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RESEARCH Open Access

Segmented nitinol guidewires with
stiffness-matched connectors for
cardiovascular magnetic resonance
catheterization: preserved mechanical
performance and freedom from heating
Burcu Basar1,2, Toby Rogers1, Kanishka Ratnayaka1,3, Adrienne E. Campbell-Washburn1, Jonathan R. Mazal1,
William H. Schenke1, Merdim Sonmez1, Anthony Z. Faranesh1, Robert J. Lederman1* and Ozgur Kocaturk2

Abstract

Background: Conventional guidewires are not suitable for use during cardiovascular magnetic resonance (CMR)
catheterization. They employ metallic shafts for mechanical performance, but which are conductors subject to
radiofrequency (RF) induced heating. To date, non-metallic CMR guidewire designs have provided inadequate
mechanical support, trackability, and torquability. We propose a metallic guidewire for CMR that is by design
intrinsically safe and that retains mechanical performance of commercial guidewires.

Methods: The NHLBI passive guidewire is a 0.035” CMR-safe, segmented-core nitinol device constructed using short
nitinol rod segments. The electrical length of each segment is less than one-quarter wavelength at 1.5 Tesla, which
eliminates standing wave formation, and which therefore eliminates RF heating along the shaft. Each of the electrically
insulated segments is connected with nitinol tubes for stiffness matching to assure uniform flexion. Iron oxide markers
on the distal shaft impart conspicuity.
Mechanical integrity was tested according to International Organization for Standardization (ISO) standards. CMR RF
heating safety was tested in vitro in a phantom according to American Society for Testing and Materials (ASTM) F-2182
standard, and in vivo in seven swine. Results were compared with a high-performance commercial nitinol guidewire.

Results: The NHLBI passive guidewire exhibited similar mechanical behavior to the commercial comparator. RF heating
was reduced from 13 °C in the commercial guidewire to 1.2 °C in the NHLBI passive guidewire in vitro, using
a flip angle of 75°. The maximum temperature increase was 1.1 ± 0.3 °C in vivo, using a flip angle of 45°. The
guidewire was conspicuous during left heart catheterization in swine.

Conclusions: We describe a simple and intrinsically safe design of a metallic guidewire for CMR cardiovascular
catheterization. The guidewire exhibits negligible heating at high flip angles in conformance with regulatory guidelines,
yet mechanically resembles a high-performance commercial guidewire. Iron oxide markers along the length of the
guidewire impart passive visibility during real-time CMR. Clinical translation is imminent.

Keywords: Interventional cardiovascular magnetic resonance, Heart catheterization, Image-guided intervention,
MR safety, MR heating, Medical devices
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Background
Catheterization using cardiovascular magnetic resonance
(CMR) is an attractive alternative to X-ray guided proce-
dures because it offers excellent soft-tissue visualization
without ionizing radiation, unconstrained imaging planes,
and real-time imaging frame rates up to 10 frames per
second [1, 2]. Despite these potential advantages, CMR
catheterization has not been widely adopted, largely due to
the lack of safe, conspicuous, and mechanically satisfactory
guidewires [3–5]. Commercial guidewires contain long
metallic components for mechanical performance, X-ray
conspicuity, and affordability. Unfortunately commercial
guidewires risk heating during CMR because of standing
wave formation along the conductive parts longer than a
quarter wavelength at the resonant frequency, which cor-
responds to approximately 12 cm in humans at 1.5 T [6].
Numerous investigators have proposed CMR-safe guide-

wire designs [4, 5, 7, 8], some of which have even been
tested in patients [9, 10]. Active designs are conspicuous
because they incorporate antenna receiver elements, and
they attempt to reduce heating by incorporating RF chokes
or transformers along the shaft. Active designs proposed
to date are mechanically tethered at their proximal end,
limiting their versatility [11], or have other mechanical
limitations [12, 13]. Passive-designs rely on intrinsic
material properties for device visualization, and usually in-
corporate non-metallic (polymer) components to elimin-
ate RF induced heating. However they consequently have
inferior mechanical properties compared to their metallic
counterparts, such as low torque-response, inadequate
column strength to deliver catheter devices, reduced kink
resistance, and difficulty navigating tortuosity [14].
We describe a simple, practical, inexpensive guidewire

design that is intrinsically safe for use in CMR. We connect
short insulated metallic segments, which are incapable of
RF-induced heating at 1.5T, into a guidewire. However,
interconnected short rods would flex non-uniformly, like a
“folding cane”. Therefore, we connect insulated metallic
segments using stiffness-matched connectors to provide
uniform flexion similar to conventional long metallic
guidewires. The guidewire incorporates passive iron oxide
markers to provide CMR conspicuity. In this paper we
describe initial bench top tests for guidewire torquability,
trackability, and column strength. We demonstrate
freedom from RF-induced heating in vitro and in
vivo. Finally, we demonstrate clinical applicability of
the guidewire by performing CMR guided cardiac
catheterization in vivo in swine.

