work, with a focus also on further developing various 
analysis tools needed for shot planning. Our framework 
would complement and extend this work, allowing incorpor-
ating analysis such that it could be run in a streaming sense 
and expanding the available analysis for scientists to use in 
their shot planning in near real time and beyond.

II.B. Previous Work

Finally, the framework we present has been building
through research carried out over the years. The 
International Collaboration Framework for Extreme Scale 
Experiments (ICEE) project developed a prototype system 
that demonstrated the fast transfer of data from KSTAR to 
remote compute resources.1 The ICEE prototype used the 
Adaptable Input Output (I/O) System (ADIOS) I/O 
library11 for flexible, fast WAN transfer and combined it 
with in-transit processing, namely, creating bitmap indexes 
of raw data with FastBit, prior to sending data remotely to 
enable queries to identify regions of interest. This central 
idea of enabling various data reductions and/or transforma-
tions in-transit was continued in an extension work of ICEE 
(Ref. 2), with various transforms such as adaptive data 
filtering (e.g., only send regions with “blobs”) and com-
pression to reduce the amount of data to be sent remotely.

III. FEDERATED FRAMEWORK

Here, we describe the characteristics of the envisioned
federated framework capable of using various remote com-
pute resources for end-to-end analysis of large-scale experi-
mental data in near real time. We will describe enabling 
computer science characteristics of the framework and 
ways in which one could enhance fusion science workflows.

The overarching desired characteristics of the envi-
sioned framework are the following:

1. performant: able to stream large data sets glob-
ally and utilize high-performance computing
(HPC) resources to accelerate workflows



2. flexible: able to easily accommodate and accel-
erate new analysis workflows

3. adaptable: able to automatically and intelli-
gently adjust based on analysis results and/or
network performance.

In order to be performant, first, for global remote 
data transfers over WANs, we focus on enabling stream-
ing, memory-to-memory transfers, avoiding the overhead 
of touching filesystem disks (raw diagnostic data are of 
course saved to disk in addition to these streams).12 This 
will be better suited for long-pulse experiments. Second, 
we need the framework to ingest these streams of data 
seamlessly into HPC compute centers, connecting the 
data to parallelized analysis/simulation.

To achieve a flexible framework, we focus on creat-
ing general components that can be used in a variety of 
fusion analysis/simulations. Fusion science has 
a number of types of analysis workflows ranging from 
fast, simple data filtering to large-scale first-principles 
simulations of plasma behavior. Running the right ana-
lysis at the right time and in the right manner requires 
a flexible system, which scientists can adapt to the 
various analysis needs that they have. For this reason, 
the federated system will be hierarchical, or tiered, with 
analyses placed in different tiers depending on various 
factors, namely, time to solution, but also (related) com-
putational cost, and required data input. To ensure flex-
ibility of the framework infrastructure, we focus on 
building Python components with the aim to support 
analysis/simulation codes from a variety of languages.

Finally, we want the framework to be adaptable, without 
too much human intervention, to achieve both the goals of 
fast near-real-time analysis and the more holistic set of 
analysis tasks. This adaptivity includes, for example, 
enabling the framework to adjust the resolution of data sent 
depending on current network performance. A variety of 
filters and/or transformations that can be applied to different 
data will be helpful to reduce the computational or network 
loads. Additionally, we want to enable workflows that are 
adaptive in the sense of being reactive to lower-tiered ana-
lysis, triggering higher-tiered analysis/simulation on impor-
tant or anomalous results from lower-tiered analysis.

We give an example fusion scenario to further illus-
trate how this framework could operate (see Fig. 1). ITER 
will be unique in the tokamaks of the world for several 
reasons, one being that every discharge will be simulated 
before running.13,14 Currently, such detailed integrated 
modeling for plasma scenarios of ITER can take up to 
2 weeks of computational time,15 limited by the serial 
nature of the simulations and the plasma physics time-
scales involved. Various simplifications can be made to 
create integrated modeling codes useful for controller 
design and scenario development14,16 that are “faster than 
real-time” (i.e., complete computation in less time than the 
actual duration of the plasma discharge). During ITER 
plasma operations, one of these simpler integrated model-
ing tools can be run locally on compute available at the 
ITER site to compare the plasma performance expected 
from the pre-run, more detailed simulations.

