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Symposium

Altered Protein Palmitoylation as Disease Mechanism
in Neurodegenerative Disorders

Jakub Wlodarczyk,1 Raja Bhattacharyya,2 Kim Dore,3 Gary P. H. Ho,4 Dale D. O. Martin,5 Rebeca Mejias,6,7

and Karin Hochrainer8
1Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland, 2Genetics and Aging
Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical
School, Boston, Massachusetts 02115, 3Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093,
4Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston,
Massachusetts 02115, 5Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 6Department of
Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain, 7Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de
Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain, and 8Feil Family Brain and Mind Research Institute, Weill
Cornell Medicine, New York, New York 10065

Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal
function through altering protein membrane-targeting, stabilities, and protein–protein interaction profiles. Disruption of palmitoy-
lation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative
diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1),
postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo
palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these
proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depal-
mitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in
our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.

Key words: palmitoylation; neurodegeneration

Introduction
Posttranslational protein modifications essentially contribute to
the complexity of the cellular proteome by providing the means
for altering protein functions in multiple and diverse ways
(Beltrao et al., 2013; Keenan et al., 2021). One such modification
is S-acylation, which refers to the addition of long chain fatty
acids to a target cysteine residue via a thioester bond
(Deschenes et al., 1990; Mesquita et al., 2024). Because palmitate
is the most abundant and commonly used lipid during
S-acylation, this modification is most commonly referred to as
S-palmitoylation (Magee and Courtneidge, 1985). However,
other fatty acids can be incorporated and even preferred
(Greaves et al., 2017; Puthenveetil et al., 2022). Attachment of
palmitate is mediated by the zinc finger-containing DHHC

(ZDHHC) family of palmitoyl S-acyltransferases (PATs;
Dietrich and Ungermann, 2004; Roth et al., 2006; Korycka
et al., 2012), while its removal is facilitated by serine hydrolases
of the acyl protein thioesterase (APT), protein palmitoyl thioester-
ase (PPT), and α/β-hydrolase domain (ABHD) protein families
(Camp and Hofmann, 1993; Duncan and Gilman, 1998; Lin and
Conibear, 2015; Fig. 1A). S-Palmitoylation is unique in that it is
the only lipid modification that is reversible, standing in
contrast to N-myristoylation, isoprenylation, N-palmitoylation,
and O-acylation (Y. Fukata and Fukata, 2010; Buszka et al.,
2023). As such, S-palmitoylation (thereafter referred to as palmi-
toylation) has the power to dynamically adapt protein function
in response to extracellular stimuli (Conibear and Davis, 2010;
Sanders et al., 2015; Nasseri et al., 2022). As a lipid modification,
palmitoylation increases the affinity of proteins for nonpolar
structures such as lipid bilayers, aiding their integration into,
and association with, organelle and plasma membranes (PMs;
Resh, 1999, 2006a). The increase in hydrophobicity also alters pro-
tein stabilities, trafficking, and protein–protein interaction profiles
(Resh, 2006a,b; Greaves and Chamberlain, 2007; Linder and
Deschenes, 2007; Fig. 1B).

Neurons contain a large number of palmitoylated proteins
(Sanders et al., 2015; Petropavlovskiy et al., 2021), suggesting a
critical role of the modification in neuronal function. Indeed, pal-
mitoylation is vital for neurodevelopment by facilitating axonal
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guidance and growth, as well as dendritic growth and differentia-
tion (A. D. El-Husseini and Bredt, 2002; Ponimaskin et al., 2008;
Y. Fukata and Fukata, 2010; Holland and Thomas, 2017;
Koropouli et al., 2023). In mature neurons, it contributes to the
regulation of synaptic transmission and plasticity (Y. Fukata
and Fukata, 2010; Matt et al., 2019; Buszka et al., 2023), structural
long-term plasticity (LTP) and spine remodeling (Albanesi et al.,
2020; Ji and Skup, 2021), as well as integrity of neuronal connec-
tions (Globa and Bamji, 2017; Holland and Thomas, 2017;
Fig. 1C). Maintaining a balance between protein palmitoylation
and depalmitoylation is paramount for effectively controlling
these processes, and disruption of protein palmitoylation is
beginning to surface as a potential pathological mechanism in
neurodegenerative diseases (Cho and Park, 2016; Zaręba-Kozioł
et al., 2018; Ramzan et al., 2023). Indeed, key proteins involved in
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease (HD), and amyotrophic lateral sclerosis (ALS) undergo
changes in palmitoylation in disease (Yanai et al., 2006; Antinone
et al., 2013, 2017; Bhattacharyya et al., 2013; Dore et al., 2021;
Lemarié et al., 2021; Cervilla-Martínez et al., 2022; Ho et al.,
2023). In addition, aberrant activity of palmitoylating and depalmi-
toylating enzymes is linked to the development of childhood and
adult-onset neurodegenerative diseases (Vesa et al., 1995; Mukai
et al., 2008; Singaraja et al., 2011; Sutton et al., 2013; Lemire et al.,
2021; W. Li et al., 2023).

In this focused review, we highlight and discuss recent studies
investigating the role of palmitoylation in the onset and progres-
sion of adult neurodegenerative diseases, with a focus on AD, PD,
HD, and ALS. We will also touch upon the potential therapeutic
value of recent discoveries in the field.

Palmitoylation in AD
AD is a progressive neurodegenerative disease and a leading
cause of morbidity and mortality in the elderly worldwide.
FDA-approved therapeutics, including acetylcholesterase inhibi-
tors, NMDA receptor antagonists, and anti-β-amyloid (Aβ)
immunotherapies, slow cognitive decline in AD patients
(Rösler et al., 1999; Reisberg et al., 2003; Tariot et al., 2004;

Sims et al., 2023; van Dyck et al., 2023). However, these treat-
ments do not provide a cure or stop disease development.
Thus, alternatives that target a new range of therapeutic targets
are urgently needed. Protein palmitoylation is beginning to sur-
face as a significant player in AD pathology, by affecting key
enzymes involved in Aβ production, like β-amyloid precursor
protein (APP), β-site cleaving enzyme 1 (BACE1), and
γ-secretase components nicastrin and anterior pharynx-defective
1 (APH-1), as well as effector proteins implicated in Aβ- and
Tau-mediated synaptic toxicity, such as PSD95 and Fyn. A better
understanding of palmitoylation in AD pathogenesis may pave
the way for developing novel drugs to prevent or delay disease.
In the following chapters, we will review current knowledge of
how palmitoylation affects AD-related proteins and associated
cellular pathways.