Methods
MR-safe segmented Nitinol-Core guidewire design
A nitinol guidewire with typical exchange-length geometry
(0.035” outer diameter and 260 cm length) was constructed
using the segmented design (Fig. 1). Each segment is 10 cm

long to prevent standing wave formation and avert RF-
induced heating at 1.5 T [6]. Each segment consists of a
0.014” nitinol rod coated with a thin film of parylene
for electrical insulation, and jacketed with thermoplas-
tic polymer (Pebax, Zeus Inc, Orangeburg, SC) to
impart a consistent profile between the rods and the
connectors. The insulated rod segments are inserted
and secured into the connector tubes using medical grade
UV-cured adhesive (Dymax Corporation, Torrington, CT)
to create the non-conducting metallic core (Fig. 2). The
connectors are 5 mm long, laser-cut nitinol tubes.
Insulation faults, which would risk RF-induced heat-
ing, are prevented by insulating both ends of each
connector tube. The rod-connector subassembly is
surrounded by polymer (Vectran) fiber-braided polyimide
tubing (0.026” inner diameter, 0.032” outer diameter) to
augment pushability, torque response, kink resistance, and
dielectric properties.
The distal nitinol rod segment tapers from 0.014”

to 0.005” over 5 cm. A 3 cm long coil (MP35N alloy,
Heraeus, MN) is mounted onto the distal tip to
enhance flexion and recoil (Fig. 2). This tip is
jacketed with non-braided thermoplastic polymer for
softness and flexibility. Pre-shaped distal tip configu-
rations are available including J- and angled.
Iron oxide powder (Sigma Aldrich, St. Louis, MO) is

blended with a UV-cure adhesive (Dymax Corporation)
and applied onto the guidewire for passive visualization, at
the distal and proximal end of the distal tip coil, and every
10 cm thereafter. The markers underlie a final layer of

A

B

C

5 mm

Fig. 1 NHLBI passive guidewire design schematic. a The core of the
guidewire consists of 10 cm nitinol rod segments (light blue) joined
by 5 mm nitinol connectors (dark blue) for stiffness matching. b Each
nitinol connector has notched ends that join two inserted nitinol rods.
A full-length (260 cm) guidewire has 25 such connectors. c The
segmented-core is jacketed with a braided polymer jacket (brown)
for support. A soft polymer (black) is melted over the jacketed core
as a final layer
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thermoplastic jacketing to avoid blood contact and to
bring the outer diameter of the guidewire to 0.035”.

Mechanical tests
We tested the NHLBI passive guidewire alongside a high
performance nitinol based commercial (non-segmented)
comparator (Glidewire Standard GR3509, Terumo, Tokyo).
Both are depicted in Fig. 3. Rod-connector subassemblies
and the coiled distal tip subassemblies (n = 5 each) were
tested for tensile breakage force against a stationary jaw.
The industry standard minimum tensile strength for an
0.035” guidewire is 5N [15].
Flexibility of the tapered, coiled distal tip was

measured as the force required to deflect 45° and 60° at
5 mm, 10 mm, and 20 mm from the tip using an
Intravascular Device Testing Equipment (IDTE 2000,
Machine Solutions Inc., Arizona) according to US Food
and Drug Administration (FDA) guidance [16] .
Torque response and pushability tests were per-

formed in a custom vascular model of a left heart

cardiac catheterization trajectory from femoral artery
across the aortic arch and aortic valve into the left ven-
tricle. The number of rotations applied at the proximal
end was plotted against the number of rotations transmit-
ted to the distal end to evaluate torque transmission inside
the vascular model. Force required to advance 65 cm
through this trajectory at a constant speed was measured
to assess guidewire pushability [16].