Concurrently, machine learning (ML) algorithms can 
be utilized to detect anomalous signals in streaming data 

Fig. 1. Example of a remote, federated framework workflow. (1) Compare plasma performance to pre-run integrated modeling; 
(2) if plasma performance does not match the data expected from modeling, stream diagnostic data to a remote, HPC facility;
(3) use trained ML models to detect anomalies or detect modes in the diagnostics; (4) use that information, with additional
diagnostic data, to run higher-accuracy integrated modeling, e.g., with a better model for NTMs, and rerun the scenario integrated
modeling to understand discrepancy; and (5) finally, send results back to machine operators/scientists, to help make decisions on
next shot segments that should be run.



from the diagnostics or detect specific modes in the 
plasma. If discrepancies in some time sections are 
found, diagnostic data could be streamed remotely, and 
more accurate (but computationally expensive) analyses 
could be performed to quickly drill down on potential 
causes. For example, diagnostics such as electron cyclo-
tron emission and magnetics could be analyzed for mag-
netohydrodynamic (MHD) mode activity [e.g., 
neoclassical tearing modes17,18 (NTMs)] and more com-
plete MHD simulations (e.g., including nonlinear cou-
pling of NTMs and internal kink modes19) launched on 
remote compute resources to more accurately determine 
mode growth and stability. With the more accurate infor-
mation in hand, the faster integrated modeling simulation 
can be updated, and operators and scientists armed with 
the updated data can make better determinations of which 
segments to select for the next plasma discharge.

This fusion workflow is just an example of the many 
fusion workflows that can benefit from increased compu-
tational power, including direct diagnostic data analysis, 
synthetic diagnostics, modeling/simulations, etc. Integrated 
data analysis20 (IDA), for example, which can utilize mul-
tiple diagnostics to extract physics model parameters of 
interest (along with uncertainities), requires significant 
time for several synthetic diagnostics and the most accu-
rate statistical inference methods [Markov-Chain Monte 
Carlo (MCMC)], presenting a challenge to process the 
data from long-pulse discharges.

Although we have emphasized near-real-time analysis 
thus far, this federated compute framework can also be 
useful to compose workflows for longer running analyses/ 
simulations. In this sense the hierarchical nature of the 
analyses can be roughly split into two separate tiers: a fast 
lane for the near-real-time analysis needed for feedback to 
machine operators, and a slow lane for deeper, more expen-
sive analysis over days or weeks. This can include for 
example high-fidelity, first-principles simulations on large- 
scale HPC resources and training ML models on large 
diagnostic data sets stored in data mirrors co-located at 
HPC centers, to make use of graphics processing unit 
(GPU) clusters. The envisioned framework would allow 
fusion scientists to compose these different types of work-
flows and make use of the computational resources spread 
among ITER partner nations.

We now describe some specific components that are 
building blocks to this framework.

III.A. Remote, Streaming I/O with ADIOS

To enable fast yet flexible data streaming over WANs,
we utilize the ADIOS framework.11,21 Traditionally, the 

ADIOS framework was utilized by simulation codes for 
fast I/O to filesystems on large HPC supercomputers. 
ADIOS also has “engine” protocols for remote, large- 
scale, memory-to-memory transfer over long distances. 
These allow using multiple parallel streams to transfer 
data across WANs. ADIOS is designed for flexibility, allow-
ing simple configuration file changes to utilize different 
transfer protocols. More details and information can be 
found in Refs. 1, 2, and 22

III.B. Network Infrastructure

In addition to the I/O software framework, care must be
taken in the setup of the network infrastructure to ensure 
high-throughput, efficient data streaming. Transmission 
Control Protocol (TCP) is expected to be used since it per-
forms better in high-speed networks (,100 Gbps) than pro-
tocols such as UDP (Ref. 23). Jumbo frames (i.e., larger 
Ethernet frames, maximum transmission unit = 9000) should 
be used as they can significantly increase TCP throughput 
and mitigate issues with packet loss.