The role of BACE1 and γ-secretase palmitoylation in
Aβ production
Palmitoylation of enzymes responsible for the amyloidogenic pro-
cessing of APP critically affects Aβ accumulation and deposition
in the brain, which is a main driver of disease. In healthy individu-
als, APP preferentially undergoes nonamyloidogenic processing at
the PM by the A disintegrin and metalloprotease (ADAM) family
of proteases, which releases neuroprotective soluble sAPPα and
the C-terminal fragment (CTF) C83 (Nunan and Small, 2000;
Hitschler and Lang, 2022). In AD development, APP processing
shifts to the amyloidogenic pathway, where it is cleaved by
BACE1 to generate the intracellular C-terminal domain of APP
(βCTF or C99) and then by γ-secretase to give rise to Aβ
(LaFerla et al., 2007; P. Z. Chia et al., 2013; Zhang and Song,
2013; Gallego Villarejo et al., 2022). Palmitoylation became a focus
of investigation in amyloidogenic APP processing as BACE1, the
γ-secretase subunits nicastrin and APH-1, and APP are all palmi-
toylated (Fig. 2A; Cheng et al., 2009; Vetrivel et al., 2009;
Bhattacharyya et al., 2013; Song et al., 2022). Palmitoylation of these
proteins increases their affinity for cholesterol and sphingolipid-rich
microdomains, called lipid rafts (LRs; Fig. 2A; Cho and Park, 2016).
Once located in LRs, BACE1 and γ-secretase activity toward APP is

Figure 1. Mechanisms and consequences of protein palmitoylation. A, Protein palmitoylation occurs through dynamic palmitoylation and depalmitoylation cycles. A PAT uses palmitoyl-CoA as
a donor to transfer palmitate to the thiol group of a cysteine (C) in substrate proteins. This process is reversed by APT, PPT, as well as ABHD proteins. B, Palmitoylation changes protein function by
altering its affinity for membranes and other proteins, regulating its half-life and guiding its trafficking between different subcellular locations. C, Palmitoylation critically influences neuronal
function throughout the life span of a neuron. Created with BioRender.com.
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increased leading to enhanced secretion of the most neurotoxic
Aβ species, Aβ42 (Urano et al., 2005).

BACE1 undergoes palmitoylation at four juxtamembrane cys-
teine residues (Cys474, Cys478, Cys482, and Cys485; Thinakaran
and Koo, 2008; Vetrivel et al., 2009). Knock-in of a
palmitoylation-deficient BACE1 cysteine-to-alanine mutant
resulted in a significantly reduced Aβ plaque burden and reduced
deficits in spatial working memory and associative learning in
5XFAD mice, a mouse AD model (Andrew et al., 2017).
However, the same mutant had no effect on the enzymatic pro-
cessing of APP in vitro (Vetrivel et al., 2009). Nicastrin and
APH-1 are palmitoylated at Cys689, and Cys182 and Cys245,
respectively (Cheng et al., 2009). Similar to BACE1 mutants,
AD transgenic mice overexpressing palmitoylation-deficient
γ-secretase subunits exhibited decreased Aβ deposition com-
pared with the ones expressing wild-type subunits (Meckler
et al., 2010). Mutation of palmitoylation sites increased

degradation of nicastrin and APH-1 polypeptides and reduced
their association with LRs, but, again similar to BACE1 mutants,
did not modulate γ-secretase processing of APP or other sub-
strates in vitro (Cheng et al., 2009). These results indicate that
palmitoylation of BACE1 and γ-secretase subunits does not alter
enzymatic activity toward APP per se but may affect Aβ genera-
tion by driving changes in the complex interactions between
APP, the intermediate cleavage product βCTF, BACE1,
γ-secretases, and LRs. Further research is necessary to decipher
how palmitoylation affects the intricate relationship between
these proteins.

The role of APP palmitoylation and its localization to lipid
rafts in Aβ production
APP palmitoylation critically affects Aβ production by directing
APP to LRs and bringing it into close proximity to BACE1 and
γ-secretase (Cho and Park, 2016). APP is palmitoylated in the

Figure 2. Palmitoylation regulates key proteins and processes involved in neurodegeneration. A, APP processing and accelerated Aβ production. APP is synthesized in the ER and transported in
a canonical secretory pathway via Golgi to the PM, where it is processed to form Aβ. Palmitoylation enables APP to enter endosomes, where it undergoes accelerated amyloidogenic processing in
LRs due to the presence of palmitoylated BACE1 and γ-secretase. Palmitoylated APP is also enriched in LR-like MAMs that contain BACE1/γ-secretase and generate large amounts of Aβ before
releasing it into the extracellular matrix. Finally, a noncanonical MAM-dependent pathway might aid in increased Aβ release via yet-unknown mechanisms. B, Aβ-mediated synaptic toxicity. Aβ
induces synaptic dysfunction through the NMDA receptor by mediating PSD95 depalmitoylation and subsequent loss. Inhibition of ABHD17 depalmitoylating enzymes rescues this phenotype by
increasing synaptic PSD95. C, Tau-mediated synaptic toxicity. Tau hyperphosphorylation causes its release from microtubules, which leads to its synaptic mislocalization. Together with Tau, Fyn
translocates to the postsynaptic density, where they bind PSD95 and elicit excitotoxicity. This is exacerbated by Fyn palmitoylation by ZDHHC21, which tightens its connection with the PM and
PSD95. D, αSyn homeostasis. αSyn inclusions retain cytosolic ERα, which reduces levels of palmitoylated ERα at the PM. αSyn also reduces MAP6 palmitoylation, disrupting vesicle trafficking. On
the other hand, increasing palmitoylation of Syt-11, a vesicle protein that can alter membrane curvature, prevents αSyn inclusion formation by promoting its binding to vesicle membranes. E,
mHTT aggregation. mHTT palmitoylation is decreased by ZDHHC17 inhibition and APT1 stimulation. This increases its aggregation propensity. Elevated APT1 activity may also contribute to
decreased p62 palmitoylation, limiting lysosomal degradation of mHTT aggregates. Inhibition of APT1 activity rescues these phenotypes. F, mSOD mislocalization. Immature mSOD1 (before
disulfide bond formation) exhibits increased palmitoylation, which causes its retention in the ER, increasing ER stress. Immature palmitoylated mSOD1 also travels to mitochondria, potentially
impairing mitochondrial function. In contrast to mSOD1, the chaperone CCS, required for SOD1 maturation, is less palmitoylated in disease. CCS may direct palmitoylated mSOD1 to mitochondria,
again impairing function. Throughout the figure, pathogenic pathways and protein alterations are depicted in red, while modifications that protect are shown in black. Created with BioRender.com.
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ER lumen at N-terminal Cys186 and Cys187 (amino acid numbers
are based on the ubiquitous isoform APP756), and palmitoylated
APP is then specifically enriched in LRs (Fig. 2A; Bhattacharyya
et al., 2013). Increasing or decreasing APP palmitoylation results
in elevated or reduced Aβ production, respectively, intimately
linking this modification with the extent of amyloid burden
(Song et al., 2022). Palmitoylated APP cysteines reside within
the copper-binding domain and are predicted to stabilize domain
structure by forming disulfide bonds with Cys158 and Cys133

(Curtain et al., 2003; Barnham et al., 2003a,b). Interestingly,
mutation of these cysteines increased APP palmitoylation and
trafficking to LRs, while decreasing APP palmitoylation by
mutating Cys186 and Cys187 caused nearly complete ER retention
of APP (Bhattacharyya et al., 2013). This suggests a complex
interplay between palmitoylation and disulfide linkages within
APP, which determines APP ER exit and LR enrichment.
Notably, APP localization to LR membranes and its cleavage
by BACE1 are further determined by its dimerization status
(C-D. Chen et al., 2006; Kienlen-Campard et al., 2008; Ben
Khalifa et al., 2012; Isbert et al., 2012; Bhattacharyya et al., 2016).