In Vitro RF-induced heating tests
Heating tests were performed in a 1.5T MR system (Aera,
Siemens, Erlangen, Germany) using a balanced steady-state
free precession (bSSFP) pulse sequence under typical real-
time CMR operating conditions (TR/TE, 2.9/1.4 ms; flip
angle, 45°, bandwidth, 1000 Hz/pixel; matrix, 192 × 108;
FOV, 300 × 300 mm; GRAPPA Factor 2). The tests were
performed under high-flip-angle (75°) conditions to induce
a high Specific Absorption Rate (SAR).
In vitro RF-induced heating tests used an ASTM 2182

phantom [17]. Temperature was measured using a

A

B

Fig. 2 Components of the NHLBI passive guidewire. a This photograph shows two Pebax-coated nitinol segments are joined by a nitinol
connector. b The distal tip incorporates a non-resonating coil for mechanical flexion, which is wrapped over the shaped and tapered nitinol rod
segment. The distal and proximal ends of the coil are indicated by arrows. Iron oxide markers (dashed arrows) are painted over the tip coil and
the Vectran-braided polyimide tubing prior to the application of the final polymer jacketing layer
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fiberoptic temperature probe (OTG-M170, Opsens Inc.,
Canada) with a thermal resolution of 0.1 °C and an ac-
curacy of 0.3 °C. The probe was fed through a polyimide
channel (0.009” ID, 0.011” OD) affixed alongside the
guidewire using heat shrink tubing (Advanced Polymers,
Salem, NH). The guidewire tip was positioned at the
designated hot-spot of the phantom (6 cm depth; 11 cm
off-center). The temperature probe channel extended
1cm beyond the guidewire tip.
Temperature was recorded continuously for 30 s

before initiating CMR scanning, for 30 s after initiating
CMR scanning, for 60 s after probe withdrawal to the
guidewire tip, and then while the probe was withdrawn.

In Vivo RF-induced heating tests
Animal experiments were approved by the NHLBI Animal
Use and Care Committee and performed according to
contemporary NIH standards, in swine under general
anesthesia after percutaneous femoral artery and vein
access. Four animals underwent RF-induced heating tests
(weight = 24–63 kg).
In vivo heating data were acquired through a fiber

optic probe positioned at the distal tip of the guidewire
to monitor RF-induced temperature rise in each animal.
Probe, rectal core body temperature, and their instan-
taneous difference were recorded continuously. Upon
femoral access through an introducer sheath (Pinnacle
Terumo, 5 F), the guidewire was advanced to the aortic
arch while acquiring 60-s stationary temperature data at
various insertion lengths inside the body. Upon reaching

the arch, a temperature-probe pull-back was performed
by retracting the probe while holding the guidewire
stationary to evaluate heating along the length of the
guidewire.

Guidewire conspicuity under CMR
In vitro images were obtained in a phantom prepared
according to ASTM F2119-07 “Standard Test Method
for Evaluation of MR Artifacts from Passive Implants”
[18] to assess guidewire conspicuity under CMR. The two
markers tested used iron oxide powder consisting of 97 %
or 99.99 % purity (trace metal-basis, product numbers:
637106, 518158, Sigma Aldrich). Conspicuity of the two
markers was evaluated on GRE images (TR/TE, 612/10
ms; thickness, 5 mm; FOV, 300 × 300 mm; matrix, 128 ×
128). Contrast-to-noise ratio (CNR) between the markers
and phantom was calculated according to the difference
method [19], and the size of The marker susceptibility
artifacts was evaluated according to ASTM standard
F2119-07 [18].
In vivo images were acquired using an interactive,

real-time bSSFP sequence (TR/TE, 2.88/1.44 ms;
thickness, 6 mm; FOV, 350 × 350 mm; matrix, 192 × 144)
typically used to for CMR catheterization at our institu-
tion. This sequence was chosen over GRE by the operators
because it is faster and provides higher overall Signal-
to-Noise Ratio, even though the size of the suscepti-
bility artifacts may be larger with unbalanced gradient
echo techniques [20].

In Vivo heart catheterization
Left heart catheterization was performed on seven swine,
including the four used for heating experiments. The
NHLBI guidewire was introduced through the femoral
artery and navigated without a support catheter from
the femoral artery around the aortic arch and across the
aortic valve into the left ventricle to assess guidewire
pushability, steerability, and torquability. The guidewires
were re-sterilized and re-used after catheterization cases
to evaluate durability.

Results
Mechanical tests
The force required to separate two adjoined segments is
11.34 ± 2.14 N, which surpasses the 5 N requirement of
the ISO standard [15]. When the samples were jacketed
with a Vectran-braided outer layer, the tensile force
required to break the subassembly increased three-fold
(30.97 ± 0.20N). By comparison, the Glidewire com-
parator outer layer breaks at forces above 30 N. The
force required to detach the tip coil from the distal core
segment of the NHLBI passive guidewire was 19.24 ± 1.30
N (n = 5). We found that the distal tip exhibited similar

A B

C

Fig. 3 The NHLBI passive guidewire prototype compared with a Terumo
Glidewire. a A 260-cm commercial Terumo Glidewire, and (b) a 260-cm
NHLBI passive segmented nitinol-core guidewire are tightly coiled. Both
exhibit similar bending curvatures. c The tip configurations are similar
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flexibility characteristics and the overall torque response
compared well to the Glidewire (Fig. 4).