Beyond using hardware with the capacity to transport 
large data streams (i.e., has the hardware internals for 
high throughput), sources of packet loss in the network 
path must be identified and resolved to the extent 
possible.24 This is due to the severe effect of a small 
amount of packet loss on global data transfers over 
WAN based on the Transmission Control Protocol/ 
Internet Protocol (TCP/IP). This can be shown by the 
well-known Mathis equation25 describing the throughput 
rate in the presence of packet loss:

Throughput Rate �
MSS

RTT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
packet loss

p ; ð1Þ

where MSS is the maximum segment size in bits (largest 
amount of data that can be received in a TCP segment), 
RTT is the round-trip time (RTT) in seconds (time from 
sender to receiver and back), packet loss is the fraction of 
packets lost, and throughput rate is in bits per second.

For global transfers, the RTT can be quite a bit 
longer. As an example, the RTT from Korea to New 
Jersey is almost three times longer than from California 
to New Jersey (178 ms versus 68 ms). Because of the 
nature of TCP/IP, if there is packet loss, data transfer is 
severely throttled while the sender resends the lost packet 
and ramps back up to the previous thoughput levels. 
Global transfers are thus more affected by the nature of 
TCP/IP since the higher RTT prolongs this process.

Examples of this are shown in Fig. 2, showing data 
throughput tests using the iperf networking tool, in one 



rely on router access control lists (ACLs) to accept con-
nections from only trusted clients.7 Various other setups are 
possible, including firewalls that allow ACLs to be estab-
lished. Whatever the scenario, the guiding principle for 
successful international streaming data transfers is to 
remove any sources of packet loss. This must be done in 
a manner that cybersecurity protections can be met.

III.C. Reduction Methods

While the software and network infrastructure for
high-performance data transfer capabilities are integral 
pieces of the framework, transformations that allow one 
to more efficiently send data can further enhance the cap-
abilities of the framework to keep pace with data generation 
rates. For example, reduction methods were applied to the 

Fig. 2. Tests showing the crucial need to reduce packet loss for global WAN transfers. Comparison is made for transfers to PPPL 
in New Jersey from (a) NERSC in California and (b) KSTAR in Daejon, Korea. Because of packet loss from the firewall at PPPL, 
this causes the TCP-based data movement to periodically reduce and slowly ramp back up. Because of the longer RTT, the 
throughput reduction is more severe, and the ramp-up is slower for locations farther away, such as KSTAR, resulting in much 
lower total throughput. 

example an intercontinental transfer from the KSTAR toka-
mak at NFRI in Daejon, Korea, to PPPL in New Jersey, and 
contrasted to continental transfers from the National Energy 
Research Scientific Computing Center (NERSC) operated 
by Lawrence Berkeley National Laboratory in Berkeley, 
California, to PPPL. Because of a firewall utilized at 
PPPL, small packet loss was introduced in both cases, and 
the more dramatic effect on the international data transfers 
can easily be seen. These centers are shown in Fig. 3.

Removing the source of packet loss (in this case the 
firewall at PPPL) results in high, sustained throughput, 
even internationally over WANs, as shown in the iperf 
test between KSTAR and PPPL in Fig. 4. For this reason, 
network experts recommend for international transfers of 
large datasets that a “Science DMZ” be established, which 
consists of data transfer servers outside of the firewall that 



gas puff imaging (GPI) diagnostic prior to remote transfer 
in order to send only regions that contained large deviations 
from the average (potentially containing blob regions).2 

These data transformations can include physics priors 
(such as the GPI example to send only possible blob 
regions) or can be agnostic to the underlying physics such 
as compression or indexing algorithms.1 ADIOS already 
has several compression algorithms included in the frame-
work, from lossless compression techniques such as SZIP 
(Ref. 22) to lossy compression techniques such as MGARD 
(Ref. 26), which allows users to specify certain data con-
straints that should be conserved even after the 

compression with MGARD. In general, with all reduction 
methods aimed at reducing the size of data to transfer, care 
must be taken to consider the trade-offs between the time 
saved by sending less data and the computational time 
required by the reduction technique.