The physical association between the ER andmitochondria, also
known as LR-like mitochondria-associated membranes (MAMs)
act as factories for Aβ production, as they contain APP alongside
with BACE1 and γ-secretase components (Fig. 2A; Area-Gomez
et al., 2009; Del Prete et al., 2017; W. Yu et al., 2021). The number
of MAMs is increased in both fibroblasts and postmortem brains of
familial and sporadic AD patients, suggesting early and sustained
MAM alterations that provide a platform for accelerated APP pro-
cessing (Area-Gomez et al., 2012; Schon and Area-Gomez, 2013;
Leal et al., 2020). Interestingly, palmitoylation increases APP
targeting to MAMs, which further enhances production of Aβ
(Bhattacharyya et al., 2021). Reducing MAM levels by targeting
the MAM-resident sigma-1 receptor (S1R) attenuated BACE1-
dependent cleavage of palmitoylated APP, while upregulating
MAMs promoted trafficking of palmitoylated APP to the cell sur-
face, BACE1 cleavage, and Aβ generation (Bhattacharyya et al.,
2021). Interestingly, regulating MAM levels specifically altered Aβ
generation in neuronal processes and axons, but not in cell bodies
(Bhattacharyya et al., 2021). The reason for this remains debatable.
APP, BACE1, and the catalytic γ-secretase component presenilin 1
are believed to be cotransported along axons via a direct interaction
with kinesin-1 (Kamal et al., 2001; Cirrito et al., 2008), suggesting
amyloidogenic cleavage of APP during axonal transport that
might be accelerated by MAMs. However, another study could
not confirm these findings (Lazarov et al., 2005). Hence, further
research is needed to clarify the mechanisms of Aβ production
and transport in axons. Abnormal accumulation of APP and Aβ
in axons is a consequence of the brain’s response to axonal injury,
such as found in traumatic brain injury (X. H. Chen et al., 2009;
Johnson et al., 2013; Washington et al., 2014). Trauma-induced
changes to LR domains could lead to accelerated APP processing,
potentially contributing to pathology (Ehehalt et al., 2003).
Whether the increase in axonal production and aggregation
of Aβ after traumatic brain injury follows similar mechanisms
as in AD and results in comparable long-term consequences
remains to be determined. Deciphering the implications of
MAM changes for AD development may lead to novel thera-
peutic approaches. In fact, there is precedence for MAMs to
be targetable for therapy. Several pharmaceutical compounds
and natural products that modulate MAM stability are under-
going preclinical and clinical studies to treat diseases such as
metabolic disorders and cancer (Magalhães Rebelo et al.,
2020). These may be applicable to AD as well.

Palmitoylation and impaired Ca2+ homeostasis in AD
A key factor of AD pathology caused by Aβ and, in turn, affecting
Aβ production is the disturbance of intracellular Ca2+ levels
(Khachaturian, 1989; Green et al., 2008). Aβ causes cytosolic
Ca2+ overload leading to increased mitochondrial Ca2+ levels,
which successively drive Aβ deposition and neuronal death
(Calvo-Rodriguez et al., 2020). The mechanism underlying
the accelerated Ca2+ influx into mitochondria is not clear, but
there is reason to believe that palmitoylation is involved.
Homeostatic Ca2+ levels are maintained by the sarco/ER Ca2+

ATPase (SERCA) isoform SERCA2b, which localizes to MAMs
and pumps cytosolic Ca2+ into the ER (Britzolaki et al., 2018).
There is evidence that SERCA2b activity is disturbed in AD
and restoring SERCA activity by positive allosteric modulators
offers protection against Aβ neurotoxicity and cognitive decline
in an AD mouse model (Krajnak and Dahl, 2018; Dahl et al.,
2023). SERCA2b activity is bidirectionally and palmitoylation-
dependently regulated by calnexin and thioredoxin-related
transmembrane protein (TMX1; Raturi et al., 2016; Gutiérrez
et al., 2020). Both proteins undergo palmitoylation in the ER
lumen, which targets them to MAMs (Lynes et al., 2012).
There, palmitoylated calnexin binds to SERCA2b, which
promotes Ca2+ flux toward the ER (Lynes et al., 2013).
Palmitoylation of TMX1, on the other hand, increases its affinity
for SERCA2b, which leads to dissociation of calnexin and redi-
rection of Ca2+ flux into mitochondria (Gutiérrez and Simmen,
2018). Hence, the tight control of calnexin and TMX1 palmitoy-
lation appears paramount for maintaining Ca2+ homeostasis, and
it is reasonable to speculate that its disturbance is involved in
modified SERCA activity and mitochondrial Ca2+ overload in
AD. While this still needs to be confirmed, restoring calnexin
and/or TMX1 palmitoylation might be an effective way to rein-
state Ca2+ homeostasis in AD.

Palmitoylation of synaptic proteins and Aβ toxicity
One of the earliest pathological changes in the brains of AD
patients is the loss of synapses (DeKosky and Scheff, 1990;
Masliah et al., 2001). The molecular pathways preceding synaptic
loss are still unclear, but mounting evidence suggests that loss of
postsynaptic density protein 95 (PSD95) is one of the first events,
as it is significantly depleted in the brains of AD patients and in
neurons exposed to Aβ (Fig. 2B; Gylys et al., 2004; Almeida et al.,
2005). PSD95 requires palmitoylation to remain at synapses and
is undergoing continuous palmitoylation/depalmitoylation
cycles that are essential for its synaptic clustering as well as
that of AMPA receptors (A. E. El-Husseini et al., 2000; Bats
et al., 2007; Jeyifous et al., 2016). ABHD17 enzymes, existing as
isoforms a, b, and c, are known to catalyze palmitate removal
from membrane-anchored proteins and were recently identified
as the physiological depalmitoylating enzymes regulating PSD95
palmitoylation cycles in neurons (Yokoi et al., 2016). Palmostatin
B, a chemical inhibitor of these enzymes and several other pro-
tein depalmitoylases, effectively increased PSD95 palmitoylation
as well as the size of PSD95 clusters (Fig. 2B; Jeyifous et al., 2016).
Importantly, this drug also reversed Aβ-induced synaptic depres-
sion in hippocampal slices and rescued spine density impair-
ments (Dore et al., 2021). While these effects could be in part
due to increased palmitoylation of other proteins, palmostatin
B did not rescue Aβ-induced synaptic depression in slices from
PSD95-KO mice, indicating a clear role of palmitoylated
PSD95 in maintaining synapses in the presence of Aβ (Dore
et al., 2021). PSD95 is one of the most abundant postsynaptic
proteins, with ∼300 molecules present in each dendritic spine
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(Sheng and Kim, 2011); therefore, it is regulated in many differ-
ent ways including palmitoylation, S-nitrosylation, phosphoryla-
tion, ubiquitination, and protein–protein interactions (Vallejo
et al., 2017). S-Nitrosylation, a posttranslational modification also
occurring on cysteine residues, is thought to be implicated in the
pathogenesis of AD (Zhao et al., 2015). Interestingly, as PSD95
interacts with neuronal nitric oxide synthase (nNOS), it can be
S-nitrosylated on Cys3 and Cys5, the same residues that undergo
palmitoylation (Ho et al., 2011). S-Nitrosylation of PSD95 inhibits
its clustering as well as the one of the GluA2 AMPA receptor sub-
unit, as it competes with its palmitoylation (Ho et al., 2011). In addi-
tion to S-nitrosylation, binding of calmodulin during long-term
synaptic depression has been found to reduce PSD95 palmitoyla-
tion, leading to its removal from synapses (Chowdhury and Hell,
2019). Accordingly, PSD95 palmitoylation was increased during
synaptic potentiation and homeostatic scaling (Shen et al., 2022).
All these studies are in agreement with palmitoylated PSD95 main-
taining synaptic strength and nonpalmitoylated PSD95 leading to
synaptic vulnerability.