In Vitro RF-induced heating tests
In vitro the temperature change measured at the tip of a
260 cm long Glidewire is 13 °C compared with 1.2 °C
observed at the tip of the NHLBI passive guidewire at the
end of a 60-s scan (Fig. 5) at a 75° flip angle (scanner-re-
ported whole body SAR; 0.6 W/kg). Probe pull-back tests
show that the maximum temperature increase occurs at
the tip of the guidewire, and that there is no heating at the
connectors along the shaft (Fig. 5).

Guidewire visibility under CMR
The iron oxide articles with higher purity (99.99 %)
provided a slightly higher CNR (172 vs 159) and

acceptable susceptibility artifact (2 cm vs 1.2 cm) and
were chosen as markers. These iron markers rendered
the guidewires conspicuous in vivo during left heart
catheterization in swine, using both SSFP and GRE
pulse sequences (Fig. 6).

In Vivo catheterization and heating experiments
Left heart catheterization was successful in all 7 animals.
The operators found the NHLBI passive guidewire had
similar mechanical functionality to commercial guide-
wires for heart catheterization, even after re-sterilization
and re-use. This included slight loss of tip shape.
In vivo RF-induced heating was evaluated during left

heart catheterization in four swine (weight = 43 ± 17.6 kg)
at a scanner-reported peak whole-body SAR (whole body
SAR) of 1.6 W/kg over 30 min. Temperature at the distal

A

B

C

Fig. 4 Mechanical tests. The NHLBI passive guidewire (black) and the Glidewire (red) showed comparable mechanical characteristics. a Force
required to deflect the tip to a selected bend angle. b Pushability test depicts the force to advance the guidewire through a vascular phantom.
c Torquability inside the vascular phantom indicates torque ratio (number of rotations observed at the distal end of the guidewire per rotation
applied at the proximal end) of the two guidewires
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A

B

Fig. 5 In vitro temperature measurements. a Temperature at the tip of the NHLBI passive guidewire (black) and the commercial Glidewire comparator
(red) during 60 s bSSFP CMR scans at a flip angle of 75°. b Pullback of the temperature probe alongside the NHLBI passive guidewire. After baseline
steady state, scanning begins (at t = 30 s), then the probe is withdrawn from beyond the guidewire tip back to the guidewire tip (at t = 60 s). The
probe remains at the tip, during which time the temperature rises by 1.2 °C. Finally the probe is pulled back further (beginning at t = 120 s) indicating
that the temperature rise is confined to the tip

A B

Fig. 6 CMR of the NHLBI passive guidewire in vivo. The effect of various imaging sequences on in vivo guidewire conspicuity is illustrated. a During
bSSFP CMR the iron-oxide susceptibility markers are conspicuous as the guidewire is advanced retrograde through the descending thoracic aorta.
The signal-to-noise ratio is higher for images acquired using bSSFP [TR/TE, 2.88 ms/1.44 ms] compared with (b) GRE sequences with similar
TE [TR/TE, 4.87 ms/2.18 ms]
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tip of the guidewire showed no detectable heating
during advancement (Fig. 7). Similarly, a temperature
probe withdrawn alongside the shaft of the guidewire
in vivo showed no detectable heating (Fig. 7). The

averaged maximum temperature increase was 1.1 ±
0.3 °C above body temperature at a thermal reso-
lution of 0.1 °C and accuracy of 0.3 °C. The greatest
temperature difference between the body temperature

A

B

C

Fig. 7 Temperature during left heart catheterization in swine. The panels depict three simultaneous tracings during bSSFP with a flip angle of 45°.
First scanning begins, then the guidewire is advanced retrograde to the aortic arch, and then a temperature probe is withdrawn alongside the
guidewire in order to measure tip and shaft temperature. a shows the guidewire temperature probe (black) and simultaneous core body temperature
(red). On a narrower scale, (b) shows the instantaneous difference between the guidewire and core body temperature, while (c) shows the core body
temperature rise during CMR. The guidewire temperature rise was negligible
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and the temperature measured at the tip was 1.3 °C
during all four experiments, while the maximum
body temperature increase was 0.6 ± 0.1 °C.
The body temperature of a separate animal was moni-

tored while scanning without a guidewire. In the absence
of a guidewire, the body temperature increased from
35.9 °C to 36.4 °C (ΔTbody = 0.5 °C) at a 45o flip angle,
and from 36.3 °C to 37.3 °C (ΔTbody = 1 °C) at a 75° flip
angle (scan time = 35 min).