III.D. Analysis Codes, ML

Fig. 3. Map of centers and networks for the test in Figs. 2 and 4. 

Fig. 4. Wide-area network throughput test showing that when packet loss is dominantly removed (in this case the firewall at 
PPPL), high, sustained WAN data transfer can be achieved, in this test from KSTAR to PPPL. To be compared to Fig. 2b. 

One of the aims of the flexible aspect of the frame-
work is to allow users to easily incorporate their custom 
analysis codes into workflows, which can be accelerated 
utilizing the framework tools for remote streaming and 



parallelization on HPC resources. Nonetheless, various 
common analyses, useful generally for fusion workflows, 
will be included in the framework. This includes 
a number of ML techniques to aid in detection of events 
or modes in the plasma, including anomalies/novelties, 
and statistical inference techniques for extracting physical 
model parameters from diagnostic data.27 An example of 
the ML algorithms/techniques to be incorporated are the 
temporal convolution networks (TCNs) for detection of 
events in diagnostic time-series data, with a recent exam-
ple applying TCN to detect disruptions using electron 
cyclotron emission imaging (ECEI) data on DIII-D 
(Ref. 28). Additionally, the framework will be worked 
to connect to the various analysis codes available in the 
Integrated Modeling and Analysis Suite29 (IMAS), 
including potential future work on IDA, and workflows 
defined in the One Modeling Framework for Integrated 
Tasks (OMFIT) framework.30

IV. KSTAR DEMONSTRATION

An official demonstration aimed at showing the utility
of various computer science components of this framework 
for fast, large data transfer and near-real-time analysis was 
carried out between the KSTAR tokamak and compute 
clusters at PPPL. The basic physics goal for this demonstra-
tion was to show the ability to remotely visualize streaming 
data from the KSTAR ECEI diagnostic in near real time31,32 

and compare to a side-by-side movie of turbulent fluctua-
tions from a previously completed simulation of the 

gyrokinetic turbulence code XGC1 (Ref. 33). Figure 5 
shows the the end-to-end workflow of the demonstration.

A temporary Science DMZ server was set up at 
PPPL, both for receiving and analyzing the data. The 
server was an 8 core machine, with 64 Gbytes random- 
access memory (RAM) and 10 Gbps network interface 
cards (NICs). Networking tests with iPerf were first per-
formed, confirming a clean network path, achieving over 
8.8 Gbps network bandwidth between KSTAR and PPPL 
(88% network utilization, with the 10 Gbps link at PPPL 
being the bottleneck). This is an order of magnitude 
improvement over when the normal network path into 
PPPL is used, due to the presence of packet loss (albeit 
small) from the firewall.

The I/O framework ADIOS with the ICEE method 
was used to stream the KSTAR ECEI data from 
a server at KSTAR to the PPPL Science DMZ server. 
The data generated at KSTAR were not directly from 
an ongoing experiment but were in the serial binary 
format that the ECEI data are in when coming from 
the digitizer. A parallelized C code on the KSTAR 
server converted these data on the fly into the 
ADIOS format, in turn streaming remotely to PPPL, 
where a C++ code on the Science DMZ server was 
used to ingest the data and create the two-dimensional 
ECEI movie frames, as seen in Fig. 5, and visualize 
them as a streaming movie. This ECEI movie was 
shown side by side with the turbulent fluctuations 
from an example XGC1 simulation for visual compar-
ison to the mode structure captured by ECEI and 
present in the XGC1 simulation.

Fig. 5. End-to-end workflow of the demonstration comparing real-time streaming data from the KSTAR ECEI diagnostic to side- 
by-side movie from XGC1 gyrokinetic turbulence code. 