It is estimated that ∼48% of synaptic proteins undergo palmi-
toylation (Sanders et al., 2015; Petropavlovskiy et al., 2021);
therefore numerous synaptic proteins other than PSD95 are pal-
mitoylated as well. PSD93, a postsynaptic scaffolding protein
very similar to PSD95, contains two palmitoylation sites at its
N-terminus (Matt et al., 2019). Notmuch is known about the reg-
ulation of PSD93 palmitoylation during synaptic plasticity or
neurodegeneration; however, its overexpression rescued deficits
in APP/PS1 mice, an AD mouse model (L. Yu et al., 2017).
SAP97, another palmitoylated postsynaptic scaffolding protein
(Matt et al., 2019), was shown to promote α-secretase–mediated
cleavage of APP (Marcello et al., 2007), which could be beneficial
against AD. Palmitoylation of AKAP79/150, a scaffolding protein
interacting with kinases and phosphatases to control AMPA
receptor trafficking, is essential for LTP involving calcium-
permeable AMPA receptors (Purkey et al., 2018). Interestingly,
Aβ promoted the removal of these specific calcium-permeable
AMPA receptors and impaired LTP by affecting local
AKAP150-calcineurin signaling (Sanderson et al., 2021). All
four different subunits of AMPA receptors themselves are palmi-
toylated at sites after transmembrane domains 2 and 4 (Matt
et al., 2019), but to our knowledge, there is no information about
how Aβ might affect this palmitoylation. However, it was found
that homeostatic scaling by TTX application did increase GluA1
and GluA2 palmitoylation (Shen et al., 2022). The GluN2 sub-
units of NMDA receptors, mGluR5, and the γ2 subunit of
GABAA receptors are also palmitoylated, but their palmitoyla-
tion is quite stable compared with PSD95 (Yokoi et al., 2016),
suggesting less alterations in diseases like AD.

Palmitoylation and Tau toxicity
Besides Aβ accumulation, another hallmark of AD pathology is
abnormally modified and aggregated microtubule-binding pro-
tein Tau (Chang et al., 2021; Samudra et al., 2023; Sexton et al.,
2024). In neurons, Tau normally resides in axons but in patho-
logical states travels to somatodendritic compartments, where
it disrupts function (Hoover et al., 2010; C. Li and Götz, 2017;
A. Ittner and Ittner, 2018). While there is no evidence to date
that Tau itself is palmitoylated in disease, global increases in pal-
mitate levels cause Tau mislocalization and toxic aggregation
through promoting its phosphorylation and acetylation (Patil
and Chan, 2005; García-Cruz and Arias, 2024). This underscores
the potential of palmitate to induce Tau-associated biochemical
changes similar to those observed in AD and might explain

why excessive intake of saturated fatty acids increases the AD
risk (Livingston et al., 2020; Fan et al., 2023).

Another link of palmitoylation to Tau toxicity involves the
tyrosine kinase Fyn (Fig. 2C; Lee et al., 2004; Briner et al.,
2020; Tang et al., 2020). Under physiological conditions, low lev-
els of postsynaptic Fyn and Tau associate with PSD95 and the
NMDA receptor, which regulates NMDA receptor-dependent
synaptic plasticity (Tezuka et al., 1999; Nakazawa et al., 2001).
In disease, however, Fyn enhances Tau hyperphosphorylation,
and missorted Tau delivers more Fyn to the postsynapse, induc-
ing excitotoxicity by binding to PSD95 (Fig. 2C; Lee et al., 2004;
L. M. Ittner et al., 2010; Miyamoto et al., 2017; Park et al., 2020).
Interestingly, the PSD95–NMDA receptor–Fyn–Tau axis is also
heavily involved in Aβ excitotoxicity (L. M. Ittner et al., 2010;
Roberson et al., 2011; Um et al., 2012) establishing a connection
between Aβ toxicity, Tau pathology, and Fyn kinase activity
(Haass and Mandelkow, 2010; L. M. Ittner and Götz, 2011).
Fyn is palmitoylated at the N-terminus by the PAT ZDHHC21
(Koegl et al., 1994; Mill et al., 2009; Sato et al., 2009; Gottlieb-
Abraham et al., 2016), which is required for its anchoring to synap-
tic membranes (Xia andGötz, 2014). Recent evidence suggests that
ZDHHC21 activity and Fyn hyperpalmitoylation is part of AD
pathology (Fig. 2C; W. Li et al., 2023). A gain-of-function variant,
pT209S, in the ZDHHC21 gene was identified in a family with
familial AD and further characterized in a mouse model where
it enhanced Fyn palmitoylation andmembrane association, excito-
toxicity, synaptic dysfunction, and Tau pathology (W. Li et al.,
2023). It is worth noting that ZDHHC21 gain-of-function also
increased palmitoylation of another target, APP (Bhattacharyya
et al., 2013), possibly contributing to Aβ production and further
promoting AD pathology (W. Li et al., 2023). Pharmacological
suppression of palmitoylation by 2-bromopalmitate (2-BP) and
cerulenin mitigated the synaptic impairment in ZDHHC21
mutant neurons, suggesting that correcting the palmitoylation
deficit could serve as therapeutic strategy for AD treatment
(W. Li et al., 2023).

Palmitoylation in PD
PD is a devastating neurodegenerative disease that remains
incurable at present. Despite advances in understanding its path-
ogenesis and epidemiology, the ultimate causes leading to the
development of PD are unknown (Tolosa et al., 2021). The origin
of PD is considered multifactorial, with environmental and
genetic factors playing key roles in its pathogenesis (Tolosa
et al., 2021). To date, mutations in 23 genes (PARK genes) are
known to cause familial PD, accounting for 10–15% of cases.
In addition to PARK genes, ∼100 genetic risk loci have been
identified (Nalls et al., 2019). Here, we will review how palmitoy-
lation affects the function of some of the proteins encoded by
PD-related genes, including α-synuclein (αSyn) and DJ-1. In
addition, a role of palmitoylation in dopamine (DA) regulation,
which is severely impaired in PD (Ye et al., 2023), will be
discussed.