Discussion
We describe a novel segmented-core nitinol guidewire
for use in CMR that is intrinsically safe by design
and that incorporates iron oxide nanoparticle markers
for passive visualization. This NHLBI passive guide-
wire has two key features. One is that all metallic
components are less than one-quarter wavelength of
RF transmission in the body at 1.5 T (<10 cm). As a
result, standing waves are unable to form, and in turn
RF-induced heating is averted. Second, the short
metallic segments are interconnected using insulated
couplers to create a continuously flexible nitinol
system that otherwise behaves mechanically like a
conventional guidewire. Specifically, the coupled
segments resist separation when exposed to high ten-
sile forces, comparable to non-segmented commercial
guidewires.
Several CMR guidewire designs have been proposed

that aim to mitigate RF-induced heating [4, 5, 7–9, 21].
Unfortunately, passive guidewire designs lack the torqu-
ability, trackability, and support properties required for
interventional catheterization due to their polymer-only
construction [8, 14, 22, 23] while active metallic device
designs currently do not allow catheter exchanges
because of fixed instrumentation at the hub [11]. In con-
trast, the NHLBI passive guidewire performs similarly to
a high performance commercially available guidewire in
vitro and in vivo.
Guidewire heating was minimal both in vitro and in vivo.

The maximum instantaneous temperature increase at the
guidewire tip was 1.3 °C in vivo at a peak whole body SAR
of 1.6 W/kg over 30 min, although the time-averaged rise
was below 1 °C (Fig. 7). Of note, during this protracted
CMR, the animal core body temperature increased by
0.5 °C independent of the guidewire.
The controlled susceptibility artifacts created by the

iron oxide markers placed along the guidewire shaft were
sufficient for tip tracking and left heart catheterization.
We found the higher purity iron formulation to
generate larger artifacts with slightly higher CNR
using gradient echo CMR, which was preferable for
this application.
A notable feature of the NHLBI passive guidewire is

that because it is intrinsically safe by design, it may

permit high contrast images without risking heating at
higher flip angles. This specific guidewire was designed
to operate at 1.5 T. Shorter non-resonant segments
would be required at higher field strengths.

Limitations
A segmented-core design risks fracture or separation of
segments. The NHLBI passive guidewire incorporates a
reinforcing polymer braid over the core and connectors,
which mitigates this failure mode. In our experience,
guidewire integrity was maintained despite extensive re-
use, but tip shape was compromised, similar to commer-
cial guidewires.
Heating tests were performed without a catheter, which

might alter insulation, RF-induced heating properties, and
blood-flow-induced cooling. RF-induced heating is known
higher within transfemoral vascular introducer sheaths,
which are often located in high-E-field regions of the
scanner [11]. However, we did not observe higher temper-
atures using the NHLBI passive guidewire inside vascular
introducer sheaths. Temperature measurements using
physical probes suffer geometric constraints and may alter
insulation properties. Alternative approaches would be
attractive, however we have found fast T1 thermom-
etry [24, 25] unsuccessful because of signal dephasing
near the tip of our guidewire, both in vitro and in
vivo, although it would be an attractive method to as-
sess heating in the surrounding tissue in vivo.
The NHLBI passive guidewire suffers from typical

limitations of susceptibility-artifact-based visualization.
Iron-induced susceptibility artifacts are non-specific
and cannot exploit the positive-contrast afforded by,
for example, gadolinium-filled balloons [1]. Multi-
echo imaging [26] and off-resonance reconstruction
[27] may in part compensate for these shortcomings.

Conclusion
We describe a novel 0.035” CMR guidewire that by
design fulfills mechanical and MR-safety requirements
imposed by international standards. RF-induced heating
is successfully constrained below the recommended 2 °C
limit during typical CMR catheterization scanner condi-
tions, by segmenting the conductive nitinol core of the
guidewire.
Joining the segments using stiffness-matched connectors

achieves comparable mechanical characteristics to a high-
performance commercially available nitinol guidewire
while retaining the electrical isolation of the individual
short segments. The controlled image artifacts created by
iron oxide markers incorporated onto the guidewire shaft
for passive visualization enables cardiac catheterization in
a large animal model.
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