The demonstration successfully showed the ability to 
easily connect analysis codes with ADIOS and stream to 
remote compute centers where the end-to-end setup was 
able to keep pace with the data generation of ECEI data at 
KSTAR. It was purposely kept simple in both the analysis 
and transfer to highlight the I/O and remote transfer 
capabilities. Various transformations or reductions could 
have been utilized for the ECEI data2 to further accelerate 
transfer and may well be necessary in various scenarios, 
including when network stability may be degraded. In 
Sec. V, we discuss further the ongoing and future work 
building out the framework for remote analalysis.

V. ONGOING AND FUTURE WORK

Currently, research and work are being applied to
further creating this federated framework. The aDaptive 
rEaL Time Analysis of big fusion data34,35 (DELTA) 
framework enables more seamless connection of the 
ADIOS I/O library and various analysis codes using the 
Python code, targeting the flexible goal of the framework 
(see Sec. III). DELTA features asynchronous processing 
of the data streams so that data publishers (e.g., tokamak 
diagnostics) can stream data chunks to remote data sub-
scribers (e.g., computational clusters), where a buffer 
queue receives the data and sends to parallel worker 
processes for analysis, using message-passing interface. 
This allows one to a large degree to decouple the receiv-
ing and analysis launching, ensuring the data stream is 
uninterrupted by compute worker availability. The gen-
eral nature of the growing DELTA framework allows 
easy, embarrassingly parallel processing of fusion data 
streams, as many analysis can be split in time into inde-
pendent data analysis pieces. It also allows custom set-
ups, e.g., where groups of computational workers can be 
dedicated to more compute-intensive tasks.

Various ML topics are also being researched to 
enhance the framework, as briefly discussed in Sec. III. 
These include further work into neural network architec-
tures for multiscale fusion diagnostic data28 with the 
ability to combine multiple diagnostics in predictions. 
An important ML tool to develop is a model to extract 
physical model parameters from diagnostic data. 
A conditional variational autoencoder,36 for example, 
works by learning the model parameters used to generate 
synthetic data and thereby being able to produce 
a distribution of model parameters based on new diag-
nostic input. These networks enable fast analysis, which 
can be very beneficial for fusion scientists needing to 
quickly compare to established physics models. These 

would be a step toward more sophisticated comparisons 
of experiment to simulation directly, when likelihoods 
are difficult to calculate.37 These techniques would be 
very powerful for fusion energy, as simulations are often 
required to have a faithful model of the plasma 
dynamics.

Looking forward to the future, we desire to continue 
combining these techniques and tools into a unified fra-
mework and taking on new end-to-end fusion workflows 
for near-real-time analysis of experimental data. Many 
details have to be ironed out, including the security issues 
with connecting to HPC centers. The ability to connect to 
future HPC computers is looking to be eased somewhat 
with the advent of the Cray Slingshot protocol,38 which 
allows fast, direct remote connection to individual com-
pute nodes. We also plan to further identify fusion work-
flows for long-pulse devices such as KSTAR, which can 
provide real value when accelerated using remote com-
pute resources.

VI. CONCLUSION

A nascent framework was presented for streaming 
data to remote compute centers to enable near-real-time 
analysis/simulation on large scientific workflows. This 
framework is envisioned to be built on the principles of 
performance, flexibility, and adaptability, to enhance the 
ability of fusion scientists to perform higher-order analy-
sis in a timely manner, informing next steps in the experi-
mental plan. Several components of this framework have 
been researched and developed, including WAN transfer 
of large data streams using the I/O framework ADIOS, 
needed network infrastructure setups including Science 
DMZs, transformations for smart data streaming, and ML 
techniques for enhanced analysis. A demonstration of the 
fast streaming on a global WAN, from Korea to the 
United States, was performed, visualizing ECEI data 
from the KSTAR tokamak and comparing to an XGC1 
simulation. Combining the various research components 
into the DELTA framework is now allowing flexible 
creation of end-to-end fusion workflows of analysis and 
simulation. The data generation rate and long-pulse nat-
ure of KSTAR make it an excellent testbed for preparing 
this federated framework for utilization on ITER.
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