The role of palmitoylation in αSyn homeostasis
PD is among the group of neurodegenerative disorders known
as “synucleinopathies,” which exhibit a common defining pathol-
ogy: the Lewy body (LB), a cytoplasmic inclusion rich in the
neuronal protein αSyn. αSyn has a central causative role in PD.
Point mutations, duplication, and triplication of the SNCA gene,
encoding αSyn, cause rare familial forms of PD (Polymeropoulos
et al., 1997; Singleton et al., 2003; Chartier-Harlin et al., 2004).
Moreover, certain single-nucleotide polymorphisms that drive
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increased expression of αSyn are associated with increased risk
of PD in the general population (Soldner et al., 2011).
Dysregulation of αSyn causes pathogenic alterations in diverse
molecular pathways, an important one being vesicle trafficking
(Oliveira et al., 2021), which is also heavily regulated by palmitoy-
lation. Here, we review recent work supporting a connection
between palmitoylation and αSyn-dependent changes in vesicle
trafficking.

Pathologic αSyn disrupts vesicle trafficking both in the soma
and at the synapse (Nemani et al., 2010; Mazzulli et al., 2011;
Chung et al., 2013; Busch et al., 2014; Román-Vendrell et al.,
2021; Stojkovska et al., 2022). The mechanism by which αSyn
mediates these toxic effects likely relates to its transient
membrane-binding property via its amphipathic helix, which
forms when in contact with curved vesicle membranes
(Davidson et al., 1998; Dettmer, 2018) and is disturbed in disease
(Perlmutter et al., 2009; Dettmer et al., 2017; Fonseca-Ornelas
et al., 2021; Román-Vendrell et al., 2021). Interestingly, the alkyl
chains of palmitoylated proteins exhibit a similar preference for
curved membranes as the amphipathic helix of αSyn (Hatzakis
et al., 2009). Through this, palmitoyl moieties act as both sensors
and inducers of membrane curvature (Hatzakis et al., 2009),
which facilitates vesicle budding and anterograde trafficking
(Ernst et al., 2018), processes that are also supported by physio-
logic αSyn but impaired by pathologic αSyn (Cooper et al., 2006;
Gitler et al., 2008). In addition, palmitoylation regulates mem-
brane targeting of key vesicle proteins, such as SNAP25, that
work in conjunction with αSyn to ensure proper synaptic vesicle
dynamics and fusion (Hess et al., 1992). Again, these processes
are disrupted by pathologic αSyn (Román-Vendrell et al., 2021).

Although αSyn itself is not palmitoylated (it has no cysteines),
the above observations speak to a connection between palmitoy-
lation and synucleinopathy and are consistent with reduced pal-
mitoylation being a potential culprit. This hypothesis was tested
by increasing palmitoylation through targeting the APT1 depal-
mitoylase in cells expressing the αSyn “3K” mutant (E35K +
E46K+E61K), which is an “amplified” version of the familial
E46K PD mutation that readily forms cytoplasmic inclusions
in cells (Dettmer et al., 2015) and causes a robust PD-like pheno-
type in mice (Nuber et al., 2018). Inhibition of APT1 with the
specific inhibitor ML348 (Adibekian et al., 2012) and APT1
knockdown both reduced αSyn-3K inclusions in neuroblastoma
cells and rat neurons, suggesting a potential benefit (Ho et al.,
2021). Furthermore, in iPSC-derived induced neurons, APT1
inhibition and knockdown reduced αSyn phosphorylation at
serine 129 (pSer129; Ho et al., 2021), a widely used marker of
αSyn dyshomeostasis (Anderson et al., 2006). Importantly, these
findings extended to animals. A mouse model of PD expressing
transgenic αSyn-3K has been used extensively to study αSyn
homeostasis and test potential therapeutics (Nuber et al., 2018,
2021; Glajch et al., 2021). In this model, oral treatment with
ML348 was shown to be brain penetrant and, as in cell models,
reduced levels of pSer129 αSyn (Moors et al., 2023). Furthermore,
treatment withML348 improved performance on behavioral mea-
sures testing both PD-like motor impairments and cognitive func-
tions (Moors et al., 2023).

So far, two distinct APT1 substrates involved in vesicle traffick-
ing, estrogen receptor alpha (ERα), and microtubule-associated
protein 6 (MAP6; Hart et al., 2007; Waites et al., 2021), were pro-
posed to mediate these effects (Fig. 2D). Treatment of αSyn-3K
transgenic mice with the APT1 inhibitor ML348 increased palmi-
toylation and PM association of ERα and alleviated the hippocam-
pal LTP deficits apparent in symptomatic mice (Moors et al.,

2023). This was partially blocked by the ERα antagonist
methyl-piperidino-pyrazole, suggesting that at least part of the
APT1 inhibition-dependent rescue was mediated by palmitoylated
ERα. MAP6 is a bona fide substrate of APT1 as its palmitoylation
was substantially increased in APT1 knock-out brains (Won and
Martin, 2018). MAP6 palmitoylation was reduced in iPSC-derived
neurons from patients carrying an αSyn gene triplication, possibly
by increasing palmitate turnover on MAP6 (Ho et al., 2021). This
suggests an αSyn-dependent MAP6 palmitoylation deficit in PD
that APT1 inhibition might compensate for. Along these lines,
MAP6 overexpression, like APT1 inhibition, decreased αSyn-3K
inclusions (Ho et al., 2021). Together, these data support a role
of palmitoylation in αSyn pathology and the vesicle trafficking
deficits seen in synucleinopathies, and show that restoring palmi-
toylation may be used as an approach to counteract these effects.
However, critical gaps remain in our knowledge of how
APT1-mediated palmitoylation, αSyn pathology, and vesicular
trafficking are connected. For example, we lack a comprehensive,
unbiased investigation of APT1 brain substrates, which could fur-
ther increase our understanding of the functional connection
between APT1 and αSyn. Furthermore, how αSyn affects the
palmitoyl-proteome and APT1 activity remains unknown.
Finally, beyond APT1 substrates, there are likely other palmitoy-
lated proteins which modulate αSyn homeostasis in distinct
ways. For example, synaptotagmin-11, encoded by the PD risk
gene SYT11, was recently shown to reduce physiologic αSyn tetra-
mers in a palmitoylation-dependent manner (Fig. 2D; Ho et al.,
2023). Addressing these points will be an important area of
future study.

Palmitoylation of proteins encoded by other PD-related genes
Palmitoylation of proteins encoded by PARK genes and risk
genes associated with PD has not been extensively investigated,
but there is evidence of some PARK proteins being modified
with palmitate. For example, the protein encoded by the
PARK7 gene, DJ-1, is palmitoylated (Kim et al., 2013). DJ-1 binds
to membrane-associated LRs in astrocytes and neurons, which
requires the palmitoylation of three cysteine residues (Cys46,
Cys53, and Cys106; Kim et al., 2013). The findings in this study
indicate that the association of DJ-1 with LRs is essential for
LR-dependent endocytosis in astrocytes. As astrocytes support
neuronal survival, the authors hypothesized that dysfunctional
astrocytes, impaired in LR-dependent signaling pathways due
to alterations in the palmitoylation of DJ-1, may contribute to
the death of dopaminergic neurons in the substantia nigra pars
compacta (SNpc; Kim et al., 2013). Furthermore, indirect evi-
dence using palmitoylation inhibitors in cultured cells indicates
that leucine-rich repeat kinase 2 (LRRK2), encoded by PARK8,
may undergo palmitoylation, potentially influencing its dimeriza-
tion and function (Schapansky et al., 2014). Finally, the PD protein
ubiquitin C-terminal hydrolase L1 (UCHL-1), encoded by PARK5,
and the PD risk factor lysosomal acid glucosylceramidase (GBA1)
were detected in the palmitoyl-proteome obtained fromhuman cell
lines (Serwa et al., 2015; Won and Martin, 2018; Zhou et al., 2019),
but their palmitoylation has not been further validated.

Showing that palmitoylation alterations also occur in human
PD tissue, Cervilla and colleagues identified changes in palmitoy-
lation of 84 proteins in the cortex of PD patients compared to
control subjects (Cervilla-Martínez et al., 2022). Among these,
33 proteins were more palmitoylated, and 51 were less palmitoy-
lated in PD patients. These modifications were predicted to affect
functions related to the cytoskeleton, mitochondria, fibrinogen,
oxidative stress, inflammation, as well as cell survival. Notably,
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when the authors analyzed the most significant biofunctions
putatively influenced by these palmitoylation changes, PD
molecular pathways emerged as the most impacted (Cervilla-
Martínez et al., 2022). It is noteworthy that global changes in pro-
tein palmitoylation are also detected in patients with neuronal
ceroid lipofuscinosis, another neurodegenerative disorder
(Henderson et al., 2016). These findings suggest that altered pro-
tein palmitoylation could either play a central causative role in
the pathophysiology of neurodegenerative diseases, including
PD, or be a consequence of the pathological changes associated
with neurodegeneration. Regardless, exploring protein palmitoy-
lation, whether as a biomarker or a pathological mechanism, pre-
sents an intriguing avenue of research in the field of PD.

The role of palmitoylation in dopaminergic
neurotransmission
PD is characterized by the loss of dopaminergic neurons from the
SNpc that innervate the striatum. The neurodegenerative process
leads to a DA deficit in the nigrostriatal pathway, which plays a
crucial role in movement control, resulting in the main motor
manifestations of PD (Ye et al., 2023). Current treatment focuses
on alleviating these motor symptoms through DA replacement
therapy, primarily by carbidopa/levodopa and dopaminergic
agonists (Connolly and Lang, 2014). However, long-term phar-
macological treatment can lead to debilitating dyskinesias in
some patients (Church, 2021). Therefore, enhancing our under-
standing of DA regulation and signaling could help PD therapy
by finding novel ways to increase DA production or release in
surviving SNpc neurons. Studies have shown that the DA trans-
porter (DAT) is palmitoylated, and defects in its palmitoylation
reduce the transporter’s stability and function (Foster and
Vaughan, 2011; Moritz et al., 2015; Rastedt et al., 2017; Bolland
et al., 2019). Additionally, palmitoylation is involved in regulat-
ing DAT subcellular localization, binding partner interactions,
and dimerization (Zeppelin et al., 2021; Shetty et al., 2023). At
least five PATs, ZDHHC2, 3, 8, 15, and 17, target DAT for pal-
mitoylation in vitro (Bolland et al., 2019). Other palmitoylated
proteins involved in DA signaling and/or metabolism include
DA receptors 1–4 and G-protein α subunits (Linder et al., 1993;
Ng et al., 1994a,b; Tsutsumi et al., 2009; Kong et al., 2011;
Zhang et al., 2016; Zhang and Kim, 2016). Palmitoylation of DA
receptors regulates their protein levels, trafficking, and/or signaling
(Linder et al., 1993; Ng et al., 1994a,b; Kong et al., 2011; Zhang
et al., 2016; Zhang and Kim, 2016), while palmitoylation of
G-protein α subunits controls their association with discrete loca-
tions at the PM (Wedegaertner and Bourne, 1994; Marrari et al.,
2007).

Mice deficient in the PAT ZDHHC15 (ZDHHC15-KO)
exhibited reduced striatal DA content when encountering a novel
environment, suggesting that ZDHHC15-mediated palmitoyla-
tion represents a novel regulatory mechanism of DA in the stri-
atum in vivo (Mejias et al., 2021). The molecular mechanisms
responsible for this phenotype are unclear, as no differences in
the palmitoylation levels of known ZDHHC15 substrates, includ-
ing DAT, were found in the striatum of ZDHHC15-KO mice.
Psychostimulant drugs like methylphenidate and amphetamine
are recognized for their ability to alter DA release and reuptake
at synapses (Faraone, 2018). Administration of either of these
drugs significantly increased locomotion and extracellular DA
levels in the ventral striatum of ZDHHC15-KO mice compared
to controls, suggesting changes in DA release and/or synaptic
clearance in the ventral striatum of KO mice that are controlled
by palmitoylation (Mejias et al., 2021). Further research is needed

to investigate how alterations in palmitoylation affect the dopami-
nergic system in general and how ZDHHC15 is involved in this
regulation. Since PD is characterized by a deficit of striatal DA,
it would be intriguing to know whether manipulation of
ZDHHC15 palmitoylation or activity could serve as a novel ther-
apeutic target to enhance DA signaling in PD patients.

Palmitoylation in HD
HD is a progressive monogenic neurodegenerative disease
caused by a dominantly inherited CAG repeat that encodes for
a polyglutamine expansion in the N-terminus of the huntingtin
(HTT) protein, giving rise to mutant HTT (mHTT; MacDonald
et al., 1993). Partial penetrance occurs with 36–39 CAG repeats,
but it is fully penetrant when the expansion reaches 40 or more
repeats (Kay et al., 2016). Furthermore, CAG repeat length is
inversely correlated with age at disease onset (Snell et al., 1993;
Langbehn, 2022). Although HTT is ubiquitously expressed
throughout the body, the striatum is predominantly degenerated
in HD, but other brain regions are affected at later stages
(Ghosh and Tabrizi, 2018). Wild-type HTT has emerged as an
important scaffolding protein that impactsmany cellular processes
including vesicle trafficking, basal autophagy, and synaptic func-
tion (Rui et al., 2015; Martin and Hayden, 2017; Barron et al.,
2021). mHTT loses these properties and tends to aggregate and
mislocalize to intranuclear inclusion bodies (Tabrizi et al., 2020).
This chapter will discuss how palmitoylation partakes in the regu-
lation of mHTT toxicity.

The role of palmitoylation in HTT aggregation
The HTT protein is palmitoylated on Cys214 (Yanai et al., 2006),
as well as Cys105, Cys433, Cys3134, and Cys3144, with more sites still
predicted (Lemarié et al., 2023). mHTT exhibits decreased palmi-
toylation, which is inversely correlated to polyQ length (Lemarié
et al., 2021), and increases mHTT aggregation and toxicity
(Yanai et al., 2006). HTT is palmitoylated by the PATs
ZDHHC17 and 13 and depalmitoylated by APT1 and 2 (Yanai
et al., 2006; Singaraja et al., 2011; Lin and Conibear, 2015;
Lemarié et al., 2023; Martin and Sanders, 2024). mHTT palmi-
toylation deficits in HD have been associated with increased
APT1 and decreased ZDHHC17 activities (Fig. 2E; Yanai et al.,
2006; Virlogeux et al., 2021). Inhibiting depalmitoylation of
mHTT is protective in multiple HD models and patient cell lines
(Fig. 2E; Lemarié et al., 2021; Virlogeux et al., 2021). The broad
depalmitoylation inhibitor palmostatin B, targeting APT1,
APT2, and some ABHD enzymes (Lin and Conibear, 2015),
increased mHTT palmitoylation and solubility (Lemarié et al.,
2021). Administration of the specific APT1 inhibitor ML348
had protective effects in the CAG140 knock-in mouse model of
HD (Virlogeux et al., 2021), although HTT palmitoylation was
not measured in this case. Chronic infusion of ML348 for
1 month in 7-month-old mice improved motor coordination,
anxiety-, and depression-related behaviors, restored synapse
number, and reduced mHTT nuclear accumulation, but did
not improve exploratory behavior in the open-field test
(Virlogeux et al., 2021). In human HD iPSC-derived cortical neu-
rons, ML348 increased brain-derived neurotrophic factor
(BDNF) trafficking and release at the synapse (Virlogeux et al.,
2021). Beneficial effects of promoting total palmitoylation were
linked to the restoration of BDNF axonal trafficking (Virlogeux
et al., 2021). Protective effects were likely also mediated by
increased mHTT solubility and clearance (Lemarié et al., 2021),
which may be linked to increased mHTT lysosomal degradation
directed by p62 palmitoylation (Fig. 2E). p62 (also known as
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sequestosome-1, SQSTM1) is a major autophagy receptor
required for targeting autophagic cargo, including aggregated
proteins, to the autophagosome for degradation by the lysosome.
In HD, there is an autophagosomal cargo loading defect associ-
ated with an increase in a toxic buildup of cellular waste
(Martinez-Vicente et al., 2010; Walter et al., 2016). p62 was
recently shown to be palmitoylated and is also substrate of
APT1 (Huang et al., 2023). Subsequently, the Martin Lab found
that p62 palmitoylation is significantly decreased in the brains of
HD patients and in HD mouse models (Abrar et al., 2023).
Therefore, ML348 may also correct p62 palmitoylation in HD,
which is predicted to direct mHTT for degradation through
enhanced autophagy. Of note, mutations in p62 are intimately
linked to ALS and frontotemporal dementia (FTD; Van Der
Zee et al., 2014). Thus, palmitoylation of p62 may provide a ther-
apeutic link between HD, FTD, and ALS.

Palmitoylation in Amyotrophic Lateral Sclerosis
ALS is a devastating neurodegenerative disease that primarily
targets motor neurons (Masrori and Van Damme, 2020).
Patients typically succumb to this unrelenting disease within
3–5 years after onset, most commonly due to respiratory failure,
or complications thereof caused by motor neuron degeneration.
Generally speaking, ALS can be subdivided into familial (fALS)
and sporadic (sALS). While the majority of ALS cases are spora-
dic, >30 genes have been implicated in fALS, many of which
overlap with sALS (Cirulli et al., 2015; R. Chia et al., 2018).
This section will review the impact of palmitoylation on the func-
tion of antioxidant Cu, Zn-superoxide dismutase 1 (SOD1), thus
far the only protein reported to be modified with palmitate in
ALS models (Antinone et al., 2013, 2017).

The role of palmitoylation in SOD1 function and localization
SOD1 is a ubiquitously expressed homodimeric metalloenzyme
that converts superoxide to hydrogen peroxide and oxygen,
and mutations in SOD1 were first linked to fALS in 1993
(Rosen et al., 1993). In vitro studies in HEK293 cells showed
that SOD1 palmitoylation at Cys6 is more prevalent in
fALS-linked SOD1 mutants A4V, G93A, and G85R (mSOD)
than in wild-type SOD1 (Antinone et al., 2013). The predomi-
nant palmitoylated species was the immature form of mSOD1
(Antinone et al., 2013, 2017), which suggested that palmitoyla-
tion may target immature SOD1 to mitochondria and potentially
affect mitochondrial function (Fig. 2F). Alternatively, palmitoy-
lated mSOD1 might be directed to the ER where it has been
found to aggregate and contribute to ER stress (Fig. 2F;
Antinone et al., 2013). Like other enzymes linked to ALS,
many SOD1 mutations maintain full enzymatic activity, suggest-
ing that pathogenesis is not directly related to a loss-of-function
of its SOD activity (Reaume et al., 1996; Antinone et al., 2013).
Instead, there may be a loss-of-function or toxic gain-of-function
due to mislocalization (Antinone et al., 2013; Masrori and Van
Damme, 2020), which may partly be caused by palmitoylation
changes.

In a follow-up study, the authors found that mSOD1 was also
palmitoylated on Cys57 and Cys146, which are involved in dis-
ulfide bond formation in mature SOD1 (Antinone et al., 2017).
In human patient spinal cords, endogenous SOD1 palmitoylation
was relatively low overall but detectably higher in ALS patients
compared with that in non-ALS subjects (Antinone et al.,
2017). The difficulty in detecting endogenous palmitoylated
SOD1 may be attributed to heterodimers between SOD1 and
copper chaperone of SOD1 (CCS). CCS facilitates SOD1

maturation by catalyzing copper acquisition and disulfide bond
formation (Reaume et al., 1996; Antinone et al., 2017). CCS is
also palmitoylated, but its levels decrease in ALS patient spinal
cords compared with those in controls (Fig. 2F; Antinone et al.,
2017). It was suggested that the palmitoylated mSOD1-CCS het-
erodimer may represent a long-lived maturation intermediate
that is targeted to membranes (Fig. 2F; Antinone et al., 2017).
However, the overall role of palmitoylation of mSOD1 and
CCS in ALS remains unclear.

Palmitoyl-proteomic studies revealed that neurodegenerative
diseases, in particular TDP43-proteinopathies such as ALS and
FTD, are associated with a significant enrichment of palmitoy-
lated proteins and that, in addition to mSOD1, more proteins
encoded by ALS-linked genes are palmitoylated (Blanc et al.,
2015; Sanders et al., 2015). While in need of verification, this
indicates that palmitoylation may be a common mechanism to
regulate localization of proteins linked to ALS. Consequently,
palmitoylation may be an untapped area of research that could
reveal how ALS proteins mislocalize and aggregate. As more pro-
teins, like SQSTM1/p62 (Abrar et al., 2023; Huang et al., 2023)
and myelin-associated oligodendrocytic basic protein (MOBP)
(Wild et al., 2022), are confirmed, it will be important to charac-
terize their palmitoylation in disease contexts.

Challenges and Perspectives
Accumulating evidence indicates that defects in protein palmi-
toylation are associated with a wide range of brain abnormalities
leading to childhood- and adult-onset neurological and neurode-
generative disorders (Vesa et al., 1995; Yanai et al., 2006; Mukai
et al., 2008; Singaraja et al., 2011; Antinone et al., 2013, 2017;
Bhattacharyya et al., 2013; Sutton et al., 2013; Dore et al., 2021;
Lemire et al., 2021; Cervilla-Martínez et al., 2022; Ho et al.,
2023; Lemarié et al., 2023; W. Li et al., 2023). Thus, correction
of abnormal palmitoylation may be a viable option for therapeu-
tic intervention for these conditions. The attachment and cleav-
age of palmitic acid to and from target proteins is dynamically
mediated by PATs and depalmitoylase (Abazari et al., 2023),
which therefore present attractive targets for modifying protein
palmitoylation by either pharmacological intervention or gene
therapy. That this is a viable option shows the example of infan-
tile neuronal ceroid lipofuscinosis, a devastating childhood neu-
rodegenerative lysosomal storage disease caused by inactivating
mutations in the gene encoding the depalmitoylase PPT1 (Vesa
et al., 1995). Current preclinical and clinical trials suggest that
either mimicking the depalmitoylation capacity of PPT1 by the
depalmitoylation agent N-(tert-butyl) hydroxylamine or replac-
ing the defective variant by gene therapy might successfully treat
this condition (Sarkar et al., 2013; Rosenberg et al., 2019; Fyke
et al., 2024). As described in previous chapters, altering depalmi-
toylase enzymatic activities also showed promising results in AD,
PD, and HD preclinical models (Dettmer et al., 2015; Dore et al.,
2021; Ho et al., 2021; Lemarié et al., 2021; Virlogeux et al., 2021;
Moors et al., 2023). However, before we can seriously consider
altering palmitoylation as a therapeutic avenue for neurodegen-
erative diseases, we need to further increase our understanding
of how palmitoylation affects neuronal proteins in adult-onset
neurodegeneration and find better ways of specifically addressing
the palmitoylation deficits. Unfortunately, several factors signifi-
cantly complicate research and targeting of palmitoylation for
these conditions.

Despite methodological and technical advances over the last
decade, the detection of protein palmitoylation remains challeng-
ing and labor-intense, relying on radiolabels, multistep click-
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chemistry or biotin- and PEG-labeling methodologies that do not
allow for capturing the dynamics of palmitoylation (Gao and
Hannoush, 2018; Zaręba-Kozioł et al., 2018; Main and Fuller,
2022). New label-free and high temporal- and spatial-resolution
imaging–based methods are necessary to investigate palmitoyla-
tion dynamics in vivo in cells or tissues. In addition, high-
throughput methods that allow for unbiased discovery of palmi-
toylation changes in the whole-brain proteome should be further
improved and employed.

The mechanism of action and substrate specificity of PATs
and depalmitoylases remains poorly understood, complicating
the identification and analysis of relevant proteins. PATs
undergo autopalmitoylation and/or activation through palmitoy-
lation by other PAT family members before their cognate sub-
strate is palmitoylated, introducing an additional level of
complexity (Roth et al., 2002; Jennings and Linder, 2012; Rana
et al., 2018). In addition, many neuronal proteins are palmitoy-
lated by multiple PAT members, e.g., PSD95 by ZDHHC2, 3,
8, and 15 (M. Fukata et al., 2004; Mukai et al., 2008; Noritake
et al., 2009; Ho et al., 2011), or a single PAT palmitoylates
many substrates (Cho and Park, 2016), making it difficult to
identify PAT–substrate pairs. PAT localization to different
organelles also contributes to substrate selectivity (Y. Fukata
et al., 2013; Philippe and Jenkins, 2019). Finally, palmitoylation
can be influenced by other PTMs, such as S-nitrosylation, which
competes for the same cysteine residues (Zaręba-Kozioł et al.,
2019), as demonstrated for PSD95 (Ho et al., 2011). This
interplay between PTMs adds another layer of intricacy to the
control of protein function, underscoring the importance of
using advanced experimental approaches that consider these
interactions.

Reflecting the complexity of the system, there is still a lack of
tools and drugs that specifically modulate PAT and depalmitoy-
lase activities and, consequently, palmitoylation of target pro-
teins. PAT activity modification currently is almost exclusively
achieved with the broad-spectrum inhibitor 2-BP. However,
2-BP is not selective for individual PATs, and off-target effects
make it unsuitable as a therapeutic drug (Zheng et al., 2013;
Won and Martin, 2018). In addition, it also affects lipid synthesis
and metabolism, inhibits certain depalmitoylases, and shows
cytotoxic effects, raising concerns about its use in studying palmi-
toylation (Mikic et al., 2006; Lanyon-Hogg et al., 2017; Abrami
et al., 2021). Recently, an improved version of 2-BP, cyano-
myracrylamide, was developed that does not exhibit some of
the weaknesses of 2-BP (Azizi et al., 2021). However, it still lacks
specificity for a specific PAT. Depalmitoylase inhibitors have a
better specificity profile and therefore show higher promise as
therapeutic drugs. For example, palmostatin B inhibits both
APT1 and 2, while ML348 is specific for APT1 and ML349 for
APT2 (Adibekian et al., 2012; Lin and Conibear, 2015; Won
et al., 2016). GNS561 is a selective PPT1 inhibitor used in cancer
treatment (Brun et al., 2022). However, while it is able to cross the
blood–brain barrier (Brun et al., 2022), its efficacy in changing
the brain palmitoyl-proteome has not been determined.
Further development of highly selective drugs that regulate the
palmitoylation/depalmitoylation cycle of specific proteins, par-
ticularly in the brain, will accelerate progress toward potential
therapies for neurodegenerative diseases.

Finally, research over the past years has made it clear that neu-
rodegeneration exhibits sex and gender differences in disease
prevalence and progression (Young et al., 2023). Interestingly,
there is also a notable sex difference in brain palmitoylation,
which causes differential responses to stress and anxiety in males

and females (Hohoff et al., 2019; Meitzen et al., 2019; Kerkenberg
et al., 2021; Zaręba-Kozioł et al., 2021). In particular, the PAT
ZDHHC7 was demonstrated to palmitoylate brain substrates in
a sex-specific manner (Zaręba-Kozioł et al., 2021). Further iden-
tification of the intracellular mechanisms regulating palmitoyla-
tion in both sexes will be critical for the development of
sex-specific therapies for neurodegenerative disorders.

In conclusion, palmitoylation is a unique lipid-based protein
modification with steadily increasing links to neurodegenerative
conditions, including AD, PD, HD, and ALS. If we can address
the current obstacles hindering the effective study and manipula-
tion of palmitoylation, its targeting will increase our understand-
ing of the pathophysiology of these diseases and may be used as
an innovative approach to achieve therapeutic goals.
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